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Abstract: State of Charge (SOC) estimation is the focus of battery management systems, and it is critical to accurately 

estimate battery SOC in complex operating environments. To weaken the impact of unreasonable forgetting factor values on 

parameter estimation accuracy, an artificial fish swarm (AFS) strategy is introduced to optimize the forgetting factor of 

forgetting factor least squares (FFRLS) and to model the lithium-ion battery using a first-order RC model. A new method 

AFS-FFRLS is proposed for online parameter identification of the first-order RC model. In SOC estimation, it is not 

reasonable to fix the process noise covariance, and the differential evolution (DE) algorithm is combined with the extended 

Kalman filter (EKF) algorithm to achieve dynamic adjustment of the process noise covariance. A joint algorithm named 

AFS-FFRLS-DEEKF is proposed to estimate the SOC. to verify the reasonableness of the proposed algorithm, experiments 

are conducted under HPPC, BBDST and DST conditions, and the average errors of the joint algorithm under the three 

conditions are 1.9%, 2.7% and 2.4%, respectively. The validation results show that the joint algorithm improves the 

accuracy of SOC estimation. 

1 Introduction 

 Since the last decade, electric vehicles (EVs) have rapidly developed and become widely used 

worldwide due to environmental pollution and the global energy crisis, which has attracted a great deal of 

attention [1]. Among them, the choice of batteries is extremely important, and lithium-ion batteries are the 

most widely used and promising batteries because of their long cycle life, good safety performance and high 

energy density [[2], [3], [4]]. State of Charge (SOC) estimation is one of the most important issues for 

Lithium-ion battery, and SOC represents the predicted value of the remaining energy of the battery [5], 

which cannot be obtained directly by measurement and is generally estimated by voltage and current 

measurements. In addition, other factors such as ambient temperature and noise can also affect the SOC 

value [6]. Therefore, for battery management systems (BMS), accurate estimation of SOC is critical but 

challenging at the same time. 

Numerous research works have investigated on SOC estimation using various methods. One of them is 

the ampere-time integration method, which is a simple classical SOC estimation method. The ampere-time 

integration method calculates the total power flowing into and out of the battery by integrating the time and 

currently based on certain external characteristics of the system, such as current, time, and temperature 

compensation, to estimate the state of charge of the battery. Although the method is simple and reliable, the 
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error accumulation and current acquisition accuracy have a large impact on the accuracy of the calculation 

results [7]. 

Abundant studies have demonstrated that the SOC can be calculated from its mapping relationship to 

the open circuit voltage (OCV) [8, 9]. Based on the simulation model of a lithium battery, a model parameter 

update method based on the dynamic matrix control (DMC) algorithm is proposed to identify the OCV 

online and optimize the output to a predetermined trajectory through feedback correction and rolling for 

current and future input control [10]. In another paper [11], a temperature-based fractional-order RC circuit 

model was developed that uses an ambient temperature lookup table for OCV-SOC-T and a temperature-

based offset function that facilitates the reduction of offsets due to model inaccuracies and operating 

conditions. However, the accuracy of SOC estimation using OCV-SOC mapping can be affected by driving 

style, ambient temperature, battery aging, and other factors [12]. Considering these factors, it is difficult to 

obtain an accurate OCV-SOC relationship. There is a potential relationship between impedance and SOC. 

The information measurement method of electrochemical impedance spectroscopy (EIS) is used to extract 

the EIS impedance features that are highly correlated with SOC and to establish a mapping relationship 

between impedance and SOC to estimate SOC [13]. However. Battery aging can affect the accuracy of 

impedance online measurements [14]. In addition, the internal temperature of the battery may also lead to 

changes in impedance and SOC [15]. 

Currently, data-driven methods are also heavily applied to SOC estimation, such as deep learning [16], 

neural networks [17], support vector machines [18], and long-short memory [19], which are usually based 

on data-driven methods. Data-driven is to build models that fit reality by training on large data sets [20]. 

However, using mixed data sets leads to poor model accuracy, and if only a single data set is used, it leads to 

poor model stability and generalization. To address these problems, a new multimodal integrated support 

vector regression (ME-SVR) method is proposed to estimate SOC by dividing the initial data into multiple 

subsets and building support vector machine models separately [21]. 

Kalman filter is the most commonly used method for SOC estimation, such as extended Kalman filter 

[22, 23], untraced Kalman filter [24, 25], cubature Kalman filter [26, 27], central difference Kalman filter 

[28], linear Kalman filter [29], etc. The Kalman filter is an optimal linear state estimation method that uses a 

recursive approach to solve linear filtering problems [30]. However, the validity of EKF estimation can be 

affected due to factors such as model parameters, uncertainty of noise covariance, etc. An adaptive tracking 

EKF (ATEKF) SOC estimation method for adaptive correction of error covariance is proposed [31]. In a 

series of SOC estimation methods with Kalman filter, observation noise is one of the key factors affecting 

the estimation results, and a multi-innovation cubature Kalman filter (MICKF) algorithm, combined with a 

robust fuzzy model, is proposed to effectively filter the noise in the observation [24]. Process noise not only 

leads to divergence of SOC estimation results but also causes hysteresis phenomena. In this work, literature 
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[32] considers the effect of hysteresis on SoC estimation and applies a differential evolution based SoC

estimation technique to accurately estimate SoC while minimizing the hysteresis effect. The literature [33] 

proposes a regression algorithm with differential evolution to represent polynomials of SOC-related 

parameters, Gaussians, and parameters of sine and exponential equations as a function of SOC, reducing the 

memory footprint. In summary, EKF remedies the defects of Kalman filtering and can obtain optimal 

solutions to local problems, but it is affected by process noise, and the differential evolution algorithm is 

flexible enough to be used for optimization in different fields. Therefore, it is feasible to combine the DE 

algorithm with the EKF algorithm to adaptively optimize the process noise variance and make up for the 

shortcomings of the EKF algorithm. 

Based on the above methods, this paper proposes a joint artificial fish swarm optimized forgetting 

factor least squares-differential evolutionary extended Kalman filter (AFS-FFRLS-DEEKF) algorithm to 

estimate the SOC of lithium battery. Firstly, a first-order RC model is established to describe the dynamic 

characteristics of the battery. In the FFRLS algorithm, an artificial fish swarm strategy is introduced to 

optimize the forgetting factor for the value of forgetting factor and an optimization objective function is 

established with the objective of minimizing the end voltage, and an online parameter identification method 

based on the AFS-FFRLS algorithm is proposed to optimize the forgetting factor and make it dynamic. 

Secondly, the differential evolution (DE) algorithm is combined with the extended Kalman filter (EKF) to 

achieve dynamic adjustment of the process noise covariance, and a DEEKF algorithm is proposed to 

estimate the SOC. Finally, to prove the effectiveness of the proposed algorithm, the end voltage estimation 

results of AFS-FFRLS and FFRLS are compared in the parameter identification section, and the joint 

algorithm AFS-FFRLS-DEEKF is synthesized and compared with several other algorithms in the SOC 

estimation section. 

The innovation points of this paper are described as follows. 

(1) The artificial fish swarm algorithm is proposed to combine with the FFRLS algorithm to optimize

the forgetting factor of FFRLS, make it dynamic, reduce the influence brought by unreasonable forgetting 

factor values, solve the local extremum problem of FFRLS algorithm, obtain the global extremum, improve 

the parameter identification accuracy, and lay the foundation for the subsequent SOC estimation. 

(2) The DEEKF algorithm is proposed to realize the adaptive adjustment of process noise covariance,

optimize the unreasonable problem of fixed process noise covariance of the EKF algorithm, and improve the 

accuracy of SOC estimation under the logic of real-time changes of actual noise. 

The rest of the paper is structured as follows: Section 2 establishes the first-order RC model and 

describes the newly proposed AFS-FFRLS algorithm and the DEEKF algorithm in detail. Section 3 conducts 

a comprehensive experiment on parameter identification and SOC estimation to verify the effectiveness of 

the new algorithms. Finally, Section 4 concludes the whole work. 
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2 Theoretical analysis 

This section provides a comprehensive description of mainly two newly proposed algorithms. Section 

2.1 establishes the first-order RC equivalent model and describes Kirchhoff's law equations as well as the 

discretized spatial equations. Section 2.2 describes the FFRLS algorithm. Section 2.3 describes the 

parameter identification method AFS-FFRLS algorithm in this paper. Section 2.4 gives the theoretical 

analysis of the DEEKF algorithm for estimating the SOC. 

2.1 First-order RC equivalent circuit modeling 

The first-order RC equivalent model can accurately simulate the characteristics of lithium-ion batteries 

with a reasonable amount of computational control. It consists of an ideal current source, an internal 

resistance R0 and an RC network. Where the RC network consists of a resistor and a capacitor, which used to 

describe the dynamics of the battery. The constructed first-order model is shown in Figure 1. 

+ U1  -

UOC

Ro

R1

C1

I(t)

UL

+

-

Figure 1. First-order RC equivalent model 

In Figure 1, Uoc represents the open-circuit voltage, R0 is the internal resistance of the battery, R1 is the 

polarization resistor, C1 is the polarization capacitor, loop R1C1 characterizes the process of rapid changes in 

circuit voltage, UL is the battery terminal voltage. Defining the orientation of discharge as positive, the KVL 

equation of the circuit file is shown in Equation (1). 

0 1 2

1 1

1 1 1

1

ocLU U IR U U

dU U

dt C R C







   

 
(2) 

In Equation (3), U1 indicates the terminal voltages of the sRC circuit, and Uoc represents open-circuit 

voltage which can be expressed as a function of SOC, where xk=[SOCk, U1k] is the state variable, and spatial 

state expressions of the model shown in Equation (4) can be obtained after discretizing Equation (5).  
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(6) 

In Equation (7), the two equations are the state and viewing equations of the system, separately. The ∆t 

represents the sampling time, the time constant is denoted by τ, τ1=R1C1, the subscripts k and k-1 represent 

the current and previous moment state respectively. Wk represents the observation error, Vk is the 

measurement error, QN indicates rated capacity of the battery,   represents the Coulomb efficiency, and the 

general value is 1. 

2.2 Forgetting factor least squares 

Theoretically, the more data collected by parameter identification, the higher the accuracy of parameter 

estimation, but too much data can easily lead to data saturation, which in turn leads to less information 

obtained by the algorithm from new data [34]. Due to the phenomenon of "filter saturation" in the least-

squares method [35], meaning that the values of the gain K and the system covariance P become smaller and 

smaller as the number of data iterations of the algorithm increases. As a result, the algorithm's ability to 

correct the data gradually decreases and data saturation increases, which eventually leads to an increase in 

parameter identification errors. Therefore, the forgetting factor recursive least squares (FFRLS) method is 

formed [36, 37]. The role of the forgetting factor is to give less weight to the long-running data in the 

recognition process while the latest observation data occupies more weight. The relationship between the 

parameters and the terminal voltage is expressed as a linear equation, as shown in Equation (8). 
Ty x u e  (8) 

where y is the measured value of the system output. x is the state output vector, its elements can consist 

of parameters or expressions of parameters. u is the system input vector, consisting of the system 

measurement signals. e is the sampling error of the sensor. 

According to the system transfer function, a linear regression model of the battery parameters and 

terminal voltage is derived, as shown in Equation (4). 

,

1, 2, 3,

, 1 , , 1  1    

T

L k k k

T

k k k k

T

k L k t k t k

U

U I I

 

   

  

 



   


   

(9) 

where φk is the input vector. θk is the output vector. θi,k is the expression of the cell parameters. 
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6 

The FFRLS algorithm introduces a forgetting factor λ to adjust new and old data weights, and λ takes a 

value close to 1, which is generally taken as 0.95 ≤ λ ≤ 1.00. Setting the gain coefficient as K(k), the 

parameter vector as θ(k), and the covariance matrix as P(k), the FFRLS Equation is shown in Equation (10).  

           

           

       

1

1 1

1 1

1
1

T

T

T

K k P k k k P k k

k k K k y k k k

P k E K k k P k

   

   




      
       


     

(10) 

2.3 Forgetful factor least squares for artificial fish swarm optimization 

Although the FFRLS algorithm can weaken the effect of aged data and deal with the data saturation 

problem to some extent [38], the recognition effect of FFRLS algorithm mainly depends on the value of λ. If 

the value of λ is smaller, the tracking ability is stronger, but the result tends to fluctuate. If the value of λ is 

larger, the stability is stronger, but the tracking ability is weaker. To weaken the influence of the λ-value 

problem, the AFS algorithm is proposed to optimize the forgetting factor λ, which minimizes the terminal 

voltage error. The behavioral functions of the AFS algorithm are defined as functions such as foraging, 

clustering, tail-chasing, and random. The model expression for the artificial fish population is shown in 

Equation (11). 

* ()

* * ()

V

V
next

V

X X Visuanl Rand

X X
X X Step Rand

X X

 



 

 

(11) 

Where X is the initial position of the artificial fish, XV is a position within the current field of view of 

the artificial fish, and Xnext is the position of the next state of the artificial fish. Step denotes the step size, and 

Rand () denotes the random function that generates a random number between 0 and 1. 

At first, the artificial fish performs foraging behavior. The artificial fish Xi randomly selects a state Xj 

within its field of view, and the expression of Xj is shown in Equation (12). 

()j iX X Visuanl Rand   (12)

The values of objective functions Yi and Yj are calculated for Xi and Xj, respectively, and if Yj is better 

than Yi, Xi is moved one step in the direction of Xj, Xi= (λ1, λ2, …, λi). This process is shown in Equation (13). 

1 ()

t

j it t

i i t

j i

X X
X X Step Rand

X X




   


(13) 

To obtain a new central position, the artificial fish will perform clustering behavior, and this process is 

shown in the expression of Equation 9. 

1 (),  /
t

t t c i
i i c f it

c i

X X
X X Step Rand Y n Y

X X
 

    


(14) 

where XC is the center location, nf is the number of partners, and δ denotes the congestion factor. 
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7 

The artificial fish searches for the functionally optimal partner among the partners in the current field of 

view, it performs the tailing behavior, and the process is shown in Equation 10. 

1 (),  /

t

j it j

i i j f it

j i

X X
X X Step Rand Y n Y

X X



    


(15) 

The δ deals with the minimal value problem and performs foraging behavior if the conditions in 

Equation (14) and (15) are not satisfied. The δ expression is shown in Equation (16). 

 max ,  0,1n    (16) 

where α is the extreme proximity level and nmax is the maximum number of artificial fish expected to 

aggregate in the neighborhood.

Random behavior is a default behavior of foraging behavior, where artificial fish move one step 

randomly to reach a new state, as shown in Equation (17). 

1 ()t t

i iX X Visuanl Rand    (17) 

With the minimum terminal voltage error as the optimization objective, the AFS algorithm is 

introduced to optimize the forgetting factor in real-time to improve the accuracy of online identification. 

Combining Equation (10), the fitness function is determined as Equation (18). 

   ( ) ( ) 1T

L OCf U k U k k k     (18) 

The expression for the estimated value of the system of θk optimized by the artificial fish population is 

shown in Equation (19). 

       

     

1

1

1 1 1

1 1

T

k

k k k T

i

P k k y k k

k P k k

  
 

  





      
    

(19) 

With the identified results of θk, the parameters can be further calculated according to Equation (5). The 

calculation equation is shown in Equation (20). 
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(20) 

In summary, the flow of the AFS-FFRLS algorithm is shown in Figure 2.
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Figure 2. Flow chart of AFS-FFRLS algorithm 

2.4 Differential Evolution Extended Kalman Filter Algorithm 

Due to the complex and variable working environment, the parameters of the equivalent model are 

greatly influenced by the environment, leading to a decrease in the estimation accuracy of the SOC. In 

traditional EKF algorithm, the observed noise variance Qk will affect the SOC estimation result [39]. The Qk 

value is generally a set of fixed values, which is difficult to obtain accurately in practical application models, 

and the noise is unmeasurable and variable [40-42], and it is not reasonable to fix the process noise variance, 

so the differential evolution (DE) algorithm is introduced to optimize the process noise variance fixed in the 

original extended Kalman algorithm. So that the variance of noise can be automatically revised based on the 

changes in the environment, with this constant, the changed optimal variance is substituted into the original 

algorithm to complete the online estimation of SOC under cycle conditions. The flow of the DE algorithm is 

described as follows. 

1) System initialization

 

   

0 0

0 0 0 0 0

T

x E x

p E x x x x



  

 

       

(21) 

2) Update of the state variable

| 1 1 1 1 1k k k k k kx A x B I      (22) 

In Equation (22), A represents the state transition matrix, and B is the control matrix. 

3) Update of the system prior covariance
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| 1 1 1 1 1

T

k k k k k kP A P A Q      (23) 

In Equation (23), Qk-1 is the noise variance at time k-1. If the process noise Qk-1 is not fixed and changes 

with the filter, the DE algorithm is used to obtain its variance according to the process noise at different 

times, and select the optimal solution from Q0 to Qk. 

4) Population initialization

 , (0) ()

1,2,..., ,  1, 2,...,

i k k k kx l rand u l

k d i N

   


 
(24) 

In Equation (24), rand () is a random number uniformly distributed between 0 and 1, uk and lk are the 

upper and lower bounds of the search, and Qk, Q0 are the upper and lower bounds respectively. 

5) Mutation operation

       1 2 3i r r rx g x g F x g x g      (25) 

In Equation (25), Qi(g) is a variant individual, F is the compression scale factor, which ranges from 0 to 

1, xr1, xr2 and xr3 are the three parents. 

6) Crossover operation

The crossover operation retains the better variables and adopts the binomial crossover method. The

implementation of the binomial crossover method is shown in Equation (26). 

 
 

 

,

,

,

,     

,  

i g

i g

i g

X g r cr or j rnd
y g

x g others

 
 


(26) 

Where r is a uniformly spread random number between 0 and 1 generated by each variable, cr is the 

crossover probability of the variable and rnd is an evenly spread integer between 1 and d. If r<cr, accept the 

component corresponding to the target individual, otherwise keep the component corresponding to the 

current individual. 

7) Select action

The standard differential evolution algorithm adopts a greedy selection method, and the operations are

shown in Equation (27). 

 
   ( ), ( ) ( )

1
( ),  

i i i

i

i

X g f X g f x g
x g

x g others

 
  


(27) 

In Equation (27), this optimal solution is assigned to Qi to be applied to the next filtering, and the 

greedy selection method improves the population performance and gradually approaches the optimal 

solution. 

8) Update of Kalman gain

 
1

| 1 | 1

T T

k k k k k k k k kK P C C P C R


   (28) 

In Equation (28), P is the error covariance matrix, C is the observation matrix, and Rk is the observation 

noise variance. 

9) State posterior estimation
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 | | 1
ˆ

k k k k k k kx x K Y y   (29) 

In Equation (29), Yk-yk represents the innovation at the current moment. 

10) Update of the error covariance

 |k k k k kP E K C P  (30) 

In Equation (30), E represents the identity matrix. 

In summary, the process of estimating SOC based on AFS-FFRLS and DEEKF algorithm is shown in 

Figure 3. 
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Figure 3. Flow chart of SOC estimation 

In Figure 3, the introduction of the differential evolution algorithm optimizes the variance of the 

process noise and improves the accuracy of the entire Kalman algorithm. Using the AFS-FFRLS algorithm 

for parameter identification also improves the model parameter identification accuracy to a certain extent, 

laying a foundation for improving the SOC estimation accuracy of lithium-ion battery. 

3 Analysis of experimental results 

This section reports the experimental validation results of the parameter identification module and the 

SOC estimation module. Section 3.1 gives the identification results for each parameter and the terminal 

voltage estimation results for the three operating conditions. Sections 3.2, 3.3, and 3.4 perform SOC 

estimation based on the joint AFS-FFRLS-DEEKF algorithm for HPPC, BBDST, and DST operating 
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11 

conditions, respectively, and compare with various joint algorithms. Section Error! Reference source not 

found. performs SOC estimation under three operating conditions at an initial value of SOC of 0.8. 

The ternary lithium-ion battery is the object of study, the rated capacity of the battery is 70 Ah, and the 

actual capacity is 68.47 Ah. The experimental stage is built with the BTS200-100-104 battery testing 

equipment and temperature control box provided by Shenzhen Yakeyuan Technology Co. The battery is 

charged and discharged under constant temperature (25°C) to obtain relevant experimental data. The 

experimental platform is shown in Figure 4. 

Parameter setting

Computer

Experimental data

Equipment

Battery

o
u

tp
u

t

Figure 4. Experimental platform 

3.1 Parameter identification results and terminal voltage prediction 

Taking the HPPC condition as the condition of parameter identification experiment, the parameters of 

the first-order RC model are identified online according to the AFS-FFRLS algorithm flow, and the 

identification results are compared with those of RLS and FFRLS algorithms, to verify the feasibility of the 

AFS-FFRLS algorithm. The parameter identification results of different algorithms are shown in Figure 5. 

(a) Identification results of R0 (b) Identification results of RP
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(c) Identification results of CP (d) Identification results of τ

Figure 5. Parameter identification results 

In Figure 5, the experimental data values of each parameter are used as a reference. It can be seen that 

the results of the RLS algorithm deviate from the reference throughout the identification process, and the 

results of τ fluctuate drastically, showing poor convergence. After adding the forgetting factor (λ=0.98), the

recognition accuracy of the FFRLS algorithm has been improved and the convergence in the whole 

parameter recognition process has been improved, but there is still some deviation from the reference. And 

the results of the proposed AFS-FFRLS algorithm show the best agreement with the reference, and the 

fluctuation range of tao also shows its better convergence, which verifies the effectiveness of the AFS-

FFRLS algorithm. 

To further verify the accuracy of the proposed algorithm in identifying the model parameters, end-

voltage prediction experiments were conducted and error comparisons were made under HPPC, DST and 

BBDST operating conditions, as shown in Figure 6. 

(a) Terminal voltage prediction results under HPPC working condition (b) Terminal voltage prediction error under HPPC working condition

(c) Terminal voltage prediction results under DST working condition (d) Terminal voltage prediction error under DST working condition
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(e) Terminal voltage prediction results under BBDST working

condition

(f) Terminal voltage prediction error under BBDST working condition

Figure 6 Terminal voltage prediction results under different operating conditions 

In Figure 6, it can be seen that the RLS algorithm has the worse terminal voltage prediction effect 

among the three algorithms for each operating condition, and there are obvious divergences and fluctuations 

throughout the simulation process. After adding the forgetting factor, the FFRLS algorithm reduces the 

estimation error, but there is still some discrepancy with the experimentally measured terminal voltage. By 

comparison, the AFS-FFRLS algorithm has the smallest simulation error and the best convergence among 

the three algorithms, and the highest affinity with the reference, which means that the AFS-FFRLS 

algorithm is a better choice among the online parameter identification methods for lithium-ion batteries. 

3.2 Analysis of SOC estimation results under HPPC condition 

 The HPPC experiment includes charging and discharging of different durations and the shelving steps, 

which can better emulate the actual working scenario of the battery. The variance of process noise is 

optimized by the differential evolution algorithm, and setting the process noise covariance matrix Q to be a 

third-order diagonal matrix whose main diagonal is Y, where Y is the optimal solution selected by each 

iteration of the differential evolution algorithm, the observation noise covariance matrix R is set to 0.01, the 

actual SOC initial value is 1. The voltage and current under HPPC conditions are shown in Figure 7, and the 

estimation results and error comparisons of different algorithms are presented in Figure 8. In addition, the 

mean absolute error (MAE), maximum absolute error (MAX) and root mean square error (RMSE) of various 

algorithms are shown in Table 1. 

(a) Current (b) Voltage

Figure 7 Voltage and current at HPPC operating conditions 
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(a) SOC estimation results of different algorithms under HPPC

conditions

(b) Error comparison of different algorithms under HPPC conditions

Figure 8. SOC estimation results and errors of HPPC condition 

Table 1. Comparison of SOC estimation results of different algorithms under HPPC conditions 

Method MAE MAX RMSE 

EKF 0.02351 0.05242 0.02517 

FFRLS-EKF 0.02295 0.04343 0.02301 

AFS-FFRLS-EKF 0.02151 0.02662 0.02133 

AFS-FFRLS-DEEKF 0.01658 0.01729 0.01587 

In Figure 8(a), S1 is the actual SOC value, S2 indicates the SOC result estimated by the EKF algorithm 

based on the second-order RC model, S3 represents the SOC result estimated by FFRLS and EKF 

algorithms, and S4 indicates the SOC estimated by the AFS-FFRLS and EKF algorithms as a result, S5 

represents the SOC estimation result based on AFS-FFRLS and DE-EKF algorithm. 

In Figure 8(b), Err2 and Err3 represent the SOC estimation errors of the FFRLS-EKF and AFS-FFRLS-

EKF algorithms, respectively. It can be seen that the fluctuation range of the Err3 curve is significantly 

smaller than that of the Err2 curve, which proves that the online parameter identification method of AFS-

FFRLS can further improve the SOC estimation accuracy compared with the FFRLS algorithm, and verifies 

the effectiveness of the optimization of the AFS algorithm. Err4 represents the error curve of the joint 

algorithm AFS-FFRLS-DEEKF, and compared with Err3 it can be seen that the DEEKF algorithm performs 

better in the case of the same AFS-FFRLS parameter identification method, which verifies the feasibility of 

dynamic optimization of process noise covariance.  

Similarly, it can be seen from Table 1 that the joint algorithm AFS-FFRLS-DEEKF performs the best 

under all the three error metrics compared with the other three algorithms, and the disparity between the 

maximum absolute error (MAX) and MAE, RMSE is small, indicating that the AFS-FFRLS-DEEKF 

algorithm improves the convergence while improving the accuracy of SOC estimation, which verifies the 

feasibility of the joint algorithm. 
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3.3 Analysis of experimental results under BBDST condition 

In the practical application environment of lithium-ion battery, the working conditions are complex and 

variable. To verify the stability and accuracy of the SOC prediction of the improved algorithm, BBDST 

experiments are performed on lithium-ion batteries and experimental data were collected. The BBDST 

working condition includes 19 steps including starting, coasting, acceleration, braking, and rapid 

acceleration of the pure electric bus, which can better restore the  working status of lithium-ion batteries in 

real-life scenarios. The voltage and current for the BBDST condition are shown in Figure 9. 

(a) Current (b) Voltage

Figure 9. Current and voltage test results under BBDST condition

To verify the effectiveness of the improved algorithm, SOC estimation is performed on the basis of the 

EKF, FFRLS-EKF, AFSFFRLS-EKF and AFSFFRLS-DEEKF algorithms respectively. The process noise 

covariance Q is set as a diagonal matrix with the main diagonal element equal to Y, where Y is the optimal 

solution selected by each iteration of the differential evolution algorithm, and the observation noise 

covariance R is set to 0.01, the actual SOC initial value is 1. The experimental verification results are shown 

in Figure 10. 

(a) SOC estimation results under BBDST conditions (b) Error of SOC estimationunder BBDST conditions

Figure 10. SOC estimation results under BBDST condition 

Table 2. Comparison of SOC estimation results of different algorithms under BBDST conditions 

Method MAE MAX RMSE 

EKF 0.04625 0.04992 0.04406 

FFRLS-EKF 0.03474 0.04512 0.03303 

AFS-FFRLS-EKF 0.02657 0.03698 0.03056 
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In Figure 10(a), S1 indicates the actual SOC value, S2 is the SOC estimated result of the EKF 

algorithm based on the offline parameter identification, S3 indicates the SOC estimated resultof EKF 

algorithm based on the FFRLS parameter identification, and S4 represents the SOC estimated result based 

on AFS-FFRLS algorithm and the EKF algorithm. S5 represents the SOC estimation value based on the 

AFS-FFRLS algorithm and the DE-EKF algorithm.  

In Figure 10(b), Err1, Err2, Err3, Err4, and Err5 are the SOC prediction errors matching with the S2~S5 

algorithms in Figure 10(a) respectively. It can be seen that in the final stage of the experiment, different 

algorithms exhibit different degrees of divergence, which is caused by the violent chemical reactions 

occurring inside the battery at the end of the discharge. In Table 2, the joint algorithm AFS-FFRLS-DEEKF 

controls the MAE and RMSE indexes within 2% and the MAX index within 3%, indicating that the joint 

algorithm can still maintain the best performance under the more complex operating conditions, further 

verifying the effectiveness of the AFS-FFRLS-DEEKF algorithm. 

3.4 Analysis of experimental results under DST condition 

In actual application, the current reacted in real time of lithium-ion batteries is complex and changeable. 

Under different operating conditions, there are often abrupt swapping and stops of current, so it is not only 

necessary to strictly require the dynamic performance of the battery but also the SOC of the lithium-ion 

battery has to be estimated under complex operating conditions. To further validate the model for SOC 

estimation of lithium-ion batteries under more complex operating conditions, the self-defined Dynamic 

Stress Test (DST) working condition experimental data is used to simulate the model. In the meantime, the 

Ampere-hour integral method and EKF algorithm are added under the same working conditions to carry out 

the synchronous simulation. The experimental procedures of the DST are as follows: 

16 

(1) The battery is charged to a maximum terminal voltage of 4.20V with a constant current of 1C,

followed by charging at a constant voltage until the current reduces to 0.05C. 

(2) After charging is completed, the battery is put aside to maintain the battery voltage. The dwell time

was chosen as 30 minutes due to the small capacity of the selected Lithium-ion battery. 

(3) Discharging the battery at a constant current rate of 0.5C for 4 minutes and set aside for 30 seconds

after stopping the discharge. 

(4) The lithium-ion battery is charged with a constant current rate of 0.5C for 2 minutes. The battery is

shelved for 30s after charging. 

(5) The constant current discharge is performed at a rate of 1C for 4 minutes.

The voltage and current for DST condition are shown in Figure 11. 
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(a) Current (b) Terminal voltage

Figure 11. Current and voltage test results under DST condition 

The process noise covariance Q is set as a diagonal matrix whose main diagonal element is equal to Y, 

where Y is the optimal solution selected by each iteration of the differential evolution algorithm, and the 

observation noise covariance R is set to 0.01, the actual SOC initial value set to 1. The experimental 

verification results are shown in Figure 12. 

(a) SOC estimation results of different algorithms under DST

conditions

(b) SOC estimation error of different algorithms under DST

conditions

Figure 12. SOC estimation results and errors of DST condition 

Table 3. Comparison of SOC estimation results of different algorithms under BBDST conditions. 

Method MAE MAX RMSE 

EKF 0.04264 0.04341 0.04231 

FFRLS-EKF 0.03153 0.03847 0.03276 

AFS-FFRLS-EKF 0.01961 0.03042 0.02036 

AFS-FFRLS-DEEKF 0.01684 0.02063 0.01713 

In Figure 12(a), S1 indicates the actual SOC value, S2 is the SOC estimation result of the EKF 

algorithm based on the offline parameter identification of the second-order RC model, S3 represents the 

EKF algorithm SOC estimation value based on the FFRLS algorithm, and S4 represents the SOC estimation 

result based on the AFS-FFRLS Algorithm and EKF algorithm SOC estimation value, S5 represents the 

SOC estimation value based on AFS-FFRLS algorithm and DE-EKF algorithm. In Figure 12(b), Err1, Err2, 

Err3, Err4, and Err5 are SOC estimation errors matching with the S2~S5 algorithms in Figure 12(a), 

respectively.  

From the SOC estimation curves in Figure 12, it can be seen that the proposed algorithm AFS-FFRLS-

DEEKF is closest to the true SOC curve, while the other three algorithms have significant deviations and 

fluctuations. From the error curves, the first three algorithms show divergence in the second half of the 

experiment, while the proposed algorithm maintains good convergence as well as high accuracy. In addition, 
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it can be seen from Table 3 that the method outperforms the three algorithms under the three error indicators, 

indicating that the proposed algorithm can estimate the SOC curve better with higher accuracy and stability. 

3.5 Experimental results of SOC with initial value of 0.8 

To further verify the effectiveness of the algorithm, tests were conducted with a non-full charge battery 

under the above three operating conditions. For all three operating conditions, the actual SOC value is set to 

0.8 and the initial SOC value for the other algorithms is set to 0.7. The SOC estimation results are shown in 

Figure 13. 

(a) SOC estimation results in 0.8 initial value under HPPC condition (b) SOC estimation errors in 0.8 initial value under HPPC condition

(c) SOC estimation results in 0.8 initial value under DST condition (d) SOC estimation errors in 0.8 initial value under DST condition

(e) SOC estimation results in 0.8 initial value under BBDST condition (f) SOC estimation errors in 0.8 initial value under BBDST condition

Figure 13. Results of SOC estimation in 0.8 initial value under different conditions 

In Figure 13, it can be seen from the SOC estimation results that the proposed algorithm AFS-FFRLS-

DEEKF can quickly correct the estimated route with the best convergence among the four algorithms when 

the power is not full. A fast convergence speed is important for SOC estimation, and it is equally important 
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whether the SOC can still be estimated accurately after convergence. The error results show that the 

proposed algorithm has the lowest error curve fluctuation among the four algorithms, and the error can be 

stabilized within 2%, 1.5%, and 2% for HPPC, DST, and BBDST conditions, respectively, further verifying 

the effectiveness and robustness of the proposed algorithm. 

3.6 Experimental results of SOC in different algorithms 

The data used in this section is from the Battery Research Group at the Center for Advanced Life Cycle 

Engineering (CALCE) at the University of Maryland. The associated data set can be downloaded by visiting 

https://web.calce.umd.edu/batteries/data.htm. The INR 18,650–20R cell is selected as the test target. All tests 

are conducted at 25°C. A basic description of this battery is given in Table 4. 

Table 4. Basic specifications of INR 18,650–20R battery. 

Capacity 

Rating 

Cell Chemistry Weight Dimensions Length Nominal 

voltage 

Upper/lower 

cut-off voltage 

2000 mAh LNMC/Graphite 45.0g 
18.33 ± 

0.07mm 

64.85 ± 

0.15mm 
3.6V 2.5V/4.2V 

To further verify the effectiveness of the proposed algorithm, three advanced algorithms are selected for 

comparison with the proposed algorithm. The algorithms compared in this section are AEKF [43], MIEKF 

[44] and AHIF [45] algorithms. For a fairly comparison, the proposed AFSFFRLS algorithm was used for

each algorithm's parameter identification method and run 20 times independently, and the comparison is 

performed under Dynamic stress test (DST), Federal Urban Driving Schedule (FUDS) and Beijing Dynamic 

Stress Test (BJDST) conditions respectively. The SOC estimation results of the four algorithms are shown in 

Figure 14. 

(a) SOC estimation results under DST condition (b) SOC estimation error results under DST condition
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(c) SOC estimation results under FUDS condition (d) SOC estimation error results under FUDS condition

(e) SOC estimation results under BJDST condition (f) SOC estimation error results under BJDST condition

Figure 14. Results of SOC estimation under different conditions 

Table 5. Error indicators of different algorithms under different working conditions 

Method DST FUDS BJDST 

MAE MAX RMSE MAE MAX RMSE MAE MAX RMSE 

AEKF 0.0149 0.0189 0.0155 0.0210 0.0243 0.0221 0.0186 0.0204 0.0193 

MIEKF 0.0169 0.0197 0.0175 0.0186 0.0217 0.0196 0.0154 0.0167 0.0160 

AHIF 0.0136 0.0173 0.0092 0.0156 0.0192 0.0163 0.0137 0.0136 0.0128 

DEEKF 0.0097 0.0112 0.0081 0.0106 0.0199 0.0124 0.0101 0.0120 0.0107 

From Table 5, it can be seen that the proposed algorithm DEEKF has the best performance in terms of 

metrics for the three operating conditions, and the obtained MAE and RMSE values are the smallest. The 

difference between the four algorithms is not significant, which means that it is effective in the direction of 

making improvements to the noise. In addition, Figure 14 plots the convergence curves as well as the error 

curves for each algorithm for 20 independent runs. From the convergence curves, it can be seen that all four 

algorithms perform well in terms of convergence ability, but there is no doubt that the proposed algorithm 

DEEKF is the best performer among them. The error curves show that the proposed algorithm is in a smaller 

error domain, which means that the DEEKF algorithm still performs the best in precision, further validating 

the effectiveness of the proposed algorithm. 

4 Conclusion 

In this paper, a new joint AFS-FFRLS-DEEKF algorithm for lithium battery SOC estimation is 

proposed. Among them, the AFS-FFRLS algorithm completes the task of parameter identification, 

establishes the objective function with the purpose of minimizing the absolute value of the difference 

between the actual end-voltage value and the estimated end-voltage value, adjusts the forgetting factor value 

in real-time, and responds to the parameter identification effect with end-voltage experiments and maps to 

SOC estimation. The DEEKF algorithm is used for SOC estimation and realizes the process noise dynamics 

by updating the process noise covariance through the DE algorithm in simulating the actual situation while 

optimizing the estimation results. The combined experiments compare the joint algorithm with several other 

algorithms, and the results show that the proposed joint algorithm is effective. 

The following findings can be summarized from the overall research process. 
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1) The AFS-FFRLS algorithm terminal voltage estimation error is stable within 4% and works well for

SOC estimation mapping. The joint algorithm stabilizes the SOC estimation error within 1.9%, 2.7% and 2.4% 

for HPPC, BBDST and DST conditions, respectively, which effectively improves the SOC estimation 

accuracy. 

2) The proposed DEEKF algorithm achieves close to realistic process noise covariance dynamics, and

the average error of the proposed algorithm is maintained at about 1% under the three operating conditions 

provided by the University of Maryland battery group, which is the best performance in comparison with 

three advanced algorithms, effectively overcoming the effect of process noise and improving the SOC 

estimation accuracy. 

3) In the case of SOC initial value set to 0.8 and algorithm initial value set to 0.7, the joint algorithm

AFS-FFRLS-DEEKF can converge quickly and maintain the estimation error within 2% for all three 

operating conditions, which proves that the joint algorithm has good robustness. 

In future work, further improvements will be made to reduce the computation time based on the 

algorithm structure and algorithm flaws, while considering experiments under different temperatures. 

Extending its estimation objectives, such as joint estimation of SOC and SOH. 
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