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A B S T R A C T

Social Edge Service (SES) is an emerging mechanism in the Social Internet of Things (SIoT) orchestration for
effective user-centric reliable communication and computation. The services are affected by active and/or passive
attacks such as replay attacks, message tampering because of sharing the same spectrum, as well as inadequate
trust measurement methods among intelligent devices (roadside units, mobile edge devices, servers) during
computing and content-sharing. These issues lead to computation and communication overhead of servers and
computation nodes. To address this issue, we propose the HybridgrAph-Deep-learning (HAD) approach in two
stages for secure communication and computation. First, the Adaptive Trust Weight (ATW) model with relation-
based feedback fusion analysis to estimate the fitness-priority of every node based on directed graph theory to
detect malicious nodes and reduce computation and communication overhead. Second, a Quotient User-centric
Coeval-Learning (QUCL) mechanism to formulate secure channel selection, and Nash equilibrium method for
optimizing the communication to share data over edge devices. The simulation results confirm that our proposed
approach has achieved effective communication and computation performance, and enhanced Social Edge Ser-
vices (SES) reliability than state-of-the-art approaches.
1. Introduction

The Social Internet of Things (SIoT) deployment increases daily,
enabling social platforms to have a pervasive and immense impact on so-
cial media. IoT makes human life more modernized with 6G technology by
forecasting the characteristics of intelligent sensors such as pervasiveness
and heterogeneity. It is a herculean task to meet the application re-
quirements and to maintain enamours generated data with specific
computation resources. Mobile users often share information on social
network platforms such as KakaoTalk, Twitter, Instagram, etc. It is there-
fore necessary to check the characteristics of the data owners to enhance
data sharing privacy since most end-users are active on social platforms. In
this regard, numerous researchers examined various methods to integrate
trustworthiness communication history with fog computing scenarios to
enhance social data and communication authenticity.

SIoT is defined as integrating social activities into IoT to share their
information with encompassing gadgets [1]. SIoT has numerous benefits
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and challenges, like versatile organization establishment, proficient data
trading, and stabling network orchestration. In this regard, Social Edge
Service (SES) is an adaptive mechanism that deals with the above issues
with the deployment of computing capacity servers and sensors that
support low-dormancy data handling and delivery [2]. However, the
availability of limited resources is a bottleneck for data computation and
communication in edge-servers and high-density sensors [3]. Conse-
quently, a limited coverage ratio influences the service completion time
and data communication rate [4,5]. The SES also manages a broad scope
of different fields, like online medical health, disaster detection [6],
traffic and military surveillance [7].

Fog Computing (FC) enables sensing layer and network layer that
supports SES to accomplish our objective [8]. FC prominently performs
data fusion frommulti-sources and brings down the computing service to
the network-edge [9]. FC enables distributed computing features that
help optimize network congestion, end-user security, and data privacy as
per the arrived service request from users. However, FC characteristics
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suits to accomplish SES rather than traditional wireless sensor networks.
In social data fusion, there are a few quandaries and trust assessment
issues as follows:

1. Social data is vulnerable, which may cause system failure and
computational overhead, and inadequate service reliability [10].

2. Social platforms may share false messages, which squander the
transmission and computation assets.

3. Social data is large and has a complex structure that demands inad-
equate computation and communication resources, but the edge de-
vices are not compatible due to limited storage and computation
capacity.

Motivation: Social-user trust is assuredly a reliable measure to
consolidate service reliability. Most of the investigations consider
communication affecting factors or subjective strategies to measure trust-
weight to make a trust decision system, which leads absence of versatility
in trust aggregation computing. For instance, a service trust method has
been designed based on transaction time, the total number of trans-
actions and execution time attributes [11], but service trust is not cate-
gorized further effective communication between devices. In Ref. [12],
the active trust function is designed based on the number of times the
false data and real data are reported from the devices or vehicles through
the probability distribution function. However, these state-of-art
schemes have not considered complex SES network characteristics and
key attributes during trust computing. Therefore, there is a need to
design and develop an adaptive trust-weight measurement index and
accurate channel selection model to enhance reliability and service
quality.

SES aims to achieve adequate data sharing among the hooked devices
such as sensors and servers to manage latency-constraint applications.
Data-catching formulates the data re-transmission rate, which optimizes
server overloaded issue [13]. The spectrum uses in 2-modes (Underlay
and Overlay mode). The overlay mode permits sharing data through a
pre-defined spectrum for enhancing throughput. In most cases,
pre-defined resources use in underlay mode, but attention is essential for
security attacks [14]. Considering the same spectrum to share the data
causes attacks such as Jammer. Consequently, EDs privacy is more crit-
ical than spectrum efficiency. Therefore, establishing a secure commu-
nication channel is the main challenge to avoid computation and
communication overhead of servers and active sensors in SIoT orches-
tration. The main constructions are as follows:
Fig. 1. Social-IoT orchestration.
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1. Develop an Adaptive Trust Weight (ATW) model to estimate the
fitness-priority of every node for consolidating the malicious node
and reduce computation and communication overhead.

2. Develop a Quotient User-centric Coeval-Learning (QUCL) mechanism
to formulate secure channel selection based on Nash equilibrium
theory to reducing communication delay.

3. Simulations are carried out with social dataset and measurement in-
dexes to examine the performance of our system.

Fig. 1 represents SIoT orchestration aspiration and importance.
Generally, at the sensor level, the data or content is shared as per user
request, but service classification and achieving high-ordered authen-
ticity are challenging tasks to meet the deadline of delay-sensitive-social
IoT applications. Subsequently, the monitoring region is divided into a
social community or family community. Usually, the cross-validation is
disproportionate for the family community since all family members are
well known. The trust-weight value is consistently high compared to
other communities. In addition, the uncertain community (social com-
munity) such as shopping malls, social places, gathered conference halls,
public auditoriums are treated as numerous complex places because
evaluating malicious devices is a Hercules task. In this regard, to classify
such malicious devices, we design and develop an adaptive Hybridgraph
Deep-learning Approach (HDA) with two innovative measurements
called ATW and QUCL, which are described theoretically and mathe-
matically in further sections.

The manuscript continues as Section 2 briefly explains research gaps
and problem statements of extant approaches. Section 3 describes the
proposed system and its mathematical models with novel algorithms in
detail. Section 7 evaluates the investigation outcomes and Section 8
concludes the manuscripts.

2. Related work

In [15], home or office users are treated as friendly users; they
confidently share data. Public auditoriums enable uncommon social-trust
users, but still, they are considering a shared spectrum for data sharing,
which is insecure [16]. Consequently, the authors used a
socially-aware-model to distinguish trusted and untrusted clients
depending on the social relationship strength. In Ref. [17], the security is
measured based on the social relationships for complex networks and it
considered binary values to decide whether the relation is trusty or not.
However, the link quality and dynamic link status are not considered.

The primary use of social characteristics enhances the performance of
intelligent applications by using the intrinsic relationship between con-
tent offloading and sharing. A socially-aware location privacy protection
method is designed for vehicular networks [18,19]. A vehicular service
access system is designed to enhance the service quality, and reliability of
intelligent devices [20,21]. A trajectory data analysis model is designed
for a traffic anomaly detection schemes for vehicle networks [22].

In [23], content caching policy is designed for secure social-aware
communication based on social relations to diminish the download la-
tency [24]. A conventional binary graph theory is considered to estimate
robust device interference based on past examinations. Despite that, the
complicated interference relationship is not yet designed by including
node heterogeneity and densification, and a directed graph theory is used
to estimate asymmetric inference relationships [25]. However, the security
attributes are still not being considered during graph construction.

In [26], an efficient Personal Similarity Measurement (PSM) model is
designed based on feedback from multi-resources to avoid attacks. How-
ever, the measurement model considers feedback from non-malicious de-
vices, but the origin of the feedback is from malicious nodes. The
mechanism mandates adaptive measures to classify non-malicious feed-
back and select secure channels to assess the sensor mode.

However, it is essential to design an HDA so as to address the above
listed issues. In Ref. [27], a heuristic algorithm is designed based on a
static-relay placement model called Prophet to enhance the performance



Fig. 2. System model.

Table 1
Notation table.

Notation Definition

κri ;κ
r
k Sensor probability of delivering r type service with s2s or s2server,

respectively
λri ƛ Sensor probability of executing the content on itself
ϒr

k Probability of server k to offload r type content to other server k þ 1
Ir

k Amount of r type content offloading by kth server
Γr
k Residual capacity of kth server

Rr Required amount of computation (CPU cycles/sec)

ΨW
α

Data distribution policy with action set W
Wt Action set ƛWt ¼ �λri ; κri ;ϒr

k; κ
r
k;I

r
k;φ

r
to

�
zt Policy gradient at time slot t
μi, μk The multi-objective rank of sensor and server, respectively and should be

in the range of [0,1]
bsk ;tpk Service execution quality rate of server at time t and it should be in range

of [0,1]
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of social-sensor-links with the underlying objective of secure data sharing
among the network. The mechanism is not revised for complex applica-
tions since the channel selection allocation approach does not integrate
an eminent privacy mechanism for effective data sharing. In Ref. [28], a
practical channel allocation approach is designed based on the
hypergraph-colouring model for Device-to-device (D2D) communication.
The sensor authentication system is considered before establishing the
connection that causes communication and computation overhead.

Content Caching and User Association (JCC-UA) algorithms are used to
mitigate the latency ratio of downloading content based on Smart Content
Caching Policy (SCCP) and Dynamic User Association (DUA) [29,30]. An
integrated node trust estimation method has been designed based on
Bayesian inference considering penalty factors to enhance the privacy
[31]. In Refs. [32–34], Energy Harvesting-Mobile Edge Computing
(EH-MEC) approach has been designed to optimize the service offloading
cost based on game theory and Lyapunov optimization theory. A
User-centric resource-instance allocation has been designed based on vir-
tual machine capacity to reduce the service execution delay for effective
communication [35–37]. In this regard, an adaptive trust-weight mea-
surement index and accurate channel selection model are designed to
enhance social edge systems’ reliability and service quality.

3. Proposed system model

Fig. 2 illustrates the system functioning mechanism, where the infra-
structure enables 2-server nodes, 7-sensor nodes are interconnected
through WiFi. Initially, the server system estimates each sensor's perfor-
mance with related attributes to calculate the trust-weight of each sensor.
Based on historical data, the threshold value or a benchmark is estimated
to determine if a sensor is in the network for sensing and sending the data
to the server or base station. The red communication indicates that the
devices are in the trust assessment process. The blue communication in-
dicates that the sensor is varified as a trusted node based on the average
ATW value. If the ATW value remains abnormal, the sensor device is
considered a Low-ATW Violation (LAV) sensor. Those sensors are main-
tained as an individual set for the observation to mitigate the generation of
false data and communication, computation overhead.

In our proposed system, the sensors are classified into three types
(High-ATW Violation (HAV) sensor, Low-ATW Violation (LAV) sensor,
and Accurate-ATW sensor) based on the Adaptive Trust Weight (ATW)
measurement, and the detailed description is covered in subsection 6.2.
The LAV sensors might allow into the network as relay sensors because it
may cause less overhead during computation-communication of data in
the framework, i.e., Qsi;k ðIÞ � 0:5. Besides, the HAV sensors cause a high
overhead rate; such sensors are eliminated to avoid the generation of
mysterious data as well as to reduce the overhead rate, i.e., Qsi;k ðIÞ � 0.
Accurate-ATW sensors ðQsi;k ðIÞ� 1Þ are still active in the network for
accomplishing the target. Table 1 consists of notation definitions.

3.1. Hybridgraph model

The hybridgraph constructs based on trust weight of social sensor and
channel selection with asymmetric interference information. A hybrid-
graph G ¼ ðS; LÞ enables a set of sensors S¼ {s1, s2,…, si,…, sn} with a set
of links L¼ {l1,…, lj,…, lm}. Every link has to meet two conditions, 1) lj 6¼
0 8lj 2 L, and 2) [

lj2L
lj ¼ SðS�1Þ

2 , and each link lj is hybrid-edge. The graph is

formulated as n � m incidence matrix (U), i.e., U ¼ ½uij�n�m and where uij
¼ 1 or 0 means that, whether ui belongs to lj or not. Later, it is formulated
as

uði; jÞ ¼
8<: 1; si 2 F

�
lj
�

�1; si 2 R
�
lj
�

0; otherwise
(1)

where F
�
lj
�
and R

�
lj
�
are front and rear of each edge. Let us assume, Δi
902
denoted probability of adaptive trust weight (ATW) of sensor si to
establish the secure connection between sensors (si,siþ1) or sensor si to
edge server (hk) based on reliable channel quality. li;iþ1

j is jth edge be-

tween sensors (si,siþ1). Note that, 1� Δi ¼ Δ̂i is the probability of
untrusted ATW value as per the link quality, and it is less than threshold
value Θs of the sensor device. The sensor interfere (reciprocal behaviour)
is used to formulate the graph as follows:

ΔiℏistiP
si2sn

^Δi;iþ1ℏiþ1sti;iþ1

⩽Θs (2)

subsequently, edge server interference is used to formulate the graph
based on threshold value Θk as follows:

ℏksti;kP
si2sn

ð1� Δi;kÞℏisti;iþ1
⩽Θk (3)

4. Problem formulation

The end-user inference is measured based on link quality of the edge
lj, and it is formulated as

vij ¼
�
1; if uði; jÞ ¼ �1
0; if otherwise:

(4)

Definition 1. The connection between end-users (EDq), ED ¼ {ED1,
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ED2, …, EDq, …, EDQ} forms an adaptive interference by choosing a
secure channel ℘, which is formulated as

SR
�
℘q;℘q̂

� ¼X
lj2L

ηi
�
lj
�� vijWhere ηi ¼

(
1; if ℘q 6¼ 0; ℘q 2 G8si 2 lj;

0; if otherwise:

(5)

where ℘q̂ is the present channel of ED, which not yet select the channel
and ηi is an indication factor. φi means the data sharing ability of sensor
and ‘00 is the sensor which unable to share the data as follows:

ϕi

�
℘q;℘q̂

� ¼ � 1; if ℘q 6¼ 0; SR
�
℘q;℘bq� ¼ 0;

0; if otherwise:
(6)

The problem is formulated as follows:

max
℘q2 b℘q

Xn
i¼1

ϕi

�
℘q;℘q̂

�
;

Subject to : ϕkð℘k ;℘k̂ Þ ¼ 1 8ϕk 2 K (7)

where φk ¼ 1 means the secure communication between 2-edge-servers.

Definition 2. The data sharing requires asymmetric time because of
various communication and computation strategies. The execution time
of r 2 R service requests should meet their delay constraint tmax, which is
formulated as ƛ

λri

 
κriφ

r
t þ
XK

k¼1
κrkφ̂

r
t �
XK

k¼1
ϒr

kφ̂
r
t

!
þ
XK

k¼1
ϒr

kφ̂
r
t (8)

Potential sensors receive their requested data to satisfy the time-
sensitive constraints to diminish the communication overhead as follows:

Max
λri ;κ

r
i ;ϒ

r
k

XR

r¼1
φr
to

s:t P1 :
XR

r¼1
Rr�κri λri þ 1

�� ϒr
k

P2 :
XK

k¼1
κri � κrk ¼ 1 8k 2 K

(9)

where P1 denotes server computing capacity which should not be greater
than its original computation capacity. P2 means content distribution
strategy between edge-sensors and sensor-to-server.

5. Effective computing and transmission models

Computation and transmission models play significant role in
achieving effective performance of SIoT framework. Therefore, adaptive
computing and transmission models are derived as follows to optimize
the service reliability and performance.
5.1. Device-level computing

The device-level computing is also called as local computing. Let us
assume, sensor s generates a set of computation intensive services rsic

si2sn
¼�

Ci;I
rc
i ;A

rc
i

�
. Where Ci, I

rc
i , A

rc
i are total CPU cycles to execute the ser-

vice, total data size for offloading, total data size of response revert to the
requested sensor-node by the server respectively. The overhead of
device-level computing is estimated as follows:
903
@dl
si
¼ xrsi rdl

si
þ yϵsiϵ

dl
si

(10)
where rdl
si ¼ Ci

Rrc
si
, ϵdlsi ¼ Ci � ϵsici time to execute the service request r, en-

ergy consumption respectively, and ϵsici denotes energy usage per cycle.

Subsequently, yϵsi , xrsi denote weight of energy usage and weight of

computation time, and xrsi þ yϵsi ¼ 1. The weight of computation time
depends on computation service priority. Weighted payoff function is to
fulfill the end-user requirements, and the basic strategy is: if the energy
level is not prominent, then yϵsi value will fix as greater to mitigate the
energy usage. Similarly, during delay-sensitive service request execution,
the xrsi value will fix as greater to diminish delay ratio.

5.2. Edge-server level computing

Usually, when the sensor node is not capable ⩽Rrc
si to execute the

service, then a connection establishes between sensor and server based
on ATWweight to execute the offloaded services on behalf of sensor node
si, iεn. In this scenario, the total service computation time is the sum of
service offloading time through LTE interface for effective communica-
tion, service execution time by server, time required to revert the
executed results to sensor node si, as follows:

@sl
si ;ki

¼ xrkirsl
si
þ yϵkiϵ

sl
ki

(11)

where, the notation means server values

rsl
ki ¼

�
Irc

i þ Arc
i

�
βtsi ;ki

þ Ci

Rrc
ki

ϵslki ¼ Irc
i � ϵsi ;kici

βtsi ;ki

denotes data transmission rate which is formulated in the below sub-
section.

5.3. Transmission model

The data transmission rate of the service from sensor node to server
through the selected channel ℘i is formulated based on shannon's theo-
rem as

βt;℘si ;ki ¼ B℘log2

 
1þ ρtsi ;kiΛ

t
si ;ki

ζsi ;ki � ðdsi ;ki Þ2
!

(12)

where B℘, ζsi ;ki , ρ
t
si ;ki , Λ

t
si ;ki , ðdsi ;ki Þ

2 denotes bandwidth of channel ℘i,
thermal noise power of channel, sensor node transmission power, channel
gain of℘i by sensor node due to path attenuation, distance between sensor
node to server respectively. The transmission delay is related to the time
required to offload the service and execution delay which is derived in the
above section. The transmission time is expressed as

ϕt;℘
si ;ki ¼

Irc
i

βt;℘si ;ki
(13)

6. QUCL-secure channel selection

The channel selection graph construction is.
G℘ ¼ �S; L; f℘̂igni¼1; fXigni¼1

�
, where f℘̂igni¼1 is edge-devices available

channel set, fXigni¼1 is utility and φið℘i;℘iþ1Þ ¼ ϱi;iþ1. Hence, Edge-
device or sensor utility function is formulated as
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Xið℘i;℘iþ1Þ ¼ ϱi;iþ1 � 1þ
XN

i;iþ12n χi;iþ1 (14)
 !

where ℘iþ1 is neighbor EU profile who has selected the secure channel.
χi,iþ1 means whether siþ1 sensor has relation with si or not. The secure
channel selection graph is consolidated with Eq. (15).

G℘ ¼ max
℘i2℘̂i

Xið℘i;℘iþ1Þ; 8si 2 S (15)

Each EU-usage rate remaining is enhanced by consolidating the
channel assessment process.

6.1. Secure data sharing

Secure data distribution is consolidated with HDL approach based on
gradient mechanism with Eq. (9).

D
�
λri ; κ

r
i ;ϒ

r
k ; κ

r
k

� ¼ φr
to �

XK

k¼1
Ir

k�XR

r¼1
Rr�κri λri þ 1

�� ϒr
k �

XR

r¼1

XK

k¼1
Γr
k

(16)

The gradient mechanism attentively measures the residual capacity of
the server [38]; it will continue till the coverage of all sensors under the
data request set.

Γr
kðlþ 1Þ ¼

266664Γr
k � lrk

0BBBB@
φr
to �

XK

k¼1
Ir

k�XR

r¼1
Rr�κri λri þ 1

�� ϒr
k �

XR

r¼1

XK

k¼1
Γr
k

1CCCCA
377775

þ

(17)

Two-Neural Network (NN) parameters αz and αϑ are formulated for
deep-learning process. Here, αz is an actor function to consolidate the
data distribution which is updated through primary neural network
based on gradient policy and it is formulated as

ΨW
α ¼ F

�
Ψa � ϑðlt;WtjαϑÞΨW

α zðWtjαzÞ � (18)

where, ϑ
�
lt ;Wt jαϑ� ¼ F

�
zt þ ϑ

�
Wtþ1; z

�
Wtþ1jαϑ� � � describes the action

value and z
�
ltþ1jαz� is a data distribution policy. αϑ is updated through

primary criticism based on diminishing the error rate and it is defined as

LossðαϑÞ ¼ F½Dest � ϑðlt;WtjαϑÞ �2 (19)

Dest ¼ si
�
lt ;Wt þ ϑ̂

�
Wtþ1; ẑ

�
Wtþ1jαẑ� � � optimize the error impact

during data coverage. Let us assume that, in the learning process, various
trust weights are measured as per the area based on algorithm 3. In this
regard, to diminish the loss rate, ensuring a linear convergence rate is
essential, and in our simulation, the learning rate Φ is fixed.

Theorem 1. Server selection policy and trust estimation policy are initial-
ized with a minuscule deficiency margin mar concerning the destination Des
equilibrium weights and depth of NN to meet the anticipated learning rate, as
follows

Φ ⩽
marð4�depth�2Þ=depth

ðdepthÞ3 �kDesn�nk
(20)

For any error � ratio > 0

The loss at every iteration (iter) is not significant as the error rate. In
other words, the training loss drops to a low-error ratio with a linear
904
convergence rate based on random initialization weights. The concerning
simulation results are discussed in the below section.

iter⩾
1

Φ� mar2 �ðdepth�1Þ=depth � log
	

LossðαϑÞ
error � ratio



(21)

Algorithm 1 measures the content sharing reliability to optimize the
communication and computation overhead. The designed data sharing
strategy adequately streamlines the objective based on the QUCL
approach. The measurement attributes remain the same till the partial
product outcome is less than the threshold (ψ). Line � 1 initializes the
sensor and computation parameters. Line 2–3 assesses the concern pa-
rameters and list of sensors waiting to receive the content. Line 6–7 es-
timates each step-partial product for secure data sharing. Line 8 � 13
decides whether to continue the process or re-assess the listed
attributes.

In Algorithm 2, the scheme zðWt jαzÞ formulates the secure data
transmission over the requested region based on the UCL approach. The
αϑ variable updates based on the error control loss function LossðαϑÞ.
Line-1 initializes the network parameters. Line-3 assesses the count of
sensors which are requested to receive the content. Line 4–14 helps to
accomplish the objective,i.e sharing the data securely over the requested
network, after assessing the trust reliability factor of each sensor.

Reciprocal behaviour is considered to construct the trust communi-
cation graph between social users. Most existing systems have consider
direct reciprocity, but our approach considers both direct, indirect edges,
and it can be observed in Fig. 3. The reciprocal behaviour is derived
based on the content sharing history. Basically, the edge means



Fig. 3. Graph construction.
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connection between usera and userb for data shared, which helps to
construct the directed graph. The reciprocity behaviour is assessed based
on a directed circle, and services between users are measured based on
interaction time. Let us assume, algorithms 1& 2 diverged into three sub-
modules. First, the complexity of iterative measuring of server capacity is
O
�
n2
�
. Sorting the service requests based on social demand is an essential

process and the complexity is Oðnlog2nÞ. Third, content sharing request
execution by the server is a significant process to satisfy the delay-
sensitive social services, and the complexity is O

�
n3
�
.

O
�
n2
�þ Oðnlog2nÞ þ O

�
n3
�

(22)

6.2. Adaptive trust weight (ATW) measurement model

As a part of the secure communication process, node trust measure-
ments are essential to reduce communication and computation overhead.
In this regard, sensor-to-sensor communication is consolidated with
network optimization parameters. Consequently, sensor service reli-
ability rate is assessed based on service-feedback and sensor weight
factor since brief information can be referred to in the previous work [39,
40]. The sensor correlation and sensor attributes are considered while
estimating the ATW of sk.

ξðsk ; tÞ ¼
XK

k¼1
μkb

sk ;t
pk

(23)

After the selection of a channel, the sensor and server communicate as
per service request and the communication quality is estimated as

ξðsi;k; tÞ ¼
Xn

i¼1

XK

k¼1
μi;kb

si;k ;t
pi;k

(24)
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The server communication quality rate is considered, and the sensors
communication quality is considered as well, but the measurement de-
cisions are assessed based on threshold value. In this regard, the server
communication quality for better performance of network is considered.
Note:iþ 1 ¼ î

ξðsi;̂i; tÞ ¼
Xn

i¼1
μi;̂ib

si;̂i ;t
pi;̂i (25)

The communication quality weight is consolidated as follows

ϖi;k ¼ 1
jSj �

���ðξðsk; tÞ � ξðsi;k; tÞÞ þ ðξðsk ; tÞ � ξðsi;iþ1; tÞÞ
��

ξðsk; tÞ



(26)

The ATW communication quality weight is classified to make accu-
rate recommendation system and it is formulated as follows

Qsi;k ðIÞ ¼

8>>><>>>:
0; 0⩽ϖi;k⩽ϖ

thr1
i;k

0:5; ϖthr1
i;k ⩽ϖi;k⩽ϖ

thr2
i;k

1; 0⩽ϖi;k⩽1

0⩽ϖthr1
i;k ⩽ϖthr2

i;k ⩽1

(27)

While estimating the priority or recommendation of the potential
server sk, the server performance is considered. It is estimated by
aggregating the weight factor vn ¼ ok

ðo1þo2þ⋯þonÞ. Here, vn is the total

interaction between sensor si and server sk. In case, j¼ k, ok ¼ 0, the ATW
vector is formulated as VnðkÞ ¼ ðv1; v2;…; vnÞ, the priority or recom-
mendation of server is defined as follows:

Reci;k ¼ VnðkÞ � Qsi;k ðIÞ (28)

Algorithm 3 constructs the feasible sensor set and server set, deter-
mining which should be in the network to make a secure data distribu-
tion based on reliable trust analysis mechanism. Line 1–2 initializes the
entailed variable. Line 4–5 estimates the individual sensor service quality
as well as the servers. Line 6–7 assesses the infeasible sensors, which
means those are unreliable. Line 8–13 helps make an accurate decision
on which are suitable for secure communication and it impacts compu-
tation and communication overhead of the server.
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The complexity of measuring ATW score of each sensor node under
heterogeneous environment is O

�
n2
�
, since the number of cycles is n2.

The complexity of analysing the weight based on historical performance
quality and feedback analysis is Oðnlog2nÞ, but optimal complexity is
O
�
n2
�
because of O

�
n2
�
≫ Oðnlog2nÞ.

Subsequently, the space complexity is derived as follows. Let assume:
in our simulation k servers, each server can provide services for a set of si
sensor nodes; as per the time window, the ATWmeasures are b number of
times. In this process, the sensor node sends a trust-estimation request to
the server and receives the response vice versa. The communication
overhead of server is 2sib, and sib is the overhead for direct communi-
cation between si/s1þi/ki based on ATM information. The space
complexity is derived as

¼ k� ðsi þ 2siÞ � b
¼ ðksi þ k2siÞ � b
¼ ksibþ k2sib

¼ 3ksib

7. Experimental results

The proposed HAD approach performance is measured with MATLAB
2017. The social network performance is analyzed with the NS3 simu-
lator for partial cross-validation with node density and communication
radius. The simulation parameters are listed in Table 2. Five hundred
sensors are deployed in 500 � 500 area with a 50 m communication
radius. Bandwidth is 200 KHz, maximum iterations are 400, video size
varies from 1 to 100 Mb. The simulation is recursively conducted 95
times to observe the impact. The base parameters are considered [30]
and the parameters are also adjusted as per paper objective demands
based on decision-making graph theory [41]. INFOCOM from CRAWDAD
datasets [42] are considered for performance examination.
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Fig. 4(a) illustrated the variance in trust weight value between the
untrusted node and trusted node. The node with a low-trust value is
called an untrusted or non-recommended sensor node. The initial clas-
sification of low-trusted nodes impacts the computation and communi-
cation overhead of servers. Simulations are concurrently iterated more
than 200 times to collect the data based on beta-distributionmean, which
is fixed with 0.9. Each node is to be active 25 times during data collec-
tion. During initial iterations, the trust-value is normal, and 35–50 iter-
ations also the trust-value remains constant; but from 20 to 35, the trust-
value is abnormal. In Fig. 4(b), the impact of low-trusted-value nodes on
communication is described. The active node's trust value constantly
quits with a considerable communication ratio. In each iteration, the
sensors'abnormal rate and the possibilities of receiving the shared data
have been examined. From iterations 15–25, the low-trust nodes are not
permitted to collect the data in the network, which creates communi-
cation overhead. After iteration 35, the active sensor nodes ratio in-
creases and remains constant for network sustainability. The outcome
plays a vital role in assessing the mode-decision of a sensor to enhance
the effectiveness of our approach.

The data transmission rate of social-IoT framework has been exam-
ined with network throughput parameter and the completion time of
service is more accurate than state-of-art approaches (PSM, hypergraph-
colouring model, Prophet models), and the results are represented in
Fig. 5(a). The low-trust sensors performance is assessed based on total
packets collected by the base station and the rate of successful data
transmissions towards the base station. Note that the x-axis is the per-
centage of total deployed sensors over the network. The HAD approach
has achieved less-data collection rate from Low-ATW-V (LAV) sensor
nodes, and few LAV sensors have a provision for sharing the data with
non-LAV sensor nodes; but in PSM, most LAV sensors are allowed to share
and send data to the servers, which influences the communication and
computation overhead of the servers. The offloading-decision rate of LAV
sensors is comprehensively examined and analyzed; the results are rep-
resented with Fig. 5(b). The offloading decision rate is collectively
decreased as the LAV sensor percentage increases. Optimization of false
data generation source mechanism essentially has an influence on
reducing server computation overhead. The PSM, hypergraph-colouring,
and Prophet models achieved high data-offloading rate than our
approach because the secure channel selection method and ATW model
have assessed the sensor state before the concerned node sends the data
to the server or another sensor.

Fig. 6(a) illustrates the comparative analysis between active sensors
and their impacts on the average communication rate. Our approach has
achieved an effective communication rate because algorithms 1 and 2
consolidate the data-sharing issue with the UCL model through a deep-
learning mechanism. The PSM approach shares the data without
consideration of sensor-sensor delivery rate and available resources rate.
In our approach, a vast number of sensors share the data concerning
delay-sensitive service requests because of an effective learning mecha-
nism, which is defined under the RUCL approach Section 7. Online data
delivery through sensor-to-sensor communication mode is an efficient
strategy for data dispatch, which is a solid addition to the computation
offloading and sensor-server distribution methods.

Fig. 6(b) shows a sensor-based quotient correlation model to
construct a hybrid-graph with directed edges to assess their status
through a deep learning mechanism that comes under the quotient-UCL
model. During each iteration, the sensor is allowed when it has a corre-
lation with neighbor sensors or with consequent sensors. The rest of the
active sensors are not allowed in the same communication channel
during the data sharing. The sensor count is adjusted and equated to the
iteration count based on the state-of-art approaches to examine the error
rate. It is noted that the sensor count increases as the increment of iter-
ation account; if the edge count increases, the communication rate de-
creases since edge number and communication ratio are inversely



Table 2
Simulation parameters.

Parameter Values

Area size (m2) 500 � 500
Number of sensors 1000
Sensor radius 50 m
Number of edge-servers 50
Server radius 500 m
Window size 100 s
Trust measurement range 0–1
Θs and Θk 25 dBm, 15 dBm
Bandwidth 200 KHz
Max-Iterations 400
Video size 0–100 Mbits
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dependent on each other. The increased iteration count denotes the
communication rate optimality to share the data as per the sensor
demand.

Fig. 7 illustrates the comparative analysis of the node computation
capacity rate and their offloading decision rate concerned with social-IoT
framework size. During simulation, two different cases to assess the
performance are considered. First, s¼ 500, K¼ 5, and node-density¼ 0.05
to estimate sensor computation capacity, which is an essential factor to in
achieving high network reliability. While increasing the computation
capacity rate of the sensor, the offloading decision is being drastically
reduced. It is noted that the active sensor count plays an important role in
offloading decisions. Here, the considered active sensor set has a normal
Fig. 4. Iterations and trus

Fig. 5. Impact of LAV sensors on data
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ATW value that can be observed in Fig. 7(a). In the second case, while
increasing the server count 5-to-15, and the node density level is 0.05-to-
0.15. Almost 1

3 has the increased resource capacity of the network, which
influences the offloading decision rate, and it is often lower than the
previous case in Fig. 7(b).

Fig. 8 illustrates the secure channel selection strategies which impact
the execution of demanded service requests. When server count is equal
to 3, the server computation rate is measured between 1% and 5%, but
the increase of server count from 3–12 influences computation and
communication overhead rate to accomplish our manuscript objective.
Therefore, the classification of LAV sensors and secure channel selection
schemes measure the notable impacts on social edge service with ex-
pected reliability.

In the learning simulation process, the hyperparameters are initial-
ized as follows: the learning rate is 0.001, the batch size is 125, the
number of epochs is 60, and usual parameters like 32 inputs, 32 steps, 10-
outputs and the number of batches are 100 for each simulation scenario.
Fig. 9 illustrates the analysis of learning impact based on the error rate for
each epoch. The error rate is achieved less than 0.009 at the average
learning rate of Φ ⩽ 0.007 with less than 20 epochs. Hence, an average
error ratio with low loss and an adequate learning rate are achieved. In
the first scenario, the simulation results are measured, and the error rate
is ⩽0:2 with a maximum learning rate Φ ⩽ 0.015 and 60 maximum
epochs. An accurate policy learning rate (Φ ⩽ 0.05) is achieved for
subsequent learning trials and adequate convergence steps based on
subsequent weight adjustments to mitigate the loss ratio.
t-weight rate analysis.

transmission and offloading rate.



Fig. 6. Average communication rate and iteration rate analysis.

Fig. 7. Offloading decision rate and computation rate analysis when a)S ¼ 600, K ¼ 15, Node � density ¼ 0.15 and b) S ¼ 500, K ¼ 5, Node � density ¼ 0.05.

Fig. 8. Channel selection impact analysis on social data-sharing.
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Fig. 10 illustrates convergence steps to adjust the behaviour of
weights to meet the targeted accuracy of our approach with the adaptive
initial fixed learning rate, i.e., Φ ¼ 0.0039. However, the convergence
steps vary as per the trials and learning rate to achieve adequate accu-
racy. When convergence steps (approximately 295) are moderately high,
Fig. 9. Learning rate impact analysis on error rate concerning epochs.



Fig. 10. Impact of learning rate and convergence ratio.
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the policy learning rate is at Φ ¼ 0.0039; but it comes to an increase of
learning trails with adequate convergence steps (average 155), the policy
learning rate has increased drastically; such as convergence rate
increased as increasing the learning rate from Φ ¼ 0.0039 to Φ ¼ 0.06.

8. Conclusion

This paper presents HAD approach based on a two-step reliable trust
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communication and computationmodel for securing social-IoT networks.
The designed HAD approach achieves an average 31% performance
better than state-of-art approaches. HAD approach achieves a higher
privacy preservation rate to protect from active or passive attacks based
on a novel trust measurement index. Trust priority is estimated for every
intelligent device (roadside units, mobile edge devices, server) to opti-
mize computation and content sharing overhead. The designed Adaptive
Trust Weight (ATW) model effectively assesses the node fitness priority
to identify the malicious nodes based on a relation-based feedback fusion
analysis report. The User-centric Coeval-Learning (UCL) mechanism
essentially considers the trust weight value to select a channel for
achieving secure communication, and the Nash equilibrium theory helps
mitigate the communication delay while sharing data over edge devices.
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Appendix

Theorem: The channel selection mechanism enables Nash equilibrium to enhance the system accuracy based on algorithms 1 and 2 with potential
function ∂

�
℘q;℘q̂

�
and it satisfies. Xq

�
℘q;℘q̂

�� Xq
�
℘q;℘q̂

� ¼ ∂
�
℘q;℘q̂

�� ∂
�
℘q;℘q̂

�
Proof: To goal can accomplished by optimizing problem 9. The fixed potential function is ∂

�
℘q;℘q̂

� ¼PN
i;iþ12nφi

�
℘q;℘q̂

�
. In each iteration, the EU

or ED may change their selected channel from ℘q to ℘q, then the potential function is formulated as

∂
�
℘q;℘q̂

�� ∂
�
℘q;℘q̂

� ¼ �ϕq

�
℘q;℘q̂

�� ϕi

�
℘q;℘q̂

� �þ " X
qþ12Q

�
ϕqþ1

�
℘qþ1;℘cqþ1

�� ϕi

�
℘qþ1;℘cqþ1

� � #þ σðQ=ðq [ qþ 1Þ Þ (29)

where σðQ=ðq [ qþ 1Þ Þ is the variance ratio of potential function based on ℘q and ℘q. Eq. (15) is formulated as follows.

X
qþ12Q

�
φqþ1

�
℘qþ1;℘cqþ1

�� φi

�
℘qþ1;℘cqþ1

� � ¼ � X
qþ12Q

�
φqþ1

�
℘qþ1;℘cqþ1

� �
χi;iþ1 �

X
qþ12Q

�
φqþ1

�
℘qþ1;℘cqþ1

� �
χi;iþ1



þ
� X

qþ12Q

�
ϕqþ1

�
℘qþ1;℘cqþ1

� ��
1� χi;iþ1

�� X
qþ12Q

�
ϕqþ1

�
℘qþ1;℘cqþ1

� ��
1� χi;iþ1

� 

(30)

For Eq. (6), the final iteration value is equal to zero, since χi,iþ1 ¼ 1, i.e., EU qiþ1 is correlated with qi. In case, χi,iþ1 ¼ 0, i.e., EU qiþ1 is not correlated
with qi, then the ϕqþ1

�
℘qþ1;℘cqþ1

�� ϕi

�
℘qþ1;℘cqþ1

�
is equal to zero, which confines that the final iteration value is equal to zero. Therefore, LHS¼ RHS.
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