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Abstract. Federated Learning (FL) uses a distributed Machine Learning
(ML) concept to build a global model using multiple local models trained
on distributed edge devices. A disadvantage of the FL paradigm is the
requirement of many communication rounds before model convergence.
As a result, there is a challenge for running on-device FL with resource-
hungry algorithms such as Deep Neural Network (DNN), especially in the
resource-constrained Internet of Things (IoT) environments for security
monitoring. To address this issue, this paper proposes Resource Efficient
Federated Deep Learning (REFDL) method. Our method exploits and
optimizes Federated Averaging (Fed-Avg) DNN based technique to reduce
computational resources consumption for IoT security monitoring. It
utilizes pruning and simulated micro-batching in optimizing the Fed-Avg
DNN for effective and efficient IoT attacks detection at distributed edge
nodes. The performance was evaluated using various realistic IoT and non-
IoT benchmark datasets on virtual and testbed environments build with
GB-BXBT-2807 edge-computing-like devices. The experimental results
show that the proposed method can reduce memory usage by 81% in
the simulated environment of virtual workers compared to its benchmark
counterpart. In the realistic testbed scenario, it saves 6% memory while
reducing execution time by 15% without degrading accuracy.

Keywords: Distributed machine learning · Edge devices · Federated learn-
ing (FL) · Deep Neural Network (DNN) · Internet of Things (IoT), Security
Monitoring.

1 Introduction

The Internet of Things (IoT) is an ecosystem that consists of multiple intelligent
devices. The Markit estimates suggest that 125 billion devices will be part of IoT
by 2030 [1]. The connected IoT devices are potentially used in smart-home, smart
cities, intelligent automation and cyber-physical systems. These devices used
embedded systems, such as processors, sensors and communication hardware to
collect and exchange data. These devices share the collected data with other
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connected edge devices. The shared data can improve data management and
monitoring, human-machine interaction, and Artificial Intelligence (AI) analytics.
However, these devices are becoming potential avenues for various cyber attacks
and other cyber mafias. For instance, the massive Distributed Denial-of-Service
(DDoS) attack on insecure IoT devices powered by a virus called Mirai (Linux.
Gafgyt) causes a severe disaster [2]. At the same time, these IoT devices consist
of low computational power, and limited memory and processors. Because of that,
AI techniques developed for mainstream and other general purposes computing
devices cannot be deployed on resource-constrained IoT devices. Therefore, the
mechanisms to address security challenges in the IoT and cyber-physical systems
need to be resource-efficient and effective, especially in Federated Learning (FL)
scenario that augments data security and privacy issues.

Recent research has shown the potential applications of ML algorithms,
especially Deep Neural Network (DNN), in cyber security monitoring [3]. However,
IoT devices are resource-constrained and distributed in nature hence DNN-based
cyber security scheme cannot be directly deployed for security monitoring in IoT
environments. In addition, organizations are concerned about privacy in data
sharing for training AI-based techniques in a centralised manner (e.g. data centre).
In this aspect, FL [4] approach provides a promise but may not scale through
IoT and cyber-physical devices because client edge devices are usually more
resource-constrained in terms of storage, computational power, communication
bandwidth and memory than server machines in the data centre. Therefore,
training a federated DNN model consisting of millions of parameters on resource-
constrained IoT devices is a challenge. To this end, we investigate the following
research questions (RQs) to develop a suitable federated DNN-based method for
the security monitoring of resource-constrained environments such as IoT.

RQ1: Can existing DNNs be trained efficiently in FL settings so that the resulting
model can be appropriate for IoT security monitoring in resource-constrained
environments? (see section 3.2 )

RQ2: Can the resulting Resource Efficient Federated DNN (REFDL) effectively
and accurately detect attacks on IoT networks without accuracy degradation?
(see section 5 )

For our experiments, we utilize a Federated Averaging (FedAvg) DNN along
with eight IoT benchmark datasets to build an REFDL model. The experimental
results are encouraging as the resulting REFDL shows lower memory consumption
with better classification performance in simulated and real testbed federated
settings against each data set used in our experiments. The federated integration
of the model also helps to preserve the privacy of IoT device data during on-device
model training.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3.2 describes the proposed method and the utilized FL technique,
while Section 4 describes the evaluation process. Results and discussion can be
found in Section 5. Finally, Section 6 concludes the paper with future research
directions.
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2 Related Work

This section presents related studies concerning deep learning for IoT security
monitoring, followed by brief descriptions of FL and its applications to IoT
environments.

Deep Neural Network in IoT. Significant research has been conducted
on IoT security monitoring using AI techniques. Most of these methods utilized
DNN [5]. Mohammad et al. [6] used DNN for IoT data analysis and network
traffic classification tasks. Li et al. [7] carried out similar tasks using IoT smart
cities data. Shen et al. [8] proposed compact structure-based learning with Con-
volutional Neural Network (CNN) for an IoT resource-constrained environment.
The technique demonstrates its potentiality on the CIFAR-10 and Imagenet
benchmark datasets. The lack of model assessments with IoT benchmark datasets
and non-consideration of memory usage are the restrictions of their method’s
potentiality for deployment in a resource-constrained environment. Rock et al. [9]
quantized CNN for inference on radar sensor data. Kodali et al. [10] exploit
the potentiality of DNN, specifically Fully Connected Neural Network (FCNN),
for classification tasks on ultra low power IoT devices. The aim is to improve
the detection performance without reducing the model complexity. The lack
of consideration for model complexity while selecting the FCNN architecture
may restrict method feasibility. In addition, most of the stated optimization
approaches considered the quantization of weights and bias parameters. Zakariyya
et al. [11] proposed resource-efficient and robust DNN methods for IoT security
monitoring in centralized settings. But, our proposed approach in this paper aims
to reduce memory and time usage without degrading accuracy significantly in
decentralized settings. The method exploits pruning, simulated micro-batching
and parameter regularization to optimize the resulting model in terms of memory
requirements and accuracy performance. This is useful, especially for the task of
distributed learning in a resource-constrained environment.

FL in IoT Environments. McMahan et al. [12] proposed the first FedAvg
FL technique that enables the training of a local model on multiple clients without
sharing the client’s local data to a server. This technique offers a promise in
terms of model convergence with various client local data in non-independent
and non-identically distributed settings. For this reason, researchers from several
disciplines explored FL methods from different perspectives. In the field of IoT
security monitoring, FL is gaining popularity. Preuveneers et al. [13] described FL
applications for intrusion detection in IoT networks. Imteaj et al. [14] described
the open research directions regarding the FL applications on resource-constrained
IoT devices. Thein et al. [15] described the capability of FL in detecting attacks
on industrial IoT devices. Liu et al. [16] enhance that investigation by considering
raw sensor reading data. Jiang et al. [17] utilized model pruning for efficient FL
training on edge devices. Bonawitz et al. [18] proposed a scalable FL framework
for mobile devices to reduce communication overhead. Popoola et al. [19] used FL
to detect a zero-day attack in an IoT network environment. Their implementation
take the advantage of FL data privacy without considering resource limitations.
Zakariyya et al. [20] used model parameters pruning and data parallelism (micro-
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batching) in optimizing FL to reduce memory consumption on IoT networks.
However, none of the mentioned proposals considers optimizing FL to save memory
and time resources using different DNN variants. We address this challenge by
optimizing the federated training procedure using raw network traffic datasets
from various IoT devices. Then, we proposed a REFDL method with minimal
resource consumption. This method maintains state-of-the-art accuracy while
reducing memory and time consumption in both simulated and real embedded
devices experimental settings.

3 Methodology

To demonstrate the proof of concept, we will use Baseline Federated Deep
Learning (BFDL) with FCNN and CNN model variation against some IoT and
non-IoT benchmark datasets and exploit the BFDL optimization algorithm to
obtain the REFDL. We demonstrate that careful optimization of the BFDL
algorithm is sufficient to produce the REFDL. The efficient REFDL can detect
attack activities on IoT and accurate classification with non-IoT datasets.

3.1 Baseline Federated Deep Learning (BFDL)

The BFDL utilized the classical FedAvg algorithm with an integrated DNN
(FCNN / CNN) model. The in-cooperated DNN is a neural network containing
deep layers of neurons representing the input data. These neurons correspond
to the computing units that can transmit computational results operated with
their activation function and the input. The FCNN is a sequential form of DNN
that connects neurons with the corresponding weights and bias parameters. The
weights and biases serve as information storage components. The baseline model
of the BFDL (Mn) in Algorithm 1 consists of network topology, activation
functions and corresponding values for weights and bias. The weight and bias
values settings can minimize the error function EMn evaluated over the labelled
training data Dtr. This procedure can built a single master model of the FedAvg
algorithm that can serve as the aggregated of the client models. The function
BASE in line 1 of Algorithm 1 describes the Mn training using a Stochastic
Gradient Descent (SGD) algorithm with backpropagation [21] in FL scenario. At
each communication round, the server in function Device UPDATE of Algorithm
1 is capable of distributing a master model to each client’s subsets. Each client
performs iterative rounds of gradient descent weights update with their local data
and returns to the server in Algorithm 3. This is determined to minimize the cost
function in Equation 1 and Equation 2 in-order to create a global master model.
Then, the execution time and memory footprints are estimated based on lines 11
and 12 of Algorithm 1. These are the records of training resource usage at the
device level after the local weights update. As expressed in line 17, computed
model weights are returned to the coordinating server in Algorithm 3. The server
is responsible for averaging the return weight for global model aggregation. With
a function that learns from Dtr, the global model can appropriately map unseen



Resource Efficient Federated Deep Learning for IoT Security Monitoring 5

samples. The resulting BFDL approach uses supervised DNN (FCNN and CNN)
as a classifier, Mn can accept an input Dtr and outputs a probability class of
vector Ŷ . The desired output Ŷ are rounded up to the closest integer using a
specified threshold value t as in Equation 3. This output represents either the
benign (1) or the attack (0) traffic instance against the IoT data or representative
class for the image dataset.

Algorithm 1 Baseline BFDL training

Input: Labelled data Dtr, Iteration number T , Batch size S
Output: Baseline modelMn

1: function Base(Dtr[ ]) ▷ Training baseline model
2: for i = 1 to T do
3: Mini-batch B = {(x1, y1), ..., (xm, ym )} ⊂ Dtr

4: Fp(B) ▷ Forward propagation with B
5: Ei ← L ▷ L = Base loss
6: Bp(B) ▷ Backward propagation
7: function Device Update((d)) ▷ Run on device d
8: Bs ← (data Pd in batches of size B)
9: for batch b ∈ Bs do
10: w ← local weights update ▷ device local weights update computation
11: Estimate mi ▷ Execution memory at epoch i
12: Estimate ti ▷ Execution time at epoch i
13: Mn = Trained model that estimate Ei,mi, ti
14: end for
15: end function
16: end for
17: return w to server in Alg. 3 ▷ Calls to coordinating server in Alg. 3 for weights

averaging
18: return (Mn, Ei,mi, ti)
19: end function

J(W, b) =
1

m

m∑
i=1

L(Ŷ i, Y i) (1)

L(Ŷ i, Y i) = −(Y log Ŷ + (1− Y )log (1− ˆY )) (2)

Output =

{
0 if Ŷ ≤ t

1 if Ŷ > t
(3)

3.2 Resource Efficient Federated Deep Learning (REFDL)

As mentioned above, training a resource-efficient DNN model for FL task can be
a challenging task, especially in IoT security monitoring [22]. Because of the FL
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communication rounds and DNN model parameters requirements in designing
and building the desirable architecture. The complexity of such an approach
increases with multidimensional datasets.

Algorithm 2 Proposed method to obtain REFDL

Input: Penalty term λ, (Dtr, T , B, L, in Alg. 1)
Output: Efficient modelMe

1: function Efficient(Dtr[ ])
2: for j = 1 to T ; do
3: Micro-batch M = {(x1, y1), ..., (xm, ym)} ⊂ B
4: Fp(M) ▷ Forward propagation with M
5: Et = L ▷ Initialized loss
6: Estimate mt, tt Initialized memory and time based on Et
7: Ej ← Et + λ

∑W
j=1

(w2
j/w

2
0)

(1+w2
j/w

2
0)

8: Bp(M) ▷ Backward propagation with M
9: function Device Update((d)) ▷ Run on device d
10: Ms ← (data Pd in batches of size M)
11: for batch b ∈Ms do
12: w ← local weights update ▷ device local weights update computation
13: if (Ej ≤ Et) then
14: λ = λ+△λ
15: Estimate mj ▷ Execution memory at epoch j
16: Estimate tj ▷ Execution time at epoch j
17: if ((mj < mt) ∧ (tj < tt)) then
18: mtr = mj ▷ mtr = Efficient memory
19: ttr = tj ▷ ttr = Efficient time
20: Me = Trained model that estimate Ej ,mtr, ttr
21: end if
22: end if
23: end for
24: end function
25: end for
26: return w to server in Alg. 3 ▷ Calls to coordinating server in Alg. 3 for weights

averaging
27: return (Me, Ej ,mtr, ttr)
28: end function

To this end, we utilize the baseline model in BFDL to produce its resource-
efficient counterparts (REFDL). The training procedure described in Algorithm
2 optimizes a function using Dtr in the FL scenario to obtain the efficient Me

corresponding to the REFDL model. As described in line 3 in Algorithm 2,
the optimization procedure utilized micro-batching [23], which is suitable for
breaking a large amount of data into smaller batches for efficient on-device model
training. Unlike the mini-batch, the micro-batching is particularly suitable for
most datasets, especially the IoT ones. To reduce network complexity, we used
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a penalty [24] (weight elimination) technique with a threshold parameter w0

as shown in regularized Equation 4. This is a requirement to discover those
sets of relevant weights in the network for efficient local weight updates. In
particular, to determine the significant and insignificant large weights of the
baseline model. Weights greater than w0 that yield a complexity cost closer
to 1 require a regularization using the penalty parameter λ. However, we do
not predefined the numbers of weights to eliminate, the Algorithm 2 itself will
decide this number based on the given DNN architecture and the various other
constraints. The regularization considers a scenario where the initialized model
produces a higher error value Et as in line 7. For better performance, we utilized
the set of parameters to produce a lower error value Ej . After this stage, in lines 15
and 16, the estimated computational memory footprints and execution time are
compared with that of the initialized values in line 6 to return the minimal memory
constraint produced by the client device model. Device models with minimal
resource consumption are returned to the coordinating server in Algorithm 3
together with their weights for model averaging. Then, the coordinating server
can update the client model weights in a federated setting and performs weight
averaging while returning the updated averaged weights for model aggregation.
This process can reduce the client’s communication time and computational
complexity while building the aggregate model of REFDL. The memory and
processor savings for each client device at each federated round and accumulating
all these savings can lead to significant savings when the model is converged.

R = λ

W∑
j=1

(w2
j/w

2
0)

(1 + w2
j/w

2
0)

(4)

Algorithm 3 Coordination Procedure for Alg. 1 and 2

Server Executes:

1: function Server Weights Update
2: initialize weight w;
3: while t ≤ n do ▷ n federated round
4: R ← random set of max(C.K, 1) ▷ C.K fraction of clients K
5: for k ∈ R in parallel do ▷ k client index
6: Weight device update ▷ Federated model weight update for Alg. 1 or 2
7: end for
8: Averaged weights update
9: end while
10: return Averaged updated weights
11: end function
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4 Evaluation

This section describes the evaluation criteria of the BFDL and REFDL methods.
It also presents the datasets used in the evaluation of the proposed approach.

4.1 Utilized Datasets

The N-BaIoT dataset contains various realistic data samples from nine commercial
IoT devices that collectively represent multitudes of botnet and benign network
traffic flows [25]. Each device is either infected by a variety of BASHLITE or Mirai
attacks, with some regular instances. We randomly consider eight devices subsets
with the most IoT specification. These devices are a (i) Danmini Doorbell, (ii)
Ecoobee Thermostat, (iii) Ennio Doorbell, (iv) Provision PT-737E, (v) Provision
PT-838, (vi) Samsung SNH-1011-N, (vii) SimpleHome XCS-1002-WHT, and
(ix) SimpleHome XCS-1003-WHT. Each device consists of sufficient records of
variational attacks such as ack, syn, scan, junk, tcp, udp, udpplain, combo and
regular instances containing a numeric representation of traffic flows with 115
features vector. For this reason, the N-BaIoT dataset serves as a benchmark for
the proposal of a device-centric IoT security monitoring mechanism. We utilized
mentioned commercial devices subsets data of the N-BaIoT for federated training
and testing of BFDL and REFDL models.

The WUSTL dataset consists of multiple flows of traffic from an emulated
SCADA system [26]. This dataset can be appropriate for investigating the
feasibility of AI algorithms for security monitoring purposes. The raw data consists
of 7,037,983 numeric data samples. As a result, we consider the distribution of
471,545 attacks and 6,566,438 normal instances to evaluate our method.

4.2 Virtual Workers Experimental Setup and Implementation

We used Python 3.76 on a desktop computer with Intel Xeon E5-2695(4 core)
CPUs running at 2.10 GHz with 16.0 GB installed memory to build each technique.
For profiling memory consumption, we utilized the integrated memory usage [27].
We utilized PyTorch version 1.4.0 [28] and PySyft version 0.2.9 [29] frameworks
for the virtual on-device training. Pysyft framework simplifies the creation of
virtual workers. We utilized these virtual workers to simulate the FL scenario for
the BFDL and REFDL. These workers emulate real virtual machines and can
run as a separate process within the same python program with their dataset.
Our federation training procedure considered four clients’ virtual workers and
a coordinating server worker receiving the computational updates from each
virtual client worker model. Each federated client model consists of an input
layer, four hidden layers and an output layer. The topology selection against each
dataset utilized [30] to minimize operations and improve the performance metrics.
The experimental settings considered are appropriate for binary classification as
returned by the [30] parameter tuning technique. The overall architectural settings
remain identical for evaluating the BFDL and proposed REFDL technique. Table
1 presents the utilized model architecture of each FL technique against each
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dataset. Regarding the Wustl dataset, the selected topology was returned based
on [30] tuning technique.

Table 1: Architecture and distribution of normal and attack for each device data.

Device Normal Attack Inputs Outputs Architecture

Danmini Doorbell 49,548 968,750 115 1 83-128-128-83

Ecobee Thermostat 13,113 822,763 115 1 83-128-128-83

Ennio Doorbell 39,100 316,400 115 1 83-128-128-83

Provision PT-737E 62,154 766,106 115 1 83-128-128-83

Provision PT-838 98,514 729,862 115 1 83-128-128-83

Samsung SNH-1011-N 52,150 323,072 115 1 83-128-128-83

SimpleHome XCS-1002-WHT 46,585 816,471 115 1 83-128-128-83

SimpleHome XCS-1003-WHT 19,528 831,298 115 1 83-128-128-83

Wustl 6,566,438 471,545 6 1 26-128-128-26

For the baseline and optimized model training procedure, lr = 0.001 was
utilized. We used 0.01 values for both λ, △λ and threshold w0 [31] with 4
micro-batches to build the model of REFDL method. The activation function
considered in the fully connected layers is relu [32] with sigmoid in the output
layer. Both BFDL and REFDL use an SGD optimizer appropriate for running
FedAvg training. Each federated model was trained in 128 batches within four
epochs in 30 worker’s communications rounds for optimum convergences. After
completing the client’s model training, average weight values are sent to the
coordinating worker. This worker aggregates those weights to update the global
model. Codes for this implementation are made publicly accessible for exploration
and reproduction purposes [33].

4.3 Testbed Experimental Setup and Implementation

To test the efficient federated communication of the REFDL against BFDL in a
testbed setting, we utilized the PySyft version 0.2.9 [29] python framework over
a network with a client and server-class connected via a WebSocket (WS). Since
PyTorch is a potential library for PySyft, we utilize it to build an edge computing
FL training scenario for resource-constrained devices. The environmental settings
mimic the client’s server communication scenario in a distributed manner. In this
context, it can support the building of simulated and realistic testbed settings.
In the network realistic testbed settings, we considered 4 Gigabyte Brix (GB-
BXBT-2807) with a laptop (see Figure 1). The personal laptop represents the
coordinating server in a wireless network to emulate low-frequency connections.
The server is responsible for model weights aggregation and distribution to clients.
The client’s devices in Alg. 1 and 2 are responsible for local model training using
the server model weights on the client’s dataset and returning client weights to
the server. Therefore, the communication workload is higher at the client-side
containing the edge devices than the server machine. The installed Operating
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System (OS) in GB-BXBT-2807 clients is Ubuntu version 20.04.4 LTS. Each
client contains an installation for the PySyft framework and its dependencies.
Federated network testbed implementations codes are publicly accessible [34].

Fig. 1: BFDL and REFDL model training testbed with gigabyte devices.

For evaluating the simulated runtime and real execution time of BFDL and
REFDL, experiments with four workers with their distributed training data
(Alice, Bob, Charlie and Jane as shown in Figure 1) were performed. A federated
communication round of 50 is used, with two epoch iterations, within a 64 mini-
batch size as returned by the optimized tuning procedure. The test batch sample
size selection is 1000 with lr = 0.01 for effective FedAvg SGD training. The
utilized real-time models for each federated client of both Algorithm 1 and 2
contain an input layer and four identical hidden layers (128-128-128-128) with an
output layer or layers as the case may be. The chosen architecture can support
effective and efficient model convergence. To test the REFDL effectiveness and
generalizability, we considered the CNN DNN variant in realistic settings with
clients utilizing the MNIST image dataset [35]. The CNN architecture contains
two convolutional layers (Conv-2). The first 2D convolutional layer requires
one input to output 20 convolutional features using a 5 square kernel (1, 20,
5, 1). The second 2D convolutional layer requires 20 input layers to output 50
convolutional features using a 3 square kernel (20, 50, 5, 1). The architecture
in the first real-time layer is (800 (4*4*50), 128) with (128, 10) in the second
real-time layer. Max-Pool in 2d was run over the input image without a dropout
utilization. The fully connected hidden layers in the convolutional are similar to
the version described in Table 1.

5 Results and Discussion

This section discusses the experimental results. It details the evaluation compari-
son of the optimized REFDL and baseline BFDL FedAvg models in simulation
and testbed settings across datasets.
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5.1 Virtual Workers Simulation Results

We investigated the resource consumption for training BFDL and REFDL fed-
erated methods with nine utilized IoT datasets on virtual client workers. Table
2 presents the memory and time usage across each dataset. REFDL training
procedure produces lower runtime and memory footprints. However, the accuracy
for both REFDL and BFDL remained the same across each benchmark dataset.
The reason can be the tested datasets are highly imbalanced with large number
of testing records and considering the pruning applied in lines 13 and 14 of
Algorithm 2, and each model uses a similar network architecture [36]. Refer
to Table 4 and Figure 10 for comparison with balanced dataset with minimal
number of testing records.

Table 2: Federated model training memory consumption between REFDL and BFDL.

Dataset Model Memory Time Test
MB minutes acc %

Danmini Doorbell
BFDL 3.783 0.099 95.11

REFDL 0.857 0.081 95.11

Ecobee Thermostat
BFDL 3.732 0.091 93.36

REFDL 0.815 0.071 93.36

Ennio Doorbell
BFDL 4.147 0.090 88.94

REFDL 0.805 0.074 88.94

Provision PT-737E
BFDL 3.463 0.092 92.52

REFDL 0.853 0.077 92.52

Provision PT-838
BFDL 3.423 0.085 88.07

REFDL 0.814 0.074 88.07

Samsung SNH-1011-N
BFDL 3.783 0.099 86.06

REFDL 0.858 0.081 86.06

SimpleHome XCS-1002
BFDL 3.494 0.090 94.65

REFDL 0.816 0.072 94.65

SimpleHome XCS-1003
BFDL 3.914 0.085 97.73

REFDL 0.801 0.071 97.73

Wustl
BFDL 3.002 0.095 94.26

REFDL 0.816 0.076 94.26

Figures 2 and 3 show the percentage of memory and time reduction by
REFDL as reflected in Table 2. The results demonstrate a significant percentage
of memory saving across each dataset. Regarding client processing runtime,
REFDL is more efficient. It indicates less complexity, faster learning capability
and effective performance behaviour over BFDL. These resources minimization
make it a better choice for IoT security monitoring. Especially for the on-device
learning across various distributed resource-constrained edge devices.
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Fig. 2: REFDL federated model training memory resources saved against datasets.

Fig. 3: REFDL federated model training time resources saved against datasets.

The results in Table 3 are for the implemented BFDL method and its optimized
counterpart REFDL against training procedures. It compared the training time,
memory requirements and accuracy against model hidden layers (L) and virtual
workers (VW) variations. As presented, the REFDL requires lower memory and
time as tested with the XCS-1003 dataset. Both BFDL and REFDL federated
models produce slightly better accuracy with four hidden layers (4L). As a result,
the increment of hidden layers influences effective federated learning in distributed
settings. However, the clients with higher computational power can influence on
the global model significantly than the clients with lower computational resources.
The class imbalance across clients can also influence the accuracy of the global
model. It would be interesting to investigates these limitations in future work.

The illustration in Figures 4 and 5 present the memory and time savings
of REFDL with reference to Table 3. The results illustrate a better resource
(memory and time) minimization of REFDL against each training procedure.
The results demonstrate REFDL’s capability of savings more resources using the
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Table 3: Performance comparisons against FL training procedure on SimpleHome
XCS-1003 dataset.

Procedure Model Memory Time Test
MB minutes acc %

2VW-3L
BFDL 1.906 0.038 97.72

REFDL 0.550 0.027 97.72

2VW-4L
BFDL 2.698 0.046 97.73

REFDL 0.052 0.036 97.73

4VW-3L
BFDL 2.971 0.067 97.72

REFDL 0.294 0.060 97.72

4VW-4L
BFDL 3.914 0.085 97.73

REFDL 0.801 0.071 97.73

PySyft virtual worker’s constructs that emulate real virtual machines and run as a
separate process within the same python program. In particular, it demonstrates
the significant memory savings of REFDL with two virtual workers (2VW) and
four hidden layers (4L) model architecture. Also, it shows that increments of
virtual workers can facilitate better memory savings with three hidden layer
network architecture.

Fig. 4: REFDL federated model training memory resources saved with XCS-1003 dataset.

To test the generalization and effectiveness of REFDL in other domains other
than cybersecurity, we examined its performance over the MNIST image dataset
with integrated CNN and FCNN in the FL scenario (see Table 4). This is good
to assess the method’s performance over non-IoT datasets so that it can be a
generic solution for on-device learning. In particular, to exploit the resource-
saving capability of CNN that offers a promise in image classification. In this
aspect, we utilized the PySyft WS (network) simulated workers and examined
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Fig. 5: REFDL federated model training time resources saved with XCS-1003 dataset.

the performance of the BFDL and REFDL techniques in each federated training.
This is to assess REFDL performance using a simulated network with a client
and server scenario running on the same machine, not like PySft virtual workers
counterparts that run as construct within the same python program. With each
DNN (CNN and FCNN) variant, the REFDL demonstrates better accuracy than
its BFDL counterparts. The reason for better performance with the MNIST
dataset can be because the distribution of the dataset is highly balanced for both
the training and testing cases. In addition, it produces lower training execution
time. These results show the important of regularization [37] and [38] on accuracy
against DNN variation. This attracts further investigation in realistic settings.

Table 4: Simulated federated training performance comparison between BFDL and
REFDL with MNIST dataset.

Procedure FL Time Time Test set
minutes save (%) acc %

FCNN-MNIST
BFDL 1.393 N/A 34.64

REFDL 1.346 3.374 91.03

CNN-MNIST
BFDL 1.583 N/A 90.59

REFDL 1.457 7.960 98.28

5.2 Network Workers Testbed Results

With Ennio Doorbell and Samsung SNH randomly selected IoT datasets, we
investigated the memory consumption of training REFDL and BFDL across
four GB-BXBT-2807 edge devices over wireless network testbed settings. The
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Fig. 6: Federated model training execution time of REFDL and BFDL against datasets.

reported memory values in Table 5 is averaged based on the four devices. The
results show that the REFDL can detect IoT attacks with minimal memory than
BFDL in real-time. However, it should be noted that the amount of memory
and CPU (runtime) savings may vary depending on the number of clients in the
federation and the nature of the feature distribution. It is expected that a large
number of clients handling complex data in a federation could lead to higher
savings.

Table 5: Federated model testbed training memory consumption between REFDL and
BFDL.

Dataset Model Memory Memory Test
MB save % acc %

Ennio Doorbell
BFDL 33.965 N/A 89.00

REFDL 31.981 5.84 89.00

Samsung SNH
BFDL 32.519 N/A 86.10

REFDL 30.550 6.05 86.10

In Figure 6, we present averaged estimated convergence real-time for training
BFDL and REFDL on GB-BXBT-2807 testbed against the Ennio Doorbell and
Samsung SNH IoT datasets. The REFDL requires less real-time than BFDL
in detecting IoT attacks. The results demonstrate the effectiveness of REFDL
in saving computational resources in resource-constrained environments. As
illustrated in Figure 7, the savings can be better with many decentralized edge
devices. The result demonstrates the savings advantage of REFDL in realistic
network settings over the simulated virtual WS connections counterparts. It
indicates REFDL’s capability in saving more resources in a resource-limited
environment with multiple client devices.
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Fig. 7: REFDL and BFDL training execution time in a simulated and realistic network
environment against Ennio dataset.

We examined the real-time savings of the REFDL over BFDL against the
MNIST dataset. Figure 8 show that REFDL is more efficient than BFDL across
each training procedure. The MNIST-CNN federated training procedure is more
computationally expensive than the MNIST-FCNN. In this context, the FCNN
DNN variant of REFDL can be an appropriate choice for on-device learning if
savings resources are the target objectives. In that case, REFDL stands more
suitable method for deployment in an IoT resource environment.

Fig. 8: Federated model training execution time usage between REFDL and BFDL with
mnist dataset.

Figure 9 shows the convergence accuracy of REFDL and BFDL against DNN
variants with the MNIST dataset. In each case, REFDL stands to be a better
model than BFDL. It can classify image samples accurately with integrated
CNN and FCNN (DNN) model variants. The result suggests the advantage of
optimization mechanisms in producing a global deep federated model. It further
demonstrates the effectiveness of integrating CNN in the FL method to improve
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accuracy performance. This is good as it leverages the tradeoff between each
DNN model during on-device learning.

Fig. 9: Federated model accuracy comparison between REFDL and BFDL with mnist
dataset.

To test the effectiveness and faster learning of REFDL on GB-BXBT-2807
testbed federated settings, we vary the epoch iterations using the FCNN-MNIST
procedure. In that context, we can assess the performance of each federated
method in real-time. As shown in Figure 10, the REFDL can achieve a better
accuracy even with one local epoch and 50 communication round. This trends of
providing higher accuracy remain stable across each epoch iteration. The result
demonstrates REFDL appropriateness and faster learning capability across edge
devices, especially with the integrated FCNN model. REFDL minimum number
of epoch requirements is advantageous. Especially in an environmental setting
such as IoT with inherited limited memory resources.

Fig. 10: Federated model accuracy performance with epochs between REFDL and BFDL
against mnist dataset.
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6 Conclusion

As FL uses a distributed ML to enable on-device learning in decentralized edge
devices over a network with the support of data privacy across multiple clients, this
paper investigated the feasibility of running FL training in resource-constrained
environments such as IoT. In particular, to develop feasible and effective security
solutions for IoT devices. In this paper, we utilized FedAvg (BFDL algorithm)
with carefully selected model optimization techniques to produce an effective and
resource-efficient REFDL federated model. The experiments evaluation with eight
IoT datasets and one image dataset in simulated and GB-BXBT-2807 realistic
testbed settings demonstrate the effectiveness, low complexity and efficient nature
of REFDL. It detects IoT attacks accurately using minimal resources than its
counterparts. Also, it can perform better in classifying image samples with
fully connected and convolutional deep neural network models in a federated
training scenario. In addition, REFDL requires fewer epochs to produce a more
accurate FL model than its counterparts. These motivational results attract
further investigation for utilizing more computational networks nodes/client
devices at deployment, particularly over-wired and wireless settings using our
testbed. In addition, we plan to investigate the resilient capability of the REFDL
to enhance its security robustness against adversarial attacks in a realistic network
setting with various connected edge devices other than the ones considered in
this paper. This can enable us to examine the resource efficiency and security
monitoring performance of our proposed method capability and potentiality
across multiple decentralized edge devices.
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