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Abstract—Color calibration is a critical step for Unmanned 

Aerial Vehicles (UAV) remote sensing, especially in precision 

agriculture, which relies mainly on correlating color changes to 

specific quality attributes, e.g., plant health, disease, and pest 

stresses. In UAV remote sensing, the exemplar-based color 

transfer is popularly used for color calibration, where the 

automatic search for the semantic correspondences is the key to 

ensuring the color transfer accuracy. However, the existing 

attention mechanisms encounter difficulties in building the precise 

semantic correspondences between the reference image and the 

target one, in which the normalized cross correlation is often 

computed for feature reassembling. As a result, the color transfer 

accuracy is inevitably decreased by the disturbance from the 

semantically unrelated pixels, leading to semantic mismatch due 

to the absence of semantic correspondences. In this paper, we 

proposed an unsupervised object-based attention mechanism 

(OBAM) to suppress the disturbance of the semantically unrelated 

pixels, along with a further introduced weight-adjusted AdaIN 

(WAA) method to tackle the challenges caused by the absence of 

semantic correspondences. By embedding the proposed modules 

into a photorealistic style transfer method with progressive 

stylization, the color transfer accuracy can be improved while 

better preserving the structural details. We evaluated our 

approach on the UAV data of different crop types including rice, 

beans, and cotton. Extensive experiments demonstrate that our 

proposed method outperforms several state-of-the-art methods. 

As our approach requires no annotated labels, it can be easily 

embedded into the off-the-shelf color transfer approaches. 

Relevant codes and configurations will be available at 

http://github.com/huanghsheng/object-based-attention-

mechanism. 

Index Terms—Unmanned aerial vehicles (UAV); semantic 

correspondences; attention mechanism; color transfer. 
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I. INTRODUCTION 

olor is essential in many precision agriculture 

applications for assessing plant health, disease, and pest 

stresses. Unfortunately, color cast is inevitable due to 

the rapid ambient temperature changes and light irradiance 

under natural field conditions [1]. Due to the limited coverage 

area of a single UAV imagery, an image sequence with constant 

overlap is often used to produce an orthomosaics to cover the 

whole field. For the same flight, the random color variation 

causes not only the color error in the UAV imagery but also 

color inconsistency in the final orthomosaics. According to 

Afifi et al. [2], images' color cast negatively impacts image 

classification and segmentation. Therefore, color cast may 

cause inaccuracies in assessing crop stress/yield and nutrient 

deficiency, even using the newly emerged deep learning models 

[3]. 

In general, computational color constancy and exemplar-

based color transfer methods are usually used to calibrate the 

color variations of the UAV imagery [4]. The former 

automatically adjusts the color value according to the 

illumination changes [5, 6], whilst the latter considers one 

image with the correct color as the reference image before 

transferring the color pattern of the reference image to other 

images captured in the same UAV flight [7, 8]. In practice, the 

sensor is hard to detect illumination changes during the high-

speed flight process, thus, the commercial sensors established 

with color constancy still suffer from the color cast. Therefore, 

Huasheng Huang and Yu Tang are with the College of Computer Sciences, 

Guangdong Polytechnic Normal University, Guangzhou, China, and also with 

the Academy of Interdisciplinary Studies, Guangdong Polytechnic Normal 

University, Guangzhou, China. (e-mail: huanghsheng@gpnu.edu.cn; 

yutang@gpnu.edu.cn). 
Zhiping Tan and Weizhao Chen are with the Academy of Interdisciplinary 

Studies, Guangdong Polytechnic Normal University, Guangzhou, China. (e-

mail: tanzp@gpnu.edu.cn; weizhao.chen@foxmail.com). 
Jiajun Zhuang and Chaojun Hou are with the Academy of Contemporary 

Agriculture Engineering Innovations, Zhongkai University of Agriculture and 

Engineering, Guangzhou, China. (e-mail: zhuangjiajun@zhku.edu.cn; 
houchaojun@zhku.edu.cn). 

Jinchang Ren is with the College of Computer Sciences, Guangdong 

Polytechnic Normal University, Guangzhou, China, and also with the 
Department of Electronic and Electrical Engineering, University of Strathclyde, 

Glasgow G1 1XW, U.K. (e-mail: jinchang.ren@ieee.org). 

C 



2 

> IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (DOUBLE-CLICK HERE TO EDIT) < 

 

 

the exemplar-based color transfer becomes the most popular 

way to calibrate the color variation in the UAV imagery [4].  
There are two main steps in the exemplar-based color 

calibration. The first is to detect the semantic correspondences 

between the reference image and the target image, and the 

second is to conduct the color transfer between the 

homogeneous regions of these two images. For the first step, 

the semantic segmentation or attention mechanism is often 

applied to generate the semantic correspondences. The 

semantic color transfer employs the semantic segmentation 

models to generate the semantic maps of the reference image 

and the target one. The color transfer is only conducted between 

the regions with the same semantic category [9]. The attentional 

color transfer method usually computes the normalized cross 

correlation between the representation of the image pair, and 

reassembles the deep features according to the cross correlation 

for the image synthesis [10, 11]. In conventional color transfer 

methods, the mean, standard deviation, or other statistics 

measures are often employed in the second step to design a 

linear or nonlinear transform function [12]. However, these 

low-level statistics features often fail to capture the semantic 

layout, leading to poor photorealism within the stylization 

results. Recently, with the rapid development of deep learning, 

the style transfer has successfully transferred the color from the 

reference to the target images while preserving the spatial 

details of the latter [13-15]. Despite the great success of 

arbitrary style transfer, the automatic search for semantic 

correspondences is still challenging. The semantic style transfer 

approach performs the transfer process between the regions 

with the same semantic category. However, this strategy 

requires a large number of manual annotations to train the 

semantic segmentation model, which is very labor intensive and 

time consuming thus hard to be applied to unknown scenarios. 

The attentional style transfer method reassembles the feature 

via the cross correspondences, where the color transfer 

accuracy is inevitably affected by the semantically unrelated 

pixels. Also, both approaches ignore the absence of semantic 

correspondences, which can easily cause significant semantic 

mismatch and noticeable structural artifacts.  

To address the aforementioned challenges, a novel 

unsupervised color calibration method is proposed in this paper. 

As our method requires no annotated labels, it can be easily 

embedded into the off-the-shelf color transfer models without 

extra training. The major contributions of this paper can be 

summarized as follows. 

1) We propose an object-based attention mechanism (OBAM) 

to search the semantic correspondences between the target and 

the reference images, which can effectively suppress the 

disturbance from the semantically unrelated elements. 

2) We introduce a weight-adjusted AdaIN (WAA) method to 

address the absence of semantic reference, which has improved 

the perceptual quality of the whole imagery. 

3) We conduct comprehensive experiments on the UAV 

imageries of different plant species and achieve state-of-the-art 

performance. The code and data will be made publicly available 

to further benefit the community. 

II. RELATED WORK 

Existing exemplar-based style transfer methods include 

global and local fashion. The global style transfer method 

matches the global statistics from the reference to the target 

image, and often fail the mission when the image pair have a 

different semantic distribution. Local transfer algorithms only 

perform the transfer task between the semantically related 

regions, increasing the color transfer accuracy and better 

preserving the structural details. The main component of local 

transfer is to obtain the dense semantic correspondences, where 

the mainstream literatures can be divided into two categories, 

i.e. semantic style transfer and attentional style transfer. The 

semantic style transfer method utilizes the semantic maps from 

manual labeling or semantic segmentation models to guide the 

accurate style transfer for each semantic class. In contrast, the 

attentional style transfer method automatically generates the 

semantic correspondences by the attention mechanism. 

A. Semantic style transfer 

Semantic style transfer algorithms utilize semantic 

information to guide the transfer between the regions with the 

same semantic class, where the semantic information is either 

from manual labeling or the semantic segmentation models 

[16]. Luan et al. [17] proposed the locally affine transformation 

in RGB color space and expressed this module as an energy 

term. However, solving the optimization problem for the energy 

term requires heavy computational costs, which limits their 

practical usage. Li et al. [18] and Yoo et al. [19] proposed to 

transform the representation into a one-dimensional vector, and 

perform the style transfer with whitening and coloring 

transform, making it easy to be incorporated with the semantic 

maps. Anokhin et al. [20] proposed to append an extra semantic 

segmentation branch for the decoder, and this architecture 

proved to help to preserve the semantic context in the style 

transfer. Zhu et al. [21] proposed semantic region-adaptive 

normalization (SEAN), which is designed for accurate style 

transfer using the given semantic masks. Ma et al. [22] 

proposed to use semantic information to guide the image 

reconstruction in order to better preserve the content details. 

Though semantic style transfer obtains higher accuracy in color 

transfer, they need annotated labels to train the semantic 

segmentation model or guide the local transfer, which requires 

tedious manual tags and prevents its applications in generic 

scenarios.  

B. Attentional style transfer 

Recently, the attention mechanism has been raised as the 

fundamental tool to automatically search for the dense semantic 

correspondences in style transfer. Liao et al. [23] applied the 

image analogy to the deep features, and built the dense semantic 

correspondences via the nearest-neighbor field (NNF) method. 

He et al. [24] further extended this work by jointly optimizing 

the dense semantic correspondences and the linear 

transformation models, preventing the content mismatching 

that occurred in the previous work. However, the NNF 
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searching process of Liao et al. [23] and He et al. [24] consumes 

too much computation and cannot be implemented with GPU 

acceleration due to its repeated logical judgement, preventing 

its further development.  

Instead, the normalized cross-correlation is widely employed 

for correspondence estimation and image reconstruction. Chen 

et al. [25] proposed patch-wise similarity matching between the 

content and style activation patches using normalized cross-

correlation. Avatar-Net [26] further extended the AdaIN [27] 
with a multi-scale fusion strategy, and integrated the feature 

matching with projection. Huang et al. [28] utilized  patch 

attention to address the problem of pixel isolation, and adopted 

multi-level fusion for better stylization. Park et al. [29] 
introduced a style-attentional network (SANet) to exploit the 

semantic correlation in a self-attention mode. On this basis, 

Chen et al. [30] proposed a novel loss design to address the 

artifacts in style transfer. The loss function involves internal 

statistics, external information, and two contrastive losses. 

Zhang et al. [31] proposed a transfer network that automatically 

search for the semantic correlations for semantic-level transfer. 

Generally speaking, the attentional style transfer methods 

with normalized cross-correlation are the state of the art 

technique in terms of color transfer accuracy and detail 

preservation. This technique mainly computes the normalized 

cross-correlation to estimate the dense semantic 

correspondences and reconstructs the image by reassembling 

the features according to the correspondence scores. In the 

scenario of color calibration for UAV remote sensing in 

precision agriculture, three are two main constraints. First, the 

existing approaches ignore the absence of semantic 

correspondences in many occasions, which may easily cause 

semantic mismatch and structural artifacts. Second, image 

reconstruction with weighted reassembling is inevitably 

influenced by the semantically unrelated elements, decreasing 

the color transfer accuracy. To address these challenging issues, 

we propose in this paper an OBAM method, and extensive 

experiments have demonstrated the efficacy of our method as 

detailed in the following sections.  

III. METHOD 

In this section, we describe our proposed object-based 

attention mechanism (OBAM) method for color calibration of 

UAV remote sensing in precision agriculture, as shown in Fig. 

1. Our research is motivated by the style transfer framework, 

therefore the regular terms of style transfer researches were 

employed in this paper. Conceptually, the style image in this 

paper refers to the reference image, and the content image 

denotes the target image. First, we propose an object-based 

attention mechanism (OBAM) to search the semantic 

correspondences between the image pair under the 

unsupervised mode, which is described in section Ⅲ-A. In this 

stage, the content map, style map, and the confidence score for 

each pixel were generated, and the whole content image was 

divided into the areas with strong semantic correspondences 

and weak semantic correspondences. Next, we apply the 

wavelet corrected whitening and coloring transforms (wavelet 

corrected WCT) to transfer the color for the areas with strong 

semantic correspondences, as given in section Ⅲ-B. Finally, we 

introduce the weight-adjusted AdaIN (WAA) method to 

address the absence of semantic correspondences for the areas 

with weak semantic correspondences, as detailed in section Ⅲ-

C. 

 
Fig. 1. The overall workflow of our proposed OBAM model 

 

A. Object-based attention mechanism 

To address the unrelated disturbance brought by the general 

attention mechanism, we proposed an object-based attention 

mechanism (OBAM) to search the pair-wise semantic 

correspondences in an unsupervised manner, as shown in Fig. 

2. Different from the reassembled approaches, the OBAM 

considers the regional correlations and only responds to the 

position with the maximum correspondence, which can thus 

help to avoid the pixel isolation and the disturbance from 

unrelated pixels.  

 

 
Fig. 2. The architecture of our proposed OBAM 
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First, we apply unsupervised clustering to the style 

representation to obtain the style map 𝑀𝑠 . For the extracted 

representation, the neighboring information was considered in 

the representational space by unfolding patches at each 

position. Specifically, the unfolding operation gathers the 

spatial neighbors to each point in the representational space, 

and the matrix multiplication of the unfolding results builds the 

quantitative measurement of mutual correlation, as shown in 

formula (1). Let the size of the original representation be C ×
H × W, where C, H, and W represent the channel size, height 

and width of the representation, respectively. Afterwards, we 

can obtain the unfolding features with a size of C × P × P ×
H × W, where P denotes the patch size. Later, the unfolding 

results is reshaped to (H × W) × (C × P × P)  for the 

normalized cross-correlation, which can be expressed as: 

 𝑀𝐴
𝑖𝑗

∶=  Unfold(𝑧𝑐
𝑖 ) ∙ Unfold(𝑧𝑠

𝑗
) (1) 

 𝑀𝐴
𝑖𝑗

∶=  
exp (𝑀𝐴

𝑖𝑗
)

∑ exp (𝑀𝐴
𝑖𝑘)𝑁

𝑘=1

, 𝑤ℎ𝑒𝑟𝑒 𝑁: = |𝑧𝑠|  (2) 

where 𝑧𝑐 and 𝑧𝑠 denote the representation of the content and 

style images, and 𝑀𝐴 and 𝑀𝐴 are the attention maps before and 

after normalization. The symbol of ∶=  indicates assignment 

operation. 

After this stage, the attention map 𝑀𝐴 is obtained with a size 

of (H × W) × (H × W), where 𝑀𝐴
𝑖𝑗

 represents the correlation 

between the 𝑖𝑡ℎ  element in 𝑧𝑐  and the 𝑗𝑡ℎ  element in 𝑧𝑠 . 

Different from the mainstream research on spatial attention, we 

do not use the attention map 𝑀𝐴  for feature reassembling. 

Instead, we propose to use the nonmaximum suppression (NMS) 

method to address the disturbance of the unrelated 

representations as follows: 

 𝑡𝑖: = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑀𝐴
𝑖𝑘) , 𝑤ℎ𝑒𝑟𝑒 𝑘: = 1,2, … , 𝑁, 𝑎𝑛𝑑 𝑁: = |𝑧𝑠| (3) 

 𝑀𝑐
𝑖 ∶= 𝑀𝑠

𝑡𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖: = 1,2, … 𝑀, 𝑎𝑛𝑑 𝑀: = |𝑧𝑐|  (4) 

where 𝑡𝑖 refers to the position in style representation 𝑧𝑠 with 

maximum correspondence to the 𝑖𝑡ℎ  element in content 

representation 𝑧𝑐, and 𝑀𝑐 represents the content map. Also, we 

can have the confidence score 𝑆, whose element 𝑆𝑖 denotes the 

maximum correspondence from the style representation to the 

𝑖𝑡ℎ element in content representation 𝑧𝑐, as given by: 

 𝑆𝑖 ∶=  𝑚𝑎𝑥 (𝑀𝐴
𝑖𝑘) , 𝑤ℎ𝑒𝑟𝑒 𝑘: = 1,2, … , 𝑁, 𝑎𝑛𝑑 𝑁: = |𝑧𝑠|(5) 

As seen in Fig. 2, the OBAM method drives all pixels of the 

representations into several clusters, and the output map is 

similar to the results of the semantic segmentation. Though the 

output map of OBAM carries no information on specific 

semantic categories, the content and style map reflect the 

semantic correspondence between the image-pair, which builds 

the foundation for accurate color transfer between the 

homogeneous regions. Also, the confidence score reflects the 

possibility of semantic alignment for each position. In our 

research, one threshold value is introduced to split the content 

representation into homogeneous and heterogeneous regions. 

The homogeneous regions’ confidence score is higher than a 

given threshold and defined as the regions with strong 

correspondences. On contrast, the heterogeneous regions’ 

confidence score is lower than the threshold and denoted as the 

regions with weak correspondences. 

B. Wavelet corrected whitening and coloring transforms 

Wavelet corrected whitening and coloring transform 

(wavelet corrected WCT) is applied to perform the color 

transfer for each cluster in the areas with strong 

correspondences, as shown in Fig. 3. As seen from Fig. 3, the 

wavelet corrected WCT generally follows the encoding and 

decoding architecture of image transform. To better preserve 

the details in the content images, the downsampling in the 

encoder is replaced by the wavelet pooling, and the upsampling 

in the decoder is replaced by the wavelet unpooling.  

 

 

 
Fig. 3. The structure of the wavelet corrected WCT 

 

Following the definition of the Haar wavelet, the low filter 

(L) and high filter (H) are defined as: 

 𝐿: =
1

√2
[1 1], 𝐻: =

1

√2
[−1 1] (6) 

These filters consist of four kernels for the wavelet pooling: 

𝐿𝐿𝑇 , 𝐿𝐻𝑇 , 𝐻𝐿𝑇 , 𝐻𝐻𝑇 , which represent respectively the low 

frequency, vertical, horizontal, and the diagonal edge 

information. During the encoding process, only the low-

frequency information is passed to the next layers, and the high-

frequency signals are employed in the decoding process via skip 

connections. We progressively transform features in a single 

forward path, and the WCT is applied for color transform 

between the homogeneous regions at each scale. Let the 𝑧𝑐−𝑖 

and 𝑧𝑠−𝑖 denote the content and style representation at the 𝑖𝑡ℎ 

scale, the WCT can be expressed as: 

 𝑧𝑐𝑠−𝑖 ∶= 𝑃𝑠−𝑖𝑃𝑐−𝑖𝑧𝑐−𝑖 (7) 

 𝑃𝑐−𝑖: = 𝐸𝑐−𝑖Λ𝑐−𝑖

−
1

2 𝐸𝑐−𝑖
Τ   (8) 
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 𝑃𝑠−𝑖 ∶= 𝐸𝑠−𝑖Λ𝑠−𝑖

−
1

2 𝐸𝑠−𝑖
Τ  (9) 

where Λ𝑐−𝑖  and Λ𝑠−𝑖  denote the diagonal matrices with the 

eigenvalues of the covariance matrix 𝑧𝑐−𝑖𝑧𝑐−𝑖
Τ  and 𝑧𝑠−𝑖𝑧𝑠−𝑖

Τ , and 

the 𝐸𝑐−𝑖 and 𝐸𝑠−𝑖 are the corresponding orthonormal matrices. 

The 𝑧𝑐𝑠−𝑖 represents the stylization result at the 𝑖𝑡ℎ scale, where 

the decoder will process the last stylization result for image 

reconstruction. 

C. Weight-adjusted AdaIN 

It is hard to adjust the color cast for the regions with weak 

correspondences since there are no appropriate style patterns as 

reference. To address this problem, we propose the weight-

adjusted AdaIN (WAA) for bias estimation in the 

representation space, as shown in Fig. 4. The feature statistics 

were computed across each cluster in the areas with strong 

semantic correspondences. The weighted sum of the feature 

statistics was used as the bias estimation of the color cast in the 

areas with weak semantic correspondences, and the weight for 

each cluster was measured by its valid pixels, as detailed below. 

 

 
Fig. 4. The structure of the weighted adjusted AdaIN 

  

We compute the channel-wise mean and variance in the areas 

with strong semantic correspondences for each cluster by: 

 𝜇𝑐
𝑖 ∶=  

1

∑ ∑ (𝑀𝑐
𝑎𝑏=𝑖)𝑊

𝑏=1
𝐻
𝑎=1

∑ ∑ 𝑧𝑐
𝑎𝑏𝑊

𝑏=1
𝐻
𝑎=1 (𝑀𝑐

𝑎𝑏 = 𝑖)  (10) 

 𝜎𝑐
𝑖 ∶=  √

1

∑ ∑ (𝑀𝑐
𝑎𝑏=𝑖)𝑊

𝑏=1
𝐻
𝑎=1

∑ ∑ (𝑧𝑐
𝑎𝑏 − 𝜇𝑐

𝑖 )2 + 𝜀𝑊
𝑏=1

𝐻
𝑎=1  (11) 

where 𝜇𝑐
𝑖  and 𝜎𝑐

𝑖 represent the mean and variance of the 𝑖𝑡ℎ 

cluster in the feature space, and H and W denote the height and 

width of the feature maps, respectively. The symbol of = 

denotes the numerical equality, and the Boolean operator 

(𝑀𝑐
𝑎𝑏 = 𝑖) indicates that the statistics are computed for each 

cluster. The feature statistics was combined by the weighted 

average of all clusters, and the weight for each cluster was 

measured by the ratio of the cluster pixels. The larger cluster in 

the representation space plays more important role in the bias 

estimation, which inspire our proposed WAA method as 

follows: 

 𝜇𝑐: = ∑
∑ ∑ (𝑀𝑐

𝑎𝑏=𝑖)𝑤
𝑏=1

ℎ
𝑎=1

∑ ∑ ∑ (𝑀𝑐
𝑎𝑏=𝑖)𝑤

𝑏=1
ℎ
𝑎=1

𝑛
𝑖=1

𝜇𝑐
𝑖𝑛

𝑖=1  (12) 

 𝜎𝑐: = ∑
∑ ∑ (𝑀𝑐

𝑎𝑏=𝑖)𝑤
𝑏=1

ℎ
𝑎=1

∑ ∑ ∑ (𝑀𝑐
𝑎𝑏=𝑖)𝑤

𝑏=1
ℎ
𝑎=1

𝑛
𝑖=1

𝜎𝑐
𝑖𝑛

𝑖=1  (13) 

where 𝜇𝑐  and 𝜎𝑐  represent the channel-wise mean and 

variance of the content image, which will be later used in the 

AdaIN method for color calibration of the areas with weak 

semantic correspondences. 

IV. EXPERIMENTS 

In this section, we will evaluate the performance of our 

method on the publicly available dataset of UAV remote 

sensing for precision agriculture: CropUAV [32]. To the best of  

our knowledge, CropUAV is the only public dataset concerning 

on the color cast problem of UAV remote sensing in precision 

agriculture, which drives us selecting this dataset for evaluation. 

First, we give a detailed description of the evaluated dataset in 

section Ⅳ-A. Next, we present the implementation details on 

the model architecture, training, and testing in section Ⅳ-B. We 

further demonstrate the effectiveness of the proposed modules 

through a careful ablation study, given in section Ⅳ-C. Finally, 

we compared the performance of our method with the state-of-

the-arts semantic style transfer and attentional style transfer 

algorithms, as detailed in section Ⅳ-D. Moreover, we will 

release our implementation in 

http://github.com/huanghsheng/object-based-attention-

mechanism. 

A. Data Set Description 

To evaluate the effectiveness of our proposed method, we 

conducted comprehensive experiments on the public dataset: 

CropUAV [32]. CropUAV is a dataset designed for crop 

monitoring using UAV remote sensing in precision agriculture, 

and the involved plant species include rice, beans, and cotton. 

It contains 8850 training images and 6825 validation images, 

where the image size is 600 × 800, as shown in Table Ⅰ. The 
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UAV imagery were captured at a low altitude under the natural 

field conditions, where the image sequences in one flight 

present significant color cast, as shown in Fig. 5. It can be seen 

from Fig. 5 that the color of the crops varies significantly, which 

may lead to misjudgment of the crop conditions and the 

following field management. 

 

 

Table Ⅰ. Details of the CropUAV dataset 

Plant species dataset partition dataset size 

rice 
training set 2050 

validation set 1500 

beans 
training set 4200 

validation set 2075 

 

cotton 

training set 2600 

validation set 3250 

 

 
Fig. 5.  Demonstration for the color cast of the UAV imagery in the dataset. (a) in field photograph of the crops; (b) UAV imagery 

with correct color; (c-d) UAV imagery with color cast. 

 

B. Implementation Details 

Our color calibration network generally follows the encoder-

transfer-decoder architecture. The encoder module is fixed to 

the first few layers of the pretrained VGG-19 network, where 

the pooling layers are replaced with wavelet pooling layers. 

Different from the default configuration from others [18, 19], 

our encoder only applies the conv_1 to conv_3 in the VGG-19 

network to better preserve the details in the stylization results. 

The transfer module contains our proposed OBAM workflow, 

as discussed in section Ⅲ. The decoder is the inverse 

architecture of the encoder; only the wavelet pooling is replaced 

by wavelet unpooling. The decoder is pretrained on the 

Microsoft COCO dataset like most researches on style transfer 

[28-30], and the training loss includes the content loss, style 

loss, and the L2 reconstruction loss. The pretraining applied the 

Adam optimizer with a fixed learning rate of 10-3. To perform 

the quantitative evaluation of our proposed method, we used the 

Kullback-Leibler divergence (KL) and Hellinger distance (Hel) 

to denote the precision of color calibration since these are the 

general metrics to measure the color precision [33]. Also, we 

used the gradient difference (Mgrad) to represent the detail 

preservation, and employed the HIGRADE-1 [34] to measure 

the stylization results' image quality. To avoid the disturbance 

from the difference of semantic distribution, the KL and Hel are 

only computed across the crop areas. However, the Mgrad and 

HIGRADE-1 are measured within the whole image since the 

detail preserving and image quality are free from the semantic 

distribution. All experiments were conducted on a computer 

with a i7 CPU and a NVIDIA RTX 2080 TI GPU. 

C. Ablation Study and Analysis 



7 

> IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (DOUBLE-CLICK HERE TO EDIT) < 

 

 

The scientific contributions of this research mainly include 

the OBAM and WAA methods for accurate color transfer 

between the target and reference images. We decompose our 

methodology step by step to reveal the effectiveness of these 

proposed modules. Table Ⅱ gives the quantitative results on 

different plant species. Obviously, the introduction of the 

OBAM method significantly increases the accuracy of color 

transfer. We argue that the OBAM method builds the semantic 

correspondences between the homogeneous regions, which 

avoid the disturbance of unrelated pixels thus improving the 

transfer precision. However, the utilization of the OBAM 

method suffers from semantic mismatch caused by the absence 

of semantic correspondences, decreasing the color transfer 

accuracy and perceptual quality. To solve this problem, we 

propose the WAA method for bias estimation of the areas with 

weak semantic correspondences. The WAA method estimated 

the color cast for the areas with weak correspondences by 

weighting the statistics of the areas with strong 

correspondences, which eliminate the structural artifacts and 

calibrate the color cast, as shown within the yellow frames of 

the last three samples in Fig. 5. From the aspect of efficiency, 

the OBAM module consumes more 0.17 s for one image, and 

the utilization of the WAA method contrarily decrease the 

inference time. We argue that the WAA reduces the number of 

clusters in color transfer, thus saving more computational time. 

It can also be seen from Table Ⅱ that the KL and Hel present 

slight inconsistency on the evaluation of color precision. We 

speculate that the KL and Hel belong to asymmetrical measure 

and symmetrical measure, thus the evaluation on the difference 

between two probability distribution present slight variation. 

However, these metrics generally reflect the precision of color 

calibration, and the evaluation on these metrics shares 

approximate results. 

 

Table Ⅱ. The ablation study for the proposed modules  

Plant 

species 
OBAM WAA KL↓ Hel↓ Mgrad↓ 

 HIGRADE-1

↑ 

Time /s 

↓ 

   0.2382 0.2129 0.0561 -0.0322 0.3564 

rice √  0.1120 0.1487 0.0785 -0.1251 0.5228 

 √ √ 0.1710 0.1638 0.0605 -0.0830 0.4668 

   0.4164 0.1989 0.0793 -0.0852 0.3525 

beans √  0.2333 0.2182 0.0421 -0.1400 0.5166 

 √ √ 0.2998 0.2394 0.0286 -0.1514 0.4712 

   0.9562 0.2392 0.0522 -0.4891 0.3413 

cotton √  0.0704 0.1214 0.0381 -0.5107 0.5163 

 √ √ 0.0692 0.1237 0.0367 -0.4714 0.4698 
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Fig. 6. Visual comparison on ablation study. (a) target images; (b) reference; (c) outputs without OBAM and WAA; (d) outputs 

with only OBAM; (e) outputs with OBAM and WAA. 

 

Fig. 7 gives a visual explanation on WAA’s effectiveness to 

remove structural artifacts. As seen from Fig. 7, most of the 

artifacts appear in the regions with low confidence scores, as 

shown in Fig. 7 (c) and Fig. 7 (d). Though the OBAM searches 

for the largest correspondence in the style representation, the 

corresponding features may not be the homogeneous points, 

thus leading to semantic mismatch. The WAA method gives 

proximate bias estimation by combining the corresponding 

clusters with strong correspondences, effectively avoiding the 

semantic mismatch and removing the unexpected artifacts, as 

shown in Fig. 7(e). 

 

 

 
Fig. 7. Visual explanation on the structural artifacts. (a) target images; (b) reference; (c) confidence map of the OBAM; (d) 

outputs with only OBAM; (e) outputs with OBAM and WAA. 
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D. Comparison with the State of the Arts 

This section compares our method with the semantic style 

transfer and attentional style transfer algorithms. Qualitative 

and quantitative comparisons were conducted to demonstrate 

the superiority of the proposed method. 

1) Comparison with the semantic style transfer 

 

We adopted three representative semantic style transfer 

algorithms for comparison, i.e. Class Based Styling (CBS) [35], 

Photo whitening and coloring (PhotoWCT) [18], and whitening 

and coloring v2 (WCT2) [19]. For all the compared methods, a 

fully convolutional network was employed to perform dense 

classification on the validation set. Each pixel of the UAV 

imagery was classified into three classes: crop, others, and 

background, where the background category indicates the areas 

outside the investigated fields. The others class include many 

semantic categories such as cement, soil, and mulch, et al. Thus 

the color transfer accuracy was only evaluated in the crop areas. 

However, the detail preservation and image quality assessment 

was reported on the whole image. The published official 

implementations of these methods were employed for a fair 

comparison in our experiments.  

Table Ⅲ gives the quantitative comparisons of our method 

with the semantic style transfer algorithms, where our method 

achieves competitive results for all the involved plant species. 

Specifically, the evaluations are conducted for each crop 

separately, since the crop monitoring tasks generally targets on 

a specific crop type for one farmer. CBS [35] applied the feed-

forward network proposed by Johnson et al. [36] for stylization, 

resulting in low transfer accuracy from global color transfer 

workflow. Specifically, CBS [35] ignores the integration of 

semantic related regions thus achieves best performance in 

efficiency. However, this method relies on the trained reference 

image. When the reference image is changed, the whole 

network has to be trained again. Compared with CBS [35] and 

PhotoWCT [18], WCT2 [19] demonstrates its superiority in 

accurate color transfer. We argue that the stylization between 

the semantically related regions improves the transfer accuracy 

and photorealism, and the integration of wavelet pooling and 

unpooling prevents the detail loss. According to the results in 

Table Ⅲ, WCT2 [19] achieves best color precision in some 

cases. However, WCT2 [19] still relies on annotated labels for 

semantic segmentation, which is hard to be applied to unknown 

scenarios. In comparison, our method automatically searches 

the semantic correspondences, and obtains better results 

without the guidance of semantic maps. Also, the proposed 

method requires no annotations, which significantly releases 

the massive manual labor that is required in conventional 

approaches. 

 

Table Ⅲ. Quantitative results of our method and the semantic style transfer algorithms 

Plant 

species 
Algorithm KL↓ Hel↓ Mgrad↓ 

 HIGRADE-1

↑ 

Time /s 

↓ 

rice 

CBS [35] 0.2728 0.2180 0.1005 0.1118 0.2290 

PhotoWCT [18] 0.5119 0.3621 0.1309 -0.2295 0.5416 

WCT2 [19] 0.1854 0.1804 0.0980 -0.0142 0.8283 

ours 0.1710 0.1638 0.0605 -0.0830 0.4668 

beans 

CBS [35] 0.4443 0.3089 0.0431 0.1038 0.2290 

PhotoWCT [18] 0.3689 0.2514 0.0886 -0.3285 0.5416 

WCT2 [19] 0.3937 0.1724 0.0695 -0.1081 0.8283 

ours 0.2998 0.2394 0.0286 -0.1514 0.4712 

cotton 

CBS [35] 0.1001 0.1604 0.0616 -0.5357 0.2290 

PhotoWCT [18] 0.1072 0.1864 0.0780 -0.7362 0.5416 

WCT2 [19] 0.0914 0.1173 0.0617 -0.3868 0.8283 

ours 0.0692 0.1237 0.0367 -0.4714 0.4698 

 

Fig. 8 gives the qualitative results of our method and the 

semantic style transfer algorithms. For the outputs by CBS [35], 

the crop areas and the soils are presented in different color 

spaces, significantly decreasing the perceptual quality of the 

UAV imagery, as shown in the first two samples in Fig. 8 (c). 

When the image patterns of the content and style share 

dissimilarity, color transfer accuracy may decrease as shown in 

the last three samples in Fig. 8 (c). With the semantic 

information applied for local color transfer, PhotoWCT [18] 

and WCT2 [19] increase the color transfer accuracy. However, 

PhotoWCT [18] suffers from blurring artifacts due to the max 

pooling operation in feature encoding, as shown in the second 
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sample in Fig. 8(d). WCT2 [19] integrates the wavelet pooling 

and wavelet unpooling in image encoding and decoding, 

improving rice's texture details. However, the others category 

in agricultural monitoring often comprises many semantic 

classes, and the style transfer between this category may 

produce unsatisfied results due to the semantic difference. It can 

be seen that PhotoWCT [18] and WCT2 [19] transfer the color 

of the cement to the soils, decreasing the photorealism of the 

stylization results, as shown in the first three samples in Fig. 8 

(d) and Fig. 8 (e). However, our proposed method can well 

address this problem, as shown in Fig. 8 (f), thanks to the 

OBAM module for detecting the semantic difference, and the 

following WAA method for robust color calibration in the 

representation space.  

 

 

 
Fig. 8. Qualitative results of our method and the semantic style transfer algorithms. (a) target images; (b) reference; (c) outputs 

by CBS [35]; (d) outputs by PhotoWCT [18]; (e) outputs by WCT2 [19]; (f) outputs by our method. 

 

It is worth noting that the calibrated results should retain the 

original imagery's anomaly information during color transfer, 

as seen in the last two samples of Fig. 8, which are the UAV 

imagery collected in the cotton fields infected with spider mites, 

ad detailed in [37]. However, the stylization results by the 

compared counterparts weaken the symptoms of mite infection 

as shown in Fig. 8 (c-e). We argue that the compared methods 

focus only on the color transfer accuracy, which inevitably 

ignores the anomaly areas presenting color differences with the 

reference image. In contrast, the stylization of our method 

retains the anomaly appealing caused by the spider mites, 

thanks to OBAM’ s capability to process the color calibration 

for the regions with low semantic correspondences. 

2) Comparison with the attentional style transfer 

Compared with semantic style transfer, the attentional style 

transfer requires no labels for training, raising researchers' 

attention in recent years. We compare our proposed method 

with the mainstream attentional style transfer approaches, 

including Avatar-net [26], StyleMixer [28], and IEContraAST 

[30]. For fair comparison, the published official 

implementations of the compared methods are utilized to 

conduct the experiments. Our experiments found that the 

outputs by Avatar-net [26] and IEContraAST [30] suffer from 

the blurring artifacts. To address this problem, we only retain 

the conv1 to conv3 in the encoder derived from the VGG-19 

network, and the symmetric architectures are preserved in the 

decoder. All the layers in StyleMixer [28] were retained due to 

its multi-level feature fusion strategy. According to our 

experiments, the three compared methods demonstrated poor 

performance with their default parameters. Therefore, all the 

compared counterparts were carefully tuned on our training set 

before evaluation.  

Table Ⅳ gives the quantitative results of our method and the 

three compared attentional style transfer algorithms. The 

accuracy of Avatar-net [26] and StyleMixer [28] is relatively 

low for the involved plant species. Especially for the cotton, 

Avatar-net [26] and StyleMixer [28] only obtain 0.5376 and 

0.7165 in KL. One possible reason is that the StyleMixer [28] 

computes the cross correlation and uses correspondence score 

for feature reassembling. However, the disturbance from the 

semantically unrelated pixels cannot be avoided in the feature 

reassembling process. Avatar-net [26] proposed an improved 
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patch matching strategy so that every element in the content 

representation can find a semantically nearest element in the 

style representation. However, this workflow ignores the 

absence of semantic correspondences for some regions of the 

content image. Under this circumstance, Avatar-net [26] 
suffered from semantic mismatches and structural artifacts. 

Also, Avatar-net [26] is too slow to be applied in applications, 

where the processing for one 600 × 800  image consumes 

3.7654 seconds. We argue that the proposed style decorator 

performs the patch matching with convolution in high 

dimensional representation space, which consumes too much 

GPU memory and execution time. IEContraAST [30] obtains 

better performance than Avatar-net [26] and StyleMixer [28] in 

all metrics. We debate that the proposed external loss and 

contrastive loss help better learn the content and style 

representation by considering the stylization-to-stylization 

relations. From the evaluated metrics, IEContraAST [30] 
obtains competitive performance with our proposed method on 

some crop types such as cotton. However, IEContraAST [30] is 

a training-based approach and requires that the reference 

images should be approximate with the trained templates. In 

contrast, our proposed OBAM requires no extra training and 

can be directly incorporated to unknown scenarios. Generally, 

our method achieves state-of-the-art or close to state of the art 

performance, especially in the color transfer accuracy and detail 

preserving. We argue that the proposed OBAM addresses the 

pixel isolation problem by feature clustering, building a better 

foundation for searching the semantic correspondences. 

 

 

Table Ⅳ. Quantitative results of our method and the attentional style transfer algorithms 

Plant 

species 
Algorithm KL↓ Hel↓ Mgrad↓ 

 HIGRADE-1

↑ 

Time /s 

↓ 

rice 

Avatar-net [26] 0.1840 0.1954 0.1918 -0.3320 3.7654 

StyleMixer [28] 0.3750 0.2672 0.2293 0.1794 0.5432 

IEContraAST [30] 0.2972 0.2661 0.1331 -0.1843 0.3371 

ours 0.1710 0.1638 0.0605 -0.0830 0.4668 

beans 

Avatar-net [26] 0.3173 0.2310 0.1491 -0.5279 3.7654 

StyleMixer [28] 0.2496 0.1611 0.1973 -0.0519 0.5432 

IEContraAST [30] 0.2662 0.2263 0.0989 -0.1374 0.3371 

ours 0.2998 0.2394 0.0286 -0.1514 0.4712 

cotton 

Avatar-net [26] 0.5376 0.1877 0.1856 -1.0694 3.7654 

StyleMixer [28] 0.7165 0.2121 0.2274 -0.4932 0.5432 

IEContraAST [30] 0.0783 0.1131 0.1215 -0.1242 0.3371 

ours 0.0692 0.1237 0.0367 -0.4714 0.4698 

 

Fig. 9 provides the visual comparison of our method with the 

attentional style transfer algorithms. As seen, Avatar-net [26] 

performs poorly in photorealism. We argue that the style 

decorator module matches the soils of the target images to the 

cement regions in the reference image, leading to significant 

structural artifacts in the reconstruction process, as shown in 

Fig. 9 (c). The same problem occurs in the outputs produced by 

StyleMixer [28]. We debate that StyleMixer [28] applies the 

weighted reassembling to perform the image reconstruction, 

thus still suffering from the problem of semantic mismatch. 

Generally, IEContraAST [30] and our method produce pleasing 

results for all the plant species, in terms of the color transfer 

accuracy, detail preserving, and photorealism. However, 

IEContraAST [30] can only be incorporated into the learning-

based methods. When the reference images are too different 

from the training styles, IEContraAST [30] may generate 

unsatisfactory results. This limitation is also observed in our 

research. When the pretrained weights were directly applied for 

evaluation, IEContraAST [30] demonstrated poor performance 

in all metrics, especially in detail preserving, as shown in Fig. 

10. Semantic mismatches were observed from the first two 

samples of Fig. 10 (c), and obvious structural artifacts were 

presented in the last sample. This problem was later addressed 

by careful fine-tuning on our training set, as shown in Fig. 10 

(d). On the contrary, our proposed OBAM and WAA module 

require no extra training. Specifically, we embed the proposed 

modules into the WCT2 pretrained on the COCO dataset and 

use the incorporated model for evaluation on our validation set 

without extra training. Therefore, our method is superior in 

zero-shot arbitrary style transfer, enhancing its extension to 

more generic applications. 
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Fig. 9. Qualitative results of our method and the three attentional style transfer algorithms. (a) target images; (b) reference; (c) 

outputs by Avatar-net [26]; (d) outputs by StyleMixer [28]; (e) outputs by IEContraAST [30]; (f) outputs by our method. 

 

 
Fig. 10. Comparison on IEContraAST [30] before and after finetuning. (a) target images; (b) reference; (c) outputs by the default 

parameters; (d) outputs by the finetuned version. 

 

E. Limitations 

The main limitation of this work is that the proposed OBAM 

may be stuck with the semantic mismatch in some cases. Fig.11 

presents some failure cases of our approach. When one 

homogenous object is wrongly split into homogenous and 

heterogeneous regions, these areas will be processed with 

different calibration modes thus result in structural artifacts, as 

shown in the red brackets of the first two samples in Fig. 11. 

Also, the proposed WAA module applied the statistics results 

of the areas with strong semantic correspondences as the bias 

estimation for the areas without semantic reference. When the 

areas with strong semantic correspondences are too small, the 

estimation error will be increased, as shown in the third sample 

in Fig. 11 where the purple bracket indicates the small areas 

with semantic correspondences. The research to increase the 

accuracy for the bias estimation will be the direction of our 

future work. 
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Fig. 11. Failure cases of our approach on color calibration. (a) 

target images; (b) reference; (c) outputs by our method. 

 

Ⅴ. CONCLUSION 

In this paper, we proposed a novel OBAM method for color 

calibration of UAV imagery in precision agriculture. The 

proposed OBAM method searches the semantic 

correspondences of the target and reference images via 

unsupervised clustering and non-maximum suppression, which 

has successfully suppressed the disturbance from the 

semantically unrelated elements. To address the absence of 

semantic correspondences in certain regions, we further 

propose a WAA module for bias estimation and color 

calibration. The proposed modules were carefully evaluated 

through an ablation study, and visual explanations were 

conducted to exploit the reason for performance boosts. Later, 

we compared our method with the state-of-the-art semantic 

style transfer and attentional style transfer algorithms. 

Qualitative and quantitative results have demonstrated that our 

method consistently outperformed others on all plant species. 

Also, our proposed module requires no annotated labels, which 

can be easily embedded into other color transfer models. The 

contribution of this work is expected to enrich the research of 

attention mechanism in style transfer and build a general color 

calibration framework for UAV remote sensing in precision 

agriculture and beyond. 

REFERENCES 

[1]. S. Sunoj, C. Igathinathane, N. Saliendra, J. Hendrickson, and D. Archer. 

Color calibration of digital images for agriculture and other applications[J]. 

ISPRS journal of photogrammetry and remote sensing, 2018, 146: 221-234. 
[2]. Mahmoud Afifi and Michael S. Brown. What else can fool deep learning? 

Addressing color constancy errors on deep neural network performance[C]. in 

Proceedings of the IEEE/CVF International Conference on Computer Vision 
(ICCV), 2019: 243-252. 

[3]. Jiale Jiang, Qiaofeng Zhang, Wenhui Wang, Yapeng Wu, Hengbiao Zheng, 

Xia Yao, Yan Zhu, Weixing Cao, and Tao Cheng. MACA: A Relative 
Radiometric Correction Method for Multiflight Unmanned Aerial Vehicle 

Images Based on Concurrent Satellite Imagery[J]. IEEE Transactions on 

Geoscience and Remote Sensing, 2022, 60: 1-14. 
[4]. Alwaseela Abdalla, Haiyan Cen, Elfatih Abdel-Rahman, Liang Wan, and 

Yong He. Color calibration of proximal sensing RGB images of oilseed rape 

canopy via deep learning combined with K-means algorithm[J]. Remote 

Sensing, 2019, 11(24): 3001. 
[5]. Simone Bianco and Claudio Cusano. Quasi-unsupervised color 

constancy[C]. in Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition (CVPR), 2019: 12212-12221. 
[6]. Daniel Hernandez-Juarez, Sarah Parisot, Benjamin Busam, Ales Leonardis, 

Gregory Slabaugh, and Steven McDonagh. A multi-hypothesis approach to 

color constancy[C]. in Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), 2020: 2270-2280. 

[7]. Karen Panetta, Long Bao and Sos Agaian. Fast Hue-Division-Based 

Selective Color Transfer[J]. IEEE Transactions on Circuits and Systems for 
Video Technology, 2020, 30(9): 2853-2866. 

[8]. Yifei Huang, Sheng Qiu, Changbo Wang, and Chenhui Li. Learning 

Representations for High-Dynamic-Range Image Color Transfer in a Self-
Supervised Way[J]. IEEE Transactions on Multimedia, 2021, 23: 176-188. 

[9]. Ming Lu, Hao Zhao, Anbang Yao, Feng Xu, Yurong Chen, and Li Zhang. 

Decoder network over lightweight reconstructed feature for fast semantic style 
transfer[C]. in Proceedings of the IEEE international conference on computer 

vision (ICCV), 2017: 2469-2477. 

[10]. Zhibo Rao, Mingyi He, Zhidong Zhu, Yuchao Dai, and Renjie He. 

Bidirectional Guided Attention Network for 3-D Semantic Detection of Remote 

Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 

2021, 59(7): 6138-6153. 
[11]. Yingxiao Xu, Hao Chen, Chun Du, and Jun Li. MSACon: Mining Spatial 

Attention-Based Contextual Information for Road Extraction[J]. IEEE 

Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17. 
[12]. Graham D. Finlayson, Michal Mackiewicz and Anya Hurlbert. Color 

correction using root-polynomial regression[J]. IEEE Transactions on Image 

Processing, 2015, 24(5): 1460-1470. 
[13]. Yingying Deng, Fan Tang, Weiming Dong, Haibin Huang, Chongyang 

Ma, and Changsheng Xu. Arbitrary video style transfer via multi-channel 

correlation[C]. in Proceedings of the AAAI Conference on Artificial 
Intelligence, 2021: 1210-1217. 

[14]. Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meiling Wang, Xin Li, 

Zhengxing Sun, Qian Li, and Errui Ding. Adaattn: Revisit attention mechanism 
in arbitrary neural style transfer[C]. in Proceedings of the IEEE/CVF 

international conference on computer vision (ICCV), 2021: 6649-6658. 

[15]. Pei Wang, Yijun Li and Nuno Vasconcelos. Rethinking and improving the 
robustness of image style transfer[C]. in Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 124-

133. 
[16]. Alex J. Champandard. Semantic style transfer and turning two-bit doodles 

into fine artworks[J]. arXiv preprint arXiv:1603.01768, 2016. 

[17]. Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala. Deep photo 
style transfer[C]. in Proceedings of the IEEE conference on computer vision 

and pattern recognition (CVPR), 2017: 4990-4998. 

[18]. Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and Jan Kautz. A 
closed-form solution to photorealistic image stylization[C]. in Proceedings of 

the European Conference on Computer Vision (ECCV), 2018: 453-468. 
[19]. Jaejun Yoo, Youngjung Uh, Sanghyuk Chun, Byeongkyu Kang, and Jung-

Woo Ha. Photorealistic style transfer via wavelet transforms[C]. in Proceedings 

of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 
9036-9045. 

[20]. Ivan Anokhin, Pavel Solovev, Denis Korzhenkov, Alexey Kharlamov, 

Taras Khakhulin, Aleksei Silvestrov, Sergey Nikolenko, Victor Lempitsky, and 
Gleb Sterkin. High-resolution daytime translation without domain labels[C]. in 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), 2020: 7488-7497. 

[21]. Peihao Zhu, Rameen Abdal, Yipeng Qin, and Peter Wonka. Sean: Image 

synthesis with semantic region-adaptive normalization[C]. in Proceedings of 

the IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR), 2020: 5104-5113. 

[22]. Zhuoqi Ma, Jie Li, Nannan Wang, and Xinbo Gao. Image style transfer 

with collection representation space and semantic-guided reconstruction[J]. 
Neural Networks, 2020, 129: 123-137. 

[23]. Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing Kang. Visual 

attribute transfer through deep image analogy[J]. ACM Transactions on 
Graphics (TOG), 2017, 36(4): 1-15. 

[24]. Mingming He, Jing Liao, Dongdong Chen, Lu Yuan, and Pedro V. Sander. 

Progressive Color Transfer With Dense Semantic Correspondences[J]. ACM 
Transactions on Graphics, 2019, 38(2): 1-18. 

[25]. Tian Qi Chen and Mark Schmidt. Fast patch-based style transfer of 

arbitrary style[J]. arXiv preprint arXiv:1612.04337, 2016. 



14 

> IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (DOUBLE-CLICK HERE TO EDIT) < 

 

 

[26]. Lu Sheng, Ziyi Lin, Jing Shao, and Xiaogang Wang. Avatar-net: Multi-

scale zero-shot style transfer by feature decoration[C]. in Proceedings of the 

IEEE conference on computer vision and pattern recognition (CVPR), 2018: 
8242-8250. 

[27]. Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with 

adaptive instance normalization[C]. in Proceedings of the IEEE International 
Conference on Computer Vision (ICCV), 2017: 1501-1510. 

[28]. Zixuan Huang, Jinghuai Zhang and Jing Liao. Style Mixer: Semantic‐

aware Multi‐Style Transfer Network[C]. in Computer Graphics Forum, 2019: 

469-480. 

[29]. Dae Young Park and Kwang Hee Lee. Arbitrary style transfer with style-
attentional networks[C]. in Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (CVPR), 2019: 5880-5888. 

[30]. Haibo Chen, Zhizhong Wang, Huiming Zhang, Zhiwen Zuo, Ailin Li, Wei 
Xing, and Dongming Lu. Artistic style transfer with internal-external learning 

and contrastive learning[J]. Advances in Neural Information Processing 

Systems, 2021, 34: 26561-26573. 
[31]. Mohan Zhang, Jing Liao and Jinhui Yu. Deep Exemplar-based Color 

Transfer for 3D Model[J]. IEEE Transactions on Visualization and Computer 

Graphics, 2022, 28(8): 2926-2937. 
[32]. Huasheng Huang, Aqing Yang, Yu Tang, Jiajun Zhuang, Chaojun Hou, 

Zhiping Tan, Sathian Dananjayan, Yong He, Qiwei Guo, and Shaoming Luo. 

Deep color calibration for UAV imagery in crop monitoring using semantic 
style transfer with local to global attention[J]. International Journal of Applied 

Earth Observation and Geoinformation, 2021, 104: 102590. 

[33]. Mahmoud Afifi, Marcus A. Brubaker and Michael S. Brown, HistoGAN: 
Controlling Colors of GAN-Generated and Real Images via Color Histograms 

[C]. in Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition (CVPR), 2022: 7937-7946.   
[34]. Yifei Huang, Sheng Qiu, Changbo Wang, and Chenhui Li. Learning 

Representations for High-Dynamic-Range Image Color Transfer in a Self-

Supervised Way[J]. IEEE Transactions on Multimedia, 2021, 23: 176-188. 
[35]. Lironne Kurzman, David Vazquez and Issam Laradji. Class-based styling: 

Real-time localized style transfer with semantic segmentation[C]. in 

Proceedings of the IEEE/CVF International Conference on Computer Vision 
Workshops (ICCV), 2019: 3189-3192. 

[36]. Justin Johnson, Alexandre Alahi and Li Fei-Fei. Perceptual losses for real-
time style transfer and super-resolution[C]. in European conference on 

computer vision (ECCV), 2016: 694-711. 

[37]. Huasheng Huang, Jizhong Deng, Yubin Lan, Aqing Yang, Xiaoling Deng, 

Lei Zhang, Sheng Wen, Yan Jiang, Gaoyu Suo, and Pengchao Chen. A two-

stage classification approach for the detection of spider mite-infested cotton 

using UAV multispectral imagery[J]. Remote Sensing Letters, 2018, 9(10): 
933-941. 

 

 

Huasheng Huang received the M.Sc. 

degrees in pattern recognition from South 

China Agricultural University, Guangzhou, 

China, in 2013, and the Ph.D. degree in 

agricultural electrification from South 

China Agricultural University, Guangzhou, 

China, in 2019. 

He is currently an associate professor of 

the college of computer sciences, Guangdong Polytechnic 

Normal University, Guangzhou, China. His research interests 

include image processing, UAV remote sensing and intelligent 

agriculture. 

 

Yu Tang (Member, IEEE) received the 

B.Sc. degree in electrical engineering from 

the Civil Aviation University of China, 

Tianjin, China, in 2005, and received the 

M.S. degree in optical engineering and the 

Ph.D. degree in microelectronics and solid 

state electronics from the South China 

University of Technology, Guangzhou, 

China, in 2008 and 2013, respectively. From 2013 to 2015, he 

worked as a postdoctoral researcher at the South China 

university of technology, Guangzhou, China. 

He is currently a Professor and the Dean of the Academy of 

Interdisciplinary Studies, Guangdong Polytechnic Normal 

University, Guangzhou, China. His current research interests 

include artificial intelligence, image/video processing, and 

IntelliSense and autonomous control. 

 

 

Zhiping Tan received the B.Sc. degree in 

electronic engineering from Xiangtan 

University and the Ph.D. degree from the 

College of Mathematics and Informatics, 

South China Agricultural University. He 

has published over ten research articles. 

His research interests include evolutionary 

optimization, Deep learning and machine 

vision. 

 

 

Jiajun Zhuang received the B.Sc. and 

M.Sc. degrees in measurement and control 

technology from Guangdong University of 

Technology in 2007 and 2010, 

respectively, and the Ph.D. degree in 

computer science from South China 

University of Technology in 2013.  

He is currently an associate professor 

with the College of Mathematics and Data 

Science, Zhongkai University of Agriculture and Engineering, 

Guangzhou, China. His current research interest includes 

computer vision, machine learning and agricultural 

engineering. 

 

 

Chaojun Hou received his B. Sc. and M. 

Sc. degrees from South China University of 

Technology, Guangzhou, China, in 2001 

and 2004, respectively. He received his 

Ph.D. degree from the Sun Yat-Sen 

University, Guangzhou, China, in 2009.  

He is currently an associated professor in 

the College of Mathematics and Data 

Science, Zhongkai University of 

Agriculture and Engineering, Guangzhou, China. His current 

research interests include agriculture engineering and artificial 

intelligence in agriculture. 

 

 

Weizhao Chen received his M. Sc. degree 

from school of information engineering at 

Guangdong University of Technology, 

Guangzhou, China, in 2020.  

His research interests are Machine 

Learning, Deep learning and Hyperspectral 

image processing. He currently focuses on 



15 

> IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (DOUBLE-CLICK HERE TO EDIT) < 

 

 

the application of machine learning in feature extraction of 

hyperspectral image. 

 

Jinchang Ren (Senior Member, IEEE) 

received the B.Eng. degree in computer 

software, the M.Eng. degree in image 

processing, and the D.Eng. degree in 

computer vision from Northwestern 

Polytechnical University, Xi’an, China, 

in 1992, 1997, and 2000, respectively, 

and the Ph.D. degree in electronic 

imaging and media communication from 

the University of Bradford, Bradford, U.K., in 2009.  

He is a Reader with the Department of Electronic and 

Electrical Engineering, University of Strathclyde, Glasgow, 

U.K. With over 300 scientific articles, his research interests 

include image processing, machine learning, hyperspectral 

imaging, remote sensing, and big data analytics. 

 


	coversheet_template
	HUANG 2022 Object-based attention (AAM)

