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Abstract: Establishing a capacity degradation model accurately and predicting the remaining useful life of 

lithium-ion batteries scientifically are of great significance for ensuring safety and reliability throughout 

the batteries’ whole life cycle. Aiming at the problems of "particle degradation" and "sample poverty" in 

traditional particle filtering, an improved weighting coefficient optimization - particle filtering algorithm 

based on a new Gaussian degradation model for the remaining useful life prediction is proposed in this 

research. The main idea of the algorithm is to weight the selected particles, sort them according to the 

particle weights, and then select the particles with relatively large weights to estimate the filtering density, 

thereby improving the filtering accuracy and enhancing the tracking ability. The experimental verification 

results under the National Aeronautics and Space Administration data show that the improved weighting 

coefficient optimization - particle filtering algorithm based on the Gaussian degradation model has 

significantly improved accuracy in predicting the remaining useful life of lithium-ion batteries. The RMSE 

of the B05 battery can be controlled within 1.40% and 1.17% at the prediction starting point of 40 cycles 

and 70 cycles respectively, and the RMSE of the B06 battery can be controlled within 2.45% and 1.93% at 

the prediction starting point of 40 cycles and 70 cycles respectively. It can be seen that the algorithm 

proposed in this study has strong traceability and convergence ability, which is important for the 

development of high-reliability battery management systems. 

1 Introduction 

With the increasingly serious environmental pollution and the greenhouse effect, the vigorous 

development of new energy has become an irreversible trend of the times[1-3]. As one of the tracks of the 

"dual carbon" goal, new energy vehicles have ushered in new opportunities and challenges[4]. The lithium-

ion battery is one of the "three electricity" core components of new energy vehicles[5, 6]. Compared with 

traditional fuel cells, lithium-ion batteries have the advantages of large energy density, low self-discharge 

Page 1 of 17

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
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rate, long life cycle, energy conservation and environmental protection[7, 8]. It is the electrochemical energy 

storage component with the fastest development in recent years[9, 10]. However, with the progress of cyclic 

charging and discharging, the battery will be aging inevitably, and the safety performance will be greatly 

reduced, especially the useful life will be significantly shortened when working at low temperatures [11]. 

The inaccurate prediction of remaining useful life (RUL) may cause the batteries to work in the environment 

below the capacity failure threshold, which leads to batteries ignition or even explosion[12, 13]. Therefore, 

accurate prediction of the RUL of lithium-ion batteries is the basis for the safety, operation and maintenance 

of the battery management system (BMS). 

The RUL of lithium-ion batteries refers to the number of charging and discharging cycles that occur 

before the health of the batteries deteriorates to a point where the device cannot continue to work or the 

failure threshold is not met[14, 15]. At present, the research methods of the RUL by domestic and foreign 

scholars mainly include model-based methods, data-driven methods and fusion prediction methods. The 

data-driven method doesn’t need to focus on the aging mechanism inside the batteries, but only depends on 

the batteries' history degradation data to build the aging prediction model[16, 17]. There are many data-driven 

methods, including artificial neural networks, autoregression models, support vector machines, Gaussian 

regression models and so on[18, 19]. However, these methods often use complex signal processing techniques 

to extract features from sensor data, which requires a large amount of time and highly depends on the 

accuracy of the data. Fusion-based methods mainly make up for the shortcomings of single-model 

prediction and the limitations of single data-driven prediction by effectively fusing multiple prediction 

methods[20]. They can improve the accuracy and generalization ability of prediction, but at the same time, 

the complexity of the algorithm and the sources of error will increase dramatically[21]. 

The model-based method is widely used in the RUL prediction of lithium-ion batteries due to its low 

computational complexity and high prediction accuracy. It describes the degradation process of batteries 

by establishing a mathematical model of the degradation process, which can be divided into three categories: 

electrochemical model, equivalent circuit model, and empirical degradation model[22-24]. The 

electrochemical model establishes a degradation model by analyzing the electrochemical properties of 

lithium-ion batteries, which can give a detailed physical and chemical analysis of the battery aging 

process[25]. However, the relevant models are based on specific battery materials, operating environments, 

and charging-discharging conditions, which make it difficult to obtain model parameters and poor dynamic 

certainty[26]. The equivalent circuit model is composed of electrical components built based on the system 

working principle through the analysis of a large amount of state data by experts with specialized 
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knowledge, which is highly achievable, but some internal or external influencing conditions of the battery 

may be ignored in the approximation process, resulting in the weak descriptive ability of the model for the 

dynamic and static characteristics of the batteries[27, 28]. The empirical degradation model achieves the 

model representation of battery degradation characteristics by describing the change law of state variables 

that represent the degradation of battery performance with time or by describing the relationship between 

state variables before and after two moments. This type of model is easy to obtain and has a wide range of 

applications, which seeks the regularity of data collection over time or the recursive relationship of the 

internal state of the system[29, 30]. 

In [31], a model-based method is used to establish mathematical and physical models to describe the 

degradation process of lithium-ion batteries. Data-driven methods are used to extract useful information 

such as the order of the model, and the relationship between current and voltage components, and update 

the model parameters by measuring data. The RUL of lithium-ion batteries is reflected by health indicators, 

available capacity and internal endurance capacity. In [32], a novel RUL prediction model is proposed by 

combining the extraction of health indicators based on incremental capacity curve (IC) and the method of 

improved adaptive relevance vector machine (RVM), which extracts four groups of health indicators based 

on IC curves that extract from experimental data, and uses Pearson correlation analysis to determine the 

strong correlation between health indicators and capacity degradation. Then the RVM regression model 

with Bayesian algorithm is established to optimize kernel parameters. In [33], a new RUL prediction model 

is formed by combining the particle filter and neural network based on the filter algorithm, using particle 

filtering to provide a real-time framework and neural network to establish an appropriate parameter 

measurement equation. In [34], an improved prediction method combining linear optimized resampling 

particle filter (LORPF) and sliding window grey model (SGM) was proposed. The measurement function 

of LORPF is derived using the SGM development factor, and the state transition function of LORPF is 

established using the exponential growth model to track capacity degradation. The SGM-LORPF 

framework uses only a small amount of historical data to obtain accurate results. 

To realize high accuracy estimation of the RUL of lithium-ion batteries, the capacity degradation 

model and the remaining service life prediction algorithm are studied in this study, and the following two 

points are proposed: (1) A new Gaussian degradation model is proposed, which has a better description of 

the non-linear degradation characteristics of lithium-ion batteries capacity than the double exponential 

degradation model. (2) An improved weighting coefficient optimization - particle filter algorithm (WCO-

PF) is proposed, which overcomes the problems of "particle degradation" and "sample poverty" of 
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traditional particle filtering, and ensures the estimation accuracy of the RUL of lithium-ion batteries. Finally, 

experimental verification was carried out with the data set provided by the National Aeronautics and Space 

Administration (NASA). 

The paper is organized as follows, Section 2 is the theoretical analysis, including the Gaussian 

degradation model and improved WCO-PF algorithm. Section 3 is the experimental results and analysis. 

Section 4 is the conclusion. 

2 Theoretical analysis 

2.1 Gaussian degradation modeling 

The lithium-ion batteries have strong nonlinear characteristics, and the use of nonlinear models can 

more accurately characterize their dynamic behavior for nonlinear systems. The commonly used lithium-

ion battery degradation model is the double exponential degradation model[35], and its model structure is 

shown in Equation (1). 

𝑄𝑄𝑘𝑘 = 𝑎𝑎𝑒𝑒𝑏𝑏𝑘𝑘 + 𝑐𝑐𝑒𝑒𝑑𝑑𝑘𝑘 (1) 

In Equation (1), 𝑘𝑘 represents the number of charging and discharging cycles, 𝑄𝑄𝑘𝑘 is the battery capacity 

at 𝑘𝑘  cycles, 𝑎𝑎、𝑏𝑏、𝑐𝑐、𝑑𝑑  indicates unknown parameters. Although the double exponential degradation 

model has been widely used, the system robustness is poor, and small changes in model parameters can 

cause large fluctuations in the prediction results[36]. In order to accurately estimate the RUL of lithium-ion 

batteries, it is very important to establish an accurate capacity attenuation model. Through the analysis of 

experimental data and the testing of various models, the Gaussian degradation model shown in Equation 

(2) is proposed to characterize the capacity degradation process of lithium-ion batteries.

𝑄𝑄𝑘𝑘 = 𝑎𝑎1𝑒𝑒
−�𝑘𝑘−𝑏𝑏1𝑐𝑐1

�
2

+ 𝑎𝑎2𝑒𝑒
−�𝑘𝑘−𝑏𝑏2𝑐𝑐2

�
2

(2)

In Equation (2), 𝑘𝑘 represents the number of charging and discharging cycles, 𝑄𝑄𝑘𝑘 is the battery capacity 

at 𝑘𝑘  cycles, 𝑎𝑎1 , 𝑏𝑏1 , 𝑐𝑐1 , 𝑎𝑎2 , 𝑏𝑏2 , 𝑐𝑐2  indicates unknown parameters. Compared with the traditional double 

exponential degradation model, this model is more stable and robust, and it will not cause the over-fitting 

problem of the model due to many parameters, which are easy to the identification of the model 

parameters[37]. 

2.2 An Improved Weighting Coefficient Optimization - Particle Filtering Algorithm 

Particle filtering has become a mainstream algorithm for solving the optimal estimation problem of 

the nonlinear non-Gaussian state space model. However, the traditional particle filtering algorithm has the 
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5 

defects of "particle degradation" and "sample poverty", resulting in low accuracy of RUL prediction of 

lithium-ion batteries. To achieve the high precision prediction of RUL, an improved WCO-PF algorithm is 

proposed to improve the filtering accuracy and enhance the tracking ability. The main idea of the algorithm 

is to optimize the weight coefficients of the selected particles, weight the selected Ns particles according to 

Sequential Importance Sampling (SIS), sort the particle weights, and then select the first Np (Np < Ns) 

particles with larger weights to estimate the filter density while allowing all candidate particles to participate 

in the particle update process at the next moment. The flow chart of the algorithm is shown in Figure 1. 

Extracting capacity 
degradation data

Seting prediction 
starting point

Determining the 
model structure

Initializing model 
parameters

Initializing Improved 
WCO-PF algorithm 

parameters

Particle set 
initialization

Taking out the particles of 
larger weights and 

normalized their weights 
Filter estimation

All particles updated

RUL PredictionUpdating the distribution of 
the particle set

Initialize the model

RUL prediction

 NASA public 
dataset

Battery test 
initial data

Extracting the battery 
capacity at the end of 

each discharge

Volume data 
normalization

Data preprocessing

Weight recovery, 
normalization of all particles

k ┴  N?

Calculating the weights of 
all particles

Sorting all particles 
according to their weights

Yes
No

Figure 1. The flow chart of the improved WCO-PF algorithm 

In Figure 1, k represents the number of cycles of the algorithm and N represents the total number of 

cycles of the battery experiment. As shown in Figure 1, the Gaussian degradation model is combined with 

the improved WCO-PF algorithm to estimate the RUL of lithium-ion batteries. The prediction method 

mainly includes data preprocessing, initialization model and RUL estimation. The parameters of the 

capacity degradation model are updated as the state vector, and the capacity data before the prediction 

starting point (SP) T is used as the model training data. System initialization is shown in Equation (3). 

�x0 = �a1,0, b1,0, c1,0, a2,0, b2,0,, c2,0�
T

w0 = 1/Ns
(3) 

In Equation (3), 𝑥𝑥0 is the initialization state vector, and the initial value is the parameter identification 

results. Selecting Ns particles as the particle set, and the initial weight of all particles is 1 Ns⁄ . After the 

system is initialized, the distribution of the particle set at this time is updated according to the importance 

of probability density with reference to the particle state at the previous time. The system state equation is 
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6 

shown in Equation (4). 
𝑥𝑥𝑘𝑘𝑖𝑖 = f�𝑥𝑥𝑘𝑘−1𝑖𝑖 ,𝑢𝑢𝑘𝑘−1�+ 𝑜𝑜𝑘𝑘−1 (4) 

In Equation (4), 𝑥𝑥𝑘𝑘𝑖𝑖  is the state of Ns particles at time 𝑘𝑘, where the interference during battery operation 

is described by Gaussian noise with zero mean. According to the SIS process, the weights of Ns particles 

at time 𝑘𝑘 are calculated by the recursive update method, as shown in Equation (5). 

�
𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖 = 𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘𝑖𝑖 = 𝑦𝑦𝑘𝑘 − h�𝑥𝑥�𝑘𝑘𝑖𝑖 �

𝑤𝑤𝑘𝑘𝑖𝑖 = 𝑤𝑤𝑘𝑘−1𝑖𝑖 p�𝑦𝑦𝑘𝑘�𝑥𝑥𝑘𝑘𝑖𝑖 �p�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑥𝑥𝑘𝑘−1𝑖𝑖 �
q�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑥𝑥𝑘𝑘𝑖𝑖−1,𝑦𝑦𝑘𝑘�

(5) 

In Equation (5), 𝑤𝑤𝑘𝑘
𝑖𝑖  is the weight coefficient of the particles, 𝑦𝑦𝑘𝑘 is the actual RUL value of the batteries, 

𝑦𝑦�𝑘𝑘𝑖𝑖  is the observed value of the system. However, with the increase of the number of iterations, the variance 

of the particle importance weight will gradually increase, resulting in particles with larger weights at the 

beginning getting larger and larger weights during the iteration process, and only a few particles have large 

weights, while lots of computing resources are wasted on particles with almost zero weights. This is the 

serious defect of "particle degradation" of the SIS method. The traditional PF algorithm adopts resampling 

after SIS to overcome the particle degradation problem, and the process of particle resampling in the PF 

algorithm is shown in Figure 2. 

1/N 1/N

0 1

1/N 1/N 1/N 1/N 1/N 1/N 1/NAfter 
resampling

Before 
resampling

Figure 2. Process diagram of particle resampling in the PF algorithm 

As shown in Figure 2, the resampling means that the particles with larger weights are copied 

proportionally and the particles with smaller weights are discarded, so that the total number of particles 

remains the same and the particles have reasonable weights. However, the resampling algorithm brings 

about the problem of "sample poverty", that is, the subset of the particles with high weight is increasing, 

and the particles with low weight are gradually abandoned, which leads to the poor diversity of the particle 

set. 

The improved WCO-PF proposed in this study solves the two problems of "particle degradation" and 

"sample poverty". The process of Weighting coefficient optimization process in the improved WCO-PF 

algorithm is shown in Figure 3. 
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Figure 3. Process diagram of Weighting coefficient optimization process in the improved WCO-PF algorithm 

It can be seen from Figure 3, assuming that the number of particles required for a certain estimation is 

Np, the Ns particles obtained by sampling according to the weights after SIS is completed are sorted and 

selects Np particles with larger weights as the particle set for the estimation. After filtering particles are 

selected, the weights of Np particles are normalized according to Equation (6). 

𝑤𝑤𝑘𝑘𝑖𝑖 =
𝑤𝑤𝑘𝑘𝑖𝑖

∑ 𝑤𝑤𝑘𝑘𝑚𝑚
Np
𝑚𝑚=1

(6) 

In Equation (6), 𝑤𝑤𝑘𝑘
𝑖𝑖  represents the weight of the particle at time 𝑘𝑘. The algorithm selects particles with 

relatively large weight coefficients from many alternative particles for state estimation, and the subset of 

selected particles is fixed in number to solve the particle degradation problem, while each sample is 

independent of each other to improve the diversity of the sample set. After normalizing the weights, the 

Monte Carlo method is used to estimate the posterior probability directly, as shown in Equation (7). 

p(𝑥𝑥𝑘𝑘|𝑦𝑦1:𝑘𝑘) ≈ � 𝑤𝑤𝑘𝑘𝑚𝑚δ(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘𝑚𝑚)

Np

𝑚𝑚=1

(7) 

In Equation (7), 𝑥𝑥�𝑘𝑘𝑚𝑚 is the filter particle set at time 𝑘𝑘, and δ(𝑥𝑥) Dirac function, which means that 𝑥𝑥 is 1 

if it meets the conditions, and 0 otherwise. Applied to the RUL estimation, it is the expected value of the 

current state of Np particles, so the filtering results can be obtained as shown in Equation (8). 

𝑥𝑥𝑘𝑘𝑖𝑖 = � 𝑤𝑤𝑘𝑘𝑚𝑚
Np

𝑚𝑚=1

𝑥𝑥�𝑘𝑘𝑚𝑚 (8) 

In Equation (8), 𝑥𝑥𝑘𝑘𝑖𝑖  represents the state of particles at time 𝑘𝑘. After filtering, restore the weights of Np 
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particles to those before normalization, and then perform weight normalization for Ns particles, as shown 

in Equation (9). In the next step of prediction, return to Equation (5) for iteration. 

⎩
⎪
⎨

⎪
⎧
𝑤𝑤𝑘𝑘𝑖𝑖 = 𝑤𝑤𝑘𝑘𝑖𝑖 � 𝑤𝑤𝑘𝑘𝑚𝑚

Np

𝑚𝑚=1

𝑤𝑤𝑘𝑘𝑖𝑖 =
𝑤𝑤𝑘𝑘𝑖𝑖

∑ 𝑤𝑤𝑘𝑘𝑚𝑚
Ns
𝑚𝑚=1

(9) 

The capacity data before SP=T is used as model training data to adjust model parameters to obtain 

optimal solutions, and the data after T is used to predict future RUL trends. When predicting the future 

RUL, simply selecting the filtering results at time T-1 as the estimation value will lead to the limitation of 

the results. This algorithm makes the overall processing of the data matrix of the previous training results 

and takes the mean value of the 10 training results before time T to participate in the RUL estimation after 

time T, to achieve the optimal estimation effect. 

In the improved WCO-PF algorithm, all particles participate in the particle update at any time, and 

each particle in the particle set is independent of each others, which improves the diversity of particles. By 

optimizing the coefficients of all the particles in the particle set, a subset of the fixed number of particles 

with larger weights is obtained for filter estimation and state tracking, which ensures the optimal weights 

of the subset of particles and largely alleviates the particle degradation problem. 

3 Experimental results and analysis 

3.1 Model fitting effect verification 

The lithium-ion battery aging data set used in this study was obtained from NASA. The experiment 

uses commercially available 18650 lithium-ion batteries with a rated capacity of 2 Ah and conducts cycle 

life experiments on 4 groups of batteries at a room temperature of 24°C. The battery experimental steps are 

shown in (1) - (3). 

(1) Charging test: the battery is charged at a constant current mode of 1.5 A until the voltage reaches

4.2 V, and then charged at a constant voltage mode until the current drops to 20 mA. 

(2) Discharge test: the battery is discharged in a constant current mode of 2 A, and the discharge cut-

off voltages of B05, B06, B07 and B18 batteries are 2.7, 2.5, 2.2 and 2.5V respectively. 

(3) Impedance measurement: impedance measurement was carried out by electrochemical impedance

spectroscopy, and the scanning frequency was 0.1 HZ to 5 kHz. 

Repeating the above steps until the battery capacity decreases to about 70% of the rated capacity. The 

capacity failure threshold of the battery is set to 1.38 Ah. The capacity degradation curves of four groups 
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9 

of lithium-ion batteries are shown in Figure 4. 

Figure 4. Battery capacity degradation curve 

In Figure 4, 𝑘𝑘  represents the number of cycles of the battery experiment, and 𝑄𝑄  represents the 

remaining capacity of the battery after each cycle. It can be seen from Figure 4 that the battery threshold is 

set to 1.38 Ah, and the B07 battery does not meet the analysis conditions. The experimental data of B05 

and B06 batteries are selected for subsequent analysis. According to the battery capacity degradation model 

established in Equation (2), the overall fitting of the battery capacity degradation curve is carried out, and 

the fitting results of the parameters are shown in Table 1. 

Table 1. The parameter fitting results of the Gaussian degradation model 

Battery Number a1 b1 c1 a2 b2 c2 

B05 0.123 40.970 37.540 66.930 -3645 1917 

B06 1.800 -17.180 92.160 1.200 137.700 111.600 

To verify the fitting effect of the proposed model, the battery capacity degradation curves are fitted 

with the proposed model and the traditional commonly used double exponential degradation model as 

shown in Equation (1) respectively. The overall fitting effect is shown in Figure 5. 

(a) Fitting results of B05 battery (b) Fitting results of B06 battery

Figure 5.  Overall fitting effect of battery capacity degradation curve 
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To compare the fitting results more accurately, the sum of squares due to error (SSE), the R-square 

(R2 ), the adjusted R-square (Radj
2  ), and the root mean square error (RMSE) are selected as the fitting 

evaluation indexes. The overall fitting error is shown in Table 2. 

Table 2 Overall fitting error of battery capacity degradation curve 

Fitting evaluation index SSE R2 Radj
2  RMSE 

Battery number B05 B06 B05 B06 B05 B06 B05 B06 

New capacity 
degradation 0.03754 0.1456 0.9938 0.9863 0.9936 0.9859 0.01522 0.02998 

Double exponential 
degradation  0.08368 0.2001 0.9862 0.9811 0.9859 0.9808 0.02259 0.03493 

From the comparison of fitting results, it can be seen that in the fitting results of the Gaussian 

degradation model, SSE and RMSE are close to 0, while R2 and Radj
2  are close to 1, which indicates that 

the Gaussian degradation model has a strong ability to describe the non-linear degradation characteristics 

of batteries. Among them, due to the influence of the experimental environment or the nonlinear strength 

of capacity degradation, the superiority of fit of the B05 battery is slightly better than that of the B06 battery. 

From the comprehensive view of the fitting curve and fitting evaluation index, compared with the traditional 

double exponential degradation model, the Gaussian degradation model has a higher fitting accuracy for 

degradation data and a stronger ability to describe nonlinear degradation features. 

3.2 RUL prediction result analysis 

To verify the feasibility of the improved WCO-PF algorithm, considering the influence of the length 

of training data on state estimation, two different prediction starting points are set for each battery, and the 

results are compared with the traditional PF algorithm. The maximum error (ME), mean absolute error 

(MAE), and RMSE are used to evaluate the accuracy and robustness of the algorithm, as shown in Equation 

(10). 

⎩
⎪
⎨

⎪
⎧ MAE =

1
N
��𝑍𝑍𝑟𝑟𝑖𝑖 − 𝑍𝑍𝑝𝑝𝑖𝑖 �
N

𝑖𝑖=1

RMSE = �∑ �𝑍𝑍𝑟𝑟𝑖𝑖 − 𝑍𝑍𝑝𝑝𝑖𝑖 �
2N

𝑖𝑖=1

N

(10) 

In Equation (10), 𝑍𝑍𝑟𝑟 is the real capacity of the cycle 𝑘𝑘, and 𝑍𝑍𝑝𝑝 is the predicted capacity of the cycle 𝑘𝑘, 

and N represents the number of cycles. Among them, MAE and RMSE are commonly used indicators to 

evaluate the effectiveness of algorithms or models. 

Page 10 of 17

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11 

3.2.1 Experimental verification at SP = 40 cycles 

Firstly, the length of the training data is 40 cycles, and the training data with a short length can test the 

adjustment time of the algorithm for data optimization. The longer the adjustment time, the longer the time 

needed to reach the optimal state, and the larger the calculation amount. When the SP is 40 cycles, the 

comparison of RUL prediction results between the traditional PF algorithm and the improved WCO-PF 

algorithm is shown in Figure 6. 

(a) RUL prediction result of B05 battery (b) RUL prediction error of B05 battery

(c) RUL prediction result of B06 battery (d) RUL prediction error of B06 battery

Figure 6. Comparison between predicted and actual RUL at the starting point of 40 cycles 
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the predicted failure point for improving WCO-PF with a value of 132. In the prediction of the B05 battery, 
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WCO-PF and true value is 4 cycles, and it is larger than the traditional PF algorithm, which is an accidental 

phenomenon and the overall error needs to be further compared. Figure 6 (c) shows the prediction result 

for the B06 battery, where P1 represents the real failure point with a value of 113, P2 represents the predicted 

failure point to improve WCO-PF with a value of 115, P3 represents the predicted failure point of PF with 

a value of 119, which leads to an error of 2 cycles for the improved WCO-PF algorithm and 6 cycles for 

the traditional PF algorithm. In Figures 6 (b) and (d), the blue curve is the prediction error of the traditional 
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PF algorithm, and the orange curve is the prediction error of the improved WCO-PF algorithm. It can be 

seen that the error of the improved WCO-PF algorithm always fluctuates around 0 and is more stable than 

the traditional PF algorithm. The ME, MAE and RMSE can be observed and calculated by using Equation 

(10) as shown in Table 3.

Table 3. Comparison of RUL prediction results at 40 cycles 

Estimation algorithm 
PF Improved WCO - PF 

B05 B06 B05 B06 

ME 8.61% 13.79% 8.28% 13.05% 

MAE 0. 87% 1.87% 0. 82% 1.44% 

RMSE 1. 45% 2.97% 1. 40% 2.45% 

It can be seen from Table 3, for the ME of the capacity prediction error, the prediction results of the 

improved WCO-PF algorithm for the two groups of batteries are improved by 0.33% and 0.74% 

respectively compared with the traditional PF algorithm. For the MAE and RMSE of capacity prediction 

errors, it can be seen that the prediction errors of the improved WCO-PF algorithm are lower than the 

traditional PF algorithm, which proves that the improved algorithm has a better overall prediction effect 

and stronger tracking performance. According to the RUL prediction results of different algorithms on 

different batteries in Table 3, a visual diagram as shown in Figure 7 can be obtained. 

(a) Comparison of MAE at SP=40 (b) Comparison of MAE at SP=70

Figure 7. MAE and RMSE bar comparison graph of overall prediction results at SP = 40 
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3.2.2 Experimental verification at SP = 70 cycles 

To further verify the improvement effect of the improved WCO-PF algorithm and the adaptability to 

different training data lengths, the amount of data used to update model parameters is increased with the 

SP setting to 70 cycles. The comparison of RUL prediction results between the traditional PF algorithm and 

the improved WCO-PF algorithm is shown in Figure 8. 

(a) RUL prediction result of B05 battery (b) RUL prediction error of B05 battery

(c) RUL prediction result of B06 battery (d) RUL prediction error of B06 battery

Figure 8. Comparison between predicted and actual RUL at the starting point of 70 cycles 
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compared. Figure 8 (c) shows the prediction failure point of the B06 battery, where P1 is the predicted 
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113, P3 is the predicted failure point of PF with a value of 116, which leads to an error of 3 cycles for the 

improved WCO-PF algorithm and 5 cycles for the traditional PF algorithm. In Figure 8 (b) and (d), the blue 

curve is the prediction error of the traditional PF algorithm, and the orange curve is the prediction error of 

the improved WCO-PF algorithm which shows that the improved WCO-PF has a better prediction effect 
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than the traditional PF. The ME, MAE and RMSE can be observed and calculated by using Equation (10) 

as shown in Table 4. 

Table 4. Comparison of RUL prediction results at 70 cycles 

Estimation algorithm 
PF Improved WCO - PF 

B05 B06 B05 B06 

ME 8.42% 13.54% 8.20% 12.74% 

MAE 0.67% 1.49% 0.61% 1.03% 

RMSE 1.35% 2.50% 1.17% 1.93% 

It can be seen from Table 4, for the ME of capacity prediction error, the prediction results of the 

improved WCO-PF algorithm for the two batteries are improved by 0.22% and 0.80% respectively to the 

traditional PF algorithm, which proves that the improved algorithm still has high accuracy. For the MAE 

and RMSE of capacity prediction errors, it can be seen that the prediction errors of the improved WCO-PF 

algorithm are lower than the traditional PF algorithm, which proves that the improved algorithm has strong 

comprehensive ability. According to the RUL prediction results of different algorithms on different batteries 

in Table 4, a visual diagram as shown in Figure 9 can be obtained. 

(a) Comparison of RMSE at SP=40 (b) Comparison of RMSE at SP=70

Figure 9. RMSE bar comparison graph of overall prediction results 
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RMSE of B05 and B06 batteries are increased by 0.23% and 0.52% respectively, indicating that the 

improved algorithm has strong adaptability to different lengths of training data, and the increase of training 

data can indeed improve the accuracy of training results. 

The above comparison shows that the improved WCO-PF algorithm has a strong optimization ability 

and tracking ability compared with the traditional PF, which can effectively improve the estimation 

accuracy of the RUL of lithium-ion batteries. Meanwhile, by analyzing the prediction results obtained from 

different SPs, it can be proved that the improved WCO-PF algorithm has strong adaptability to training data 

while ensuring prediction accuracy, and the increase of training data can improve the estimation accuracy 

of the algorithm. 

4 Conclusions 

Accurate estimation of remaining useful life is of great significance to ensure the safety and reliability 

of lithium-ion batteries in the whole life cycle. In this study, a new Gaussian degradation model is proposed, 

which greatly improves the fitting accuracy compared with the traditional double exponential degradation 

model. On the basis of the traditional particle filtering algorithm, an improved weighting coefficient 

optimization particle filtering method is proposed. Particles with relatively large weight coefficients are 

selected from a large number of candidate particles for state estimation to solve the problem of degradation 

and improve the diversity of sample sets, which largely solves the problem of "particle degradation" and 

"sample poverty" in traditional particle filtering. Among them, when using the training results to predict 

the value of future remaining useful life, the data matrix of the previous training results is processed as a 

whole to optimize the estimation effect. Finally, the battery aging data provided by the National Aeronautics 

and Space Administration is used for experimental verification. From the experimental results and analysis, 

it can be seen that the improved weighting coefficient optimization - particle filtering algorithm based on 

the Gaussian degradation model is effective and feasible for the remaining useful life estimation of lithium-

ion batteries with high accuracy, which provides a solid theoretical basis for the accurate prediction of the 

remaining useful life, and is of great significance for the safety and reliability of lithium-ion batteries. 

The algorithm and model proposed in this study still have a little shortage. The aging model cannot 

characterize the capacity recovery effect during the batteries degradation process and the improved 

weighting coefficient optimization algorithm has no standard for selecting particles with larger weights. 

Based on this study, considering the capacity recovery effect in the degradation process of lithium-ion 

batteries and considering the particle filtering process to make more particles converge to the optimal value 

to improve particle utilization will become the main content of future study. 
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