
SWINTON, P.A. and MURPHY, A. 2022. Comparative effect size distributions in strength and conditioning and 
implications for future research: a meta-analysis. SportRxiv [online]. Available from: 

https://doi.org/10.51224/srxiv.202 

 
 
 
 

This document was downloaded from 
https://openair.rgu.ac.uk 

Comparative effect size distributions in strength 
and conditioning and implications for future 

research: a meta-analysis. 

SWINTON, P.A. and MURPHY, A.  

2022 

https://doi.org/10.51224/srxiv.202


Doi: | SportR𝜒iv Preprint version 1 
 

Comparative effect size distributions in strength and conditioning 

and implications for future research: A meta-analysis.  

Review Article  

Running head: S&C comparative effect sizes 

 

Paul Alan Swinton1, Andrew Murphy1,2 

Doi:  

SportR𝜒iv hosted preprint version 1 

29/09/2022 

PREPRINT - NOT PEER REVIEWED 

 

1 School of Health Sciences, Robert Gordon University, Aberdeen, UK 

2 Greater Western Sydney Giants, Sydney, Australia 

 

Corresponding Author 

Dr. Paul Swinton 

School of Health Sciences, Robert Gordon University 

Garthdee Road 

Aberdeen, UK, 

AB10 7QG 

p.swinton@rgu.ac.uk, +44 (0) 1224 262 3361 

 

Please cite this paper as: Swinton, PA. Murphy, A. Comparative effect size distributions in 

strength and conditioning and implications for future research: A meta-analysis. Pre-print 

available from SportRχiv. https://doi.org 

 

 

 

  

https://doi.org/10.31236/osf.io/y7sk6
https://doi.org/10.31236/osf.io/y7sk6
mailto:p.swinton@rgu.ac.uk


Doi: | SportR𝜒iv Preprint version 1 
 

Abstract 

Background Controlled experimental designs are frequently used in strength and conditioning 

(S&C) to determine which interventions are most effective. The purpose of this large meta-

analysis was to quantify the distribution of comparative effect sizes in S&C to determine likely 

magnitudes and inform future research regarding sample sizes and inference methods.   

Methods Baseline and follow-up data were extracted from a large database of studies comparing 

at least two active S&C interventions. Pairwise comparative standardised mean difference effect 

sizes were calculated and categorised according to the outcome domain measured. Hierarchical 

Bayesian meta-analyses and meta-regressions were used to model overall comparative effect size 

distributions and correlations, respectively. The direction of comparative effect sizes within a 

study were assigned arbitrarily (e.g. A vs. B, or B vs. A), with bootstrapping performed to ensure 

effect size distributions were symmetric and centred on zero. The middle 25, 50, and 75% of 

distributions were used to define small, medium, and large thresholds, respectively. 

Results A total of 3874 pairwise effect sizes were obtained from 417 studies comprising 958 

active interventions. Threshold values were estimated as: small = 0.14 [95%CrI: 0.12 to 0.15]; 

medium: = 0.29 [95%CrI: 0.28 to 0.30]; and large = 0.51 [95%CrI: 0.50 to 0.53]. No differences 

were identified in the threshold values across different outcome domains. Correlations ranged 

widely (0.06 ≤ r ≤0.36), but were larger when outcomes within the same outcome domain were 

considered.  

Conclusions The finding that comparative effect sizes in S&C are typically below 0.30 and can 

be moderately correlated has important implications for future research. Sample sizes should be 

substantively increased to appropriately power controlled trials with pre-post intervention data. 

Alpha adjustment approaches used to control for multiple testing should account for 

correlations between outcomes and not assume independence.   
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1.0 Introduction 

 

Strength and conditioning (S&C) is a well-established discipline within sport and exercise science 

that seeks to determine which interventions are most effective, and what manipulations can be 

made to training regimes to obtain additional improvements. In our recent large meta-analysis 

quantifying change following S&C interventions we found that the majority create substantive 

improvements across a range of outcomes (1). There is, however, less understanding of the 

expected differences when comparing two interventions. Interventions that have been frequently 

compared in S&C include variation to the training dose (e.g. single vs multiple sets (2), low 

volume vs high volume (3)), periodisation strategy (e.g. periodised vs non-periodised (4), linear 

vs undulating (5)) and training stimulus applied (e.g. low load vs high load (6), plyometric vs 

resistance training (7)).  

 

The most common approach used by researchers to evaluate potential differences in S&C 

interventions is to perform controlled trials where the control group comprises a reference 

training intervention. Inferences regarding the population average treatment effect are made 

based on the observed differences between the sample groups. Analyses are typically conducted 

within a frequentist framework where uncertainty in the inference is accounted for with long-run 

error control by conducting null-hypothesis significance tests (NHSTs) and setting the Type 1 

error rate (α) to 0.05 (8). Typically NHSTs assume that the population average treatment effect is 

zero (more informatively referred to as the nil-hypothesis (9)); however, the null can be set to 

any value including a predefined smallest worthwhile difference (10). Where NHST represents 

the plausibility of a specific parameter value, it is generally recommended that controlled trials 

also engage in estimation that provides inferences regarding a range of plausible parameter values 

in the population (10). In S&C, studies frequently report the individual group standardised mean 

difference. This information describes how individuals are expected to move through the 
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population after performing the specific intervention (11). These non-comparative effect sizes, 

however, do not describe expected differences in change between individuals performing one 

intervention compared to another. These potential differences are referred to as average 

treatment effects with controlled studies using samples to make inferences regarding the 

population values (12). Average treatment effects based on changes between two effective 

interventions such as those commonly used in S&C (1), may be more likely to be centred on, or 

close to zero. Additionally, comparative effect sizes provide researchers with the required 

information to perform a priori statistical power calculations to determine sample size for future 

controlled studies (13). Given the observation that relatively modest changes in the population 

average treatment effect can lead to substantive differences in sample size required to adequately 

power studies (14), it is important for S&C research to identify likely comparative effect sizes 

given the types of comparisons that are generally made and if this differs across outcomes 

measured.  

 

A further challenge with analyses comparing S&C interventions includes the issue of multiple 

testing and the potential increased Type 1 error rate claiming differences in average treatment 

effects where none exists. Studies comparing S&C interventions tend to analyse multiple 

outcomes, often at multiple time points, even when outcomes selected measure the same 

construct (e.g. multiple outcomes each assessing maximum strength) (1). A common view is that 

conducting multiple statistical tests with related outcomes requires adequate lowering of the 

significance threshold (alpha adjustment) to control Type I errors (15). Whilst a range of alpha 

adjustment approaches exist, many disciplines including S&C tend to select Bonferroni 

corrections (16) that assume outcomes are independent (17) and can be considered overly 

conservative in contexts of small samples and relatively low effect sizes (18). Previous research 

has shown that outcomes frequently measured in S&C including those measuring maximum 
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strength, jumping ability and sprint performance can be highly correlated (19). In the context of 

controlled trials, these relationships may result in correlations among comparative effects such 

that the superiority of an intervention identified in one outcome is related to others measuring 

the same and potentially different constructs. Where such correlations exist, alpha adjustment 

approaches that account for these relationships can better balance trade-offs between Type 1 

error rates and sample size required for adequate statistical power  (20). At present, it is unknown 

whether comparative effects are correlated in S&C. The purpose of this study, therefore, was to 

investigate the distribution and potential correlations between comparative effects in S&C 

controlled trials across typical outcomes and outcome domains. To facilitate description and 

communication of expected values, thresholds quantifying small, medium and large comparative 

effects were estimated.  
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2.0 Methods 

 

2.1 Overview of meta-analysis 

The meta-analysis was conducted on a database of S&C training studies obtained from a search 

of the literature comprising studies from 1962 to 2018. The database included information 

describing outcome variables along with baseline and follow-up means and standard deviations 

and has been described elsewhere (1). For the current meta-analysis, outcomes categorised as: 1) 

maximum strength; 2) power; 3) jump performance; 4) sprint performance; and 5) agility 

performance were selected. Sub-analyses were also performed on the most frequently measured 

outcomes to enable calculation of mean difference effect sizes on the original measurement scale 

and included: 1) 1RM bench press; 2) 1RM squat; 3) unloaded vertical jump height; 4) 10 m 

sprint time; 5) 20 m sprint time; 6) 30 m sprint time; 7) 40 yard sprint time; and 8) 40 m sprint 

time. Comparative effect sizes were calculated for studies comprising at least two active 

interventions (e.g. comparisons did not include no-exercise control or habitual sporting activity 

only groups). No attempt was made to rank or create a hierarchy for the different interventions 

or comparisons, but instead, model effect size distributions as they exist across intervention 

comparisons generally investigated in the S&C literature. The “direction” of the comparative 

effect sizes was considered random such that across the large database and with additional 

bootstrapping procedures the effect size distribution would be centred on zero reflecting 

“sceptical” priors from a Bayesian perspective (21), and two-tailed hypothesis testing from a 

frequentist perspective. A schematic illustrating the differences between a comparative effect size 

distribution where the mean is centred on zero, and a non-comparative effect size distribution 

where most interventions are expected to generate improvements is presented in Figure 1. 

Previously, the 0.25-, 0.50- and 0.75-quantiles have been used to qualitatively label non-

comparative effect sizes as “small”, “medium” and “large” (1,22,23). To apply this approach with 

symmetric comparative effect sizes, the small, medium and large thresholds were defined by the 

https://doi.org/10.31236/osf.io/y7sk6


Doi: | SportR𝜒iv Preprint version 1 
 

middle 25% (0.375- to 0.625-quantile), the middle 50% (0.25- to 0.75-quantile) and the middle 

75% distributions (0.125- to 0.875-quantile), respectively (Figure 1). Following investigation of 

comparative effect sizes across outcome domains using both standardised and non-standardised 

statistics, associations between effect sizes were quantified by estimating pairwise correlations.  

 

Figure 1: Schematic illustrating differences in a non-comparative effect size distribution (left) and 
a comparative effect size distribution centred on zero (right) with small, medium and large 
thresholds defined.  

Q: Quantile; SMD: Standardised mean difference. Most of the non-comparative distribution (left) exceeds 
zero and regions (small/medium/large) are defined from the left. The comparative distribution (right) is 
centred on zero with small effects closest to zero in either direction, with medium and large effects located 
further from the centre.   

 

2.2 Inclusion criteria and data 

Inclusion and exclusion criteria for the current meta-analysis were set to include as many relevant 

S&C training modes and dependent variables as possible. Inclusion criteria comprised: 1) any 

training-based study ≥ 4 weeks; 2) healthy trained or untrained participants with a mean age 

between 14 and 60; 3) training group with a minimum of 4 participants; 4) pre- and post-training 

means and standard deviations; 5) sufficient information provided to appropriately describe the 
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training method; and 6) inclusion of at least two active S&C interventions. Studies comprising 

training that were predominantly aerobic-based or rehabilitation focused were excluded. Data 

regarding the study (authors, year, total number of active intervention groups); participant 

characteristics (final study n, sex, training status, and age); outcome domain (maximum strength, 

power, jump performance, and sprinting performance); and pre- and post-training means and 

standard deviations were obtained. The definitions used to categorise outcome domains 

included: 1) maximum strength: a measure of maximum force production where time was not 

limited (e.g. 1-6 repetition maximum, isometric mid-thigh pull, peak torque); 2) power: a direct 

measurement of power output measured in Watts (absolute and normalised relative to body 

mass); 3) jump performance: measure of jump height or distance; 4) sprint performance: a 

measurement of the time to complete a specified linear distance or the velocity achieved; and 5) 

agility performance: a measurement of the time to complete a change of direction or reactive 

task. Training status was categorised by Rhea et al. (24) based on S&C training experience and 

categorised as untrained (<1 year), recreationally trained (1-5 years), and highly trained (>5 

years). Sex of the groups were categorised as male-only, female-only or mixed sex.   

 

2.3 Statistical analysis 

Effect sizes and their sampling variance were calculated using group mean and standard 

deviation values reported at baseline and at any subsequent time-point. Pairwise comparative 

standardised mean differences (SMD𝐴𝐵pre) of an intervention “A” and “B”, and their sampling 

variances 𝜎2 were calculated using the following formulae (25): 

SMD𝐴𝐵pre = (1 −
3

4(𝑛𝐴 + 𝑛𝐵 − 2) − 1
) (

(�̅�𝐴𝑃𝑜𝑠𝑡 − �̅�𝐴𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒) − (�̅�𝐵𝑃𝑜𝑠𝑡 − �̅�𝐵𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝑆𝑑𝐴𝐵𝑃𝑟𝑒

) 
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where 𝑛𝐴 and 𝑛𝐵 are the number of participants in intervention A and B, the first term 

comprises a small-study bias term 𝑐(𝑛𝐴 + 𝑛𝐵 − 2), where 𝑐(𝑛𝐴 + 𝑛𝐵 − 2) = 1 −
3

4(𝑛𝐴+𝑛𝐵−2)−1
, and 𝑆𝑑𝐴𝐵𝑃𝑟𝑒 is 

the baseline pooled standard deviation where 𝑆𝑑𝐴𝐵𝑃𝑟𝑒 = √
(𝑛𝐴−1)𝑆𝑑𝐴𝑃𝑟𝑒+(𝑛𝐵−1)𝑆𝑑𝐵𝑃𝑟𝑒

𝑛𝐴+𝑛𝐵−2
. 

𝜎2 (SMD𝐴𝐵pre
) = 2𝑐(𝑛𝐴 + 𝑛𝐵 − 2)2(1 − 𝜌) (

𝑛𝐴 + 𝑛𝐵

𝑛𝐴𝑛𝐵
) (

𝑛𝐴 + 𝑛𝐵 − 2

𝑛𝐴𝑛𝐵
) (1 +

SMD𝐴𝐵
2

pre

2(1 − 𝜌) (
𝑛𝐴 + 𝑛𝐵

𝑛𝐴𝑛𝐵
)

) −  SMD𝐴𝐵
2

pre
     

where 𝜌 is the correlation between repeated measures. For sub-analyses conducted on the most 

common outcomes, mean difference comparative effect sizes were calculated on the original 

measurement scale and therefore were not standardised by dividing by the baseline pooled 

standard deviation.  

 

The empirically obtained effect sizes were modelled using a three-level Bayesian mixed effects 

meta-analytic model. The three levels included the between study (level 3), the outcome (level 2) 

and the within study sampling variance (level 1). The application of a meta-analytic model 

enabled sharing of information across studies to better estimate model parameters and accounted 

for dependencies within the data due to most studies providing more than one data point (based 

on reporting multiple outcomes and/or multiple time points following baseline) and studies 

frequently including more than two groups such that multiple pairwise group calculations were 

made for each outcome. To account for uncertainty in 𝜎2 due to non-reporting of correlations 

between baseline and follow-ups, the values were allowed to vary and were estimated by 

including an informative Gaussian prior approximating correlation values centred on 0.7 and 

ranging from 0.5 to 0.9 (26). The parameters obtained from the meta-analysis models were then 

used to calculate small, medium and large threshold values for each of the outcome domains. 

This was achieved through bootstrapping and generating posterior predictions. Each analysis 

included all available studies and data points with 100 bootstrap samples comprising a +1/-1 
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random allocation for their pairwise effect sizes. The same coefficient was applied to all effect 

sizes in the study to maintain any associations. For each set of posterior predictions across the 

bootstrap samples, the 0.625-quantile/|0.375|-quantile, 0.75-quantile/|0.25|-quantile, and 

0.875-quantile/|0.125|-quantile values were obtained to quantify small, medium, and large 

thresholds, respectively. Across the different categories, the median value and spread were used 

to describe estimates and uncertainty through credible intervals (CrIs). 

Correlations were calculated on standardised effect sizes and non-standardised effect sizes for 

the most common outcomes. To account for dependencies in the data due to single studies 

providing multiple data points and differences in the precision of estimates, correlations were 

calculated through three-level weighted meta-regressions with study random effects accounting 

for systematic differences across studies and sampling errors used to calculate weights. Values 

were transformed into z-scores so that slope coefficients from meta-regressions were equivalent 

with correlations ranging from -1 to 1. One-hundred bootstrap samples were applied and 

uncertainty quantified through summary of the posterior distributions. Default weakly 

informative Student-t and half Student-t priors with 3 degrees of freedom were used for all 

intercept and variance parameters, respectively (27). Outlier values were identified by adjusting 

the empirical distribution by a Tukey 𝑔-and-ℎ distribution and obtaining the 0.0035- and 0.9965-

quantiles, with values beyond these points removed prior to further analysis (28). Meta-analyses 

were performed using the R wrapper package brms interfaced with Stan to perform sampling 

(29). Convergence of parameter estimates were obtained for all models with Gelman-Rubin R-

hat values below 1.1 (30). 

 

. 
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3.0 Results  

3.1 Descriptions of data 

Data to investigate comparative effect sizes were obtained from 417 studies (Supplementary file 

1) that comprised two or more active interventions (318 studies included two groups [76%]; 81 

studies included three groups [19%]; 15 studies [4%] included four groups, 2 studies included 

five groups [0.5%]; and 1 study included 9 groups [0.25%]). Across the 417 studies, 2119 

different outcomes (maximum strength: 776 [37%]; jump performance: 453 [21%]; sprint 

performance: 419 [20%]; power: 355 [17%]; agility performance 116 [5%]) were investigated, 

which totalled 2430 when considering repetition across multiple time points. A total of 3874 

standardised mean difference pairwise effect sizes were extracted. Sub-analyses conducted with 

the most common outcomes on the initial measurement scale included 1373 mean difference 

effect sizes (vertical jump height: 527 [40%]; 1RM bench press: 312 [23%]; 1RM squat: 224 

[17%]; 20 m sprint time: 106 [8%]; 10 m sprint time: 102 [8%]; 30 m sprint time: 63 [4%]; 40 m 

sprint time: 20 [2%]; 40 yard sprint time: 19 [1%]).  

Across the 417 studies, the median group size was equal to 10 (IQR: 9-13) and the median 

intervention duration was 8 weeks (IQR: 6-10). Sixty percent of groups were categorised as male-

only, 29% were categorised as mixed sex, and 11% were categorised as female-only. Fifty-nine 

percent of groups were categorised as untrained, 36% were categorised as recreationally trained, 

and 5% were categorised as highly trained. 

 

3.2 Standardised mean difference comparative effect sizes 

A total of 32 outliers were removed from the analysis such that comparative standardised mean 

difference effects sizes ranged from ±2.7. Application of the meta-analysis model and 

bootstrapping across all outcomes identified the thresholds as small: SMD𝐴𝐵pre= 0.14 [95%CrI: 
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0.12 to 0.15]; medium: SMD𝐴𝐵pre
= 0.29 [95%CrI: 0.28 to 0.30]; and large: SMD𝐴𝐵pre

= 0.51 [95%CrI: 

0.50 to 0.53]. No substantive differences in any of the threshold values were identified when the 

analysis was conducted across the different outcome domains (Figure 2).  

 

Figure 2: Empirical distribution and modelled comparative effect size thresholds across outcome 
domains 

 
Black curve is a density plot of the directly calculated empirical comparative effect size values across all 
outcomes. Small, mid, and large thresholds represent the 0.375-/0.625-, 0.25-/0.75-, and 0.125-/0.875-
quantiles of predicted draws. Black diamonds represent threshold values based on all outcomes. Red point 
ranges illustrate the outcome specific estimates and their uncertainty through the median value (circle) 
and 95% credible interval. 

 

Distributions and thresholds were mainly similar across comparisons with groups of the same 

training status (untrained, recreationally trained or highly trained; Figure 3) or sex (male-only, 

female-only or mixed sex; Figure 4). However, potential differences were observed at large 

thresholds with lower effect sizes for comparisons with recreationally trained groups and greater 

effect sizes for female-only groups. 
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Figure 3: Empirical distributions and modelled effect size thresholds across training status 
groups 

 

Curves are density plots from directly calculated empirical comparative effect size values across all 
outcomes for comparisons within untrained, recreationally trained, and highly trained groups. Small, 
medium, and large thresholds represent the 0.375-/0.625-, 0.25-/0.75-, and 0.125-/0.875-quantiles of 
predicted draws. Black diamonds represent threshold values based on all participants. Red point ranges 
illustrate the group specific estimates and their uncertainty through the median value (circle) and 95% 
credible interval. 

 

Figure 4: Empirical distributions and modelled effect size thresholds across groups based on sex  

 
Curves are density plots from directly calculated empirical comparative effect size values across all 
outcomes for comparisons within male-only, female-only, and mixed sex groups. Small, medium, and 
large thresholds represent the 0.375-/0.625-, 0.25-/0.75-, and 0.125-/0.875-quantiles of predicted draws. 
Black diamonds represent threshold values based on all participants. Red point ranges illustrate the group 
specific estimates and their uncertainty through the median value (circle) and 95% credible interval. 
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3.2 Mean difference comparative effect sizes 

Small, medium, and large thresholds for mean difference comparative effect sizes for commonly 

measured outcomes are presented in table 1. Substantive overlap was identified in the 

distributions of the 1RM bench press and 1RM squat, with the greatest divergence found at the 

large threshold with greater effect sizes obtained with the 1RM squat. Consistent increases in 

medium and large thresholds were identified across sprint outcomes with greater distance.  

 

Table 1: Meta-analysis results with small, medium and large thresholds across comparative mean 
difference effect sizes expressed in the measurement scale of common outcomes.   

Outcome Data Small 
[95% CrI] 

Medium 
[95% CrI] 

Large 
[95% CrI] 

1RM bench press (kg) 
307 effect sizes 

87 studies  
1.8 

[1.1 to 2.6] 
4.0 

[3.2 to 4.7] 
7.1 

[6.3 to 7.9] 
     

1RM squat (kg) 
214 effect sizes 

86 studies 
2.7 

[1.6 to 3.8] 
5.8  

[4.7 to 6.9] 
10.3 

[9.1 to 11.4] 
     

Vertical jump (cm) 
521 effect sizes 

220 studies 

0.7 
[0.6 to 0.8] 

1.5 
[1.3 to 1.6] 

2.7 
[2.5 to 2.9] 

     

10 m sprint (s) 
99 effect sizes  

59 studies 
0.02 

[0.01 to 0.02] 
0.03 

[0.03 to 0.04] 
0.06 

[0.05 to 0.07] 
     

20 m sprint (s) 
100 effect sizes  

62 studies 
0.02 

[0.01 to 0.02] 
0.04 

[0.03 to 0.05] 
0.07 

[0.06 to 0.08] 
     

30 m sprint (s) 
60 effect sizes  

35 studies 
0.03 

[0.01 to 0.04] 
0.06 

[0.04 to 0.08] 
0.12 

[0.09 to 0.14 
     

40 yard sprint (s) 
16 effect sizes  

10 studies 
0.03 

[0.01 to 0.06] 
0.07 

[0.04 to 0.10] 
0.13 

[0.09 to 0.17] 
     

40 m sprint (s) 
18 effect sizes  

14 studies 
0.04 

[0.00 to 0.08] 
0.09 

[0.06 to 0.13] 
0.16 

[0.12 to 0.21] 
1RM: One repetition maximum; CrI: Credible interval. Small threshold is the |0.375|-/0.625-quantile; 
Medium threshold is the |0.25|-/0.75-quantile; Large threshold is the |0.125|-/0.875-quantile. 
 
 
 
3.3 Correlations  

Median estimates of correlations between standardised mean difference effect sizes ranged from 

0.06 to 0.36, with most values between 0.15 and 0.30 (Supplementary file 2). Correlations were 

higher when they were within an outcome domain (e.g. between strength outcomes) compared 

with across outcome domains (e.g. between strength and sprint outcomes). Correlations were 
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strongest when they were estimated for non-standardised effect sizes in similar common 

outcomes (e.g. 1RM bench press with 1RM squat, vertical jump tests, and time to complete, 10, 

20 and 30 m sprints) where median estimates ranged from 0.51 to 0.70 (Supplementary file 3).   
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4.0 Discussion  

The primary aim of this study and incorporated meta-analyses was to investigate comparative 

effect sizes distributions across S&C studies comparing active interventions. The analyses 

identified that comparative standardised mean difference effect sizes in S&C are generally low in 

magnitude with the middle 50% of the distribution ranging between approximately ±0.3. 

Analyses also found that the majority of comparative effect distributions are likely to be similar 

across outcome domains and different participants groups in terms of training status and sex. 

Within frequentist frameworks, these finding have implications for powering of future studies 

and the need for substantively larger sample sizes than have been used previously when 

conducting standard pre-post parallel group controlled designs. The secondary aim was to 

investigate correlations between comparative effects such that any superiority in one intervention 

may be reflected across multiple outcomes. Correlations ranged widely in magnitude, but were 

positive and in general stronger among outcomes within the same outcome domain (e.g. between 

strength measures) and highest among similar outcomes when expressed in absolute magnitude 

(e.g. between 1RM bench press and 1RM squat). These findings indicate that where there are 

differences among interventions in terms of average treatment effect, these differences are likely 

to be observable across multiple outcomes, influencing approaches researchers should adopt 

when choosing to control for multiple tests to ensure statistical power is not unduly lowered.  

 

Controlled studies in S&C have explored an extensive space of possible training approaches. 

Frequently, comparisons have been made with popular training interventions with relatively 

minor adjustments, for example, the use of variable resistance (e.g. elastic bands or chains) in 

comparison to traditional resistance training (31), or alterations to sequence of exercises (e.g. 

complex vs contrast training) (32). These relatively minor adjustments reflect a desire to try and 

optimise training responses, however, it may therefore not be surprising that the bulk of 
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comparative effect sizes in S&C should be expected to generate values that are low in magnitude 

and close to zero. Describing the middle 25, 50, and 75% of the modelled distribution as small, 

medium and large, estimates of approximately 0.15, 0.30, and 0.50 were obtained, respectively. A 

priori sample size calculations employing a frequentist framework and a simple statistical analysis 

(two-tailed independent t-test with change scores) to test the null hypothesis of zero population 

average treatment effect, with α=0.05, and power (1-β) = 0.80, returns group sizes of 699, 176, 

and 64 for the different threshold values (14). Similar sample size calculations are achieved when 

considering the use of a repeated measures ANOVA (between-within design) and the interaction 

effect to test for differences in average treatment effect, as is common in S&C research. Here, 

the pattern of means, standard deviations and correlation between pre- and post-interventions 

scores influence calculations (13). Using the original measurement scale and data obtained for 

the 1RM squat, the estimated small, medium and large improvements of 3, 6, and 10 kg obtained 

from this study identify the same required group sizes of 699, 176, and 64 when assuming a 

correlation of 0.5 (combined with baseline mean of 110 kg and standard deviation of 20 kg) (13). 

Increasing the correlation to 0.7 lowers the sample size requirements to 420, 106, and 39 given 

the same threshold values (13). Across the 417 studies and 958 groups used to obtain data for 

this study, the median group size was equal to 10 (IQR: 9-13), with 8 studies including groups 

sizes greater than 50 and the maximum equal to 94. These differences highlight how 

underpowered S&C research has tended to be and the challenge of adequately powering future 

research.  

 

In our previous meta-analysis of non-comparative effect sizes across the S&C literature (1), 

substantive differences were observed in distributions across outcome domains, with the greatest 

difference identified between those measuring maximum strength and sprint performance. In the 

present study these differences were not observed, indicating that whilst the magnitude of 
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change caused by any single intervention is likely to be different across outcome domains, the 

relative difference between two interventions is not. This finding has important implications for 

future research in terms of sample sizes and the knowledge that the ability to make inferences 

will be similar for different outcomes and for example many more participants will not be 

required for research investigating the development of speed compared to the development of 

maximum strength. The presentation of comparative effect sizes in the original measurement 

scale for the common outcomes of the 1RM squat, 1RM bench press, vertical jump height and 

sprint times (Table 1) provides researchers with additional information that may be used to 

perform sample size calculations across a broader array of trial designs using methods previously 

highlighted for S&C (33) and more general disciplines (13).   

 

Analyses investigating potential differences in comparative effect size distributions across 

participant groups in terms of training status and sex identified that the bulk of the distributions 

were similar, however, differences may exist towards the large threshold. Results identified that 

the large threshold was lower for recreationally trained individuals, and greater for female-only 

groups. These potential differences align with findings from previous research showing greater 

relative improvements in outcomes such as strength for untrained participants and females 

(34,35). It has been hypothesised that such differences may be due to greater capacity to improve 

based on a general lower starting point (35). Greater confidence in these findings would have 

been obtained if ordered effects were observed such that the effect size distribution was 

narrower for highly trained participants (untrained > recreational > highly), and effects for 

mixed sex groups were between male- and female-only groups. Such ordered effects were not 

found (Figures 3 & 4) and may be due to several reasons. For training status, only 5% of groups 

included in the data comprised highly trained participants, therefore descriptions of the effect 

size distribution for this population were more uncertain and considerable overlaps between 
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estimates for highly and recreationally trained groups were identified. For mixed sex groups, the 

percentage of males and females was generally not equal and varied considerably across studies, 

such that the category is potentially limited in its capacity to act as an intermediate in any 

comparison.  

 

Results from our previous meta-analyses have shown that most studies investigating 

interventions in S&C measure multiple outcomes, often across multiple time points with more 

than two groups (34). On average, studies were shown to include 13 different data points that 

could be used to test for average treatment effects (34). Assuming the null-hypothesis may be 

true in many of these cases, this level of multiple testing has the potential to substantively 

increase the Type I error rate where constituent null hypotheses are subjected to a disjunction 

testing approach. Whilst it may be rare for researchers to explicitly state joint hypotheses that are 

being tested with multiple outcomes and the specific testing approach adopted (e.g. disjunction, 

conjunction or individual) (15), the frequent use of multiple outcomes that measure the same 

domain and conclusion that one intervention is superior to another when some outcomes fail to 

reach statistical significance indicates a general use of disjunction testing and potential increased 

Type I error rate. Given the observation that statistical power may already be low in S&C 

research given low effects and the use of small samples, alpha adjustment for multiple testing will 

further reduce statistical power causing additional challenges (15). It is therefore important that 

any procedure adopted is not unduly conservative. Previous simulations have shown that alpha 

adjustment approaches such as Dubey/Armitage-Parmar (36) that account for correlations 

between outcomes outperform popular methods such as Bonferroni when correlations exceed 

0.3, and that these improvements increase with the adoption of more outcomes (20). In the 

present study, correlations between comparative effect sizes were shown to vary widely, but were 

consistently higher between outcomes measuring the same domain. Median estimates were 
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highest for comparative standardised mean differences from outcomes measuring power (r = 

0.36 [95%CrI: 0.28 to 0.43]) and jump performance (r = 0.33 [95%CrI: 0.24 to 0.41]). Sub-

analyses conducted on the most common outcomes measured in their original scale returned 

median estimates ranging between 0.51 and 0.70. Given the potentially strong correlations that 

exist between comparative effect sizes it is clear that any alpha adjustment approach to protect 

against issues with multiplicity should account for these associations. Future simulation work 

creating data reflective of S&C interventions is required to best understand how to balance Type 

I and II errors and the genuine interest of researchers testing interventions across multiple 

outcome domains.  

 

The usefulness of labelling effect sizes as small, medium, and large has been questioned in S&C 

(33) as well as other disciplines (37). Much of the criticism has surrounded the arbitrariness of 

the original thresholds proposed by Cohen (38) and the intuition that these are likely to be 

different in specific contexts within a discipline (33). It has been argued that effect-sizes should 

be interpreted based relative to their costs (i.e. practical or substantive significance), other effects 

in the same empirical context (as is provided in the present study), or using benchmarks such as 

the smallest effect of interest (37). The results from the present study highlight that given the 

intervention comparisons that have generally been studied in S&C, comparative effects are low 

in magnitude, thereby requiring sample sizes for standard control designs and analyses that have 

not typically been used. If benchmarks such as smallest effect of interest do not coincide with 

the values presented here, it is likely that the values are too large and therefore unlikely that a 

reasonable comparison is being made (e.g. use of an inappropriate control such as a non-active 

intervention), or values are too low such that sample sizes required would not be feasible. It is 

important to note, however, that the majority of intervention studies in S&C are extremely short 

in duration with most data points measuring change after six to twelve weeks (1). As a result, 
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larger comparative effect sizes may occur over longer durations when differences between 

interventions have a greater change to manifest.  

 

It has previously been suggested that small effect sizes that may be relatively common in S&C 

and sport science in general, may benefit from Bayesian analyses to improve estimation and 

provide a means of presenting results that are straightforward to interpret in terms of 

probabilistic statements (39). It has also been stressed, however, that Bayesian methods do not 

represent a panacea that can overcome challenges such as sample sizes that are too small or 

questionable research practices (10). Given the extensive research that has been conducted in 

S&C, the results obtained from analyses such as those presented in the current study may be 

useful in developing informative priors to improve estimates. For example, the primary meta-

analysis presented here across all standardised mean difference effect sizes generated a 

distribution centred on zero with small, medium and large thresholds equal to approximately 

0.15, 0.30 and 0.50, respectively. These values and the overall distribution can be reasonably 

modelled with a Gaussian distribution with mean equal to 0 and standard deviation equal to 0.46 

(0.625-, 0.725-, and 0.875-quantiles equal to 0.15, 0.31, and 0.53). Where this empirically derived 

distribution aligns with a researchers’ beliefs, it could be used as a prior distribution. Bayesian 

updating using methods outlined by Jones et al. (40) and previously applied in S&C contexts 

(26), could then be combined with incoming data to generate posterior distributions using simple 

formulas and enabling a range of probabilistic interpretations to be made (26). The distribution 

created in the present study represents a so-called sceptical prior centred on zero. Where there is 

more confidence that an intervention is superior to the reference, alternative priors could be 

used including similar distribution in terms of spread (e.g. similar standard deviation) that are 

shifted to be centred on the small, medium or large thresholds. Additionally, different prior 

distributions could be used to account for specifics in the researchers’ beliefs. This could include 
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use of t-distributions to reflect a view that larger effect size magnitudes may occur relatively 

frequently, or skew distributions reflecting the belief that larger positive results may be plausible 

but larger negative results favouring the standard are not. Incorporation of these more complex 

priors will require more sophisticated analysis methods to generate posterior distributions and 

may benefit from further meta-analysis work or prior elicitation with experts (41).   
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5.0 Conclusion  

The use, analysis and interpretation of effect sizes is complex in all areas of research including 

S&C. A single approach with effect sizes is unlikely to be optimum in all contexts and limitations 

including the appropriateness of underlying assumptions presents challenges.  In the present 

study, an approach consistent with development of sceptical priors and two-sided null-

hypothesis testing was developed to summarise comparative effect sizes in S&C. The results 

indicated that most comparative effect sizes should be expected to be low in magnitude, such 

that substantive resources including large sample sizes would be required to reliably estimate the 

population average treatment effect. If it is deemed relevant to try and estimate comparative 

standardised mean difference effect sizes potentially as low as 0.15, approaches different from 

those used previously will be required. Principally, larger samples are required which may be 

achieved through collaborating research teams conducting the same protocol across different 

sites. Additionally, focus may be placed on increasing the duration of intervention studies under 

the assumption that comparative effects will increase in magnitude and be easier to identify. 

However, issues of attrition and heterogenous responses may become more impactful over long 

duration studies. Researchers may also seek to use and develop different analysis techniques that 

leverage high frequency data collection to enhance the amount and structure of the information 

to increase the precision of estimates. Further statistical work including detailed simulations may 

present a cost-effective means to compare these different strategies incorporating the 

information presented in this study to fit the S&C context and provide needed future guidance.    
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