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Elena Rica1, Susana Álvarez1, Carlos Francisco Moreno-Garćıa2,
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Abstract

Thousands of huge printed sheets depicting engineering drawings keep
record of complex industrial structures from Oil & Gas facilities. Cur-
rently, there is a trend of digitising these drawings, having as final end
the regeneration of the original computer-aided design (CAD) file, which
can be better visualised and analysed through diverse computer applica-
tions. Most efforts in literature and commercial applications have focused
on converting these sheets into CAD files in an automated way. Nonethe-
less, this needs to be a zero-error process; as the final CAD will always
be verified by an engineer for integrity and inspection. In this paper, we
present a method that, on the one hand, highlights which components in
the CAD are most likely to have been incorrectly identified, and on the
other hand, facilitates the engineer to search some groups of components
in these huge assets. These techniques are based on graph embedding,
computer neural networks and sub-graph matching.

Keywords Piping and Instrumentation Diagram, Automatic Validation,
Sub-graph Matching, Graph Embedding.
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1 Introduction

Piping and Instrumentation Diagrams (P&IDs) are used to represent the struc-
ture and functionality of Oil & Gas facilities such as oil rigs and plants. P&IDs
contain similar shapes to other complex engineering drawings such as circuit,
architectural, mechanical, telephone manhole and chemical plant depictions.
P&IDs are mostly generated by means of computer-aided design (CAD) tools
and kept in an electronic record. However, in the past they were manually drawn
on paper or using tools that are incompatible with modern software. Since these
facilities are huge and composed of thousands of electric, electronic or mechan-
ical components connected by a vast network of pipelines, printed handbooks
composed of thousands of pages are required to depict them. Figure 1 shows a
snippet of one sheet and portrays the complexity of a P&ID.

Figure 1: An example of a P&ID.

Analysing a facility using a P&ID handbook is an extremely complex pro-
cess, due to the page quality and the variability of the electric, electronic and
mechanic components. While several tools have been presented in recent years
to generate a CAD file from these drawings in automated ways [8], the possibil-
ity of symbol miss-identification during the digitisation or that some properties
have not been correctly associated to certain components becomes high [1], [3].
Thus, it is expected that this process is not perfect and therefore, most systems
enable human interaction to validate the symbol identification, connection and
property association. In practice, the final CAD register is always verified by an
engineer due to the need of being a zero-error process. Figure 2 shows a general
flow diagram of the classical approach to extract a CAD given a sheet of P&ID.
The automatic module is composed of two main steps: digitisation (converting
the pulp and paper drawing into a digital register or parts count) and contex-
tualisation (understanding the interaction between the digitised shapes, such as
how symbols connect to each other and the text that describes each process,
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amongst others).

Figure 2: The process of deducing the CAD document, in which a human is
involved to validate the data.

In this paper, we propose the integration of a couple of previously published
tools [11, 12] for engineers and risk analysts to reduce the amount of effort
needed to validate the CAD model towards creating a zero-error digitisation
and contextualisation process. The goal of the first tool, depicted in Figure 3,
is to aid in the validation of the automated digitisation process by ensuring
that the engineer does not need to look at the whole diagram, but only at
the highlighted components, which are the ones that have a chance of having
incorrectly identified by the automatic method.

Figure 3: Our model for automatic detection of possible incorrectly identified
components and final human validation.

The aim of the second tool is to aid in the contextualisation by facilitating the
search for a particular configuration of connected components. Figure 4 shows a
P&ID sheet analysed by our proposed application. Note that CAD applications
usually have enabled functionalities to search for specific components by their
identity number and visualise them in their locations [7, 9, 10, 5, 2, 14]. Nev-
ertheless, while inspecting or analysing the gas facilities, engineers are usually
interested in some structures, composed of a small set of connected components,
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instead of a specific type of component. For instance, they want to detect the
appearances of structures that include a valve check connected to two general
valves and a butterfly valve. Thus, engineers want to query a structure instead
of a component and visualise it in the P&ID. Note that the aim of this exam-
ple query is not to return the locations of the exact appearance of the specific
structure, but the locations in structures similar to the one queried may appear.
Thus, considering this example, it could be interesting to return the locations of
structures composed of a valve check connected to one or three general valves
and one or two butterfly valves.

Figure 4: Screenshot of the second tool proposed. Upper left corner: query
structure. Lower left corner: returned structures ordered by increasing distance.
Right: a portion of the P&ID in which three locations of the query have been
detected.

Both tools fit with the topological challenge of P&ID contextualisation [6],
[8], whose objective is to understand the connectivity of the symbols. In compar-
ison, we have been able to identify some commercial CAD applications1 which
work with P&IDs and that have online tools to quickly visualise the network of
components. Moreover, we have presented some initial proof of concept tools
that perform similar functions, such as NetVis or Netlist2CAD2. While these
tools offer the possibility of component search, none of them are capable to
highlight error-prone digitised symbols or sub-structures.

The paper is structured as follows. Section 2 explains the first tool, Section 3
explains the second one, and Section 4 concludes the paper.

1https://www.geminivalve.com/best-piping-design-software/
2http://cfmgcomputing.blogspot.com/p/software-demos.html
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Figure 5: An example of embedding a Valve check star into a vector.

2 Predicting improperly identified components

The difference between the classical models (Figure 2) and our model (Figure 3)
is the incorporation of the Automatic Validation module. The aim of this mod-
ule is to deduce the identity of the components in the Automatic CAD and
highlight the components that must be reviewed by an human expert, reducing
in this way, the number of components that should be reviewed when any CAD
document is generated by the Automatic Digitisation module. In the next two
sub-sections, we detail the two main steps of this Automatic Validation module.

2.1 Graph representation and data embedding

The automatic validation method that we present is based on defining P&IDs
as attributed graphs. In our graph, nodes represent components and edges
represent pipelines that connect these components. Moreover, nodes have only
one attribute, which is the component identity (valve, compressor,...) and edges
are unattributed and unidirectional. In an attributed graph, a star (Ta) is
defined as a local structure composed of a node, its connected edges and also
the nodes that these edges connect (neighbour nodes). Our goal is to deduce
the identity of each component given the set of pipelines connected to it and
the components that connect these pipelines. For this reason we use the star,
since by definition, this sub-structure contains this information.

Graphs have some limitations when they are applied to machine learning
due to their intrinsic relational representation. This is because some trivial
mathematical operations used in the traditional numeric machine learning rep-
resentations have not an equivalence in the graph domain. Given an arbitrary
set of graphs, a possible way to address this problem is to define an embedding
function from the graph domain to a vector space [4]. Broadly speaking, an
embedding function converts an attributed graph into a vector.

Since we want to use classical machine learning techniques to deduce com-
ponent identities, we embed stars into vectors. Thus, each star is embedded in
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a Euclidean space Rn+2, where n is the number of different component iden-
tities. The embedding of the ith node in the graph (or the ith component in
the P&ID) is defined as a vector Ei = (ci, di, f

1
i , ..., f

n
i ) ∈ Rn+2 where ci is the

identity of the central node of the star; di is the number of edges in the star
(or the number of connected pipelines to the central component); and fp

i is the
number of external nodes of the star that have the p identity, with p = 1, ..., n.
A sample of a star embedding is presented in Figure 5. The output of this step
is the set of all embedded stars in the graph representation of the CAD model.

2.2 Machine learning and verification

The Machine learning and verification step performs the following tasks:

• Firstly, each component in the P&ID represented by an embedded vector is
introduced into the machine learning algorithm that returns the predicted
component identity.

• Secondly, the identities of the components returned by the machine learn-
ing algorithm are contrasted with identities obtained from the digitised
and contextualised netlist of the Automatic CAD. Note these components
have not been verified by the engineer. Thus, this task discerns whether
the deduced identities by our machine learning algorithm are the same or
they are different from the CAD model.

• Thirdly, it detects the components of the Automatic CAD whose iden-
tities are different from the identities obtained by the machine learning
algorithm. These detected components are highlighted to be validated by
the human expert.

The learning set is composed of a CAD model, validated by a human expert,
which has been embedded using our graph representation and data embedding
step (Section 2.1). This CAD model must include a representative number of
components per identity in order to assure the proper learning of the data.
Usually, the larger the learning set is, the better the prediction given by the
machine learning algorithm.

3 Searching groups of components

Before explaining the algorithm that implements the second tool, we set the
following three premises that condition the values of its input parameters:

• Only engineers know how similar are two components in the P&ID. This
knowledge is introduced into the system through the cost of substitut-
ing components imposed by the engineers before doing the query. For
instance, if the engineer queries a graph that has a valve and wants to
visualise all the groups of components similar to this query that have this
valve, then they have to impose the substitution cost between a valve
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and the rest of components to be infinite. Contrarily, if they know that
two components are similar, then they can consider the substitution cost
between them to be zero.

• In a similar way than the previous item, only engineers know how im-
portant is a component or a pipeline in the P&ID. This knowledge is
considered in the node and edge deletion and insertion costs.

• Engineers want to visualise the locations where the query or similar queries
appear in the P&ID. For this reason, it is desired that the method returns
several connected components in the P&ID. These restrictions need to be
handled by the search algorithm.

The rest of this section has been divided into two parts, in Section 3.1, the
input and output parameters of our algorithm are defined and in Section 3.2
our algorithm is detailed.

3.1 Input and output parameters of our method

The input of our method is composed of:

• Q: A small graph that represents the query.

• G: A large graph that represents the P&ID.

• Sv: A square matrix of node substitution costs previously set by the
engineer. Each cell is a non-negative real number that represents the
cost of substituting two types of components. All the elements in the
diagonal are zeros.

• Dv: A vector of node deletion costs previously set by the engineer. Each
cell is a non-negative real number that depends on each specific compo-
nent.

• De: Edge deletion cost. Since edges do not have attributes, the cost of
deleting an edge is the same for all edges. It is a constant, De, previously
set by the engineers.

• K: The number of compact sub-graphs the method has to return.

The output of the method is composed of:

• {f1 : Q → G ,..., fK : Q → G}. A list of K node-to-node mappings
between the query graph Q and the P&ID graph G.

• {D(Q,G, f1) ,..., D(Q,G, fK)}. A list of K distances, given the query
graph, the P&ID and the above mappings fp, 1 ≤ p ≤ K. If we define Gp

as the nodes in G reached by substitutions in fp, then D(Q,G, fp) is the
distance between Q and Gp.

The returned list of mappings f1,...,fK hold the following four conditions:
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• For each 1 ≤ p ≤ K, the set of nodes {fp(v)|v ∈ Q} ⊆ G and their
corresponding edges, defines a connected sub-graph.

• Components in P&ID can be reached by several mappings. Nevertheless,
two mappings cannot be identical. Formally: If fp(v) = fq(v),∀v ∈ Q ⇒
p = q.

• The mappings f1,...,fK are listed in ascending order on their distances.
Formally: D(Q,G, f1) ≤ D(Q,G, f2) ≤,..., ≤ D(Q,G, fK).

• The mappings f1,...,fK might have to be the ones that return the minimum
distance. Formally: If f /∈ {f1, ..., fK} ⇒ D(Q,G, f) ⩾ D(Q,G, fp),
∀p = 1, ...,K.

3.2 Algorithm

The algorithm uses the sub-optimal error-tolerant graph matching algorithm
Belief Propagation [13]. Its computational cost is only linear with respect to
the number of nodes. It needs some initial node-to-node mappings, which are
called Seeds, which in some applications could be a drawback but in our case,
it is going to be crucial to generate several solutions.

Our algorithm has three main steps (Matlab implementation in 3). In the
first one, a cost matrix C is computed with dimensionsm×n, wherem and n are
the number of nodes of the query graph Q and the P&ID graph G, respectively.
We assume, m ≤ n. Each cell in C, C(a, i), 1 ≤ a ≤ m, 1 ≤ i ≤ n, represents
the cost of substituting the star Ta in Q by the star Ti in G.

In the second step, the K cells in the cost matrix that have the minimum
value are selected. These substitution costs are used to set theK different Seeds
that algorithm Belief is going to use in the K times it is run in the next step
of our algorithm.

Finally, in the third step, the Belief Propagation algorithm [13] is executed
K times. Each time, a different seed is used: Seed1, ..., SeedK . Using a different
seed makes the algorithm to return a different mapping between the query Q and
the P&ID G. This property could be considered a drawback in other methods
but it becomes a must in our case.

Algorithm Top-K-GED
Input: Q, G, Sv, Dv, De, K
Output: f1, ... , fK , D1, ... , DK , being Dp = D(Q,G, fp), p = 1, ...,K
Begin Algorithm
C = ComputeCostMatrix(Q,G, Sv, Dv, De)
(Seed1, ..., SeedK) = SelectLowerCostCells(C,K)
For p = 1, ...,K

(fp, Dp) =Belief (C, Seedp)
End For
End Algorithm

3http://deim.urv.cat/francesc.serratosa/SW/
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4 Conclusions and future work

We have presented two tools to reduce the human effort while validating CAD
documents that have been automatically generated from a class of complex
engineering drawings called Pipping and Instrumentation diagrams (P&IDs).

The first tool detects incorrectly identified components in automatically gen-
erated CADs through learning their topology. To do so, we have represented
the P&IDs by attributed graphs and we have embedded the local structures of
components into vectors. Given each vector, a neural network has been used to
predict the identity of the component represented by this vector. The second
tool helps the engineer to search groups of connected components that are sim-
ilar to a specific one. Its uniqueness is the fact that it returns several similar
and compact sub-graphs. With the first tool we achieve an average reduction of
approximately the 40% of the human effort, keeping an error-free process. With
the second tool, we are able to find the queried group of components efficiently
in more than the 80% of the cases, even achieving the 100% in some cases.

As a future work, we want to move our system from the laboratory to the
industry, thus being in use in the digitisation process of P&ID sheets. These
methods could be applied to other kind of industries in which the relational
information between the components is available. We believe our methods could
drastically reduce the human effort and therefore the economical and temporal
cost of this essential task.
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