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Abstract—In recent years, deep learning has rapidly become a
method of choice for the segmentation of medical images. Deep
Neural Network (DNN) architectures such as UNet have achieved
state-of-the-art results on many medical datasets. To further
improve the performance in the segmentation task, we develop
an ensemble system which combines various deep learning
architectures. We propose a two-layer ensemble of deep learning
models for the segmentation of medical images. The prediction
for each training image pixel made by each model in the first
layer is used as the augmented data of the training image for the
second layer of the ensemble. The prediction of the second layer
is then combined by using a weights-based scheme in which each
model contributes differently to the combined result. The weights
are found by solving linear regression problems. Experiments
conducted on two popular medical datasets namely CAMUS
and Kvasir-SEG show that the proposed method achieves better
results concerning two performance metrics (Dice Coefficient and
Hausdorff distance) compared to some well-known benchmark
algorithms.

I. INTRODUCTION

Segmentation is the process of partitioning an image into
multiple segments to locate objects and boundaries. Before the
rise of Deep Neural Networks (DNN), most of the successful
segmentation algorithms used hand-crafted features combined
with a machine learning classifier such as Random Forest
[1] or Support Vector Machine [2]. Even though subsequent
research have achieved noticeable improvements by incorpo-
rating richer context information [3] or by applying struc-
tured prediction techniques [4], [5], the performance of these
systems remained limited because the hand-crafted features
are not representative enough for real-world usage. With the
success of DNNs in image classification in 2012 [6], re-
searchers began to apply this new architecture to segmentation.
Some notable results in this direction include Fully Connected
Networks (FCN) [7] and SegNet [8]. Applying deep learning
techniques to medical imaging has brought many successes,
such as the introduction of a novel architecture called Unet
and successfully applied it to the segmentation of neuronal
structures in electron microscopic stacks [9]. This network
continues to be widely used for segmentation. Another notable
example is in [10] which used T1-weighted, T2-weighted, and
fractional anisotropy image patches of 13x13 in size as input
to a Convolutional Neural Network (CNN) for segmentation
of infant brains which are considered to be much more
difficult than adult brains. This approach outperforms other
commonly used segmentation algorithms when tested on a set
of manually segmented isointense stage brain images. Deep
learning methods are highly effective for cases when the

dataset is large. For example, the first success in deep learning
was a network trained on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) dataset [6], which contained
1 million annotated images. However, medical image datasets
are much smaller, usually about 1,000 images[11]. This creates
an important challenge for creating deep medical models
which are robust against overfitting. Another problem is that
popular optimizers for training deep neural networks such as
Stochastic Gradient Descent (SGD) generally require much
manual tuning of optimization parameters [12]. Despite the
fact that there has been some alternative methods which re-
quire less parameter tuning, such as Adam [13], these methods
do not generalize as well as SGD [14]. The manual parameter
tuning causes a challenge in selecting suitable deep models for
a specific problem. Therefore, because medical image analysis
requires reliable predictions from automated systems due to
its critical nature, it is essential to leverage the strong points
of multiple segmentation algorithms to improve on the final
results.

Ensemble learning is a popular technique in which multiple
learners are combined to make a collaborated decision. The
key challenge is to build an effective ensemble method to
combine the results of segmentation algorithms. The paper
is organized as follows. In section 2, we briefly review the
existing approaches relating to segmentation in medical image
analysis and the ensemble learning. In section 3, we propose
a novel two-layer ensemble method to combine the results
of segmentation algorithms. Because segmentation gives a
pixel-level output, the prediction results by the segmentation
algorithms are concatenated with the original image as input to
segmentation algorithms in the second layer. Dice Coefficient
and Hausdorff distance are used as the evaluation metrics.
The details of experimental studies on two public datasets
are described in section 4. Finally, the conclusion is given
in section 5.

II. BACKGROUND AND RELATED WORK

A. Semantic segmentation in medical image analysis

With the success of [6] in applying deep Convolutional
Neural Network (CNN) to the problem of image classification,
deep learning has become the most popular approach in
computer vision. Since then, many notable deep architectures
have been proposed to solve vision problems. For example,
VGG16 [15] was a deep CNN for image classification using
a stack of convolution layers with small receptive fields in
the first layers instead of few layers with big receptive fields
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like previous models. This allows the model to have much
fewer parameters and more non-linearity, which makes the
decision function more discriminative and the model easier to
train. VGG16 managed to achieve a top-5 accuracy of 92.7%
on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC)-2013 dataset. Another notable model is ResNet
[16], which was motivated by the problem of training a really
deep architecture. The network uses shortcut connections in
order to perform identity mapping, i.e. instead of learning
a function, the layers having shortcut connections learn the
residual mapping. This allows Resnet to have a very deep
network at 152 layers while achieving 96.4% accuracy on the
ILSVRC-2016 competition.

Generally, deep image classification models are trained on
large datasets, such as ImageNet [17] which have around 1
million images. However, in the problem of semantic segmen-
tation, in which a model must predict the class of each pixel
in the image, the scale of available datasets is not as large
as in image classification [18]. To overcome this limitation,
practitioners usually use a pre-trained classification network
and finetune it for segmentation. Most deep learning based
semantic segmentation architectures are inspired by Fully Con-
volutional Network (FCN) [7], which creates a segmentation
network by using an existing classification network and replace
the fully connected layers with convolutional ones to output
spatial maps instead of classification scores. Those maps are
then upsampled to produce dense pixel-level output. This
architecture is considered the cornerstone of deep learning ap-
plied to semantic segmentation [18]. Another notable example
is DeepLab [19] which makes use of Conditional Random
Fields (CRF) [20] as a post-processing step for the refinement
of the segmentation result. The proposed architecture models
each pixel as a node in the random field and employs a
fully connected factor graph in which one pairwise term is
used for each pixel pair irrespective of their distance. This
allows the model to incorporate both short-range and long-
range information into account, facilitating the restoration of
detailed structures in the segmentation process that was lost
due to the spatial invariance of CNN.

Segmentation is considered one of the most essential medi-
cal imaging process as it extracts the region of interest (ROI)
which is then used in clinical applications. Therefore, it has
seen the widest variety of proposed methodology, including
deep architectures specifically designed to tackle problems
in medical image analysis. A notable example is UNet [9]
which consists of a contracting path and an expanding path
designed symmetrically. To help with localization, high reso-
lution features from the contracting path are combined with the
upsampled output. An important difference of UNet compared
to previous architectures is that the upsampling part also has a
large number of feature, channels, which allow the network to
propagate context information to higher resolution layers. The
network does not have any fully connected layer and therefore
can be trained on images of arbitrary size via an overlap-tile
strategy. In recent years, Recurrent Neural Networks (RNNs)
have also become widely used for medical image segmen-

tation. For example, in [21] a spatial clockwork RNN was
used to segment perimysium in histopathology images. The
authors applied the RNN four times in different orientations
in order to incorporate bidirectional information from left/top
and right/bottom neighbors. For 3D brain segmentation, [22]
trained a 3D-CNN by using mini-batches of multiple cubes,
whose size was larger than the input size. Their proposed
model could take an arbitrary-sized 3D patch as input and
would output a block of predictions per input, which is similar
to FCN. Over four different brain segmentation datasets, their
proposed method achieved the highest average specificity mea-
sure, with no significant loss in sensitivity. Some researchers
have also used graphical models such as Conditional Random
Fields as a post-processing step to refine the segmentation
results [23].

B. Ensemble learning

Ensemble learning is a popular approach in machine learn-
ing for combining a collection of classifiers for the collabo-
rative decision. Designing an ensemble system requires two
stages, namely ensemble generation and ensemble integration.
In the ensemble generation, multiple classifiers are generated
by using either a homogeneous strategy (training a learning
algorithm on multiple training sets generated from the original
training data) [24], [25] or a heterogeneous strategy (training
different learning algorithms on the original training data)
[26], [27]. A combining method is then used to aggregate
the predictions of the constituent classifiers in the ensemble
integration stage to obtain the collaborated prediction. Several
top-performing methods for classification have been reported
including Random Forest [28], XgBoost [29], and Rotation
Forest [30].

Recently, there is increasing interest in the ensemble gener-
ation inspired by the success of DNNs. Instead of using only
one layer like in traditional ensemble models, the ensemble
systems were made to train deeply through multiple layers.
The first deep ensemble system was proposed by Zhou and
Feng [31] (called gcForest), containing multiple layers of two
Completely-Random Tree Forests and two Random Forests in
each layer. Each forest in a layer outputs a class vector, which
is then concatenated to the original data as the input data to
the next layer. Utkin et al. [32] proposed a weighted average
approach for gcForest by associating each tree with a weighted
vector for its class distribution vector. The optimal weight
vectors of each trees in one layer are found by minimizing the
distance between the class label vector in a binary encoding
scheme and the weighted prediction vector of this forest. The
authors proposed to set only a weight vector for each group
in order to reduce the computational overhead. Nguyen et al.
[33] proposed MULES, a deep ensemble system with classifier
and feature selection in each layer. The optimal configuration
of each layer is found by using a bi-objective optimization
problem in which the two objectives to be maximized are
classification accuracy and diversity of the ensemble in each
layer. Qi et al. [34] introduced a deep ensemble model in
which each layer consists of an ensemble of Support Vector



Machine (SVM) classifiers [35]. The model parameters, such
as the kernel functions of the SVM classifiers, the number
of classifiers, and the weights of the features are found by
AdaBoost [36].

III. PROPOSED METHOD

Our proposed method is inspired by multi-layer ensemble
learning architectures, in which the segmentation algorithms
in one layer train the segmentation models of this layer on
the new training data generated by the preceding layer [31].
Applied to segmentation of medical images, this facilitates
the successive refinement of segmentation results through each
layer. It is recognized that the most successful segmentation
algorithms in recent years have been based on DNNs [37],
and even though deep learning models can be trained in
parallel using GPU, a multi-layer ensemble model of deep
learning-based segmentation algorithms would require a lot
of computational resources. Therefore, an important question
arises: How many layers should a deep ensemble model
extend? [33] showed that on some datasets, the number of
layers of multi-layer ensemble obtained was 2 or 3 only. Based
on this observation, we introduce a novel two-layer ensemble
model for segmentation of medical images. Figure 1 shows
the high-level overview of our proposed method.

A. Two-layer ensemble for segmentation

Let D = {In,Yn}Nn=1 be the training set where N is the
number of images, In is an input image of size (W,H,C)
with H being the image height, W the image width, and C
is the number of channels (C = 1 for grayscale, C = 3 for
color image). The mask Yn is also an image of size (W,H),
with each entry Yn(i, j)(i = 1, ...,W ; j = 1, ...,H) showing
which group the pixel In(i, j) belongs to, i.e Yn(i, j) ∈ Y ,
where Y = {ym},m = 1, ...,M is the set of all classes and
M is the number of classes.

We aim to learn a hypothesis h : In → Yn (i.e segmentation
model) to approximate the unknown relationship between
each image and its corresponding mask, and then use this
hypothesis to assign a label for each unsegmented image. We
also denote {Kk}Kk=1 as the set of K segmentation algorithms.
Each segmentation algorithm Kk learns on D to obtain a
trained segmentation model hk. In ensemble learning, we train
segmentation algorithms {Kk}Kk=1 on D to get K trained
segmentation models {hk}Kk=1

In the next step, we generate the training data for the
second layer of ensemble. Based on the results of [33] and
the stacking generalization model [26], we propose a two-layer
deep ensemble architecture for segmentation in medical image
analysis (Figure 1). Firstly, the training set D is divided into
T disjoint parts {D1,D2, ...,DT }, where D = D1 ∪D2 ∪ ... ∪
DT ,Dt1 ∩ Dt2 = ∅(t1, t2 = 1, ..., T, t1 6= t2). Then for each
part Dt(t = 1, ..., T ), the segmentation algorithms {Kk}Kk=1

will learn on its complementary D\Dt to obtain segmentation
models hk,t. The images in Dt are then segmented by using
these segmentation models. Let Pk(ym|In(i, j)) be probability
prediction that hk,t assigns pixel In(i, j) to be in class ym. The

prediction of hk,t showing the probability all pixels of image
In belonged to class ym is given by a matrix:

Pk(ym|In) =

 Pk(ym|In(1, 1)) Pk(ym|In(1, 2)) · · · Pk(ym|In(1, H))
· · · · · · · · · · · ·

Pk(ym|In(W, 1)) Pk(ym|In(W, 2)) · · · Pk(ym|In(W,H))

 (1)

For each image In, there will be M ×K prediction matrices
Pk(ym|In) illustrated in Figure 2. In this study, we propose
augment the training data for the second layer of ensemble by
concatenating these M×K prediction matrices to the original
training images to create new images I∗n. The prediction matrix
{Pk(ym|In)} serves as an additional channel of the original
image In. In total, the new images I∗n will have C +M ×K
channels:

I∗n = In ∪ {Pk(ym|In)}, k = 1, ...,K,m = 1, ...,M (2)

The new training data for the second layer of ensemble will
be given as follows:

D∗ = {I∗n,Yn}Nn=1 (3)

For second layer of the ensemble, we train {Kk}Kk=1 on
D∗ to get trained segmentation models {h∗k}Kk=1. We then
need to train a combiner C to combine the trained models
ĥ = C({h∗k}Kk=1) for final decision making. The training of
combiner will conduct on the predictions for all pixels of
training images in D∗. Once again, the new training data D∗ is
divided into disjoint parts {D∗1,D∗2, ...,D∗T }. Then for each part
D∗t (t = 1, ..., T ), the segmentation algorithms {Kk}Kk=1 will
learn on D∗ \ D∗t to obtain segmentation models h∗k,t. These
models will then predict on D∗t . The second-layer probability
prediction for all images in D∗ is given as follows:

L∗ =



P1(y1|I∗1(1, 1)) P1(y2|I∗1(1, 1)) · · · PK(yM |I∗1(1, 1))
P1(y1|I∗1(1, 2)) P1(y2|I∗1(1, 2)) · · · PK(yM |I∗1(1, 2))

· · · · · · · · · · · ·
P1(y1|I∗1(W,H)) P1(y2|I∗1(W,H)) · · · PK(yM |I∗1(W,H))
P1(y1|I∗2(1, 1)) P1(y2|I∗2(1, 1)) · · · PK(yM |I∗2(1, 1))

· · · · · · · · · · · ·
P1(y1|I∗2(W,H)) P1(y2|I∗2(W,H)) · · · PK(yM |I∗2(W,H))

· · · · · · · · · · · ·
P1(y1|I∗N (W,H)) P1(y2|I∗N (W,H)) · · · PK(yM |I∗N (W,H))


(4)

Normally, a learning algorithm trains the combiner on L∗ with
given labels of each pixel to combine the prediction of seg-
mentation models for the final prediction. It is noted that each
row of L∗ is the probability predictions by K segmentation
models on a pixel of each training image. Therefore L∗ will
be a matrix of N × W × H rows and M × K columns.
With a large training set and large image sizes, the size of
L∗ will be very large. For example, on Kvasir-SEG dataset
of 800 training images with image size of (640, 544), the
matrix L∗ will have 800 ∗ 640 ∗ 544 = 278528000 rows. The
large size of L∗ causes a challenge for conventional machine
learning algorithms to train the combiner on all data at once.
In this paper, we use a weight-based combining method on the
segmentation algorithms {h∗k}Kk=1, in which each segmentation
algorithm has its own weight in the combiner. The weights are
found via an optimization method. This approach is practical
to train the combiner on the whole L∗ at once.



Fig. 1. High-level overview of the proposed method.

Fig. 2. Example of prediction results on CAMUS dataset. Top: Original
image. Bottom is the predictions for Left ventricle, Myocardium and Left
atrium classes, made by UNet and LinkNet with backbones ResNet34 and
VGG16, respectively. The result has been multiplied by 255 for visualization.

B. Combining method

Let W = {wk,m} be the weight matrix, in which wk,m is the
weight associated with the segmentation model h∗k and class
ym(k = 1, ...,K,m = 1, ...,M). Since the class labels of the
training observations are known in advance, the weights W can
be obtained by exploring the relationship between the second-
layer probability predictions in L∗ and the class labels of the
training pixels. The weight matrix is found by minimizing
the difference between the prediction for pixel In(i, j) and its
true class label. From the second-layer probability prediction
matrix L∗, we extract the probabilities associated with class
ym to create matrix of size (N ×W ×H,K):

L∗m =



P1(ym|I∗1(1, 1)) P2(ym|I∗1(1, 1)) · · · PK(ym|I∗1(1, 1))
P1(ym|I∗1(1, 2)) P2(ym|I∗1(1, 2)) · · · PK(ym|I∗1(1, 2))

· · · · · · · · · · · ·
P1(ym|I∗1(W,H)) P2(ym|I∗1(W,H)) · · · PK(ym|I∗1(W,H))
P1(ym|I∗2(1, 1)) P2(ym|I∗2(1, 1)) · · · PK(ym|I∗2(1, 1))

· · · · · · · · · · · ·
P1(ym|I∗2(W,H)) P2(ym|I∗2(W,H)) · · · PK(ym|I∗2(W,H))

· · · · · · · · · · · ·
P1(ym|I∗N (W,H)) P2(ym|I∗N (W,H)) · · · PK(ym|I∗N (W,H))


(5)

We also define crisp label vector having size (N×W×H, 1)

associated with class ym as follows:

Ym =



I[Y1(1, 1) = ym]
· · ·

I[Y1(W,H) = ym]
· · ·

I[Yn(1, 1) = ym]
· · ·

I[Yn(W,H) = ym]


(6)

where I[.] is the indicator function. The weight vector Wm =
{wk,m}, k = 1, ...,K of size (K, 1) for class ym is then found
by solving a linear regression problem:

minWm ||L∗mWm − Ym||2 (7)

Wm can be imposed with different constraints, such as Non-
Negative Least Squares, i.e. wk,m ≥ 0 [38], [39], Bounded
Variable Least Squares, i.e. lk,m ≤ wk,m ≤ uk,m in which
lk,m and uk,m are lower and upper bounds [40], respectively,
and Bounded Variable with Constant Sum, i.e. −1 < wk,m <

1,
∑K

k=1 wk,m = 1 [41]. In this study we simply constrain the
weights between 0 and 1, i.e. 0 ≤ wk,m ≤ 1. By solving M
different linear regression problems, we will get the optimal
weight matrix W = {Wm}Mm=1.

Given an unsegmented image Itest, it is segmented firstly by
{hk}Kk=1 to get the prediction matrices {Pk(ym|Itest)}(k =
1, ...,K,m = 1, ...,M). Then the augmented data is created
for Itest by concatenating it with {Pk(ym|Itest)} as additional
image channels.

I∗test = Itest ∪ {Pk(ym|Itest)}, k = 1, ...,K,m = 1, ...,M
(8)

The trained segmentation models of the second layer {h∗k}Kk=1

are then applied on I∗test to get the prediction matrices
{Pk(ym|I∗test)}(k = 1, ...,K,m = 1, ...,M). The class
memberships of an image pixel I∗test(i, j) are found via linear



combination of the prediction probabilities and the associated
weights as:

CMm(Itest(i, j)) =
K∑

k=1

wk,mPk(ym|I∗test(i, j))

= Pm(I∗test(i, j))Wm (9)

in which Pm(I∗test(i, j)) and Wm are defined as follows :

Pm(I∗test(i, j)) = [P1(ym|I∗test(i, j)), ..., PK(ym|I∗test(i, j))]
(10)

Wm = [w1,m, w2,m, ..., wK,m]T (11)

Finally, the predicted class label is obtained by getting the
label corresponding to the maximum value of class member-
ships:

m̂ = argmaxm=1,...,MCMm{Itest(i, j)} (12)

Itest(i, j) ∈ ym̂ (13)

The combining and training procedure is described in Al-
gorithm 1. Algorithm 1 receives inputs including training set
D = {In,Yn}Nn=1 and segmentation algorithms {Kk}Kk=1.
Lines 2-7 create the probability matrices via T -fold cross-
validation procedure. Line 8 creates the augmented input data
for the second layer via equations 2. Lines 10-14 create the
second-level predictions for all training pixels L∗ via T -
fold cross-validation procedure. Lines 16-20 find the optimal
weight matrix via equation 7. Lines 21-24 train the segmen-
tation models on the original training data and the augmented
data respectively. Line 25 returns the trained models and the
optimal weight matrix.

The testing procedure inputs an image Itest, the trained
models and the optimal weight matrix (see Algorithm 2).
Lines 1-2 creates the probability matrix, while in line 3,
the augmented input to the second layer is created by using
equations 8. Lines 4-5 create second-level probability matrix
from augmented input. Line 6-7 use equations 9, 12 and 13 to
combine the second-level predictions of segmentation models
by using the optimal weight matrix W. Finally line 8 returns
the final segmentation result.

IV. EXPERIMENTAL STUDIES

In this experiment, we used UNet [9], LinkNet [42] and
Feature Pyramid Network (FPN) [43], which are three popular
segmentation architectures. The backbones used were VGG16
[15] and ResNet34 [16], pretrained on the ImageNet dataset
[17]. In total, there were 6 segmentation models used in the
experiments. All segmentation algorithms were run for 300
epochs. The number of folds in the cross-validation procedure
was set to 5. We compared the performance of the proposed
ensemble to the 6 segmentation algorithms and one layer
ensemble system with weights-based combiner, denoted by
OLE in the tables.

Algorithm 1 Two-layer ensemble for segmentation
Input: Training set D = {In,Yn}Nn=1, segmentation algorithms
{Kk}Kk=1

Output: Trained segmentation models {hk}Kk=1, {h∗
k}Kk=1 and op-

timal weights W
1: (Posterior probability generation)
2: {D1,D2, ...,DT } = T − partition(D)
3: for t← 1 to T do
4: for k ← 1 to K do
5: hk,t = Learn(Kk,D \ Dt)
6: for I in Dt do
7: {Pk(ym|I)}Mm=1 = Segment(hk,t, I)
8: D∗ = {I∗n,Yn}Nn=1,where I∗n is defined as equations 2
9: (2nd-level probability generation)

10: L∗ = ∅, {D∗
1,D∗

2, ...,D∗
T } = T − partition(D∗)

11: for t← 1 to T do
12: for k ← 1 to K do
13: h∗

k,t = Learn(Kk,D∗ \ D∗
t )

14: L∗ = L∗∪ Segment(h∗
k,t,D∗

t )
15: (Weight vector generation)
16: for m← 1 to M do
17: Get L∗

m by equation 5
18: Get Ym by equation 6
19: Find Wm = {wk,m}, k = 1, ...,K by solving equation 7
20: W = {Wm}Mm=1

21: (Base segmentation algorithms generation)
22: for k ← 1 to K do
23: hk = Learn(Kk,D)
24: h∗

k = Learn(Kk,D∗)
25: return {hk}Kk=1, {h∗

k}Kk=1, and W

Algorithm 2 Test process for two-layer ensemble for
segmentation
Input: Test image Itest, trained segmentation models
{hk}Kk=1, {h∗

k}Kk=1 and the weight W
Output: Prediction for Itest

1: for k ← 1 to K do
2: {Pk(ym|Itest)}Mm=1 = Segment(hk, Itest)
3: I∗test created from Itest and {Pk(ym|Itest)}Mm=1 using 8
4: for k ← 1 to K do
5: P∗

k(ym|Itest) = P∗
k(ym|Itest) ∪ Segment(h∗

k, I∗test);m =
1, ...,M

6: Use 9 to combine the predictions {P∗
k(ym|Itest)};m =

1, ...,M ; k = 1, ...,K
7: Use 12 and 13 to get the final prediction
8: return The final prediction.

A. Performance metrics

The performance of our proposed method and the related
benchmarks were evaluated using two popular segmentation
metrics. Suppose there are M classes, and there are N images
each having size (W,H). Let P and G be the prediction of
a segmentation model on these images and the corresponding
ground truth:

P = [p1, p2, ..., pM ],G = [g1, g2, ..., gM ] (14)

where pm is a vector with size (N ×W × H, 1) associated
with class label ym in which its element is the prediction for
each pixel in the form of crisp label i.e. belonging to {0, 1}.
Likewise, gm is a vector with size (N ×W ×H, 1) associated
with class label ym in which each element which is the ground



truth of each pixel in the form of crisp label i.e. belonging to
{0, 1}. Dice coefficient for the mth class is then defined as
follows [44]:

DCm =
2pT

mgm

||pm||2 + ||gm||2
(15)

In the context of medical image analysis, local discrepancies
between contours are often of interest as well. For example,
radiation treatment planning applications require quantified
errors in geometric displacement to ensure target coverage,
normal tissue avoidance, and similar analyses [45]. We there-
fore reported one measure based on distance between geomet-
rical contours. Let GTm and PRm be the set of coordinate
vectors of the ground truth contour and prediction contour with
respect to class ym respectively. The Hausdorff distance HD
associated with class ym is calculated as follows [46] :

HDm = max(d(GTm, PRm), d(PRm, GTm)) (16)

where d(A,B) is the directed Hausdorff distance:

d(A,B) =
1

|A|
∑
a∈A

min
b∈B
||a− b|| (17)

It is noted that the low Hausdorff distance or high Dice
coefficient shows the good segmentation result.

B. Kvasir-SEG dataset

The first dataset used in this paper is Kvasir-SEG [47],
which consists of 1000 gastrointestinal polyp images, 200 of
which is used for testing. The task is to segment the polyps
in the images. Comparative evaluation of the segmentation
models and the proposed method in Dice coefficient and
Hausdorff distance is shown in Table I. The methods having
VGG16 as backbone perform poorly, with Dice measure at just
0.0. In contrast, UNet-ResNet34, LinkNet-ResNet34 and FPN-
ResNet34 achieve a Dice coefficient at 0.878, 0.879 and 0.887
respectively, while OLE achieves 0.888, which is roughly the
same as FPN-ResNet34. The proposed method achieves a
score of 0.892, which is an increase of 0.4% compared to
the second best (OLE). For the Hausdorff distance, LinkNet-
VGG16 has a very high score at around 271.7, while UNet-
VGG16 achieves a score of 10.402 and FPN-VGG16 has
a score of 0.0 (detect nothing). On the other hand, among
the methods using ResNet34 backbone, UNet-ResNet34 has
the highest Hausdorff score at 55.591, followed by LinkNet-
ResNet34 at 51.241, FPN-ResNet34 at 50.321 and OLE at
49.38 . The proposed method achieves a Hausdorff distance
of 48.831, which is better than the OLE by a difference of
0.55.

Figure 3 shows the result of six segmentation models, OLE,
the proposed ensemble, the mask of test image and the original
test image. The results made by methods using backbone
VGG16 are not shown because they could not predict anything.
All the segmentation algorithms segmented correctly the left
part of the polyp. However, for the right part, UNet-ResNet34
and FPN-ResNet34 obtained a big hole in the lower and upper
part respectively, while LinkNet-ResNet34 and OLE failed

TABLE I
KVASIR-SEG RESULT FOR DICE AND HAUSDORFF MEASURE

Segmentation algorithm Dice Hausdorff

UNet-VGG16 0 10.402
LinkNet-VGG16 0.001 271.674
FPN-VGG16 0 0
UNet-ResNet34 0.878 55.591
LinkNet-ResNet34 0.879 51.241
FPN-ResNet34 0.887 50.321
OLE 0.888 49.38
Proposed ensemble 0.892 48.831

Fig. 3. Example result for Kvasir-SEG dataset. From left to right, top to
bottom: UNet-ResNet34, LinkNet-ResNet34, FPN-ResNet34, OLE, proposed
method, ground truth mask, and test image. The results made by segmentation
algorithms using backbone VGG16 are not shown because they were not able
to detect the polyps.

to segment the right part. The proposed ensemble correctly
segmented both the left and the right part of the polyp, with the
exception of a relatively small hole in the middle. The reason
of better performance of the proposed ensemble is that it takes
into consideration information not only from the input image
but also from the predictions in generating the segmentation
models.

The proposed ensemble has higher training time than the
benchmark algorithms. Compared with OLE which took about
2 days for training on this dataset, our two-layer ensemble
trained for 4 days. In our training process, we solved Equation
7 to find the combining weights. Even though the optimisation
problem in Equation 7 works on L∗m matrix with 278528000
rows, it took only 5 minutes to find the weights by using
sklearn library1, which was the same as with OLE. Meanwhile,
the testing time of proposed ensemble for 200 test images was
11 seconds, while OLE took 7 seconds.

C. CAMUS dataset

The second dataset used in this paper was the Cardiac Ac-
quisitions for Multi-structure Ultrasound Segmentation (CA-
MUS) dataset [48], which is a dataset provided by a com-
petition for accurate segmentation of 2D echocardiographic

1https://scikit-learn.org/



Fig. 4. Example result for CAMUS dataset. From left to right, top to bottom:
UNet-VGG16, LinkNet-VGG16, FPN-VGG16, UNet-ResNet34, LinkNet-
ResNet34, FPN-ResNet34, OLE, proposed method, and test image (mask
image not available).

images. The dataset consists of cardiographic images and
segmentation of 500 patients, acquired from clinical exams
at the University Hospital of St Etienne, recorded at two
cardiographic positions namely End Diastolic (ED) and End
Systolic (ES). Three expert cardiologists were involved in
the segmentation of the images. There are three classes: Left
ventricle, Myocardium and Left atrium. The data of 50 patients
are withheld for testing in which the submission link for
evaluation is available here2.

Table II and III shows the result of the segmentation models
and the proposed ensemble. We included the author’s best
results for each measure on this dataset [48]. It can be seen
that with respect to the Dice measure, the proposed method
achieved best result on all cases. For the ED case, the proposed
method achieved best result on the Myocardium and Left
atrium class at 0.96 and 0.907, compared to the second best
result at 0.959 and 0.9 of OLE respectively. On the Left
ventricle class, the proposed method achieved the same result
as the second best at 0.946. For the ES case, the proposed
ensemble achieved roughly the same result as OLE on Left
ventricle and Myocardium class at 0.93 and 0.955 respectively.
However, on Left atrium class, the proposed method achieved
a score of 0.934, which is better than the second best (OLE)
at 0.929. The segmentation algorithms with VGG16 backbone
performed very poorly on all cases, achieving only from 0.2
(LinkNet-VGG16 on Myocardium) to 0.307 (UNet-VGG16 on
Left ventricle).

With the Hausdorff distance, the proposed ensemble beats
the segmentation models in all classes for the ES case. It
achieved 4.4 on the Left ventricle class while the second best
among the segmentation models (LinkNet-ResNet34) achieved
only 4.7 and OLE achieved 4.6. The same observation is on
the Myocardium and Left atrium class. However, for the ED
case, the proposed ensemble performed worse than LinkNet-
VGG16, such as in the Myocardium class where the proposed
method achieved a score of 5 while the LinkNet-VGG16
segmentation algorithms achieved 3.8, which is better by a

2https://www.creatis.insa-lyon.fr/Challenge/camus/scientificInterests.html

TABLE II
RESULT FOR CAMUS DATASET, DICE MEASURE

End Diastolic End Systolic

Left ventricle Myocardium Left atrium Left ventricle Myocardium Left atrium

Author’s best 0.936 0.956 0.889 0.913 0.946 0.918
UNet-VGG16 0.307 0.3 0.244 0.295 0.305 0.244
UNet-ResNet34 0.946 0.958 0.9 0.925 0.952 0.927
LinkNet-VGG16 0.203 0.2 0.197 0.106 0.113 0.119
LinkNet-ResNet34 0.942 0.958 0.897 0.928 0.954 0.922
FPN-VGG16 0.354 0.356 0.279 0.317 0.317 0.241
FPN-ResNet34 0.945 0.958 0.899 0.927 0.953 0.926
OLE 0.946 0.959 0.9 0.929 0.955 0.929
Proposed ensemble 0.946 0.96 0.907 0.93 0.955 0.934

TABLE III
RESULT FOR CAMUS DATASET, HAUSDORFF MEASURE

End Diastolic End Systolic

Left ventricle Myocardium Left atrium Left ventricle Myocardium Left atrium

Author best 5.3 5.2 5.7 5.3 5.7 5.3
UNet-VGG16 15.8 25.3 16.9 6.6 14.3 8.6
UNet-ResNet34 5.1 5.2 5 4.9 5.3 5.1
LinkNet-VGG16 3.1 3.8 4.5 8.1 8.9 9.2
LinkNet-ResNet34 5 5.2 5.5 4.7 5.1 5.5
FPN-VGG16 3.8 4.9 7.1 4.8 6.8 8
FPN-ResNet34 4.8 5.3 5.5 4.8 5.4 5.2
OLE 4.7 5.1 5.3 4.6 5 4.9
Proposed ensemble 4.7 5 4.8 4.4 4.8 4.7

score of 1.2. This can be explained from the observation in
[45] in which it is possible for the Hausdorff distance to
miscalculate when the curvature has a high degree of winding
and low similarity.

Figure 4 shows an example in which the proposed ensemble
improved on the result of the segmentation models. While the
predictions by the methods using VGG16 backbone (first row)
contain a number of deformations compared to the test image,
the predictions on the second row using ResNet34 backbone
give better results. It can be seen that LinkNet-ResNet34 and
FPN-ResNet34 failed to predict a large region in the bottom
right of the Left atrium (second row, second and third column).
On the other hand, while the prediction by UNet-ResNet34 is
better than that of LinkNet-ResNet34 and FPN-ResNet34, it
nevertheless contains a sharp inward region which was not
correctly segmented. The proposed ensemble has improved
upon the predictions by the constituent segmentation models as
its prediction overall segment the bottom right part correctly.

V. CONCLUSION

In this paper, we presented a two-layer ensemble of deep
learning models for segmentation of medical images. The key
idea is to use the probability prediction by the constituent
models in the first layer as augmented data for the second
layer. The output probability prediction by the the second
layer is combined by using a weight-based scheme which
is not only a effective combiner but also computational ef-
ficient. The weights are found by solving a linear regression
problem associated with each class label. Our results on two
benchmark datasets show that the proposed ensemble method
is able to combine the strengths and mitigate the drawbacks of
the constituent segmentation methods, resulting in an overall
improvement.
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