
MACLEAN, A. 2003. A lightweight, graph-theoretic model of class-based similarity to support object-oriented code
reuse. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from:

https://doi.org/10.48526/rgu-wt-1871759

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only – re-use of any third-party content must still be cleared with the original copyright holder.

This document was downloaded from
https://openair.rgu.ac.uk

A lightweight, graph-theoretic model of class-
based similarity to support object-oriented code

reuse.

MACLEAN, A.

2003

https://doi.org/10.48526/rgu-wt-1871759

A Lightweight, Graph-theoretic Model of Class-based

Similarity to Support Object-oriented Code Reuse

Angus MacLean BSc BA(Hons)
School of Computer and Mathematical Sciences

A thesis submitted in partial fulfillment of the requirements of
The Robert Gordon University

for t he degree of Doctor of Philosophy
January 2003

Abstract

The work presented in this thesis is principally concerned with the development of a
method and set of tools designed to support the identification of class-based similarity
in collections of object-oriented code. Attention is focused on enhancing the potential
for software reuse in situations where a reuse process is either absent or informal,
and the characteristics of the organisation are unsuitable, or resources unavailable, to
promote and sustain a systematic approach to reuse.

The approach builds on the definition of a formal, attributed, relational model
that captures the inherent structure of class-based, object-oriented code. Based on
code-level analysis, it relies solely on the structural characteristics of the code and
the peculiarly object-oriented features of the class as an organising principle: classes,
those entities comprising a class, and the intra and inter-class relationships existing
between them, are significant factors in defining a two-phase similarity measure as a
basis for the comparison process. Established graph-theoretic techniques are adapted
and applied via this model to the problem of determining similarity between classes.

This thesis illustrates a successful transfer of techniques from the domains of molec­
ular chemistry and computer vision. Both domains provide an existing template for
the analysis and comparison of structures as graphs. The inspiration for representing
classes as attributed relational graphs, and the application of graph-theoretic tech­
niques and algorithms to their comparison, arose out of a well founded intuition that
a common basis in graph-theory was sufficient to enable a reasonable transfer of these
techniques to the problem of determining similarity in object-oriented code.

The practical application of this work relates to the identification and indexing
of instances of recurring, class-based, common structure present in established and
evolving collections of object-oriented code. A classification so generated additionally
provides a framework for class-based matching over an existing code-base, both from
the perspective of newly introduced classes, and search “templates” provided by those
incomplete, iteratively constructed and refined classes associated with current and
on-going development. The tools and techniques developed here provide support for
enabling and improving shared awareness of reuse opportunity, based on analysing
structural similarity in past and ongoing development, tools and techniques that can
in turn be seen as part of a process of domain analysis, capable of stimulating the
evolution of a systematic reuse ethic.

l

A cknow ledgem ents

This thesis would not have been written were it not for the generous and continuing
encouragement of my Director of Studies, Dr. John McCall. I am grateful to John
for his patience, insight, humour and, above all, his ability to guide me along an often
exciting but sometimes difficult path to completion. My thanks also to my supervisory
team, Dr. Deryck Brown and Mr. David Crossen, for their advice and suggestions.

To the many friends and colleagues who I have had the great pleasure to meet and
work with over the past four years, your stimulating company and varied perspectives
on fife, love and computer science have been appreciated more than any one of you
can possibly imagine. Thank you all.

I own a special debt of gratitude to my brother Iain and his wonderful family, for
their unquestioning support during trying times, their eternal, infectious optimism,
and above all, their generous welcome. This home-from-home has meant a great deal
to me.

I dedicate this thesis to my parents, Duncan and Chrissie, whose support and
encouragement have been ever-present. For instilling and nurturing the belief that any
opportunity to discover and learn is a precious and powerful gift, I will be eternally
grateful. You are always with me, and always will be.

[This work was supported by an EPSRC Studentship.]

ii

C o n ten ts

1 Introduction
1.1 Motivation: software reuse “in the small” ...

1.1.1 Software r e u s e ...
1.1.2 Reuse in small organisations..
1.1.3 Patterns of informal reu se ...
1.1.4 Source code as the focus of systematic reuse...............................
1.1.5 Object-oriented development and reuse
1.1.6 Object-oriented code stru ctu re...
1.1.7 Sum m ary...

1.2 Objectives...
1.3 Proposed approach..

1.3.1 An attributed, relational model of code structure......................
1.3.2 Similarity not exact match ..
1.3.3 A transfer of techniques..
1.3.4 Existing code as an informal reuse repository............................
1.3.5 A “lightweight” approach...
1.3.6 Late life-cycle activated reu se ..

1.4 Basic hypotheses...
1.5 Thesis organisation..

2 A Review of Approaches to A utom ated, Code-level Comparison.
2.1 Introduction..

2.1.1 Scope of review ..
2.2 Direct Code Comparison..

2.2.1 Plagiarism detection in software programs...................................

iii

1
2
2
3
4
5
5
6
6

7
8
8
9

10
11

11
12
13
13

17
17
17
19
19

2.2.2 Duplication, code cloning and “near-miss” sim ilarity........ 23
2.3 Application Dependent Source Code Representation............................ 29

2.3.1 Repository-based reuse.. 29
2.3.2 Program understanding and m aintenance................................... 34

2.4 Themes and comments... 39

3 M odel Construction: structural sim ilarity in object-oriented code 43
3.1 Introduction.. 43
3.2 Modelling Structure and Sim ilarity.. 44

3.2.1 Analogies from molecular chemistry and computer vision . . . 44
3.2.2 Global quantification of structural similarity...................... 50
3.2.3 Local quantification of structural similarity - graph morphisms 5G
3.2.4 Sufficiency in determining sim ilarity 58

3.3 Structural Representation and Similarity in Object-oriented Code . . . 59
3.3.1 A graph-theoretic perspective... 59
3.3.2 Primitives, relationships and attributes 61

3.4 A Formal Model of Object-oriented Code Structure and Structural
Comparison.. 70
3.4.1 Attributed Relational Graphs (A R G s)... 71
3.4.2 Global similarity: “Structure Paths” .. 72
3.4.3 Similarity coefficients ... 78

3.5 Sum m ary.. 80

4 M odel Interpretation: Java classes and bytecode analysis 81
4.1 Introduction.. 81
4.2 Java Classes and Bytecode... 82

4.2.1 Java B y te co d e .. 82
4.2.2 Model instantiation .. 83

4.3 Bytecode Analysis: structure graph and feature extraction................... 84
4.3.1 A simple illustrative exam p le... 84

4.4 Model Evaluation.. 88
4.4.1 Object-Oriented code reuse and p lagiarism 88
4.4.2 Plagiarism and structural s im ilar ity .. 90
4.4.3 Source code vs byte code analysis.. 92

I V

4.5 Some Proof of Concept Experiments... 93
4.5.1 Setup of the s tu d y ... 93
4.5.2 Data S e t s ... 93
4.5.3 Experiments ... 94

4.G Discussion.. 121
4.7 Sum m ary.. 126

5 Structure Graph M atching 128
5.1 Introduction.. 128
5.2 Graph M atch in g ... 129

5.2.1 Fundamental Graph M a tch .. 130
5.2.2 Labeled Graphs.. 132
5.2.3 Matching Labeled G raphs... 133

5.3 Labeled Graph Matching by Clique D etection... 13G
5.3.1 MCS by Clique D etection ... 137

5.4 Interpreting Graph Match for Java Class Comparison 147
5.4.1 General M a tc h .. 147
5.4.2 Incorporating Domain Specific Knowledge................................... 155
5.4.3 Refinement using attributed m atch... 1G2
5.4.4 A similarity coefficient based on “relative normalisation” 1G7
5.4.5 Compromises and larger classes... 1G8
5.4.6 Heuristic match using an hybridised genetic algorithm 171

5.5 Revisiting the Structure Path analysis: SP, JP and M CS........................ 180
5.5.1 Using SP as an MCS predictor... 189

5.6 Summary: problems and opportunities... 191

G Class Collections: classifying recurring structure 193
G.l Introduction.. 193
6.2 Harvesting and searching for commonality... 194

6.2.1 Larger collections... 194
6.2.2 The need for partitioning... 197

6.3 Cluster A n a ly s is ... 200
6.3.1 Unsupervised classification .. 200
6.3.2 Clustering methods... 201

v

6.3.3 Clustering ten d en cy ..
6.4 Partitioning Collections of C la s se s ...

6.4.1 Problems, compromises and consequences..................................
6.5 An hybrid algorithm for clustering class collections...............................

6.5.1 Requirements...
6.5.2 The generic algorithm ...
6.5.3 Similarity measurement: coefficients, representatives and con­

tainment ...
6.5.4 Reference Partitioning Algorithm s...

6.6 The Generic Algorithm Implemented...
6.6.1 Limited Hierarchy Bisecting K-medoids (LHBKM)...................
6.6.2 Implementing SPLIT and O V E R L A P...

6.7 Predictive experiments...
6.7.1 Partition evaluation ..
6.7.2 Static collection analysis..
6.7.3 Parameterisation..
6.7.4 Results: evaluating LHBLM..
6.7.5 Discussion...

6.8 Further refinem ent..
6.8.1 Incremental update...
6.8.2 Incremental Limited Hierarchy Bisecting K-medoids (ILHBKM)
6.8.3 Results: evaluation of ILHBKM...
6.8.4 Discussion...
6.8.5 MCS indexing and sub-structure matching...................................

6.9 Late life-cycle activated reu se ...
6.10 Sum m ary...

207
208
208
213
213
214

216
218
224
224
226
227
228
232
232
233
235
239
239
240
240
242
243
244
245

7 Conclusions and Further Work 247
7.1 Research sum m ary.. 247

7.1.1 Contributions... 247
7.1.2 Realised Objectives... 249
7.1.3 Lim itations.. 250

7.2 Further w o r k ... 251
7.2.1 Improving the current approach.. 251

vi

7.2.2 Extending and enhancing the approach 253

A Foundation Graph Theory
A.l Introduction...
A.2 Graphs as algebraic structures ...
A.3 Graph matching and morphisms

A.3.1 M atch ing..
A.3.2 Graph m orphism s..
A.3.3 Invariants, certificates and automorphism groups

B Class Analysis Framework

References

255
256
258
258
258
260

263

269

vn

List of Tables

4.1 Feature vectors for classes (A) NonTaxedDiscItem and (B) NonTaxed-
BulkDiscItem of Figs. 4.1 and 4 .2 ... 8(i

4.2 Application similarity: summary statistics and rank correlations for
plots of Fig 4 . 3 .. 9!)

4.3 Application similarity: summary statistics and correlations for plots in
Fig 4 .4 .. 101

4.4 Application similarity: summary statistics for containment assessment
of sample data sets of Fig. 4 .4 ... 105

4.5 Summary statistics and correlations for plots in Fig 4.7 106
4.6 Class similarity: summary statistics and correlations for plots in Fig 4.10112

5.1 Unlabeled m a tch ... 150
5.2 Syntactic label match (1) ... 151
5.3 Syntactic label match (2) ... 151
5.4 Hierarchic m a tch ... 157
5.5 Hierarchic, connected m atch.. 159
5.6 Automorphic reduction ... 161
5.7 Attributed m atch... 166
5.8 Heuristic GA m a t c h ... 175
5.9 Combined B&K+HGA m atch... 176
5.10 Comparison of B&K, HGA and B&K+HGA.. 178
5.11 Comparison of SP(revised), JP and MCS .. 184
5.12 Comparison of SP(revised), JP and MCS for filtered “j5” 186
5.13 SP ms predictor of MCS: ROC analysis using MCS reference threshold

0.5, SP cutoff 0 . 5 ... 190

vm

6.1 Comparing LIIBKM and medoid-based “Leader” algorithm 234
6.2 Effect of CLARANS parameter maxneighbours...................................... 235
6.3 Comparison of LHBKM and Incremental L H B K M 241

ix

List of F igu res

3.1 Graphical representation: (a) chemical molecule (b) object-oriented class 45
3.2 Structure P ath s.. 75

4.1 Code Example (A) NonTaxedDiscItem... 85
4.2 Code Example (B) NonTaxedBulkDiscItem.. 85
4.3 Application similarity: grouped frequency distribution for data sets “H”

and “S” ... 98
4.4 Application similarity: matched-pair distribution for two random sam­

ples taken from data sets “H” and “S” ... 100
4.5 Application similarity: ROC analysis for sampled data sets “H” and

“S” of Fig. 4,4.. 102
4.G Application similarity: an evaluation of containm ent............................. 104
4.7 Class similarity: grouped frequency distribution for data sets “Ii” and

“S” .. 107
4.8 Class similarity: matched-pair comparison(l)... 109
4.9 Class similarity: matched-pair comparison(2)... 110
4.10 Class similarity: matched-pair eomparison(3)... I ll
4.11 Class similarity: ROC analysis for the data sets of Fig. 4.10..................... 112
4.12 Class similarity: SP feature separation (“H”)... 114
4.13 Class similarity: SP feature separation (“S”).. 11.5
4.14 Class similarity: SP “rooted” feature inclusion (“111”)............................. 117
4.15 Class similarity: averaged “class” and “method” features (“HI”). . . . 118

5.1 Two syntactically labeled graphs, Gi and C? 2 ... 138
5.2 Correspondence graph and cliques for G\ and Go of Fig. 5 .1 138
5.3 Identifying Cliques in Gc of Fig. 5.2 ... 141

x

5.4 Pseudocode for the basic B&K algorithm ... 143
5.5 Two (partially) attributed graphs, G\ and G2 ... 146
5.6 Correspondence graph and cliques for G\ and G2 of Fig. 5 .5 147
5.7 Java Source Code and Disassembled Bytecode... 148
5.8 Structure graph generated from code of Fig. 5 .7 149
5.9 Comparative analysis of data set “HI”: SP, .IP and MCS (Sorted by

SP v a lu e) ... 182
5.10 Comparative analysis of data set “S2”: SP, JP and MCS (Sorted by SP

v a lu e) .. 182
5.11 Comparative analysis of data set “j5”: SP, .IP and MCS (Sorted by SP

v a lu e) .. 183

6.1 Generic Partitioning algorithm .. 215
6.2 Centroid-based representation and relative normalisation...................... 217
6.3 Incremental LHBKM: dynamic profile for analysis of data set “j5” . . 242

A.l Some example graphs and subgraphs.. 256
A.2 Graph morphisms... 259
A.3 Graph Automorphisms and Automorphism G roups............................... 261

13.1 Class Analysis and Classification Framework ... 264

XI

A b b rev ia tio n s

ADT Abstract Data Type JDK Java Development Kit
AL Abstract Language JP JPlag
ARG Attributed Relational Graph JVM Java Virtual Machine
AST Abstract Syntax Tree LE Location Effectiveness
AWT Abstract Windowing Toolkit LCS Longest Common Subsequence
B&K Bron and Kerbosch LHBKM Limited Hierarchy Bisecting
CBR Case-Based Reasoning K-medoids
CLARANS Clustering Large Applications LSA/I Latent Semantic Analysis/Indexing

based on RANdomised Search MCS Maximum Common Subgraph
CG Correspondence Graph ML Medold-based Leader
CfcP Carraghan and Pardalos MOS Maximum Overlapping Set
FGPDG Fine-grained Program Dependency Graph PAM Partitioning Around Medoids
FPF False-Positive Fraction PDG Program Dependency Graph
GA Genetic Algorithm ROC Receiver Operator Curve
GI Graph Isomorphism SGI Sub-Graph Isomorphism
HGA Heuristic Genetic Algorithm SGM Sub-Graph Monomorphism
IRL Intermediate Representation Language SP Structure Path
ILHBKM Incremental Limited Hierarchy ST, STID Structure Type, ST Identifier

Bisecting K-medoids TPF Ttue-Positive Fraction
IR Information Retrieval UML Unified Modelling Language

XU

Chapter 1

In tro d u c tio n

The work presented in this thesis is principally concerned with the development of a
method and set of tools designed to support the identification of class-based similarity
in existing collections of object-oriented code. Attention is focused on enhancing the
potential for software reuse in situations where a reuse process is either absent or
informal, and the characteristics of the organisation are unsuitable, and/or resources
unavailable, to promote and sustain a systematic approach to reuse.

The approach described in this thesis builds on the initial definition of a for­
mal, attributed, relational model that captures the inherent structure of class-based
object-oriented code. Graph-theoretic techniques borrowed from molecular chemistry
and computer vision are adapted and applied via this model to the problem of deter­
mining similarity between classes. Existing code collections are classified based on the
developed measure of inter-class similarity, using techniques from data clustering and
information retrieval.

The practical application of the work presented here relates to the identification
and indexing of instances of recurring, class-based, common structure present in estab­
lished and evolving collections of object-oriented code. A classification so generated
additionally provides a framework for class-based mat,eking over an existing code-base,
both from the perspective of newly introduced classes, and search “templates” pro­
vided by those incomplete, iteratively constructed and refined classes associated with

1

current and on-going development. The tools and techniques developed here provide
support for enabling and improving shared awareness of reuse opportunity, based on
analysing structural similarity in past and ongoing development, tools and techniques
that can in turn be seen as part of a process of domain analysis capable of stimulating
the evolution of a systematic reuse ethic.

The approach is evaluated in the context of object-oriented development based on
executable bytecode produced using SUN Microsystems’s Java language and develop­
ment environment [SUN, 1999].

1.1 M otivation: software reuse “in the sm all”

1.1.1 Software reuse

A succinct, generally accepted definition of software reuse is provided by Kreuger
[Kreuger, 1992]:

Software reuse is the process of creating software systems from existing
software rather than building them from scratch.

This captures the essence of the reuse paradigm but its straightforward simplicity
belies the complexities and problems associated with both the theory and practice
of software reuse. In principle, software reuse aims at improving quality, produc­
tivity, performance, reliability and interoperability, while reducing costs and atten­
dant effort. The potential benefits of systematic software reuse have been clearly
demonstrated and reuse has evidently had its share of success, particularly as part
of large, organised, industrial programs [Frakes and Isoda, 1994]. Initiatives within
large, industrial organisations such as Hewlett Packard, IBM, Motorola, GTE, and
NEC have produced significant levels of reuse in terms of quality, productivity and
cost [Sametinger, 1998, pp. 14].

2

1.1.2 R eu se in sm all organ isations

In contrast to these large-scale, systematised reuse programs, this thesis is concerned
with enhancing support for informal reuse “in the small”, i.e., the provision of sup­
port for reuse in small organisations where a reuse process, if any, is loosely defined,
informal, and based on ad-hoc opportunism and past, sometimes shared, experience.

Despite current initiatives aimed at specifically addressing the needs of personal
and small team software development [Humphrey, 2000a;2000b], very little factual,
contemporaneous evidence is available that describes the characteristics of either soft­
ware engineering in general, and reuse practice in particular, within the context of such
small organisations. However, the majority of software development organisations are
small, they produce non-trivial products, but are arguably significantly different from
their larger-scale counterparts: this includes their reduced capacity to accommodate
development for reuse, dictated in the main by the additional resourcing cost, and the
potential for time-compromised product release [Fayad et al, 2000].

A recently published analysis of success and failure factors in software reuse con­
firmed many anecdotally held beliefs and provides some interesting insights into the
perceived differences between large and small organisation reuse. This was the result
of an ESPRIT/ESSI project that investigated the introduction of reuse in European
companies and followed their performance from 1994 to 1997 [Morizio, Ezran and Tul-
ley, 1999;2002]. The analysis showed that organisation size was not a conditional factor
in determining reuse success. However, small1 organisations were often successful when
they adopted a simpler, self-sufficient approach, which did not involve specialist reuse
personnel or a rigid reuse process. In contrast, small organisations that implemented
a complex reuse infrastructure, with complex procedures and full-time roles, failed.

Small company successes showed that their approach concentrated on the reuse of
re-engineered code, did not require detailed domain analysis, and was not dependent
on object-oriented development. Ease of communication and Hie sharing of experience
were considered key to their success. Although an object-oriented analysis and design
approach was not seen as a prerequisite for successful reuse it was i) erroneously seen
by many of the participants in the study as the sole requirement equatable to reuse

1A small organisation was defined as having a software staff of less than 50 personnel.

3

and ii) was a contributing factor in the failure of some enhancement initiatives when
newly and simultaneously introduced with a reuse process. Similarly, the introduction
of a collection of reusable assets, i.e., a component repository, was seen by some as
the sole requirement for successful reuse. However, unless the repository was used
the benefits were not forthcoming and the reuse initiative failed. Significantly, reuse
processes that worked were shown to be based on approaches that minimised change in
development practice. Building on existing processes where possible, they introduced
reuse incrementally, including the reengineering of assets from legacy code, setting up
a repository, and improving training and awareness among developers.

1.1.3 Patterns of informal reuse

Informal reuse refers to the development practice of “cutting and pasting” artefacts
such as design or code between projects, or parts of the same project. It is based
on an individual developer’s prior knowledge of the existence of an accessible artefact
and recognition of its reuse potential within a new development. Anecdotal evidence
suggests that in the absence, or despite the presence, of a structured reuse process,
however limited, ad-hoc or informal reuse is common. Baxter echoes this belief in the
context of identifying duplicate code, or code “cloning” [Baxter et al, 1998] and it is
described by Kreuger as a process of design and code “scavenging” [Krueger, 1992].
Empirical evidence of software reuse behaviour among developers is scarce but in
reviewing both formal and anecdotal studies, Sutcliffe and Maiden reinforce the sig­
nificance to programmers of a copying/modifying reuse philosophy based on examples
and past reuse experience [Sutcliffe and Maiden, 1993].

The problems with informal reuse include both the lack of shared awareness of
the reused code and development experience, and a lack of maintenance traceability
due to the undocumented dissemination of the reused code. Sutcliffe and Maiden
echo Kreugor’s reservations that such an approach is also compromised by being heav­
ily dependent on the cognitive overhead associated with locating, understanding and
modifying the code - “it must be easier to [find and] use the artifact than to develop
the software from scratch” [Kreuger, 1992]. The clear implication here is that in the
face of cognitive barriers, or through an unwillingness to entertain the possibility of
reuse, code is developed from scratch that may in fact already exist. This type of

4

unregistered reuse in effect adds to the lack of awareness and lost experience, which is
further compounded by development that does not entertain reuse at all.

1 .1 .4 Source code as th e focus o f sy stem a tic reuse

Without making assumptions about the level of process maturity within a small soft­
ware; development organisation, the single universal constant is the production of code.
In the worst case, the code does not just represent the final deliverable but is, unfor­
tunately, in and of itself the sole deliverable and source of project documentation.
Return on investment is higher the earlier reuse is incorporated into the development
life cycle [Jones, 1994]. This is somewhat academic if the process is not sufficiently
complete to provide the necessary specification and/or design level artefacts. (Jones’s
study also showed that the biggest single return on investment was that associated
with reuse of source code.)

The case for employing an existing collection of code (a code-base) as the target
for other than informal reuse is not given much voice. Lim proposes that an existing
code-base is a valid source of reusable software [Lim, 1994], while Boone recommends
it as a focus for domain analysis during software framework design [Boone, 1999].
Caldiera and Basili, as part of their “software factory” approach to reuse, specifi­
cally identify existing software as the focus for retrieving potentially reusable assets
[Caldiera and Basili, 1991]. A very persuasive argument is put forward by Hislop
where he justifies an existing code-base on the grounds that i) it contains successfully
deployed solutions to problems in the organisations domain of interest and as such
should at least provide “ideas for reusable assets”, and ii) existing software leverages
an initial approach to the introduction of systematic reuse, if only by identifying the
probability of a particular domain’s reuse potential [Hislop, 1998].

1.1.5 Object-oriented development and reuse

The object-oriented software development paradigm [Booch, 1994] is not necessarily
a universal panacea when it comes to solving the many problems facing the software
development community. It is nevertheless seen as a positive, contributing factor in ad­

dressing complexity, increasing flexibility, and promoting reuse, for example, through
leveraging application frameworks supported by design patterns [Gamma et al, 1995].
The growth of object-oriented development methodologies and languages and the
claimed benefits in relation to reuse have had a pervasive influence on the software
engineering community at large. However, it is not seen as a sufficient reuse model
in its own right, in order to reap the full benefit a systematic approach to reuse is
also necessary [Griss et al, 1995; Jacobson et al, 1997]. Tulley’s survey above high­
lighted both the danger of introducing object-orientation and reuse simultaneously,
in addition to confirming Fishman and Kemerer’s well instantiated misconception,
“object-oriented — reuse” [Fishman and Kemerer, 1997]. Alongside these concerns,
the mere fact that so many organisations are using or considering object-oriented de­
velopment lends weight to the focus of this thesis being the provision of support for
reuse within an object-oriented development environment.

1 .1 .G O b ject-orien ted cod e stru ctu re

In the context of measuring the properties of object-oriented software, Whitmire states
that object-oriented development represents a significant shift away from the imper­
ative, algorithmic representation of traditional procedural development, towards a
model that is more declarative, based on object interaction and composition [Whit­
mire, 1997, ppl8]. He bases his assertion on the work of Churclier and Shepperd,
which proposes that the relationships inherent in the structure of object-oriented code
are more important than method content, due to the methods being smaller and less
complex than their procedural, function-oriented counterparts [Churcher and Shep­
perd, 1995]. In effect, object-oriented development conveniently carries a structural
formalism, in the form of the “class” as an organising principle, which function-
oriented, procedural approaches do not. We argue that this structure provides a valid
means of supporting the assessment of class-based similarity.

1.1.7 Summary

In summary, the following points have an important bearing on the substance of this
thesis:

(i

• a complex, intrusive reuse process can fail in small organisations

• informal reuse is common and does not capitalise on the potential of systematic
reuse through promoting of shared awareness

• exist ing code is an under-used reuse resource, which could support asset identi­
fication and sharing of reuse experience

• object-oriented development is common and growing

• object-oriented development is erroneously seen as encompassing reuse, a reuse
process in its own right

• object-oriented code has an inherent structural formalism not present in proce­
dural code

1.2 O bjectives

The overall objective of this project is encapsulated in the following question:

How can an existing object-oriented code-base be effectively exploited to
enhance an informal approach to reuse, or help establish a basis for sys­
tematic development with and for reuse?

Two limiting assumptions are associated with this global objective, which can be
considered as further objectives in their own right:

• the approach should be automated and noil-intrusive

• analysis is confined to existing code and makes no assumptions about the quality
of the code or the maturity of the development process

The global objective is addressed in part by this thesis. Firstly, it establishes a
class-based model of object-oriented code and a method of determining similarity be­
tween classes. This method is fully automated, directed at an existing code-base, and
dependent only on the structural information contained in a class. This provides the

7

basis for a secondary, automatic identification of potential candidates for considera­
tion as reusable assets present in the existing code. The particular questions being
addressed here relate to the identification and characterisation of i) what classes are
currently being reused, and ii)what if any groups of classes are sufficiently similar to
warrant refactoring as generalised, reusable assets.

1.3 Proposed approach

1.3.1 An attributed, relational model of code structure

Hislop approached the issue of identifying reuse in existing procedural code from a
perspective founded in plagiarism detection [Hislop, 1998]. Drawing on Whale’s work
in detecting plagiarism [Whale, 1990], he shows that approaches to capturing software
form, including structure, can successfully identify reused code. In addition, Whale’s
approach, based on direct and automatic extraction of variable length combinations of
structure-describing terms was shown to be more successful than competing approaches
that used single measures, or vectors of measures, of individual characteristics describ­
ing the same form and structure. Using Whale’s structure profile, which essentially
captures the control structure of a program, Hislop established that structure alone
could identify instances of reuse in existing software. In this thesis, the approach to
code comparison based on structural characterisation is effectively extended to the
object-oriented development model, based on similarity between classes.

The intention here is to establish the presence of similarity based on class structure,
not function. Functional equivalence is generally considered undecidable, the opera­
tional premise adopted here being one of similar structure usually implying similar
behaviour and function. Empirical findings suggest that this is in fact the case [Jilani
et al, 2001]. In particular, the developed approach explores the inherent relational
structure of an object-oriented class as a means of determining similarity, in terms of
the entities and relationships that exist within it and between itself and its related
classes. This relational, structural model of a class is further enhanced by the inclu­
sion of attributes associated with these entities and relationships. These attributes are
quantified measures of various characterising properties of the class and its internal

8

structure.

The reliance on structure is possibly a limitation of the approach. However, the
attributed, relational model and associated similarity measure reflect the relationships
and dependencies between entities that comprise a class, and collectively provide a
representation of the class as a meaningful domain abstraction. This emphasis on the
peculiarly object-oriented characteristics of the code is intended to reduce the effect
of procedural, algorithmic detail within individual methods. It is precisely this vari­
ability iu method implementation that could be responsible for introducing sufficient
structural difference to prompt dismissal of pairs of classes that could otherwise be
considered similar. The rationale being tested here is that by de-emphasising the al­
gorithmic detail, the probability of matching class-based structures that differ iu the
detail but are functionally equivalent increases.

An attributed, relational model of class-based object-oriented code is introduced
in Chapter 3, and instantiated and tested as a means of determining similarity in
Chapters 4 and 5.

1.3.2 Similarity not exact match

In describing the utility of a reusable artefact, Kreuger identifies a necessary balance
between the programming leverage provided by the hidden, detailed realisation of the
fixed specification, and the ease of customisation provide by the variable part of its
visible specification [Kreuger, 1992]. The developed approach caters for the clustering
of classes into groups that have sufficient in common to possibly warrant generalisation.
This is predicated on the developed approach providing a means of identifying degrees
of similar structure as opposed to merely structures that match exactly: that which is
the same equating to the hidden implementation and fixed specification, the differences
representing the potential “hot-spots” [Free, 1995] or “variation points” [Jacobson et
al, 1997] to be generalised via the visible, variable part of the specification.

9

1.3.3 A transfer o f techn iq ues

An attributed, relational model of object-oriented code structure bears a close resem­
blance to graphical structures and structural representation in the fields of molecular
chemistry [Downs and Willett, 1990] and computer vision [Ballard and Brown, 1982].
Both these domains provide an existing template for analysing structures as graphs,
and determining structural similarity based on the comparison or matching of graphs.
This comes in the form of a set of techniques and algorithms which this thesis shows to
be reasonably transferrable to the problem of structural similarity in object-oriented
code, facilitated by a common basis in graph-theory.

Although graph-theoretic approaches to the matching of relational structures are
notoriously complex, similarity searching in molecular chemistry provides the inspira­
tion for a two-phase method of determining class-based similarity. Class structure is
represented by its relational model graph. An initial, approximate, low-cost measure
of inter-class similarity based on the global properties of this graph acts as a filter to a
detailed, local but expensive examination of comparable structure. Global similarity
is measured by comparing vectors of features that individually capture the structure of
overlapping parts of the graph and collectively approximate the entire graph’s struc­
tural topology. This is a limited-complexity process. Global similarity is the subjects
of Chapters 3 and 4. Local similarity is based on the comparison of representative
graphs at the level of their individual vertices and edges. This is a traditionally dif­
ficult problem which is addressed in this thesis by a combination of domain-specific
heuristics applied to reduction of the problem size, and the application of a combined
deterministic and heuristic approach to the identification of common structure. Local
similarity is the subject of Chapter 5.

In order to establish the presence of recurring, similar structure in an existing
code-base, the developed approach describes how classification techniques applied in
data analysis and information retrieval can be applied. This is discussed in Chapter (5.

10

1.3.4 E x istin g cod e as an inform al reuse rep ository

The approach documented in this thesis is capable of treating the existing code-base as
an informal reuse repository and identifying potentially interesting groups of classes
that may be candidates for generalisation and publicising as reusable assets. This
could in principle be incorporated as part of a one-off domain analysis, thereby reduc­
ing the load on the domain experts in determining reuse potential within an existing
development environment. The approach additionally directs attention to potentially
useful examples of how generalisations are specialised in practice by identifying recur­
ring instances of reuse, i.e., instances of reuse that occur on more than one occasion.
This active approach can act as a vehicle for knowledge transfer and reinforcement,
in that the process of identification and context-based learning should provide devel­
opers with more experiences to recall and reuse. This mirrors the intention behind
Michail’s approach to exemplar-based reuse where he provides developers with ex­
amples of library code reuse within the context of existing, developed code [Michail
and Nothin, 1998]. The current approach could also help generate a corporate reuse
“memory”, which is often lost as a consequence of informal reuse as staff and projects
change.

1.3.5 A “ligh tw eigh t” approach

No assumptions are made regarding the maturity of the software development context.
The approach is “lightweight” in that by adopting an automated approach based purely
on the availability of source code and an analysis of its structure, it is reliant on neither
supporting documentation nor the presence of additional knowledge sources.

This lightweight, code-level approach to reuse is directed at answering the question
“ What is being reused?”. To that end, this thesis describes the development of an
automated, non-intrusive method and set of tools capable of identifying similarity
in an existing object-oriented code-base. However, this is an essentially retrospective
activity, although as classes are developed and deployed they can of course be compared
against the existing code-base.

11

1.3.G Late life-cycle a ctiva ted reuse

A second question was originally posed as “How can the loss of informal or unregis­
tered reuse be preempted during development?”. The method developed in this thesis
additionally provides the foundation upon which we can take steps to address this.

The underlying strategy is dependent on a key feature of the software develop­
ment process: software is implemented by following a code-compile-test cycle in which
a developer iteratively develops a class until it meets a given specification. This is
particularly relevant when one considers the emergence of “rapid”, highly iterated
development practices, for example, “Extreme Programming” [Beck, 1999]. By moni­
toring the production of classes and comparing them with the existing code-base, the
development process can Ik; actively informed. The presence of existing code that
is similar to that being developed may lead to the identification of solutions that
implement, partially or fully, the required specification. Again this also contributes
to identifying foci for potential reusable assets but additionally makes the developer
aware of other contexts in which similar code is deployed. The development process
benefits by virtue of the additional information regarding the deployed context or the
provision of insights into potential problems with the code currently being developed,
e.g., missed opportunities for delegation, reengineering and refactoring. Although in
principle the presented approach is shown to be capable of supporting this type of acti­
vated reuse occurring late in the software development life-cycle, the balance between
the benefits and possible drawbacks, e.g., the level of acceptable intrusion, of late life-
cycle activated reuse have not been fully investigated as part of this thesis2. A similar
approach to activated reuse but dependent on free-text analysis of code comments has
recently been published in [Ye and Fischer, 2001].

Irrespective of whether useful indicators of reuse based on code-level structural
similarity were to be forthcoming using the proposed approach, it was considered wor­
thy of investigation given the potential benefits - identification of reusable assets and
contextualised, shared, reuse experience. The main point being made here relates
to the potential heightening of awareness within the development environment of in­
stances (T reuse. Adopting an activated attitude to reuse by short,-circuit ing informal
or unintentioned and unregistered reuse could additionally improve on this.

“Due to time constraints, this is now the subject of further work.

1 2

1.4 Basic hypotheses

The basic hypotheses being tested in this thesis can be stated as follows:

• An attributed, relational model of object-oriented class structure is sufficiently
discriminating to enable the determination of useful degrees of similarity between
classes.

• A two-phase, graph-theoretic approach based on an attributed, relational model
of object-oriented class structure can effectively and efficiently identify recurring
similarity in an existing object-oriented code-base.

A further, incompletely tested hypothesis relates to late life-cycle activated reuse
and is stated here for completeness:

• Late life-cycle activated reuse based on an attributed, relational model of object-
oriented class structure positively benefits the software development process.

1.5 Thesis organisation

Chapter 2 provides an overview and general introduction to those areas of the litera­
ture that provide a backdrop to the development of the current approach. The review
is confined to aspects of code comparison and the issues of abstraction and represen­
tation. Specific techniques, introduced in support of the developed approach are more
appropriately discussed within the context of the relevant chapters, i.e., analogies and
techniques from molecular chemistry and computer vision (Chapters 3, 5 and 6), graph
matching (Chapter 5), and data clustering (Chapter 6).

Chapter 3 defines a formal, generic, graph-theoretic model of object-oriented code
structure and similarity. Identifying the class as the fundamental unit of analysis, a
model is developed centered on the extraction of an attributed relational graph (ARC)
as a representation of class structure. This model draws on analogies from molecular
chemistry and pattern matching in computer vision. Both these domains provide an

existing template for analysing structure and structural similarity. This comes in the
form of a set of techniques and algorithms which are shown in principle to be reasonably
transferrable to the problem of structural similarity in object-oriented code, facilitated
by their common basis in graph-theory.

Chapter 4 tests certain key assumptions made as part of the development of the
model of object-oriented class structure and structural similarity introduced in Chap­
ter 3. Firstly, that the analysis of structure and structural similarity in object-oriented
code was sufficiently similar to the reference domains of molecular chemistry and pat­
tern matching in computer vision to enable a successful transfer of the underlying
applied, graph-theoretic principles and techniques. Secondly, that the derived vector-
space model of global structure and structural similarity was appropriately parame-
terised. This chapter describes how this was achieved by instantiating the model of
Chapter 3 within the context of object-oriented development using the Java language.
More specifically, it describes the analysis of the intermediate results of compilation,
the Java bytecode, rather than the original source code. The chapter begins with a
brief discussion of Java and Java bytecode. It continues with an introductory example
of the analysis and comparison of two Java classes. The major part of the chapter
is devoted to an experimental evaluation of global similarity based on a plagiarism
detection reference model.

Chapter 5 describes a more detailed, local examination of the individual at­
tributed relational graphs in order to address the limitations of the global approach
to determining similarity described in Chapter 4.

This chapter concentrates on developing a method of extracting common sub­
structure from pairs of Java classes as represented by their ARGs. This involves
applying graph matching techniques to the Java bytecode graphs. An introduction to
the general concept of graph matching is followed by a more detailed look at one par­
ticular approach based on clique detection. In order to support searching for common
structure in Java class files, limitations imposed by this generic approach are addressed
through modifications that incorporate specific characteristics and constraints peculiar
to the domain of object-oriented class-file analysis. The chapter also describes a novel
approach to the problem of graph matching. In order to maximise the possibility of
identifying common structure in large classes, clique detection is based on a combi­

14

nation of a deterministic algorithm, and a heuristic approach that employs an hybrid
genetic algorithm.

Drawing on existing techniques employed within similarity searching of molecular
databases, this chapter also describes a two-phase approach to the analysis of structural
similarity. Feature-vector extraction and a global measure of similarity is applied as a
filter to the more demanding local assessment of contributing sub-structure based on
graph matching.

The measurement of local similarity is tested by revisiting the experimental analysis
of Chapter 4.

Chapter 6 changes the emphasis from the quantification of similarity in small data
sets to the related issues of minimising computational overhead and maximising the
potential for identifying common and recurring structure in larger, possibly dynamic
collections of classes. It describes how this can be effectively achieved using a process
of unsupervised classification, by way of cluster formation based on a combination of
partitioning and limited hierarchy. Though not ideal, this cluster structure is shown
to provide both a means of grouping together significantly similar classes that are
representative of common, recurring structure, in addition to a framework for target-
to-colleetion matching and hierarchic browsing.

As the foundation of our approach to the identification of recurring, common struc­
ture in class collections, Chapter (i begins by exploring the principles and techniques
behind the grouping, or clustering, of similar elements within a larger collection. The
basic hypothesis being tested here is that an approach based on such a clustering is
valid, in that clustered classes are similar by virtue of repeated occurrences of the
same or very similar common structure. A justifiably modified standard algorithm,
the “Leader” algorithm, is using as a reference for comparison with the novel, but more
complex hybrid algorithm, Limited Hierarchy Bisecting K-medoids (LHBKM) intro­
duced here. The LHBKM algorithm is shown to produce clusters that collectively
provide a reasonable sample of the common structure present in a collection.

In order to cater for dynamic collections of classes, an incremental clustering ap­
proach is also introduced. Incremental Limited Hierarchy Bisecting K-medoids (ILH-
BKM) is shown to produce a reasonable cluster structure based on an analysis of a

15

dynamically growing collection.

This chapter also considers the potential benefit of late life-cycle activated reuse.

Chapter 7 summarises the research presented in this thesis, draws conclusions
within the context of the original objectives, constraints and hypotheses, and describes
opportunities for further work.

Two appendices are included. Appendix 1 provides a concise introduction to
those elements of graph theory essential to an understanding of the presented material,
particularly that of Chapters 3, 4 and 5. Appendix 2 provides an outline structure
of the analysis framework developed as part of this thesis.

16

Chapter 2

A R eview of A pproaches to

A u to m a ted , C ode-level

C om parison .

2.1 Introduction

2.1 .1 Scope o f review

In Chapter 1, the concept of a relational, structural approach to object-oriented code
comparison was proposed in the context of a lightweight, code-level approach to reuse.
Certain fundamental assumptions were implicit in this notion, which consequently
define the scope of this work in relation to previous and on-going research. The
principal, key constraints governing the development of the proposed approach are
re-stated below:

• Object-orientation: analysis and comparison is to be confined to class-based,
object-oriented code development.

17

• Code-level comparison: the focus of analysis is to be either implemented source-
code or its executable derivative.

• Automated comparison: the entire analysis and comparison process is to be fully
automated, requiring no direct intervention either on the part of domain-level
experts or the potential user.

• No prerequisite knowledge: other than the cotie itself, no additional knowledge
structures or information sources should be required to support the analysis and
comparison task.

• No concept assignment: the intention is to establish similarity based on code
structure, no direct attempt is made to infer any higher-level conceptual connec­
tion or functional equivalence

This chapter provides an overview and general introduction to those areas of the
literature that provide a backdrop to the development of the current approach, within
the limits of the above constraints. Consequently, the review presented here is confined
to aspects of code comparison and representation. Specific techniques, introduced in
support of the developed approach, are more appropriately discussed within the con­
text of the relevant chapters, i.e., analogies from molecular chemistry and computer
vision (Chapters 3, 5 and 6), graph matching (Chapter 5), and data clustering (Chap­
ter 0).

In terms of automated code comparison, the three main areas of interest relate to:

• the detection of plagiarism in program code

• direct approaches to determining code-level similarity or duplication (“cloning”)

• issues relating to source code representation

The significance of the first two is self evident, as assessment of similarity in these cases
is based on direct, pair-wise code comparison. This is fundamental to the proposed
approach. Issues relating to the representation of code are of relevance as they lie
at the heart of any approach to code-level similarity including the two areas already
mentioned: a chosen representation must encapsulate sufficient information to enable

18

appropriate levels of discrimination in the given comparison context. Frakes indirectly
refers to this discriminating power when he describes the expressiveness or knowledge
content of any given representation as Representational Adequacy [Frakes and Gandel,
1989]. The significance of representation in the process of code comparison is further
illustrated by discussing repository-based reuse as an example of an indirect approach
to code-level similarity; code understanding based on pattern matching and reverse
engineering; and code maintenance based on comparative analysis.

2.2 Direct Code Comparison

2.2.1 Plagiarism detection in software programs

Plagiarism detection refers to both manual and automated approaches to deciding
whether a program produced by one author has been deliberately copied, possibly
trivially changed, and presented as the work of another. Whale identifies several ap­
proaches to disguising programs such as changing comments and data types; aliasing
identifiers; adding redundant statements or variables; changing the structure of selec­
tion statements; shuffling independent code segments; or expanding function calls into
in-line code [Whale, 1990].

The connection between software plagiarism and the potential for reuse in an ex­
isting code-base is well stated by Hislop [Ilislop, 1998]:

Plagiarism, after all, is simply a socially unacceptable form of reuse.

What makes the study of techniques from plagiarism detection particularly relevant
in the context of reuse is their common goal in trying to identify program pairs that
are in large part similar. Where differences exist, they should be essentially cosmetic
or, additionally in the case of reuse, representative of specialisation of a generalisation.

1 9

A ttribute counting system s

The history of plagiarism detection is intimately associated with the development of
software metrics, i.e., statistical, quantitative measures of the properties and charac­
teristics of a program1. An early approach to plagiarism detection by Ottenstein was
based on the comparison of four attribute counts as given by the metrics of Halstead’s
“Software Science”, i.e., the number of unique operators and operands and their respec­
tive frequency of occurrence in a program [Ottenstein, 1977; Halstead, 1977]. (The
same metrics formed part of Caldiera and Basili’s approach to the identification of
potentially reusable assets within existing software, the emphasis being on the quali­
fication of individual program parts, not on comparison [Caldiera and Basili, 1991].)
Systems that base their analysis and comparison on single measures, or vectors of
measures, that represent individual characteristics of the code, such as the number of
lines of code, variables declared and used, are referred to as “attribute counting” sys­
tems [Grier, 1981; Berghel and Sallach, 1984; Rienwalt, et al, 1989; Faidhi and Robin­
son, 1987].

Improvements in the performance of early attribute counting systems came with
increasing numbers and sophistication of the metrics used. Grier’s “ACCUSE” sys­
tem included eight principal attribute counts drawn from a, total of twenty candidates.
Faidhi and Robinson’s approach includes twenty-four metrics which attempt to mea­
sure intrinsic and hidden features of a program’s structure, including measures of
control flow and percentages of expression types.

An interesting approach is provided by the “COGGER” plagiarism detection tool
[Cunningham and Mikoyan, 1993]. It includes an attribute counting system that forms
the basis of an approach to plagiarism founded in case-based reasoning. Programs
are initially represented by vectors of frequency counts of structural parameters and
reserved identifiers extracted from the code, e.g., maximum depth of function calls,
user-defined function calls, the frequency of “do”,“for” and ”if” constructs. These
feature vectors are classified using an information-theoretic approach to decision-tree
indexing (Gennari’s “CLASSIT” algorithm). By initially matching a program’s feature
vector against tin; decision-tree index, the candidate plagiarisms returned are subjected

lThe subject of software metrics is a significant discipline in its own rigid., a comprehensively

description being provided in [Fenton and Pfleeger, 199G].

2 0

to a deeper analysis to confirm their validity. The key point here is minimisation
of the number of comparisons associated with the plagiarism detection process by
focussing attention on groups of potential candidates rather than testing all pair-wise
combinations.

Although the statistical, attribute counting systems achieved some success, newer
approaches based on the comparison of program structure, i.e., structure-metrics, were
leading to improved plagiarism detection rates. This was based on evidence that
“no single number or set of numbers can adequately capture the level of information
about program texts that a structure-metric system is able to achieve” [Verco and

Wise, 1996].

Structure-m etric system s

Donaldson et al developed an hybrid system based on eight attribute counting met­
rics, alongside an additional representation of program structure in the form of a
string of tokens: tokens in the string represent the adjacency of structures in the
program, e.g., variable declarations, assignment statements and procedure calls [Don­
aldson et al, 1981]. Similarity between programs is determined by exact match between
their respective counts or strings. Donaldson’s strings, as representative of the pro­
gram structure, are an example of a structure-metric. In this context, a metric is
interpreted as a function over the program text that maps it to an alternative, usually
more compact, representation2.

The work of Jankowitz [Jankowitz, 1988] is also in part based on a statistical,
attribute counting approach but, significantly, this is superimposed on comparison
based on the static call-graphs of the compared code. By extracting the intercon­
nections between the main body of a program and all its procedures, the resulting

‘’Moving from one representational domain of a program to another, with a potential loss of infor­

mation, can be interpreted as a “forgetful” functor between the two domains. In this case the program

text and the tokcnised strings are the domains, or categories, of representation. This is a common

theme in structure matching, where rather than compare complex representations, a transformation,

or morphism, is applied giving rise to a simpler, more compact representation. In turn, comparison of

representations in the less complex domain give rise to a less accurate but computationally tractable

solution.

21

tree representations are tokenised and matched. Procedures corresponding within any
common branches found are then analysed by means of selected metrics, e.g., lines
of code, keyword frequency, assignment statements and, if within a given threshold,
subjected to a further statement-level metric analysis. Emphasising the relationships
between program procedures and the general coupling characteristics of modules as a
means of determining similarity is also described in Leach [Leach, 1995].

The predominant approaches to plagiarism detection are currently those based
wholly on structure-metrics. Whale developed a structure profile as part of the
“PLAGUE” system that successfully captures a program’s overall structure by en­
coding elements of its control structure as a variable length series of terms. Each term
represents a part of the program and its enclosing control structure, a series of terms
effectively representing the code as a “generalised regular expression” [Whale, 1990a;
1990b], Comparison of structure profiles is initially used as a filter to a more de­
manding analysis of candidate pairs employing string matching over a tokenised form
of the program texts. The string matching algorithm1 is capable of handling trans­
posed substrings so addressing the limitation of exact match and the order preserving
property of simpler string matching algorithms such as longest common subsequence
[Cormen et, al, 1990]. The structure profile was shown to outperform four attribute
counting systems as well as Donaldson’s hybrid approach. Hislop recently confirmed
the efficacy of the structure profile in the context of identifying the reuse potential of
an existing code-base when he also compared it against traditional attribute counting
[Hislop, 1998].

The detailed comparison phase of Whale’s approach depends on the tokenisation
of the program texts. This involves parsing the texts in order to generate tokens
representing statement block boundaries, various assignment statements and different
types of function call. More recent approaches have since extended this approach to
include a detailed lexical analysis resulting in the generation of more expressive token
sets that are also independent of comments, layout and variable names [Wise, 1996;
Gitchell an Tran, 1999; Prechelt et al, 2000]. These approaches are all based on various
string matching algorithms applied to the tokenised program representations.

‘'Heckle’s algorithm: Paul Heckel, A Technique for Isolating Differences between Files, Communi­

cations of the ACM 21(4),pp(264-268), April 1978.

2 2

The string matching approach used by Wise’s “YAP3” system [Wise, 1996] and
Prechelt et al’s “JPLAG” system [Prechelt et al, 2000;2001] are essentially similar.
Both systems use a “greedy string tiling” approach based on a variant of the Karp-
Rabin string matching algorithm. This affords these systems the ability to cope with
transposition in the code resulting from, for example, the swapping of independent
blocks of code. This also caters, to a limited degree, with instances of function-call
expansion. Other features to which both systems are effectively immune or resis­
tant include comment, identifier and type changes; inclusion of redundant statements;
replacing expressions by equivalents; and changing the structure of iteration and se­
lection statements. These are all well known targets for plagiarism and represent
legitimate differences that might exist between examples of reused code.

Wise and Prechelt’s publications are significant as they provide recent, empirical
evidence as to i) the superior performance of variable-length, structure-metrics as
opposed to attribute counting [Verco and Wise, 1996], and ii) the performance of
structure-metric system generally [Prechelt et al, 2000;2001].

In general, the majority of approaches to plagiarism detection were developed
and tested with procedural code, aimed at languages such as Fortran, Pascal, C and
Lisp. The “YAP3” and “JPLAG” environments do support object-oriented languages,
CLOS and Java respectively, although they make no specific allowance for the pecu­
liarities inherent in object-oriented code, i.e., the entities that comprise a class and
the superimposed intra and inter-class relational structure.

2.2.2 Duplication, code cloning and “near-miss” similarity

This section discusses a broad sample of tools and techniques that essentially aim at
identifying duplication within and between program files, i.e., code “cloning”. Al­
though their principal underlying objective is the identification of exact match, many
of these techniques accommodate partial (“near-miss”) match, and are not necessarily
independent of those introduced under the heading of plagiarism detection above. In­
deed, some of them claim to be effective in detecting plagiarism, which in the extreme
can be considered equivalent to clone detection.

String matching

Identifying the differences between text files is a common requirement as exemplified
by the UNIX diff utility, diff effectively provides a series of edit operations which
transform one text file into another, fewer operations implying a higher degree of sim­
ilarity between the files. However, in the context of identifying potentially equivalent
programs, the dependence of diff on exact, lexicographic string matching leaves it
highly sensitive to name changes and the reordering of independent blocks of code.
Baker’s “dup” tool addresses the problem of consistent name changes by means of a
parameterised string matching algorithm [Baker, 1996]. A parameterised match (p-
match) occurs when two blocks of program text, or a tokenised form of the text, are
lexicographically the same except for a consistent change in identifier names, e.g., the

two statements

pfh->min_bounds.lbearing; pfh->max_bounds.lbearing;

would form an exact p-match with

pfh->min_bounds.right; pfh->max_bounds.right;

“dup” removes the dependence on naming but retains the distinction between iden­
tifiers by replacing their tokens by offsets based on their occurrence in the text, e.g.,
the previous pairs of statements would both be represented as 0— > 0.0; 1— > 1.1;.
The p-match algorithm is based on a data structure 4 that provides the “dup” tool
with linear performance enabling it to scale well to large collections of liles.

Baker has developed the only 5 previous approach to the direct comparison of
executable Java code, i.e., Java bytecode [Baker and Manber, 1998]. Java bytecode
corresponding to a class is first disassembled and the instructions for each method
tokenised. Tokenisation includes the assignment of offsets to various types of iden­
tifier, which preserve their individuality within the context of comparison using the

4The parameterised suffix tree: a compacted trie [Baker, 1993].
sTessem describes the use of bytecode as part of a CBR-based approach to reuse but not in the

sense of direct code comparison (see) [Tessein et. al, 1998].

24

parameterised string matching algorithm. The longest p-match between two token
strings i)rovides an indication of the degree of match. Although this approach can
take account of consistent name changes, and effectively allows insertion and deletion
edit operations when comparing two strings, as in the case of dijj\ it is unable to deal
effectively with the reordering of independent blocks of code.

An approach based on simple, line-based string matching is that of Ducasse et
al [Ducasse et al, 1999]. The process begins by comparing each line of one program
with each line of another, both taken in order and stripped of white-space. The result
is represented as a 2-dimensional matrix indexed according to each program’s line
count, a 1 indicating exact match, 0 a non-match. Similar sections of code appear as
diagonally adjacent l ’s in the matrix, perturbations of these diagonals being indicative
of differences between the files such as line deletions/insertions and local changes within
lines. They have developed an algorithm that captures the degree of similarity between
two files based on an analysis of these patterns. A similar approach is used by West in
the “Bandit” plagiarism detection tool [West, 1995]. Again, the main failing of these
approaches is their dependence on exact string match. However, they are more robust
in the face of shuffled blocks of order-independent code.

Fingerprinting

In order to identify duplicated code in large development projects, Johnson adopts
an approach based on defining a characteristic “fingerprint” for blocks, or “snips”, of
program text [Johnson, 1993]. All size-limited, formatted blocks of text are assigned
an integer-valued checksum, or fingerprint, based on an algorithm by Karp and Rabin
[Sedegewick, 1988]. The collected fingerprints are subjected to a process of filtering,
aggregation and subsumption, those remaining being representative of the possible
duplication present. Same-valued, matching fingerprints map matching blocks of code.
Johnson showed this approach to be both effective and efficient. However, it is limited
in being based on exact, lexicographic match.

A similar approach based on this notion of characterising fingerprints is the “siff”
utility developed by Manber [Manber, 1993]. Designed to find similar files in the
context of large projects, as in Johnson’s approach, a checksum is calculated over size-

25

limited strings in each program file. The essential difference here is in the identification
of what program text to fingerprint. Johnson fingerprints all substrings in the program
text that satisfy the selection criteria and filters the result. In one version of Manber’s
approach, all size-limited strings prefixed by any one of a set of “anchor” strings are
fingerprinted. Alternatively all fingerprints are calculated and those with the least
significant eight bits set to zero are selected. Files are matched by comparing the sets
of fingerprints generated for each file, the greater the number of equal fingerprints, the
greater the similarity. This approach is very efficient for the analysis of large numbers
of large files but is susceptible to the presence of unrepresentative, bad fingerprints,
particularly when dealing with small files. The same limitation applies here in relation
to the exact lexicographic nature of the match between individual fingerprints. As part
of her evaluation of “dup” in the context of Java bytecode similarity, Baker showed
that a combination of “dup” and “siff” performed better than either independently,
reflecting the different emphasis of the two approaches.

Function metrics

Software metrics have already been introduced in the context of attribute counting
approaches to plagiarism detection. The use of metrics in determining the presence
of code clones is predicated on the belief that similar programs should have similar
metric profiles. As an approximate, reasonably precise filter applied over a set of files,
this has indeed been shown to be the case [Kontogiannis, 1996].

In looking to identify duplicate or near-duplicate functions, i.e., function clones,
in a large software system, Maynard et al’s “Datrix” tool set employs 21 “function-
metrics” to characterise and match individual functions [Maynard et al, 1996]. Their
approach is based on first generating the abstract syntax tree of each function. This
is in turn converted into a labelled graph, an intermediate representation language
(IRL), that captures information relating to architectural dependencies in the code;
static data types; control and data flow. In the context of supporting an evaluation of
system quality, each function is compared based on four points of comparison, naming,
layout, expressions and control flow. Each of these points is characterised by a set of
metrics, counts derived from the IRL representation of the function. For example, the
expression metrics include counts of the “total calls to other functions”, “number of

26

executable statements” and “average complexity of decisions”. Based on empirically
derived thresholds, these metrics are used to classify the degree of match between
functions on a eight-point sliding ordinal scale, ranging from level l:“ExaetCopy”
through level 3:“SimilarLayout” to level 8:“DistinctControlFlow”. They found that
clone detection at level 1 was reliable but false positives dramatically increased by level
3. Lague used the same approach in the context of tracking and reacting to cloning
activity as part of the development process [Lague et al, 1997].

This approach has recently been extended and adjusted to take account of those
characteristics important to the reengineering of cloned code, as opposed to the evalu­
ation of system quality [Balazinska, et al, 1999]. The revised classification introduces
an 18-point scale starting from level 1: “identical” and representing increasing degrees
of difference in going through level 10:“interface changes”, ending at level 18:“Several
long differences, interface and implementation”. The approach draws on the work of
Kontogiannis et al [Kontogiannis ct al, 1996] in that it uses a dynamic programming
approach [Cormen et al, 1990] to establish the best alignment between code fragments
but differs in using a tokenised representation of the code, rather than a set of features
describing individual statements and blocks based on metric measures. It represents
a fine-grained matching process in that small, lexical difference are detected. Metric
profiling was however suggested as a first-cut filter to the computationally more ex­
pensive, 0 (n 2) complexity, dynamic-programming approach. A further development
of this approach applied to the computer-aided refactoring of object-oriented code is
presented in [Balazinska, et al, 2000]. These are further examples of the effectiveness
of a two-stage analysis process, which additionally do not remove the user as a final
arbiter in deciding what is potentially significant.

Trees and Graphs

The detection of “near-miss” clones in arbitrary code fragments based on the genera­
tion of abstract syntax trees (ASTs) is presented in [Baxter et al, 1998]. Drawing on
an existing approach to the detection of common subexpressions during code compi­
lation, based on the calculation and matching of hash values6, an hierarchical method

6Hash values are generated when a hasli function is applied to an item’s key, in this case the

tokenised AST (sub)-tree, and the resulting value is used as an index to select one of a number of

27

of clone detection is presented. All subtrees in the AST are represented by hash val­
ues, those with the same value being potential clones. Similarity, as opposed to exact
match, is catered for by ignoring the leaves of the AST, i.e., identifier names. The
approach takes account of the potential aggregation of sequences of clones and clone
generalisation where sub-tree clones may be part of a larger, containing clone. The
approach has been shown to be effective at identifying “near-miss” clones in large code
collections. Although it is based on parsing techniques and the generation of ASTs,
this is not seen as a major limitation when balanced against the relative ease with
which standard parsing technology can be applied.

In a similar vein, Komondoor and Iforwitz base their clone detection approach on
the construction and comparison of a graph-based representation of the code [Komon­
door and Horwitz, 2000]. The program dependency graph (PDC1) contains vertices
that represent statements and decision-points (predicates), and edges that represent
the data and control dependencies between them. They begin by matching vertices
based on their syntactic structure, ignoring names and literals. Starting from pairs of
matching nodes they then establish the largest matching subgraphs containing these
nodes: this process is based on “slicing”', or tracking, backwards and forwards from
the original pair of nodes, adding neighbouring nodes and edges provided the state­
ments, predicates, data and control flows match between the two PDGs.

As in Baxter’s case, subsumed clones are removed and matching sub-clones ag­
gregated into larger clones. The approach was shown to be time-compromised due to
the analysis overhead, and it suffered from the overidentification of ideal clones, i.e.,
many clones were slightly differing variants of a single containing clone. However, the
approach was very robust in finding non-contiguous and intertwined clones, as well as
being resistant to variable name changes and independent statement reordering.

The computational overhead associated with Komondoor and Horowitz’s approach
are in part addressed by a similar, though approximate, approach developed by Krinke
[Krinke, 2001]. The PDG is again used as the means of representation but in this case 7

’’hash buckets” in a hash table. The table contains pointers to the original items. In the current case,

(sub)trees hashed to the same bucket should be more similar that those in different buckets.
7 “A program slice consists of the parts of a program that (potentially) affect the values computed

at some point of interest” [Tip, 1995]

28

modified to include aspects of the AST that further attribute and classify the vertices
and edges of the standard PDG, e.g., vertices are typed as expressions, statements,
procedure calls; they can be assigned operators to qualify the type; and assigned
names and literals. The data flow and control edges are additionally qualified to re­
flect variable storage, and evaluation dependency. The generated, directed graph is
termed a fine-grained program dependency graph (FGPDG). Similar blocks of code
are identified by matching program FGPDGs using an approximate graph matching
technique called maximal k-limited path-induced subgraphs. A maximal k-limited path-
induced subgraph, corresponding to two initial vertex sets containing one each of a
pair of matching vertices, is formed by adding vertices to the sets as follows: edges
incident to those vertices last added to the matching sets are partitioned into equiv­
alence classes according to their attributes; those new vertices belonging to matching
equivalence classes are added to their respective matching set. This continues until
there are no more matching equivalence classes or the number of iterations exceeds a
given threshold k. Maximal k-limited path-induced subgraphs are established for all
matching predicate nodes. The approximate nature of this graph matching process
requires the validity of matching sets to be weighted by comparing the number of
data dependency edges. Where the difference is again above threshold the match is
negated. Although again limited by the overhead of PDG construction and analysis,
and the polynomial complexity of the graph match process, the approach was shown
to be effective, with manageable run-times and reportedly good precision, claiming no
false positives.

2.3 Application D ependent Source Code Representation

2.3.1 Repository-based reuse

Indirect code comparison

One of the key elements in supporting and promoting software reuse is the provision of
searchable repositories of reusable components, including source code, and a means of
querying the repository in order to produce a set of candidates that satisfy a specified

2!)

reuse need [Mili, Mili and Mittermeir, 1998]. Code-level similarity can be established
indirectly given a collection (or organised repository) of appropriately represented code
and a means of issuing a query against it. If a query or pattern can be formulated that
sufficiently represents a code-level artefact (source code or executable), the results of
executing this query against the collection will comprise not merely those collection
elements similar to that represented by the query, but a collection of similar elements
in their own right - the candidates returned in response to a given query should be
similar8. As similarity is a function of representation, the techniques and approaches
to representation embodied in these indirect approaches are of particular interest.

In [Frakes and Gandel, 1989; Frakes and Pole, 1994] we are presented with a
survey of approaches to the representation of reusable software components as a basis
for repository population and query-based retrieval. These approaches can be broadly
categorised as being derived from Al-based knowledge engineering, or library and
information science.

A l-based representation

Although Al-based approaches are very important in their own right, the constraints
introduced above are such that approaches that rely on knowledge-based techniques
or additional information structures and tools do not warrant further, detailed discus­
sion. Although these “value added” approaches [Henninger, 1997] are common in the
domain of repository-based reuse, they generally rely on an initial manual, or semi­
automatic, characterisation of reusable artefacts, such as code, by domain experts.
In order to organise and structure the repository, they use pre-defined classification
models requiring “domain analysis and a great deal of pro-encoded, manually provided
semantic information” [Fernandez-Chamizo et al, 1996]. These systems are supported
by “value-added”, resource-intensive structures such as domain-specific thesauri [Os-
tertag at al, 1992; Liao et al. 1998], semantic nets and ontologies [Devanbu et al, 1991;
Fernandez-Chamizo et al, 1996; Etzkorn and Davis, 1996] and formal specifications
[Zaremski and Wing, 1995]. This heavy reliance on the provision of conceptual and/or
functional classification and inferencing frameworks, in association with dependent

®This reflects the cluster hypothesis from information retrieval, which states that closely associated

documents tend to be relevant to the same query [van Rijsbergen, 1979].

30

tools and techniques such as natural language processing [Girardi and Ibrahim, 1993;
Etzkorn and Davis, 1996] and theorem proving [Chen and Cheng, 1997] effectively
places these approaches outwith the scope of the current work.

The proposed approach makes few if any assumptions about the availability of
specialist knowledge and tools, or about the context in which the code exists, e.g.,
the maturity of the development and reuse processes. In the extreme, the sole source
of information available to the proposed approach is the code itself. Further, no
attempt is made to directly address Biggerstaff’s “concept assignment problem” [Big-
gerstaff et al, 1994], which is the intention behind many of these “value-added” ap­
proaches, i.e., the association of higher-level, human-understood and domain-oriented
concepts, to their realisation in implemented code.

Library and Information Science

The main areas of library and information science that may have a bearing on the
choice of representation are free-text retrieval and attribute-value description and in­
dexing.

Free-text retrieval

From a basis in Information Retrieval (IR) [Salton and McGill, 1983], brakes and
Nejmeh developed their “CATALOG” system as a means of storing and retrieving C
modules from a reuse library [brakes and Nejmeh, 1987]. Each item in the library is
represented and indexed by a set of keywords extracted from its associated documen­
tation. In defining a reuse need, a user supplies a set of keywords that attempt to
specify this need. These are matched against the indexed keyword sets in the repos­
itory, and a ranked list of candidate modules returned. This approach proved to be
simple, automatic and effective. However, by using an unconstrained vocabulary, the
lack of semantic association between keywords required query formulation be informed
by knowledge of appropriate and relevant keywords. Huu also points out the fallibility
of such an approach in the face of poor quality documentation [Huu, 1993].

In order to improve the quality of the keyword-based approach, Maarek and her

31

co-workers introduced a certain degree of stored semantic knowledge by introducing
the concepts of Lexical Affinity and Resolving Power into both the representation of
library artefacts, and the matching process underlying retrieval, [Maarek et al, 1994;
Helm and Maarek, 1991]. Lexical affinity provides a measure of the “relatedness” of
two keywords based on their frequency of co-occurrence in the software documentation
associated with a library item9. Resolving power assigns a measure of discrimination
to a lexical affinity, the higher the resolving power the more characteristic of the
document the lexical affinity is. Each item is described by a profile, expressed in terms
of the resolving power of its lexical affinities. Natural language queries describing the
functionality of a required component are in turn represented by the same type of
profile. A measure of similarity between a query profile and the repository of stored
profiles returns a list of ranked candidates.

The use of free-text, keyword extraction and analysis has also recently been ap­
plied to the detection of clones in source code. Latent semantic analysis/indexing
(LSA/1) was applied to the source code documentation of NCSA Mosaic, including
comments and the names of identifiers [Maletic and Marcus, 2001]. This provides a
measure of conceptual similarity between analysed documents. The LSA/I generated
vectorial representations of the constituent documents are used to group, or cluster,
related documents together. Strongly cohesive groups are manually inspected to de­
termine whether they represent higher-level conceptual clones or abstract data types.
The combined LSA/I profile of any selected group is then used to identify further
occurrences of the conceptual clone. They found that in the absence of good quality
comments, and consistency in naming conventions associated with similar concepts
and structures, the approach was flawed. However, they suggest that it may prove
useful in combination with an approach based on structural comparison such as those
discussed in the previous section.

Despite its limitations, simple, free-text, keyword extraction does find favour as an
adjunct to other techniques, e.g., within a case-based framework alongside a conceptual

9Lexical affinity can be interpreted as a minimal form of Latent Semantic Analysis/indexing

(LSA/I), a statistical approach to uncovering the relationships between words in large text collections

[Landauer, 1998]. LSA/I generates real-valued vectorial representations of blocks of text, charac­

terised by the general properties of a larger corpus. These vectors can in turn be used for indexing

and comparing the represented blocks.

model [Fernandez-Chemizo et al, 1996]. Where the quality of external and/or inter­
nal documentation is sufficiently rich an independent, free-text, IR-based approach
can be effectively and efficiently applied as illustrated by [Michail and Nothin, 1999;
Ye and Fischer, 2001].

Attribute-value description and indexing

The problems of unconstrained vocabularies were to some extent addressed by Prieto-
Diaz’s faceted approach to component representation [Prieto-Diaz, 1991; Prieto-Diaz and
Freeman, 1997]. Given a list of significant terms and synonyms resulting from an in-
depth analysis of a domain of interest, a domain expert classifies these terms into
a limited number of facets. Facets and assigned terms are both ranked in order of
characterising significance. Prieto-Diaz additionally relates terms by means of a mea­
sure of an informally assigned conceptual distance indicating how close they are within
the defined facet. Each repository item is classified (usually manually) by assigning
terms that characterise the item to each of the facets. Query formulation is based
on assigning terms to facets and matching the results against the items in the reposi­
tory. A measure of similarity is derived from within-facet term matching using exact
correspondence, or a thresholding process applied to term-term conceptual distance.
In order to accommodate a simpler, less rigid classification model, the constraints on
fixed numbers and ordering of facets and terms may in some situations be relaxed.
The resulting model is usually referred to as an “attribute-value” or “feature-term”
model.

Approaches to repository reuse based wholly or in part on the principles of faceted
or attribute-value representation are common [Ostertag et al, 1992; Henninger, 1997;
Damiani et al, 1999] but they fall into the “value-added” category of repository creation
and use, being reliant on in-depth domain analysis, and accompanying manual or semi-
automated expert-driven classification and repository population.

However, where a set of naturally expressive10, easily identifiable and automati­
cally extractable attributes and values exist, such an approach can be both effective
and efficient to realise and operate. Attributes and values in the form of features, their

'"'Though not necessarily rich conceptually as in the case of Prieto-Diaz’s original facets.

definition, representation and extraction, are an integral part of Cast-Based Reason­
ing (CBR) [Aamodt and Plaza, 1994]. A case-based approach to class-based retrieval,
predicated on the definition of attributes and values (viz. features and terms) ex­
tracted from binary executable files is described in [Tessem et al, 1998]. A set of
descriptors or features are extracted from executable files generated using the object-
oriented Java language from SUN Microsystems [SUN, 1999]. Features include “the
type signatures of methods and instance variables, inheritance relationships, and lim­
ited semantics inferred from the names of variables, methods and classes”. In addition,
their approach caters for manually indexed, generic class-type definitions of abstract
data types (ADT), e.g., a “STACK” ADT. Queries (“target cases”) are specified using
a Java-like syntax which is translated into a feature set prior to comparison with those
stored in the case-base, i.e., the repository of known, representative feature sets. Cal­
culating the similarity between the target and stored cases is based on string matching
between the terms of compatible features. This approach is particularly relevant as
it illustrates the potential of a method based on neither high-level code nor external
documentation. However, it does depend on direct string comparison of extracted
names and a high degree of consistency in the naming process, which in turn is only
possible due to the semantically rich nature of executable Java code and a high degree
of consistency on the part of developers. In addition, the authors point out limita­
tions in the comparison process due to its dependence on both the declaration order
of method terms and within these the order of parameters.

2.3.2 Program understanding and maintenance

The problem of program understanding in the context of continuing maintenance
is well recognised and widely researched [Biggerstaff, 1989; Biggerstaff et al, 1993].
Reverse-engineering and design recovery are key elements in the maintenance ar­
moury used to support the understanding process. Chiofsky and Cross define reverse­
engineering as a process of analysis aimed at creating abstract representations above
the level of implementation detail, which identify a system’s components and their
inter-relationships. They go on to define design recovery as a, sub-discipline of reverse
engineering that aims at assigning even higher-level, human-understood concepts to
underlying code. Tempered by prior experience, this is a process of inference based

on abstraction recovered from the code and knowledge external to the code [Chiof-
sky and Cross, 1990]. The importance of program understanding is evidenced by the
growth in the number of tools and repositories that capture and store structural in­
formation relating to existing code, and dedicated to the task of supporting reverse
engineering and design recovery [Chen et al, 1998].

Central to the understanding task is the notion of abstraction. A specific type of
abstraction that has recently come to prominence in the object-oriented development
community is that of a design pattern [Gamma et al, 1995]. Design patterns are generic
solutions to common, recurring problems within a given context. As design-level ab­
stractions, often expressed using design-level formalisms such as the Unified Modelling
Language (UML) [Rational, 2002], they have been suggested as a means of document­
ing implemented designs [Johnson, 1992], either proactively during development or
retrospectively in aiding understanding during maintenance [Keller et al, 1999]. Pat­
terns are by definition reused and as such can be interpreted as potential pointers to
the presence of common, recurring code. However, they are often based on multi-class
collaboration as opposed to single classes, and in addition may represent behavioural
as well as structural similarity in the underlying code. As pointed out in [Anto-
niol et. al, 1998], the degree of identifying information required to be extracted from
the design or code varies between patterns and in some cases t his extraction is difficult
or impractical. This is particularly the case where the intent behind a design pattern
is not inferable from the structure of the code alone. Our current interest relates to
the degree of implementation-level information required to establish the presence of
an identifiable pattern. It is likely that the same design pattern describes parts of pro­
gram code that are similar, and that dissimilar patterns allow sufficient discrimination
to suggest significant difference. The fact that in general design patterns are based on
multiple class collaborations is not seen as a major limitation: a pattern is realised as
the sum of the contribution of i)its individual classes and ii) the explicit relationships
between these classes. In a class-based scenario, the former will be given and the
latter will be at least partially available in the sense that a class identifies its outgoing
associations. Consequently, representation within pattern-based reverse engineering
and design recovery may inform the intended approach to class-based similarity.

Kramer and Prechelt developed the “PAT” system as a means of recovering design
from object-oriented code written in C++ through recognition of design patterns re­

35

alised by the code [Kramer and Prechelt, 1996]. Each design patterns is captured in a
set of Prolog rules based on design-level information extracted from C ++ header files,
i.e., class and attribute names; method names and signatures; and inheritance, asso­
ciation and aggregation relations. Code to be analysed is represented by Prolog facts
which are matched against the stored rule sets. Although the approach was effective
in recognising structural design patterns, the authors acknowledge that precision was
affected due to the limited amount of information that could be extracted from the
C++ header files. Potentially useful information was unavailable: the categorisation of
classes as abstract or concrete; the semantics relating to the type of method, e.g., con­
structor; the identification of method delegation; called method signature matching;
and differentiating between association and aggregation.

The limitations ident ified by Kramer and Prechelt were addressed in part by See-
rnann and von Gutenberg’s approach to pattern identification within a Java develop­
ment environment [Seernan and von Gutenberg, 1998]. The essential difference here is
the level of structural information extracted from the source code and the introduction
of reasonable heuristics used to infer additional relationships. By means of a parsing
process over the Java source code, they were able to extend the amount of informa­
tion contained in the representation of the patterns and classes. This was achieved
as a result of more detailed method analysis and reasonable heuristics applied to the
inference of aggregation and delegation. This allowed identification of the nature of
the method, e.g., “constructor”, “creator”, “delegator”, and extraction of a method’s
call graph, which included called method signatures and a classification of the calling
relationship. They give no specific, quantified results relating to how effective the ap­
proach is in practice but state that they “can detect more instances of a pattern than
approaches strictly relying on the pattern structure” in Gamma et al’s pattern library
[Gamma et al, 1995], However, they also imply that some instances of design patterns
were not matched, and some code erroneously matched against specified patterns, due
to limitations in the purely structural representation.

As part of the “SPOOL” environment developed by Keller et al, pattern-based
reverse engineering is based on an approach to code capture as applied to C ++ source
code [Keller et al, 1998]. Their repository of source code information is based on a
comprehensive analysis of the source code, again based on a detailed analysis of the
class structure, including the method call graph and additionally, the identification of

variable use within methods and polymorphic method calls. They report high precision
for two out of the three patterns tested. The representative structure of these patterns
unambiguously reflected the underlying intent. The third pattern gave rise to many
false positives due to the intent of the pattern being missed and the structure being
inappropriately matched.

A further approach to pattern-based design recovery based on a similar model of
code structure as suggested by Kramer and Prechelt is presented in [Antoniol et al, 1998]
As in the case of Kramer and Prechelt, the representational model of class structure
is limited due to the depth of analysis. It includes some degree of method analysis
in being able to determine delegation but it does not identify polymorphic method
calls as in Keller et al. Where possible, it also differentiates between aggregation and
association. Their approach is confined to the identification of structural design pat­
terns giving average identification precision. This approach is particularly interesting
in that it limits the number of potential candidate matches between code and pat­
tern specification by the use of metric analysis. Certain quantifiable characteristics,
or metrics, common to both the component classes of a design pattern and the anal­
ysed C++ classes are measured, e.g., the number of associations, aggregations and
inheritance relationships in which a class is involved. In addition to constraints based
on participation in a necessary set of relationships with other classes, each class is
compared against all the components of a stored pattern and where its values for the
chosen metrics are at least as big, it is selected as a potential candidate match. The
use of metrics in the comparison process proved invaluable in limiting the search space
of potential candidates.

The detection of lower-level abstraction, representing commonly reused algorithmic
or structural constructs - “idioms”, “cliches”, “plans” - has received much attention
[Rich and Waters, 1988; Quilici et al, 1997]. Although these approaches are effective
at locating specific computational abstractions and data structures, they tend to be
limited in their ability to scale due to their being based on the detailed represen­
tation of code at the level of annotated abstract syntax trees (AST) or flow graphs.
The “JACKAL” tool developed by Reeves and Schlesinger attempts to address this by
initially representing both code and “cliche” in a limited but sufficiently expressive ab­
stract language (AL). These AL representations are converted into labelled, attributed
trees or attributed strings, and respectively compared using computationally manage­

able tree matching or weighted string matching [Reeves and Schlesinger, 1997]. They
sacrifice a degree of precision for computational scaleability. The AL representation
and translation resembles the process of tokenisation used in some of the approaches
to plagiarism. As such it could possibly be adapted to the representation of classes,
with the added power of attributes associated with these tokens. However, unlike the
representation used for design pattern recovery, and as in the case of AST-based clone
detection, the level of abstraction may be too close to the algorithmic characteristics of
the underlying code to allow reasonable measures of class similarity other than exact
or near-miss match.

Design recovery and program differencing

Jackson and Waingold’s “WOMBLE” tool produces UML design documentation by
means of a lightweight, heuristic design recovery based on the analysis of executable
Java class files [Jackson and Waingold, 2001]. Their model is similar to that docu­
mented in [Seemann and von Gutenberg, 1998] but is more detailed, their analysis
of methods allowing the assignment of mutability and multiplicity labels to associa­
tions. In addition, it can infer some semantics related to the identification of container
classes. The representational model and heuristics underlying “WOMBLE” were at the
time shown to improve on the Rational Corporation’s commercially available “ROSE”
design tool, in terms of the quality of recovered design documentation.

The work of Yih-Farn Chen and his colleagues is based on the creation of a rich
repository of information principally based on relational database technologies and
the modelling of object-oriented code, both source and executable. For example, by
capturing the structural properties of C++ and Java code they are able to support
various visualisations of the code structure such as the class hierarchy and call graph.
In addition, by querying the repository database their tools can establish reachability
relationships between modelled entities such as methods and fields [Korn et al, 1999;
Chen et al, 1998]. The content of the model is broadly similar to that proposed by
Keller in the context of design pattern recovery as described above. It incorporates
information relating to entities such as classes, fields, and methods; their attributes,
and the relationships that exist between them. Of particular interest is their use of
such a model to investigate program difference. For example, using the structural

38

model of Java classes, their “CHAVA” tool can examine the changes that have been
made between two versions of a Java-based system. A similar approach is adopted
in [Rayside, Kerr and Kontogianis, 1998], A natural extension of this would be to
quantify the identifiable difference and establish a measure of similarity between the
compared code. The significant observation is the discriminating power of such a
relational, attributed model in being able to identify such differences, the corollary
being the potential to determine quantifiable similarity.

2.4 Them es and com m ents

The problem of automatically identifying similar programs or parts thereof is obviously
well researched. Rather than discussing the relative merits of individual approaches,
various general themes and limitations are summarised here in relation to the potential
benefits and constraints implicit in the approach introduced in this thesis.

Degree of match

One obvious limitation associated with some of the methods introduced above is their
comparison of code-level artefacts based on similarity rather than exact match, such as
Johnson’s “fingerprints”. Those that provide degrees of similarity but without clearly
identifying the features in the code responsible for said similarity are also potentially
limiting, e.g., the pure attribute counting systems.

Granularity and Object-orientation

All the approaches to plagiarism detection and direct code analysis outlined above
are either specifically aimed at the analysis of procedural code, or generic to the
point of making no allowance for the peculiarities inherent in object-oriented code,
i.e., the entities that comprises a class and the superimposed intra and inter-class
relational structure. In these cases, analysis concentrates on procedural algorithmies,
at times detailed down to statement level semantics. Several cloning techniques are
based on comparison of methods but none raise the granularity to that of the class. In

39

contrast, several of those techniques dependent on identifying patterns, and those used
to support repository-based reuse, base their representation and retrieval mechanisms
on precisely those characteristics that exemplify the form of object-oriented code.
Within the context of procedural code, the approaches of .Jankowitz and Leach lend
weight to the argument that the relational aspects of code structure can be exploited
to good effect in determining similarity.

The organising principle inherent in the concept of a class as a tightly coupled and
cohesive unit presents an opportunity to emphasise relationships, interfaces and refer­
ence types, and de-emphasise the more variable, procedural aspects of the compared
code. Focussing on the relational aspects, but confined to an examination of structural
as opposed to a direct semantic/conceptual analysis, may provide a more diffuse but
useful measure of similarity. Particularly, if this brings us closer to matching classes
based on their “visible” interface rather than on their notionally “invisible”, and pos­
sibly more variable implementation. The approach being advocated in this thesis is
based on the structural properties of object-oriented code, and in the first; instance
aims to test whether such a relational model of class comparison is in fact viable as a
means of quantifying class-based similarity.

Representation

Code representation in plagiarism and cloning highlight the two extremes of the rep­
resentational problem in that some approaches are possibly too detailed while others
do not provide sufficient discrimination.

Those approaches based on graphs such as ASTs and PDGs are able to provide
discrimination in the match process down to the level of individual, attributed state­
ments and expressions. Although this level of detail can provide sufficient information
to enable detailed refactoring [Balazinska et al, 2000] and automated clone removal
[Baxter, 1998], the computational overhead is probably inappropriate, if a lower level
of resolution is adequate. The proposed approach does not entirely remove the de­
velopin', who, as the final arbiter and a powerful discriminator in his/her own right,
decides whether identified similarity is indeed significant. The key, supporting require­
ment is the limiting of presented cases to those that are potentially relevant, which as

40

shown above is possible based on less detailed representation and analysis.

String matching and the structural approaches to plagiarism detection are possibly
better suited to the current requirements. However, some string matching techniques
are fallible, particularly with respect to name changes and the relocation of order-
independent blocks of code. Although some string matching techniques get over the
problem of consistent name changes, even those based on lexical analysis and pre-
tokenisation of the program text can blindly and inappropriately match types and
method calls, leading to mismatch in contexts such as the comparison of method
signatures, e.g., reordering of parameters. In general, having no concept of type, being
able to overrun syntactic boundaries in the code giving rise to “nonsensical” matches11,
and not necessarily respecting explicit relationships between the entities representing
a class, undermine their capacity to capture valid similarity between classes.

M etrics

Although structural approaches to plagiarism detection were shown to lie superior
to attribute counts, several clone detection techniques have in contrast used metrics
based on individual counts to good effect, as shown by Maynard et, al and Lague et
al’s work on clone identification [Maynard et al, 1996; Lague et al, 1997].

Two-phase approach

A recurring theme has been the use of a two-phase approach in addressing the problem
of match complexity and scaleability. By initially applying a low-cost, approximate
matching technique, this reduces the number of candidates subjected to a more de­
tailed, but costly secondary comparison. This type of approach is dependent on i) the
approximation being sufficiently selective to remove dissimilar pairs of candidates but
capable of recognising those that are in fact genuinely similar, and ii) the number of
genuinely similar pairs being a small fraction of the population being examined.

11 As Baxter puts it [Baxter, 1998]

41

The proposition

The method proposed in this thesis is:

• automated

• applied to an existing, object-oriented code-base

• employs information contained only in the code and makes no assumptions re­
garding the contained documentation, comments or names

• incorporates an attributed, relational model of class structure where entities and
relationships are explicitly represented

• includes structural typing, which maps classes and primitive types to unique
identifiers, based on equivalence classes of similar structure

• uses a two-phase approach to determining similarity

42

Chapter 3

M odel C o n stru c tio n : s tru c tu ra l

s im ila rity in o b jec t-o rien ted code

3.1 Introduction

In Chapter 1, a prime motivator behind this work was the provision of a set of com­
putational tools that can be used to assess the nature and degree of similarity and
repetition within an established object-oriented codebase, based on an automated,
structural analysis. This chapter describes the derivation of a generic, graph-theoretic,
structural model of object-oriented code. This forms the basis of a formal model of
quantifiable structural similarity, capable in the first instance of the following tasks:

• determining the degree of structural similarity between individual classes

• identifying the structural elements that account for similarity

Chapters 4 and 5 go on to interpret this generic model in the specific context
of Java code development, where a set of experiments is conducted in order to test
the validity of the model as a means of providing a measure of structural similarity
between the elements of a collection of Java class files.

The material presented here and in the following chapters assumes a certain degree
of familiarity with graph theory on the part of the reader. A concise introduction
to those elements of graph theory essential to an understanding of this material is
provided in Appendix A.

3.2 M odelling Structure and Similarity

Structure and structural similarity are universal concepts across a diverse range of
disciplines. Structures can generally be represented as sets with additional proper­
ties over the elements of these sets. Morphisms, as mappings between sets, preserve
these properties. The motivating example in this case is the notion of structures as
graphs, and the category of graphs and graph morphisms. Wherever object or concept
structure can be described in terms of a graph, the problem of determining similarity
reduces to that of graph matching. The aim of this thesis is to establish a formal,
graph-theoretic model of object-oriented code structure and quantifiable structural
similarity. Graphs have long been the choice of representational abstraction when
modelling structure in the domains of molecular chemistry [Jurs, 1980] and computer
vision [Ballard and Brown, 1982]. The next section draws on analogies from these two
domains in order to formulate our initial model.

3.2.1 Analogies from molecular chemistry and computer vision

Similarity in molecular structure

The structure of chemical molecules is traditionally described in terms of the compo­
sitional and spatial relationships between their constituent atoms. Molecules can be
represented as labeled graphs, where the vertices represent the atoms and the edges
represent the interatomic bonds or distances (Fig. 3.1(a)). This formal abstraction
of molecular structure can often allow reduction and translation of many domain spe­
cific problems into an equivalent graph-theoretic format. These problems can then
be solved using generic graph algorithms [Deo, 1974; Willett, 1999]. An example
of particular significance is establishing the degree of structural similarity between

molecules by quantifying the match between labeled graphs. The classes of object-
oriented development, the entities that comprise a class, and the various inter and
intra class relationships that exist between them, can also be represented as a graph
(Fig. 3.1(b)). Informally, we don’t have to overly stretch our imaginations to recognise
that the structure of object-oriented code resembles the graphical representation of a
chemical molecule.

© ©
nh2 0

CH3 -----CH------ CH-,------- C ------ OH
© © ® © ©

(a) 3-Aminobutanoic Acid

© class MyNumberClass {
(J) int myNumber;

public MyNumbetiint aNumber)
(© ©

myHumber- aNumber;
}
public int getMumberO
(© ©

return number,
}

}
(b) A simple Java class

Figure 3.1: Graphical representation: (a) chemical molecule (b) object-oriented class

2D and 3D molecular substructure and similarity searching constitutes a mature
discipline. As such, it provides a rich repository of information that may Ire poten­
tially transferrable as a model of structural similarity to object-oriented code analysis.
As described in [Willett et al, 1998], molecular substructure and similarity searching
involves building a repository (collection) of molecular structures, including their as­
sociated properties and active characteristics. This repository is subsequently used
as a focus for further development and testing. Based on the notions of molecular
similarity and classification, such a repository can be used to search for molecules hav­
ing similar properties and/or activities to a supplied target structure. The techniques
involved parallel developments in the area of information retrieval (IR), drawing on
elements of graph theory, e.g., matching techniques, and classification theory, e.g.,

45

feature selection and clustering.

Willett makes the distinction between “substructure”, “similarity” and “subsimi­
larity” searching, all of which represent concepts particularly applicable in the case of
structural analysis of object-oriented code. Substructure searching aims at partition­
ing the repository according to whether the entries are an exact match to, or contain,
the target structure. This in effect corresponds to the boolean retrieval model in IR
where documents in a collection are judged as either similar or not similar to a target
document or query. Mirroring the extension to best match retrieval in IR, molecular
similarity searching provides a nearest-neighbour ranking based on the degree of simi­
larity between the fully-specified target and the molecules in the repository. The target
is associated with the n repository structures to which it is most similar, its « near­
est neighbours. Sub-similarity searching is a further refinement. As with similarity
searching, this aims at a best-match, ranked order but based on the similarity be­
tween a target’s substructure and (sub-)structures in the stored database of molecules.
Effectively, match based on sub-similarity establishes a maximum common subgraph
between target and candidate [Hagdone, 1992].

Differing levels of abstraction are an integral part of molecular similarity search­
ing: searching is often implemented as a two-phase process. A target structure is
first matched against each repository structure based on a global characterisation of
individual molecular structure. A global measure of molecular similarity is generally
based on a vectorial representation of feature counts or values. Features are molec­
ular characteristics variously derived from a combination of the structural topology
of the molecule; the properties of individual or grouped atoms and bonds; and the
physio-chemical properties of the molecule as a whole. A common approach involves
characterising a molecule’s structure in terms of its constituent atoms or atom groups,
which are referred to as structural fragments [Willett et al, 1998], The screening
process limits the candidates input to a more detailed, computationally demanding,
local measure of similarity. The approach is local in the sense that it takes place at
the level of individual atoms, their properties, and the relationships between them.
This secondary measure is based on an atom-by-atom analysis and is essentially a
graph-theoretic matching process applied to the labeled graph representation of the
molecules. This amounts to determining the presence of structure preserving map­
pings between target and candidate molecules. Given the potential complexity of this

problem, as further discussed in Chapter 5, the effectiveness of the initial screening
phase is extremely important.

The last two paragraphs highlight key points that provide the link between the
work of Willett and his colleagues, and the approach to class comparison developed
in this thesis. There is an existing set of tools and associated algorithms used in
the analysis of molecular properties and activity. These tools find a basis in graph-
theoretic analysis. As this basis is independent of the domain from which the graphs
originated, it is reasonable to suggest that the analytical machinery is transferable
from the domain of molecular chemistry to that of object-oriented code analysis.

Pattern recognition in com puter vision

Pattern recognition based on a relational graph representation of scene structure has
become a core element of research in the area of computer vision [Barrow and Pop-
plestone, 1971]. As in the case of molecular chemistry, graph-theoretic approaches to
structural matching are common, particularly as applied to scene and pattern recog­
nition [Ballard and Brown, 1982]. The formal structural model adopted involves an
extension to the basic labeled graph. Edges are relational (directed), and both ver­
tices and edges have additional, descriptive attributes. These attributes are distinct
from any employed in label assignment, and essentially qualify any such assignment.
The model so generated is called an attributed, relational graph (ARG). Attribution
increases the knowledge content of the model by encoding more information about its
primitives and relations, i.e., the vertices and edges of the underlying graph. By virtue
of this increase in knowledge, attribution helps increase match precision (See Section
3.2.4). In general contrast to the graph structures employed in molecular chemistry,
an hierarchic representation is common in computer vision scene analysis. Vertices of
an ARG may in turn be represented as ARGs in their own right [Ballard and Brown,
1982; Wilson and Hancock, 1999]. We can draw convenient parallels between this hier­
archic structure and the structure of objected-oriented code, in that class instances are
inherently hierarchic due to the possibility of their contained fields themselves being
class instances.

An attributed model also enhances error-correcting match in the face of pattern

47

corruption [Tsai and Fu, 1979; Shapiro and Haralick, 1981]. In contrast to molecular
similarity, the role of error-correcting match is heavily emphasised in computer vision
where target structures are often compared with sets of known, candidate prototypes.
In both domains, the pattern encoded in a target structure’s graph primitives may be
interpreted as a distortion within a given delta of that of a known structure or class
of structures. A certain degree of inexact or error-corrected match may be accommo­
dated within molecular matching based on a generalisation of fragment types, with
legitimate substitution of, for example, elements in the same periodic group, or partic-
ulat categories of bond chains and rings. In computer vision, the absence of an exact
match can often be sensibly explained as legitimate errors in the target resulting from
distortions in the image capture process [Ballard and Brown, 1982], In such cases,
the two compared structures can often be classified as the same: distortions (errors)
may in certain circumstances be legitimately ignored. When capturing an image of a
scene, measurement accuracy, viewing perspective, element orientation and relation­
ships can vary. This may lead to the failure of a target image to match with a library
image that actually represents the scene in question. The additional presence, absence
or difference in the underlying primitives between the graph representing the target
and the stored models may be valid distortions. These distortions can be respectively
addressed by “edit operations” such as deletion, addition or substitution, given that
they make sense in the specific context.

If additionally the values of attributes associated with graph primitives are also
within set tolerances limits, the representative structures can be “made” similar to that
of a stored model without penalty. If penalty costs are associated with addressing t he
errors, the minimum associated cost can be used as a measure of dis-similarity. In
this case, a similarity judgement can be made based on a set threshold or a ranking
relative to the target structure produced. For example, a scene depicting a box on
a chair may be captured from several different perspectives and stored as a set of
prototypes under the heading say of “chair and box”. A captured image of the same
or a similar scene may have the box on the floor, in front of the chair, obscuring one
of the chair legs. Although the graphical representation would satisfy the majority
of structural constraints imposed by the reference model graphs, it would highlight
the incorrect relationship between chair and box - “in front of” as opposed to “on”
- and the incorrect leg count - 3 as opposed to 4. Rather than dismiss the captured

48

scene, by applying the legitimate, sensible edit operation of substituting the “in front
of” relationship (edge) by an “on” relationship (edge) and adding the obscured leg
(vertex) along with its relationships with the remaining elements representing the
chair (edges), a valid match can be established.

Obviously, the definition of “legitimate” and “sensible” in the last paragraph are
context specific but a certain degree of objectivity can be obtained through the adop­
tion of a probabilistic model of the scenes in question. This introduces another signif­
icant difference between the approaches to pattern matching and molecular similarity.
Based on the use of training examples and a priori knowledge, deformation probabili­
ties, as well as label and attribute probability densities, are often involved in determin­
ing structural similarity in pattern recognition [Tsai and Fu, 1979]. Error-correcting
match using “legitimate” and “sensible” edit operations can be reduced to knowing
the degree of allowable variation between and within structures that are classified as
the same or similar, these being provided by the probabilistic models.

Pattern recognition is often framed in terms of error-correcting match. In con­
trast, molecular matching is essentially closer to the pure notion of matchings between
graphs. In the case of molecular match, errors are generally limited to measurement
tolerances associated with attribute values, e.g., interatomic distances and inter-bond
angles, as opposed to errors in detecting the primitives and relationships in the form
of atoms and bonds. Probabilistic models of molecular structure are generally not ap­
propriate when the representation is predominantly based on constituent atoms and
connectivity1. Both error in capturing structural details and the variability in model
representation are minimal.

The attributed, relational, hierarchic graphs of pattern recognition extend and
enhance the basic labeled graphs of molecular chemistry. This provides another key
link between an existing body of work with a basis in graph-theoretic analysis and the
approach to class comparison developed here.

'Particularly if the nature of molecular match is type “C” according to Downs and Willett’s

classification, i.e., not at the level of electron probability distributions, or grid-based match [Downs

and Willett, 1996].

3.2.2 Global quantification of structural similarity

As previously mentioned, in determining structural similarity we are interested in both
global and local measures: global measures provide a numeric value which, in general,
captures an approximation to the overall similarity between given structures; local
measures tend to be more accurate and in addition identify those identical or near­
identical structural elements which contribute to the similarity found. The structural
elements in question are determined by the domain of interest and represented by the
vertices and edges of the model graphs. In the case of molecular chemistry, they are
the atoms and bonds, including their individual and combined physio-chemical prop­
erties. In computer vision they are the scene objects, their properties and inter-object
relationships. Global measures are introduced in this chapter and further discussed in
conjunction with local measures based on graph rnorphisms and matching in Chap­

ter 5.

A vector-space model of object representation

A simple yet powerful global measure of similarity between domain objects is based
on representing these objects as vectors. The elements of the vector are referred to as
attributes or features. Vector models are used in the context of molecular similarity
screening [Willett, 1987], information retrieval [Salton and McGill, 1983] and pattern
recognition [Tou and Gonzales, 1974]. Given an object Ok, it can be represented by

the vector
Afc {2-1/0 ki 2̂ 3k • • • » 2Jjik}

where Xjk is the value of attribute Aj for object Ok- The type of vector feature can
be homogeneous, such as the set of substruetural features of molecular chemistry, or
the set of document terms from lit. In both these cases, feature values can be binary,
indicating the presence or absence of a given feature, or counts, representing the fre­
quency of occurrence of each feature within a molecule or document. Alternatively,
vector feature types may be heterogeneous representing a variety of structural and non-
structural properties. In this case, feature values come from across the full spectrum
of measurement scales, e.g., colour, rank, density. Homogeneous vectors benefit from
ease of comparison and are the most common representation used in molecular cliem-

50

istry. Heterogeneous vectors are more versatile in terms of their information carrying
capacity but due to the variety of types and scales, and issues such as standardisation
of feature values, they present greater difficulties when it comes to the calculating of
similarity.

Where two domain objects Ok and Oi are characterised in terms of the same type
of feature vector, the similarity between them is calculated based on a function over
their feature vectors S(Xk,Xi). This function is commonly referred to as a similarity
metric or coefficient. The vectorial representation, although commonly referred to as
the vector space model, does not necessarily conform to the pure mathematical notion
of a vector space depending on the nature of the feature values.

Drawing on established taxonomic principles [Soled and Sneath, 1973], molecular
similarity measurement is founded on the following three basic requirements [Willett
et al, 1998]:

• the appropriate choice of structural features used to characterise a molecule

• the weighting of these features

• the applied similarity coefficient

The molecular entities being compared must be represented by a feature set rich enough
to adequately characterise their structure. The features should be weighted according
to their relative importance in determining similarity, those features more indicative
of higher similarity being associated with a higher weighting. Finally, a similarity
coefficient must be chosen that accurately reflects the actual empirical evidence relating
to the degree of similarity between the structures in question. Within the realm of
molecular similarity searching, an extensive range of options exist. An exhaustive
review is beyond the scope of this thesis, an excellent overview and comprehensive
reference set being provided in [Willett et al, 1998].

Features and screening

The commonest features used in molecular chemistry are 2D and 3D “fragments”:
a molecule is indexed according to the frequency with which particular structural

51

fragments occur within it. For example, 2D “augmented atom” fragments represent
each atom along with its neighbours and any intervening bonds. Other examples of
feature sets include counts of various structural elements such as individual atoms
and bonds; physiochemical property descriptors; and topological indices [Willett et
al, 1998]. Irrespective of the nature of the features, the overriding objective is to
ensure that the feature set selected represents a balance between ease and efficiency
of extraction, and effectiveness in “sufficiently” discriminating between comparable
structures within the application domain. (What constitutes sufficiency is discussed

in Section 3.2.4.)

Feature weighting and normalisation

The utility of feature weighting lies in emphasising the importance of certain fea­
tures over others during the calculation of similarity. The presence or absence of a
given feature within two compared structures is fundamental to the determination of
similarity. Additionally, a higher or lower significance may be assigned to a feature
depending on its power to discriminate between structures within a collection. The
more discriminating the feature the higher the weighting applied.

Through a series of experiments documented in [Willett, 1987], it was concluded
that fragment-based similarity using feature weighting was significantly better than
the corresponding unweighted results. (Unweighted in this context referred to the use
of a binary feature vector, a value of 1 indicated the presence of a feature in the given
structure.) Three weighting schemes were applied. Simple frequency weighting used
the raw counts of individual features in a structure. This assigned more weight to
features occurring frequently in a molecule. Size-based weighting assigned a fragment
in a small molecule a greater weight than the same fragment in a larger molecule. This
lessened the effect of gross structure size where a feature is a priori more likely to be
present in a large structure. Finally, features occurring infrequently in the collection
of structures were weighted higher than those features occurring frequently across
the collection. This “rarity” factor capitalises on the increased discriminating power
of such features. [Hodes, 1989] defines an approach to weighting which effectively
combines the three schemes, a method echoed from an IR perspective in [Robertson
and Sparc-Jones, 1997]. In a study of molecular classification using a fragment-based,

52

vector model of molecular structure, Hodes used a weighting scheme combining the
raw frequency counts of individual molecule features (multiplicity), fragment collection
frequency (rarity), and the gross structural size (Indirectly via the coefficient used).
In addition, he weights based on the size of individual fragments, smaller fragments
being given more weight due to their better levels of discrimination in this case.

The potentially wide range of feature types and value ranges can lead to bias in the
comparison process, particularly in the case of heterogeneous vectors. The presence of
a single, unmatched feature with a normally high value can overshadow the effects of
several low-valued but matching features. This bias is often countered by normalising
the values, mapping them to the real-valued interval [0,1]. A common approach to
normalisation is Gower’s ranging transformation [Willett, 1987, pp50]: subtract the
minimum collection value for a feature from the current value and divide by the feature
value range. Standardisation is a process of normalisation based on expressing the
observed values in terms of the standard deviation from the mean. This attempts to
address the problem of bias by recalculating feature values to give zero mean and unit
variance across the collection.

Distance metrics and similarity coefficients

A metric is a function m : X x X —> 3i* such that for all x, y, z E X the following
three properties hold:

• self-identity: m(x, y) = 0 iff x = y

• symmetry: m(x, y) = m(y, x)

• triangle inequality: rn(x, y) -f m(y, z) > m(x, z)

(In the context of distance metrics, it is assumed that m(x,y) > 0 and that rn(x,x) =
0) A metric space is the pair (X m) comprising an arbitrary, underlying set X and a
metric m on that underlying set.

Measures of dis-similarity are generally called metrics or coefficients, the latter
being used where the measure does not satisfy all metric properties. A similarity

53

coefficient quantifies the similarity between two structures, represented here according
to the vector space model. As mentioned above, it can be interpreted as a function over
the feature vectors representing two structures. It returns a value proportional to the
degree of similarity between the two structures. A distance metric (or dis-similarity
coefficient) measures the distance (or dissimilarity) between structures.

The many distance metrics and similarity coefficients proposed in the literature
are generally classified according to a basis in one of two fundamental measures. The
distance metrics are derived from a summation over the absolute difference between
feature vector elements, where the elements are values in some suitable metric space.
In the main, the underlying set is 5Ii*, real numbers greater than or equal to zero, or
a restriction on same such as whole or binary numbers. The resulting difference gives
a measure of the distance between the compared objects, i.e.,

n
5Z - XA
3 = 1

Alternatively, a similarity coefficient may be expressed as a summation over the scalar
product of the two feature vectors. In this case it is often referred to as an association
coefficient, i.e., n

Z xJk ■ XH
3 =1

In both cases there are n attributes and xjk is the value of attribute Aj for object Ok-

In practice, although these basic coefficients can be used unmodified, the majority
of coefficients additionally involve both normalisation and internal weighting factors.
Normalisation in this case implies a functional transformation such that the returned
similarity value lies within a specified range, e.g., 0 and 1 or —1 and 1 and internal
weighting allows various penalties to be associated with feature mismatch. These fac­
tors are distinct from the weighting and normalisation of individual features previously
introduced but they are not necessarily independent. One approach to coefficient nor­
malisation, as exemplified by the Bray-Gurtis coefficient (see), introduces a division
by the sum of all the feature values in the two compared vectors. This produces a
similarity value between 0 and 1 and in addition introduces a weighting factor that
accounts for disparity in structure size.

54

An example of a distance metric based on the sum of differences is the Mean Euclidean
distance metric:

V (Xk,X l) =
\/E"= 1 \xjk - Xji\~

while an example of an association coefficient based on the scalar product is the Tan-
imota association coefficient:

V{XkìXÌ) = ______ E"=l XjkXjl
E n ,r2 i v n t2 j=\ xjk + 2sj= 1 xjl XjkXjl

both of which are routinely used in molecular matching.

A review of a large collection of commonly employed similarity coefficients is pro­
vided in [Ellis et al, 1993] where they conclude that a choice of coefficient is necessarily
driven by the specific domain of interest and ultimately arrived at through trial and
error. Although this study was oriented towards text retrieval systems, the same or
renamed coefficients are commonly employed for determining molecular similarity and
their conclusion regarding choice is equally applicable [Willett, 1998]. The coefficient
chosen requires a balance of computational overhead against sufficiency in determining
similarity (see). Fitness for purpose in terms of the correlation between calculated and
judged similarity being the ultimate aim.

It should be noted that similarity searching in molecular chemistry is predicated
on the belief that structurally similar molecules have similar properties and biological
activities - the “similar property principle” [Willett et al, 1998]. The intention here is
not to determine functional equivalence between structures but to argue that structural
similarity in object-oriented code necessarily correlates with functional similarity to
a useful, usable degree. Current interest lies initially in interpreting the molecular
similarity model and matching techniques within the domain of object-oriented code
structure as a means of examining the potential of such an approach. In so doing, we
do not dismiss the future possibility that in providing a means of identifying similar
structure, as in the case of inferring molecular properties and activity, we can not draw
additional inferences about the more abstract properties of the examined code, e.g,
aspects of code quality such as reusability and maintainability.

3 .2 .3 L oca l q u a n tif ica tio n o f s tr u c tu r a l s im ila r ity - gra p h m o rp h ism s

Having described a means of obtaining a global measure of similarity as a process of
feature vector extraction from a representative attribute relational graph, this section
briefly introduces local measurement of similarity based on graph matching. Chapter 5
goes on to describe the graph match process in detail.

More analogies from molecular chem istry and com puter vision

Matching and searching in repositories of chemical molecules has developed from an
approach based on establishing exact match between a target and stored structural
model, through identification of a target as a substructure, to match based on iso­
lating common substructure. In graph-theoretic terms, this migration corresponds to
establishing various morphisms, i.e., structure preserving mappings between graphs.
Graph isomorphism corresponds to exact match, subgraph isomorphism to substruc-
tural match, and bi-directional subgraph isomorphism (or common subgraph) to the
identification of common substructure. In computer vision, pattern recognition based
on relational graphs employs similar approaches to graph matching. In this case it is
usually framed in terms of the generic consistent labeling problem and in particular
as variants of relational homomorphism. Relational homomorphism principally differs
in allowing higher than binary cardinality of relationships and in not being as strict
in terms of match criteria as (sub-)graph isomorphism [Shapiro and Haralick, 1981].

In relation to the modelling of code structure, the structure graphs to be used
to represent analysed classes are based on binary relations, and the nature of the
required match is such that an injective mapping exists between the primitives (or a
constrained subset) of one graph and those of another graph. Again, based on the
techniques employed in both molecular chemistry [Hagdone, 1992; Willett, 1999] and
pattern match in computer vision [Ambler et, al, 1975; Barrow and Burstall, 197(i] we
concentrate on the stricter notion of graph morphism and in particular bi-directional
subgraph isomorphism in the form of maximum common subgraph (MCS).

Exact and inexact local match

Essentially, graph morphisms are based on the principle of exact graph match. Labels
and relational mappings are necessarily precise, allowing no transformations, such as
label (name) substitution, prior to mapping. As previously mentioned, the variability
inherent in pattern matching promotes a further extension to the graph match process.
In the language of [Tsai and Fu, 1979], account can be taken of possible legitimate
distortions between a pattern and a stored reference model and the allowable mappings
altered accordingly. Our approach is in effect based on inexact match when using
attributes in addition to named primitives and relationships, i.e., semantic labels in
addition to syntactic names. The difference between this approach and that of error-
correcting match relates to the absence of insertion and deletion operations, i.e., we
deal with match at the level of threshold-based equivalence, which in effect amounts
to primitive substitution. This is discussed in more detail in Chapter 5.

Inexact graph matching may be framed in terms of probabilistic models to deter­
mine the maximum likelihood of match. Alternatively, in the absence of such models,
it can be implemented based on minimal-distance as applied to the pairwise compari­
son of primitive and relation attributes. [Tsai and Fu, 1979] describe an approach to
inexact match based on attribute relational graphs and graph-preserved deformations:
for each comparison, the underlying unlabeled graphs are the same but the primitives
and relations of an input attribute relational graph may be deformed from those of any
compared model. [Messmer and Bunke, 1998] interpret inexact match as a minimisa­
tion of the edit-distance between a model prototype and an input graph, effectively
extending the graph-preserved minimal-distance approach to include the insertion and
deletion of primitives and relations. All these methods are computationally more de­
manding than exact match and as in the present case may not be appropriate if the
application domain does not sensibly support such an approach. The model of object-
oriented code proposed here allows for exact match at the level of named primitives
and relationships. In addition, it supports further qualification based on tolerances
over attribute values associated with the individual primitives and relationships. An
initial exact match based on names, in the sense of classification or typing, can act as
a filter to the more expensive attribute match.

57

3 .2 .4 S u ffic ien cy in d e te r m in in g s im ila r ity

The notion of sufficiency applies to the entire approach to similarity determination and
is ultimately domain and application dependent. However, sufficiency in our present
context can be generally described in terms of a) a monotonic ranking based on a total
order of collection elements and b) a trade-off between precision and recall. Take a
collection of structures C and a target structure T to be compared against C using a
new approach. Assume that a total order or ranking p(C) has been previously imposed
on the elements of C based on their individual similarity to T. This order could be
based on expert evaluation or on a known reference method. Let p'(C) be the ranking
induced by the new approach. If the relative order of elements in C is the same for
both p(C) and p'{C) the new method is said to be monotonic with the reference. The
similarity values may differ but the ranking is the same. Monotonicity is the first,
criterion for sufficiency. Additionally, a threshold can be set, or individual judgements
made, as to whereby collection elements are similar or not similar to the target. This
type of discriminant function over the similarity values is sometimes referred to as
“relevance” or “nearest-neighbour” determination. Say for collection C and target T,
the set Reljief contains those structures in C identified by expert review as similar to
T. Let a similar partition generated by the new approach identify the set Relnew of
structures deemed to be similar. Precision defines a measure of the level of relevance
within the list of selected structures, and is given by

n . . | R‘̂ lHt'w I LI \Relref\Precision = ------ rj—---- ,---- —
\iiClnew\

Recall is a measure of the degree to which the list includes all relevant structures, and

is given by
| Rclnew | n | Relrej |

Recall = ----------rjr— ;----------
\Relref\

Good precision and recall are collectively the second criterion for sufficiency. They
are dependent on the threshold set for determining relevance and ultimately require
a value judgement on the part of the user as to their individual significance. High
precision limits the number of dissimilar or irrelevant structures selected but possibly
at the expense of omitting structures which are of interest. Alternatively, high recall
ensures that the number of missed structures is limited but at the possible expense of
selecting too many noil-relevant structures. The combination of precision and recall

58

provide an intuitive approach to gauging effectiveness in identifying similar structures,
recall as an indicator of scope and precision as an indicator of purity. They provide a
means of assessing the degree of success in finding what is relevant, the positives, while
at the same time taking account of how much irrelevance or “junk” we are willing to
accept in the process, the false positives.

Where we may he dealing with samples that are not representative of the popula­
tion, having few non-relevant structures while in the population non-relevance is the
norm, the a priori likelihood of high levels of precision undermine its value as a mea­
sure of sufficiency. In evaluating an approach to similarity based on samples from a
much larger population, it is important to consider the extent to which false positives
are generated, and in turn gauge a method’s capacity to reject them. Rather than use
precision, we can restate the second sufficiency criterion in terms of the rejection of
irrelevant structures. In such situations, fallout, or the ratio of false positives to ac­
tual negatives, provides an alternative, more generally applicable measure in assessing
sufficiency. Fallout, in the form of its complement, i.e., specificity, is used as part of
the analysis of Section 4.5.

3.3 Structural Representation and Sim ilarity in O bject-

oriented Code

3.3.1 A graph-theoretic perspective

The analysis described here provides a concise, graph-theoretic representation of object-
oriented code based on the extraction of static, compile-time structural semantics of
classes. The model developed is described as generic in the sense that it is based on
fundamental structures and relationships that are encountered within most object-
oriented languages. The intention is to provide a reasonable basis from which, in
combination with the formal structural model presented below, a language-specific
model of object-oriented class structure can be instantiated.

The model produced is intended to capture the elements and relationships which
characterise the structure of object-oriented code at a level of granularity intermedi­

59

ate between existing design-level formalisms, such as UML [Rational, 2002] and OMT
[Rumbaugh et al, 1991], and low-level code representations, such as statement-level
control and data dependency graphs [McGregor et al, 1995]. The former are exam­
ples of graph representations of object-oriented software structure that highlight the
classes, their constituent attributes and methods, and the direct relationships between
the classes. These models are generally abstracted above the level of method structure
and the interaction between methods and attributes. Consequently, although seman­
tically rich and relatively easy to build and interpret, they are too abstract to allow
a sufficient degree of discrimination in determining class similarity based on structure
alone. The fact that these models are labeled, attributed graphs does not preclude
the techniques developed in this t hesis from being applied at this more abstract, ap­
plication level. This is the subject of continuing work. McGregor’s Object Oriented
Program Dependency graph introduces a model that incorporates the detailed control
flow and data dependencies found within and between the class methods. McGre­
gor’s approach also models both the static (compile-time) and dynamic (run-time)
properties of the collection of classes under analysis. The construction of this type
of model, and the analysis it supports, are computationally demanding, and from our
current viewpoint of determining structural similarity, unnecessarily complex. Driven
by the need to balance analytic tractability and representational expressiveness within
the structural matching process, the model developed here is limited in comparison.
Nevertheless, it incorporates both elements of gross class structure, method-attribute
interaction, and method control flow.

The object-oriented paradigm is not necessarily a universal panacea when it comes
to solving the many problems facing the software development community. It. is nev­
ertheless seen as a positive, contributing factor in addressing complexity, increasing
flexibility, and promoting reuse, for example, through leveraging application frame­
works supported by design patterns [Gamma et al, 1995]. The concept of an object
and its representative class are almost universally understood and accepted within the
software development community, both as an “organising principle” and “paradigm
for reuse” [Nierstrasz and Dami, 1996]. Given the current debate associated with the
definition of the term “software component”, for the moment we adopt a standpoint
echoed by several authors who describe components as conceptually equivalent to, or
encompass, the object-class component model [Sametinger, 1999; Syperski, 1998]. This

6 0

component model make no assumptions concerning application domain and leaves the
way open to examine components of larger granularity based on class collaboration.
Nevertheless, implicit in the notion of a class-based component are reused (intentional)
and repeated (unintentional) patterns of intra and inter class structure. The object
as represented by its class is the fundamental unit of analysis for the purposes of the
current study.

3.3.2 Primitives, relationships and attributes

In [Shapiro and Haralick, 1981] a structural description V of an object O is a primitive-
relation pair V = (P ,R). P represents the set of object parts and R the set of
relationships between them. P — {Pi, Pi , . . . , Pn} defines a set of primitives, one for
each of the n parts of the object. Each primitive is a binary relation P, : Alt, x Val
where Att is a set of possible attributes and Val a set of possible attribute values.
]{ = {R\, R‘2 , ■ ■ ■, Rk} is a set of named N-ary relations over the set of primitives
P. Each R, = (Name^, P/t,) is a pair comprising the name of the relation Namer .
and a subset Pr, C P N of N primitives involved in the relationship. Extending this
definition of relationship as per [Tsai and Fu, 1979], each relation can additionally
be attributed, i.e., each relation now becomes a triple Rt = (Nameft , Pr ., AVr()
where AVr{ : Att x Val represents the attribute-value pairs defining and describing
the relationships.

This attributed, relational description forms the core of our current model of class
structure. Our model is further constrained in two respects: relationships are always
binary and primitives as well as relationships are named. In order to accommodate the
semantics of a categorisation of primitives, e.g., class, method, field etc., we introduce
named primitives Pt = (Namep.p AVi>, where Namepi is a syntactic label denoting the
primitive’s categorisation and AVpx : Att x Val represents the attribute-value pairs
defining and describing the primitives.

Primitive and relationship attributes are all numeric but may be categorical, or­
dinal, interval or absolute. For example, an attribute designated “structure type”
defines a primitive as belonging to a particular structural classification and is essen­
tially a semantic label used to classify or categorise, e.g., a class’s structure type is an

(il

integer-valued injective function over its name (Two classes may have different names
but the same structure type if structurally identical). The majority of attribute values
are absolute, i.e., counts. The attributes are metrics in that they are quantitative
measurements of internal or external class structure (Internal in this context refers to
the fields and methods belonging to a class whereas external is concerned with the
relationships between classes [Whitmire, 1997]). The use of metrics as quantitative
measures of the properties of both the software development process and its artifacts
is well documented [Fenton and Pfleeger, 1996]. Several metric-based approaches to
determining code similarity at various levels of abstraction have been demonstrated
with varying degrees of success [Autoniol et. al, 1998; Kontogianis, 1996; Maynard
et al, 1996]. These studies demonstrate the value of design and code-level metrics
in being able to support, though not generally independently determine, similarity.
The attributes defining the primitives and relationships described below are based
on recognised counts of structural and logical code elements. They represent a bal­
ance between ease of extraction and the ability to represent both local and global
properties of the class structure. They include simple counts of individual structures
such as the number of methods in a class. More global measures such as method
complexity [McCabe, 1974] and elements of metric sets as described in [Li, 1998;
Lorenz and Kidd, 1994; Chidamber and Kemerer, 1994], originally developed in order
to assess the quality of object-oriented code, are also included.

The decision as to whether a primitive could be better represented as an attribute,
and vice versa, was made based on a consideration of the two proposed approaches to
determining similarity - global and local. A sufficiently rich set of named primitives and
relationships is required to support our global measure of similarity as described below.
In addition, the local, morphism-based measure of similarity described in Chapter 5 is
dependent on both named primitives and relationships and also on their associated at­
tributes. Again, as in the case of attribute selection, the choice arrived at is somewhat
arbitrary. The choice of primitives does however mirror representations of class struc­
ture developed in [Seeman and von Guttenberg, 1998; Jackson and Waingold, 1998;
Harrold et al, 2001].

The information used in constructing a class model was initially limited to that
explicitly contained in the actual class definition. Although information relating to
the numbers of inherited or overridden methods, and inherited or shadowing fields,

62

are recorded as part of a class vertex when available, they are not included as vertices
in the models unless explicitly called or referenced within a locally declared method.
This decision was in one sense pragmatic, in that the analysis had to be robust in
the possible absence of superclass information. Additionally, as a starting point for
investigating our approach to structural similarity, it is reasonable to limit the initial
scope of analysis. This is without loss of generality, as the information relating to the
missing methods and fields represents additional primitives and relationships, which
could be added to the generated structure graph.

Primitives

The current model of object-oriented code structure comprises the following eleven
named, structural primitives and associated attributes.

• Pi : CLASS_____________________________________ ______ _____
«1 S tru ctu re type N um eric identifier for th is structure
a 2 S tru ctu re type o f superclass N um eric identifier For this structure
a 3 N um ber o f local m ethods A ll m ethods declared in th is class
04
05
Ofi

N um ber of public m ethods
N um ber o f abstract m ethods
N um ber o f sta tic m ethods

L o ca lly declared public m ethods
L o cally declared a b stract m ethods
L o cally declared sta tic m ethods

0 7 N um ber o f inherited m ethods All inherited m ethods
a s N um ber o f overridden m ethods All overridden m ethods
a o Total num ber o f m ethod calls All m ethod calls m ade from th is class
a io
a n
0 12
« 1 3
« 1 4

Total num ber of sta tic m ethod calls
Total num ber of param eter m ethod calls
Total num ber of field m ethod calls
Total num ber o f local m ethod calls
Total num ber of other m ethod calls

Static m ethod calls
M ethod calls v ia param eters
M ethod calls v ia fields
M ethod class to lo ca lly created ob jects
O ther m ethod calls

a iR N um ber o f fields A l i fie lds declared in th is class
a l6
a 17
a ï s

N um ber of public fields
N um ber o f reference fields
N um ber o f sta tic fields

L o ca lly declared public fields
L o cally declared fields o f reference type
L ocally declared sta tic fields

a io
Û20

N um ber o f inherited fields
N um ber o f shadow ing fields

A ll inherited fields
A ll shadow ing fields

A class, concrete or abstract. Structure Types: a structure type defines a class
as having a given structure, represented by its attributes, the attributes of its
methods and fields, and the relationships that exist between them. Two classes
are of the same structure type if they are identical except for the renaming of
the class, its fields or methods, or externally called methods or accessed fields,
provided the underlying semantics are unaffected by such a renaming. Identical
ARGs is a necessary condition for two classes to be assigned the same Structure
Type but this is not sufficient.

• p > ■ INTERFACE__

| a , I N um ber of a lw fracl. m ethods | A hatraet m ethod count 1

A class in which ALL methods are abstract.

• Pi : PRIMITIVE FIELD

['» 1 1 Stru ctu re type 1 N um eric identifier Tor this stru ctu re"'!

(¡3

A field that is not a reference type. A unique structure type is assigned to each
primitive type supported.

• ¡\ : REFERENCE FIELD____________________________________

fll - « 1 6 A s per C L A S S
Q1T_______ A rray dim ension If an array, the no. o f dim ensions

A field that is a reference type.

• P5 : METHOD (member function, operation)

« 1 N um ber of param eters A ll param eters
a 2 N um ber of reference param eters P aram eters of reference type
<13 R eturn type N um ber in d icatin g relerence or prim itive return type
a 4 Num ber of field operations A ll read /w rite operations on fields

N um ber o f internal field operations O perations on fields declared lo ca lly in the class
«6 N um ber of sta tic field operations O perations bn sta tic fields
a 7 N um ber o f local field operations O perations oii Helds declared lo ca lly in th is m ethod
«8 N um ber of literals used N um eric arid strin g lite rals read
an Num ber o f m ethods called All m ethods called
a m N um ber o f internal m ethods called C a lls to m ethods declared lo ca lly in the class
a n N um ber o f abstract m ethods called C alls to a b stract m ethods
° 1 2 N um ber of param eter m ethods called C alls v ia param eters
a 13 N um ber of field m ethods called C alls v ia all fields
a 14 N um ber of local m ethods called C alls v ia fields declared lo ca lly in the class
Û1B N um ber of sta tic m ethods called S tatic m ethod calls
a m N um ber of other m ethods called O ther m ethod calls
« 1 7 N um ber of non-com m ent lines o f code N um ber of lines of code exclu d ing com m ents
a 18 C yclo m atic com plexity M cC ab e 's m easure o f m ethod com plexity

given by | £71 — 1V' | -f- 2 calcu lated over
the vertices and edges of the graph
representing the m ethod ’s control structure

_ o i s _ R ecursive M ethod calls itse lf d irectly

A concrete method.

• P6 : ABSTRACT METHOD (virtual method)

«1 N um ber o f param eters A ll param eters
«2 N um ber o f reference param eters Param eters o f reference type

_ « s _ R eturn type N um ber in dicatin g reference or prim itive return type

An abstract method.

• P? : PRIMITIVE PARAMETER_______

| a] | S tru ctu re type |' N ùm erÎcirient ifier for tins structure 1

A non-reference method parameter.

• HA REFERENCE PARA METER

a l - 0 1 6 A s per C L A S S
f}±l_______ A rray dim ension if an array, the no. of dim ensions I

A reference method parameter.

• Po : PRIMITIVE RETURN

I <ii I Stru ctu re type [N um eric identifier for th is stru ct urn |

A non-reference method return.

64

• Pm : REFERENCE RETURN

- « 1 6 A b w r CLAWS
Q 17_______ A rray dim ension IF an array, the no. o f dim ensions |

A reference method return.

• P i : BASIC BLOCK________________________

| B asic b locks are curren tly unattributecT |

A basic block represents a code sequence within a method which has one entry
and exit point. The basic-block graph essentially captures the control structure
of its method.

Relationships

The current model of object-oriented code structure comprises the following thirty-
three named, binary relationships. The relationships, represented as the directed edges
between vertex primitives, are listed alongside their semantics within the model. The
number of relationships was initially smaller but in order to allow a more compact
representation within the selected feature set it was decided that each relationships
should determine its associated primitives. Doing this allows us to infer the nature of
the primitives from the type of the relationship. For example, the relationship “HAS
METHOD” could describe both the presence of an abstract or a non-abstract method,
the precise nature of the relationship being disambiguated by virtue of the type of
associated primitive. Recording this information would require both the relationship
and at least the method details. By defining an “HAS ABSTRACT METHOD” as
well as an “HAS METHOD” relationship, only the relationship type is required to
express the full semantics. Disambiguation was not deemed necessary in the case of
relationships based on method parameters and return. In this case, the relationships
make no distinction between abstract, static or instance methods. In the initial model,
only method call and field operation relationships are attributed.

• Polymorphic dependency

R\ : EXTENDS CLASS, 1\ x 1\ (class -> class)
(inheritance - inclusion polymorphism)

0 5

Ra : INHERITS METHOD, P\ x P5 (class -> method)
(inheritance - inclusion polymorphism)

P 3 : OVERRIDES METHOD, P\ x P5 (class -> method)
(overriding - ad-hoc polymorphism)

/?, : INHERITS PRIMITIVE FIELD, Pi x P3 (class -» primitive field)
(inheritance)

p 5 ; INHERITS REFERENCE FIELD, Pi x P t (class —> reference field)
(inheritance)

PG : EXTENDS INTERFACE, P2 x P2 (interface -> interface)
(inheritance - inclusion polymorphism)

• Initialisation

Il7 : INITIALISATION, P] x P5 (class -> method)
(constructor)

P 8 : STATIC INITIALISATION, I\ x P5 (class -)• method)
(static constructor)

State and behaviour

i ?9 : HAS METHOD, P\ x P5 (class -> method)
P 10 : HAS STATIC METHOD, Pi x PG (class
Rn ; //,1ST PRIMITIVE FIELD,Px x Pi (class ->
P 12 : HAS REFERENCE FIELD, P, x P4 (class
P 13 : /PIS PRIMITIVE STATIC FIELD,Px x P3

P 14 : P d 5 REFERENCE STATIC FIELD, P, x

method)
primitive field)

-» reference field)
(class —> primitive field)

Pt (class -> reference field)

Invocation

P 15 : INVOKES METHOD, P5 x P5 (method -» method)
P,|5 : INVOKES ABSTRACT METHOD, P5 x P6 (method -> abstract metliod)

(ifi

n]7 : INVOKES STATIC METHOD, P5 x P5 (method -> method)
These three relationships have the same set of attributes:

a 1 call type(s) T he m ethod call type(s) represented by this association .
C a lls are categorised according to the source of
the o b ject upon which the call is invoked, e .g.,
the current o b ject, a field, a param eter, a m ethod return ,
or lo ca lly created object.
W hether the ca ll constructs an o b ject or the m ethod delegates
the call to another class is also recorded. Delegation here
is based on the callin g and called m ethods having an equivalent
signature - forwarded param eters and sam e return type

ao call count N um ber o f m ethod calls m ade v ia th is association

Pi8 : HAS PRIMITIVE PARAMETER, P5or6 x P7 (method -> primitive pa­
rameter)
Pig : HAS REFERENCE PARAMETER, Psor« x P« (method —> reference pa­
rameter)
P2o : PRIMITIVE RETURN, P5or6 x P9 (method -> primitive return)
P 21 : /P4S REFERENCE RETURN, P5or6 x P10 (method -> reference return)

• Field manipulation

P 22 : OPERATES ON PRIMITIVE FIELD, P5 x P3 (method -> primitive field)
P 23 : OPERATES ON PRIMITIVE STATIC FIELD, A x P3 (method -> prim­
itive field)
These two relationships have the same set of attributes:

« 1 def count T h e num ber of tim es the field is assigned a value.
«2 use count T he num ber o f tim es the field is read

P24 : OPERATES ON REFERENCE FIELD, P5 x P4 (method -> reference
field)
P 25 : OPERATES ON REFERENCE STATIC FIELD, P5 x P, (method ->
reference field)
These two relationships have the same set of attributes:

« 1 def count I he num ber o f tim es the held is assigned a value.
a 2 use count 1 he num ber o f tim es the field is read
a 3 creation def The operation creates the field o b ject

. q.i... dow ncast use T h e field is read but m odified by a dow ncast in the class hierarchy

• Abstraction

P 26 : HAS ABSTRACT METHOD, Px x P6 (class -> abstract method)
P27 : IMPLEMENTS ABSTRACT METHOD, I\ x /}, (method method)

6 7

Encapsulation

' *28 IMPLEMENTS INTERFACE, P, x P> (class -> interface)

• Method Control flow

R29 : HAS CONTROL FLOW, P5 x Pn (method -> basic block)
P 30 : UNCONDITIONAL BRANCH, Pn x Pu (basic block -> basic block)
P31 : CONDITIONAL BRANCH,Pn x P\\ (basic block —> basic block)
P32 : DROPTHROUGH BRANCH, Pn x Pu (basic block ->• basic block)
P 33 : EXCEPTION BRANCH, Pu x Pn (basic block ->■ basic block)
Branches within a method’s control structure: apart from the exception branch these are
interpreted in the conventional sense. An exception branch is a conditional branch going
from the first instruction covered by the exception to the entry point of the exception
handling routine.

As the target of an “INVOKES” or “OPERATES ON” relationship may be a
structure existing either internally within the class2 or external to the class, these
relationships can be further subcategorised as being “INTERNAL” or “EXTERNAL”
respectively. This can provide a further degree of disambiguation during class com­
parison. This applies to the relationships R15, R^, R i7, R2 2 , It?3 , R>\ and R2 5 .

The primitives and relationships represented here allows our model to capture the
essence of object-oriented class structure as per Booch’s description of the elements of
a class and the nature of relationships between classes [Booch, 1994]. Several impor­
tant concepts are implicitly captured through the co-occurrence of the relationships
described above, some of which are illustrated in [Seemann and von Gudenberg, 1998].
For example, an “aggregation” between two classes can be inferred if an “HAS REF­
ERENCE FIELD ” relationship exists between the first class and a member field which
is of the type identified by the second class, and the field is also in an “OPERATES
ON” relationship having the “creation def” attribute set. In most practical situations,
determining the stronger “composition” relationship is language dependent and may
be difficult to determine, if in fact decidable. Booch’s “using” relationship between

2 Fields and methods defined as part of the class.

G8

two classes can also be inferred if a method from the first class has a parameter which
is of the type identified by the second class.

Forwarding and delegation [Szyperski, 1999] are important constructs in the run­
time dynamics of object-oriented frameworks based on design patterns and as such are
of interest. Unfortunately, although the model is rich enough to capture the structure
of specific instances of these logical constructs, they are often not easily identifiable
due to ambiguities in inferring the original design decisions. This is also the case
for some other design-level associations and semantics, e.g., composition, mutability
and multiplicity. Sou«! heuristic approaches to their identification are presented in
[Seemann and von Gudenberg, 1998] and [Jackson and Waingold, 1998], in the context
of design recovery. Although design recovery could be seen as a useful side effect of
the current approach, the intention here is simply to extract and compare structure
based on the available information and as such these limitations are not important.

The inherent hierarchical structure of object-oriented classes is captured in the
model through named relationships between the constituent primitives, e.g., the con­
tainment relationship between a class and a method is captured via the “HAS METHOD”
relationship. Our initial notion of comparison treats primitives as being independent,
i.e., directly comparable, although conceptually this may not be the case. For ex­
ample, although a class is conceptually a hierarchical structure if one considers its
contained methods and in turn the method’s internal structure, this is captured sep­
arately in the model by the “HAS METHOD” and “HAS CONTROL FLOW” chain
of relationships, i.e., the comparison is initially independent of the hierarchy.

Our structural model is further constrained in terms of reachability, i.e., the sphere
of influence of one class expressed as those classes reachable from it by a chain of
relationships. The immediate level of analysis proposed here is limited to a class
and those classes reachable from it through at most two levels of association. In
practice, t his allows us to capture method calls and external field operations from
within a class’s methods and so doesn’t prevent identification of relationships which
extend beyond the immediate class boundary. While limiting the size of each class’s
structure graph, thereby making structural matching more computationally accessible,
this limitation doesn’t preclude the building of larger, compositional structures. By
combining individual structure graphs we could extend the scope of further analyses.

09

(This is the subject of continuing work.)

The relational graph representable by these primitives and relationships contains
no loops as the object-oriented semantics capable of generating self-connected vertices
have been expressed as attributes, e.g., recursion. Similarly, at most two, oppositely
directed, edges exist between any two vertices as a consequence of how the relationships
have been expressed. For example, the “INVOKES METHOD” relationship between a
calling and called method is attributed to account for more than one invocation type,
depending on the source of the called method’s object. These implicit constraints help
simplify the graph structure but without loss of generality. Additional requirements
can be accommodated by either creating more named relationships or through the

existing relationship attributes.

The representation of a method’s internal structure is intentionally limited, based
solely on control flow as captured by its basic-block graph. The principal hypothesis
being tested emphasises the relational structure of a class, above the detailed imple­
mentation of its methods, as a means of determining similarity. The inclusion of a
basic-block graph may however be useful in qualifying potentially spurious matches
identified by means of compared relational structure but where in fact this similarity
is unwarranted. An approach to program representation and comparison based on
the relationships between basic blocks, their internal control flow, and vectors of the
number of statements they contain was proposed in [Robison and Sofia, 1980], Their
use here is restricted to inter-block relationships in an attempt to capture elements of
the control structure within individual class methods.

3.4 A Formal M odel of O bject-oriented Code Structure

and Structural Comparison

Based on the preceding analogies from molecular chemistry and pattern matching in
computer vision, alongside the model of object-oriented code presented above, a formal
model of object-oriented code structure and structural comparison is proposed based
on the following:

70

an attributed relational graph representation of class structure providing the

basis for

• a vector space model of class structure and similarity (Global similarity) and

• a graph morphism model of similarity (Local similarity)

Attributed relation graphs, and the vector-space model of object-oriented code struc­
ture are described in the next two sections. Structure graph morphisms and graph
matching are dealt with in Chapter 5.

3.4.1 Attributed Relational Graphs (ARGs)

Relational graphs are a fundamental type of representation for many tasks in applied
computer science as they provide a generic way of encoding entities and relation­
ships. The comparison and matching of such graphs is an integral part of research
activity in molecular chemistry [Hagdone, 1992; Willett, 1999] and computer vision
[Tsai and Fu, 1979; Shapiro and Ilaralick,1983; Messmer and Bunke, 1998].

Our formal representation of an analysed class incorporating the definitions of
object-oriented code primitives and relationship previously introduced is an attributed
relational graph (ARC) termed a structure graph. It is defined in the style of [Tsai and Fu,
1997] by the 7-tuple

where

e : E -> R

V
E
%¡): E -» V x V

P
R

is a finite non-empty set of graph vertices
is a finite, possibly empty, set of graph edges
is an incidence function that associates each
edge with a pair of (not necessarily distinct) vertices
is a finite non-empty set of primitives
is a finite non-empty set of relations
is a mapping between vertices and primitives
is a mapping between edges and relations

71

3.4.2 Global similarity: “Structure Paths”

Features, weighting and similarity coefficients

In order to limit an analysis to comparison of structures which are likely to show
significant levels of similarity, it is common practice to carry out an initial screening
procedure. Local measurement of graph similarity based on direct comparison of
vertices and edges is an exponential problem as described in Chapter 5. However,
an initial screening by way of a computationally loss expensive method selects only
those graphs which demonstrate a sufficiently high degree of similarity for further,
detailed analysis. This section describes an instantiation of the vector-space model of
structural representation and similarity calculation, as a means of providing an initial
screening of potentially similar classes represented by their structure graphs. We now
address the three requirements for determining similarity as described in Section 3.2

in relation to our structural model and application domain.

Features: a representation of structure

Graph invariants and certificates, i.e., descriptive quantities that are independent of
the choice of vertex labeling and pictorial representation, can be interpreted as charac­
teristic indicators or representatives of a graph’s structure. Just as molecular fragments
are extracted as invariants representative of a molecule’s structure, the intention here
is to identify a suitable feature set representative of a class’s structure graph. By
extracting one or a set of invariants for a molecule, it was originally hoped that indi­
vidual molecules could be assigned a unique numeric or symbolic code. Unfortunately,
it is yet to be generally demonstrated that such a canonical coding exists [Deo, 1974;
Rosen, 1999]. Nevertheless, isocodal graphs, i.c., graphs having the same code but
not necessarily identical structure, generally exhibit a high degree of similarity. Exact
matching of molecular structure based on sets of invariants has indeed been success­
fully applied in practice [Deo, 1974].

72

Feature candidates, extraction and selection

The ease with which features are extracted from the underlying structure graph, and
the complexity in quantifying similarity, tends to vary in proportion to the associated
precision. The higher the precision required, the more information that needs to
he extracted, which in turn leads to increased computational overhead. In addition,
utilising the increasing information content of the model is generally more complex.
The ability to accept what is similar, and reject what is not, in a timely manner is
the ultimate requirement. This harks back to the notion of sufficiency discussed in
Section 3.2.4. Selection of an acceptable feature set is generally seen as a balance
between ensuring that complexity is minimised while rejecting of a valid structure is
prevented, possibly at the expense of accepting some that should have been rejected.

Some candidate features suggested by graph theory are, e.g., the number of vertices
and edges; vertex degree sequence; characteristic polynomial [Deo, 1974]. Molecular
chemistry supports an approach based on molecular (graph) fragments, e.g., aug­
mented atoms (vertices); atom (vertex) pairs [Willett et al, 1998], and paths and
walks, e.g., atom (vertex) path and walk counts [Randic and Wilkins, 1978; Rucker and

Rucker, 1993].

Invariants and certificates are often difficult to generate and are only indicative of
similarity up to isomorphism [Rosen, 1999]. Simple counts of individual primitives,
although easy to compute and compare, are low precision approaches. An approach
based on the edit-cost associated with differences in degree sequence between graphs
is described in [Papadopoulos and Manolopoulos , 1999]. Although this appears to
act as an efficient filter in the determination of similarity, other than stating that
no candidates are missed, no information regarding precision and recall are provided.
As in the case of standard graph-theoretic invariants, such as the degree sequence
or characteristic polynomial, this approach does not take sufficient account of the
semantics and context contained within the vertex and edge categorisation, attribution
and relationships to lie found in a structure graph. An approach based on structure
graph “fragments” was considered, adapted from the “augmented-atom” model of
molecular chemistry, but it was decided to concentrate initially on a “path and walk”
approach to feature definition.

73

Randic and Wilkins based their work on atomic path counts on a standard molecu­
lar connection table, assigning no significance to the atom and bond types [Randic and
Wilkins, 1978]. The walk counts of [Rucker and Rucker, 1993] are similarly constrained.
In our current model, the vertices and edges of the class structure graph are categorised
according to their named primitives and relationships. By including this additional
information, over and above the contextual information provided by the relationships
between primitives, precision should be improved at little additional computational
expense.

Structure paths

Our initial feature vector is based on a modified form of the “path and walks” ap­
proach of molecular chemistry. It is directly analogous to the path-based molecular
“fingerprint” method developed by Daylight Chemical Information Systems Inc. [Day­
light, 2001]. The features we introduce are termed “structure paths”.

A structure path is simply any path in a structure graph. Each path is represented
by the ordered list of named relationship represented by the structure graph edges,
which in turn determine the adjacent vertex types. Each path is unique in terms of
its constituent vertices and edges but their representation in terms of the ordered list
of relationship types is not. The two paths in the graph of Fig. 3.2 represented by the
ordered vertex ID lists [JL, 3, 2] ! and [I, 3, 4] are different paths but represent the same
feature, i.e., 27:22. In terms of the relationship types and their orientation, the first
edge set can be represented as either the string “27:22” or “-22:-27”, the negative sign
indicating traversal against the direction of the designated inter-vertex relationship.
The canonical representation adopted is based on the lexicographic comparison of
the two string. In this example, the string “22:27” is greater than “-22:-27” and so
the canonical feature type is represented as “22:27”. The overall approach extracts
a feature vector of counts of all structure paths, i.e., the frequency of occurrence of
all path-induced features in the structure graph, taking account of the paths’s edges
(relationships), as well as its length. The maximum length of any extracted path must
be limited due to the process being exponential in the number of vertices and edges 3

3These are assigned vertex IDs, n o t vertex or edge l a b e l s . Vertex IDs are displayed outside the
actual vertices in green, and underlined, labels are displayed inside the vertices in black.

in the graph. The issue of path length is discussed further in the next chapter, when
we consider the discriminating power of the features in determining structure graph

similarity.

Extracted features:
“Structure Paths”

Feature vector:
frequency of
occurrence of
each “Structure Path”

Figure 3.2: Structure Paths

We depart slightly from the strict definition of path when extracting structure
paths. Rather than insisting all of a path’s vertices are unique, this constraint is
relaxed to allow inclusion of one cycle. The inclusion of a cycle must not lead to
the generation of more than one pendant vertex. This is intended to improve the
discriminating power of the feature set without greatly increasing the complexity of
feature extraction1.

In choosing this initial global representation, we also draw on Hagdone’s approach
to screening collections of molecules prior to a computationally complex local assess- 4

4The ‘C’ prefix appearing in one of the example extracted features of Fig. 3.2 indicates that it is,
or contains, a cycle.

^ p / 2 2 ^

T 2

75

ment of similarity [Hagdone, 1992]. Hagdone identifies an upper bound to the size of
a common structure existing between two molecular graphs by identifying pairs of re­
lated atoms, or atom groups, i.e., atom-bond-atom structures, that are present in one
graph but not in the other. The structure path approach incorporates an assessment of
this difference by including and comparing counts of unit paths, i.e., vertex-edge-vertex
structures, but builds additional, disambiguating context by including longer, overlap­
ping paths. The rationale here being that if Hagdone could achieve good screening
using paths of length one, our extended approach should improve on this.

In order to further improve this stage of the matching process, feature selection,
as distinct from extraction, was considered as a means of reducing the computational
overhead. By removing redundant features and reducing the dimensionality of the
remaining feature vector, calculation of similarity could be simplified, e.g., using prin­
cipal component analysis [Webb, 1999, pp‘227-2B7]. Some redundancy was already
evident in the structure path approach based on the presence of the unique vertex
representing the class itself. This vertex can only occur once in a structure graph and
paths in which this vertex is non-terminal are redundant. Any path containing this
“class” vertex as a non-terminal vertex can be replaced by the two constituent paths
originating from it. The issue of feature redundancy has still to lx; fully addressed and
is the subject of further work.

Feature weighting

To begin with, the significance of individual structure path features in determining
structural similarity is unknown. The analysis presented in [Willett, 1987] consid­
ered four weighting schemes, “binary”, “frequency”, “relative” and “repository (col­
lection)”.

Let f recji represents the frequency of feature i, and the weight applied to feature
i, giving the weighted feature value x¿w •

• Binary (unweighted):
Features are recorded as either being present or not. This effectively represents

7(i

the unweighted case.
0 if Xi not present
1 if Xi present

• Frequency:
Features are recorded as their frequency of occurrence

UJi = 1

Xiu, = W j X freqXi

• Relative frequency:
Features are recorded as their frequency of occurrence divided by the total feature
frequency for the entire structure

• Repository (collection):
Features are recorded as the product of their frequency of occurrence in a struc­
ture and the log of the inverse repository frequency.

where N is the total frequency of all features in the repository and freqXl{ is
the total frequency of feature i in the repository (collection)

Within the context of his study of molecular property prediction, Willett concluded
that weighted features performed better than unweighted and frequency weighting
alone was sufficient [Willett, 1987]. In order to counter the disproportionate effect
on similarity due to larger, multiple-bond fragments, Hodes includes a scheme where
weights are applied in inverse proportion to fragment size [Hodes, 1989]. A similar
approach was considered here, based on the same reservations concerning the inherent

X iu = U i X freqXi

Xiu = u>i x freqXi

77

multiplicity and overlap of the smaller sized structure paths associated with each of the
larger structure paths, i.e., larger structure paths necessarily depend on the presence
of more than one, possibly many, smaller paths, which in turn may contribute to many
larger paths thereby amplifying their relative significance. However, in the absence of
any firm guidelines and evidence to the contrary, our straightforward feature vector of
structure path counts was used unmodified, i.e., the very intuitive notion of weighting
based on counts of occurrence was adopted. (An inverse-weighting scheme based on
structure path length is held in reserve as a means of countering any observed feature

size bias.)

3.4.3 Similarity coefficients

Having defined a feature vector, it only remains to select a similarity coefficient that
can adequately derive the degree of similarity between two structure graphs, each
represenetd by an instantiation of this feature vector. The main objective here is to
find a combination of feature vector and coefficient that meet the sufficiency criteria
previously mentioned in Section 3.2.4.

Considering the fundamental objective of finding common structure, we are in­
terested in establishing the degree of similarity between structure graphs, including
the notion of containment. Two class structures may lie deemed similar based on an
assessment that takes into account both commonality and difference: the degree of
similarity is ultimately dependent on the amount of common structure being greater
than the combined differences. However, this does not take account of the possibility
that one of the structures may be substantially contained within the other, the com­
mon structure being significant in either size or frequency of recurrence. This type of
structural commonality based on containment, or asymmetric overlap, should not be

dismissed.

The advice offered in [Ellis et al, 1993] and echoed in [Willett, 1987], is that the
choice of similarity coefficient is essentially a matter resolved through empirical analy­
sis. In the absence of any a priori evidence upon which to base a choice, the following
coefficients were selected for implementation or illustration at various points through­
out the evaluation process:

78

Complemented Bray/Curtis: similarity coefficient (non-metric)

S(Xk,X t) = l - Ej=l I x jk x j l I
T . U (B j k + X f l)

Tanimoto: similarity coefficient (non-metric unless dichotomous)

S(Xk, X t) =
ELi XjkXjl

Complemented Soergel: similarity coefficient (metric)

E"=i \x j h - X j i\
S(Xk, X l) = 1 - ELi rnax(xjk,Xji)

which can be re-expressed as:

S(Xk,Xi) =
E"=i rnin{xjk,Xji)

ELi max(xjk,Xji)

Simpson: similarity coefficient (non-metric)
E"=i rnin(x;jk, xjt)

S(Xk, X t)
rnin('n= l xjkt' Z U xfl)

where
S(Xk,Xi) similarity coefficient applied over class structures X k and Xi
n number of attributes
x ,jk value of attribute Aj for structure X k

The complemented Bray/Curtis coefficient was chosen as it is the closest coefficient
listed in Ellis’s survey to that employed in the reference method used in the evaluation
of Chapter 4. The Tanimoto (or Jacard) coefficient was selected as it is the coefficient
of choice in many approaches to determining similarity in molecular chemistry. The
complemented Soergcl similarity metric is referred to in Chapter 5 when discussing
the local measurement of similarity based on graph matching. The Soergel metric is
also of interest in that it is similar to that used by Hodes in his study of large-scale
similarity and classification of molecular structures [Hodes, 1989]. His justification in
this case for not using Tanimoto was based on his observation that Tanimoto “gave too
much weight to already heavily weighted features”, thereby distorting the similarity
calculation. We return to this topic in Chapter 5. Simpson’s (“overlap”) coefficient is
included to as an illustration of how we can accommodate the issue of containment if
required.

79

3.5 Summary

In this chapter we set out to define a formal, generic, relational model of object-oriented
code structure and similarity. Identifying the class as the fundamental unit of analysis,
a model was developed centered on the extraction of an attributed, relational graph
(ARC!) as a representation of class structure. This model draws on analogies from
molecular chemistry and pattern matching in computer vision. Both these domains
provide an existing template for analysing structure and structural similarity. This
comes in the form of a set of techniques and algorithms which we have shown to
be reasonably transferrable to the problem of structural similarity in object-oriented
code, facilitated by a common basis in graph-theory.

We have shown that this ARC representation can in principle support both a global
and local approach to determining similarity between classes. Global assessment of
similarity has been defined within the framework of a vector-space model derived
from the ARC. This involved selecting a set of features, feature weights and similarity
coefficients. ARGs were described in terms of a feature vector of frequency-weighted
Structure Paths, providing a global “fingerprint” for each ARG. Local similarity was
introduced in terms of the graph-theoretic principle of structure preserving morphisms
operating directly on the extracted ARGs.

The next two chapters examine the validity of the model when it is instantiated
within the context of object oriented development using Sun’s Java language. Chap­
ter 4 deals with the vector-space model of global similarity. Chapter 5 goes on to look
at the practical application of the model to determining local similarity.

8 0

Chapter 4

M odel In te rp re ta tio n : Jav a
classes and by tecode analysis

4.1 Introduction

In the last chapter a model of object-oriented class structure and structural similarity
was defined. This model is based on proven approaches to structural similarity in
the domains of molecular chemistry and pattern matching in computer vision. In
building this model certain key assumptions were made. Firstly, that the analysis of
structure and structural similarity in object-oriented code was sufficiently similar to
these reference domains to enable a successful transfer of the underlying applied, graph-
theoretic principles and techniques. Secondly, that the choice of features, weighting
and similarity coefficient adequately parameterised the derived vector-space model of
global structure and structural similarity.

This chapter seeks to test these assumptions by instantiating the model of Chap­
ter 3 within the context of object-oriented development using the Java language. More
specifically, it concentrates on analysis of the intermediate results of compilation, the
Java bytecode, rather than the original source code.

The chapter begins with a brief discussion of Java and Java bytecode. It continues
with an introductory example of the analysis of two Java classes. The major part of

HI

the chapter is devoted to an experimental evaluation of global similarity based on a
plagiarism detection reference model.

The prototypical class analysis framework developed as part, of this work is de­

scribed in Appendix B.

4.2 Java Classes and B ytecode

The work described here concentrates on the development of a Java bytecode analysis
framework. Java was chosen as an example of a current object-oriented development
system that is essentially platform independent and supports a distributed, class-based

component model [SUN, 1999].

4.2.1 Java Bytecode

Java source code is compiled to an intermediate, executable, bytecode format, compat­
ible with the environment provided by the Java interpreter, the Java virtual machine
(JVM) [Lindholm and Yellin, 1999]. The compiled bytecode for each class is stored
in its own class file. These class files provides us with our unit of analysis. Byte­
code is used as the initial target of our analysis as it is more compact, structured and
readily available than source code. The compilation of Java source code to bytecode
retains virtually all of the information held in the original source. This is particularly
significant as it enables an analysis to be carried out independent of source code avail­
ability. Such an approach would be problematic if a language like C ++ were used,
due to factors such as preprocessed information related to macros, include files and
templates being lost in the object files. Due to the design of the JVM, bytecode neces­
sarily contains a great deal of symbolic information which is lost through code inlining,
macro expansion and code optimisation in the case of C++. Essentially, although the
C++ object code could be disassembled, extracting the information required to build
a structure graph would be more involved. In addition, there is no guarantee that a
great deal of the original method and call-level code structure will not have been lost.
Consequently, the assessment of structural similarity based on the developed model
could be compromised. It must be stressed that our bytecode approach is more a

82

convenience than an absolute requirement. The semantics captured within our generic
model are instantiable in the cases of other languages, C++ for example, by means of
direct source code analysis (Cf. Keller et al, 1999; Chen et al, 1998]).

An additional benefit of using Java stems from the Java environment supporting
dynamic class loading and reflection: this provides a run-time mechanism enabling
Java classes “to look inside themselves” [O’Reilly, 1997]. The analysis process is greatly
enhanced by this ability to load a class from its bytecode file and obtain complete
information about its fields, methods, constructors and exceptions. For example, a
class can be loaded from its bytecode file, its methods listed, and the parameter types
and return type of each method extracted.

4.2.2 Model instantiation

The formal model developed in Section 3.4 can be interpreted almost unchanged within
the Java environment. All the named primitives correspond directly to similarly named
structures defined in the Java language. The model relationships are also directly
interpretable as a result. (At the level of primitive and relationship attributes, a minor
change was made by which “non-comment lines of code” was equated to “number of
bytecode instructions” being as the analysis is targeted at bytecode.)

One significant modification was made at this stage to the implementation of the
group of relationships under the headings “Invocation” and “Field Manipulation”. It
was realised that a distinction could be made between methods called, and fields oper­
ated on, that were owned by the class (internal members), and calls to methods, and
operations on fields, not owned by the class (external members). In order to accommo­
date this distinction, the latter group of relationships are qualified as being “external”,
this being reflected in the structure path features by the letter “E”, appended to the
relationship type. For example, the relationship “INVOKES METHOD” (J?5) would
be represented in the case of a call to a method internal to the class by the relation­
ship identifier “15”, while a call to a method of another class would be represented by
“15E”.

Unique, integer-valued, structure type identifiers were initially assigned based on
each unique class name (including names qualified by array dimensions). All primitive

type were also assigned unique structure types. (ARGs which on comparison resulted
in a similarity of 1.0 were flagged for off-line comparison in order to determine if in
fact they represented the same class or a renamed version of the class. Renamed, but
identical classes were assigned the same structure type.)

4.3 B ytecode Analysis: structure graph and feature ex­
traction

Based on the published internal structure [Lindholm and Yellin, 1999], class files are
analysed by means of a two-pass disassembly process. The result of this analysis
is the construction of a structure graph as described above. This directed, cyclic
graph is represented within the analysis framework by means of an adjacency list
[Tamassia, 1998]. Features are extracted by analysing the extracted structure graph
using a depth-first-search algorithm (DFS) [Alio, Hopcroft and Ullman, 1983] designed
around the “visitor” design pattern [Gamma et al, 1995]. Appendix B describes the
structure of the analysis framework in some more detail.

4.3.1 A simple illustrative example

Figures 4.1 and 4.2 show the source code of two simple Java classes. The classes
were compiled to bytecode and each class file analysed, producing the corresponding
structure graphs also shown in Figures 4.1 and 4.2.

The feature vectors extracted from the structure graphs are shown in Table 4.1,
The maximum structure path length in this case was set at three. The vertices and
edges of the graphs are labeled according to the assignment of numeric identifiers to
the original primitive and relationship types, e.g., primitive f \ translates to vertex
type 1, and relationship /ii translates to edge type 1. As discussed above, the “E”
notation is used to indicate external method calls and field operations1.

‘(For the sake of clarity, this illustrative example does not include basic-block vertices and edges
depicting method control flow. All methods in the two classes have a simple, single basic-bloc structure.
The feature vector does however include these features identifiable by the “B” prefix.

84

public class NonTaxedDiscItem extends Item {

float percentDiscount;

public NonTaxedDiscItem(double bp. float pcd) {
super(bp);
percentDiscount * pcd:

>
// implements abstract superclass
public double discount(){

return (basicPrice * percentDiscount);

}
// overrides superclass
public double tax(){

return 0;

>
}

Figure 4.1: Code Example (A) NonTaxedDiscItem

public class NonTaxedBulkDiscIten extends Bulkbuyltem {

public NonTaxedBulkDiscIte»(double bp) {
super(bp);

}
// implements abstract superclass
public double discount(Custcier bulkBuyer){

return (basicPrice * bulkBuyer.bulkDiscount());
}
// overrides superclass
public double tax(){

return 0;
}

}

Figure 4.2: Code Example (B) NonTaxedBulkDiscItem

For example, in Figure 4.1 the class “NonTaxedDiscItem” is represented by the
vertex of type “1” at the top of the graph, i.e., the “root” vertex. The adjacent edge
of type “1” identifies the connected vertex as the class’ superclass “Item”. The edge
type “1” indicates the “EXTENDS CLASS” relationship between them. The edges of
type “3” and “27” identify overridden and implemented abstract methods of “Item”
respectively. The edge type “15E” in the graph of “NonTaxedBulkDiscItem” (Fig. 4.2)
identifies a method call to an external method, in this case to a method provided by
the parameter object identified by “bulkBuyer”.

85

Feature (A) (B) Feature (A) (B) Feature (A) (B) Feature (A) (B)
C:7:22:-ll: 1 0 22:-22:18: 2 0 -7:27: 1 1 -2:1: 1 1

C:7:15:-2: 1 1 22:-22:15: 1 0 -7:1: 1 1 -2:11: 1 0

C:4:-22:-27: 1 1 22:-22: 1 0 -7:11: 1 0 -27:7:22: 1 0
C:27:22:-ll: 1 0 22:41:7: 1 0 -4:7:22: 1 0 -27:7:18: 2 1

B30: 3 3 22:41:4: 2 0 -4:7:18: 2 1 -27:7:15: 1 1
7:22:-22: 1 0 22:41:3: 2 0 -4:7:15: 1 1 -27:3:20: 1 1

7:22: 1 0 22:41:2: 2 0 -4:3:20: 1 1 -27:1: 1 1

7:18: 2 1 22:41:27: 1 0 -4:3: 1 1 -27:11: 1 0
7:15: 1 1 22:41:1: 2 0 -4:2: 1 1 -22:22: 1 0

7: 1 1 22:41: 2 0 -4:27:22: 1 0 -22:20: 2 1
4:-22:22: 1 0 22: 3 1 -4:27:20: 1 1 -22:19: 0 1
4:-22:20: 1 1 20: 2 2 -4:27:19: 0 1 -22:18: 2 0

4:-22:19: 0 1 1: 1 1 -4:27:15E: 0 1 -22:15E: 0 1
4:-22:15E: 0 1 19: 0 1 -4:27: 1 1 -22:15: 1 0

4:-22: 1 1 18: 2 1 -4:1: 1 1 -22:-7:1 : 1 0
4: 1 1 15E: 0 1 -4:11: 1 0 -22:-27:l: 2 1

3:20: 1 1 15:-2:4: 1 1 -3:7:22: 1 0 -22:-27:ll: 1 0

3: 1 1 15:-2:3: 1 1 -3:7:18: 2 1 -20:19: 0 1
2:45:22: 1 0 15:-2:27: 1 1 -3:7:15: 1 1 -20:15E: 0 1

to I 5? 99 2 1 15:-2:1: 1 1 -3:2: 1 1 -20:-3:1 : 1 1
2:45: 1 1 15.-2:11: 1 0 -3:27:22: 2 1 -20:-3:11 : 1 0

2: 1 1 15: 1 1 -3:27:20: 1 1 -20:-27:1 : 1 1
27:22:-22: 1 0 ll:-22:22: 1 0 -3:27:19: 0 1 -20:-27:11 : 1 0

27:22: 2 l 11 :-22:20: 1 0 -3:27:15E: 0 1 -1:7:18: 2 1
27:20: 1 1 11:-22:18: 2 0 -3:27: 1 1 -1:7:15: i 1
27:19: 0 1 11 :-22:15: 1 0 -3:1: 1 1 -1:27:19: 0 1

27-.15E: 0 1 11: 1 0 -3:11: 1 0 -1:27:15E: 0 1
27: 1 1 -7:4: 1 1 -2:7:22: 1 0 -1:11: 1 0

22:-4:7: 1 1 -7:3:20: 1 1 -2:7:18: 2 1 -19:15E: 0 1
22:-4:3: 1 1 -7:3: 1 1 -2:3:20: 1 1 -18:18: 1 0
22:-4:2: 1 1 -7:2: 1 1 -2:27:22: 2 1 -18:15: 2 1
22:-4:l: 1 1 -7:27:22: 2 1 -2:27:20: 1 1 -18:-7:11 : 2 0

22;-4:11 : 1 0 -7:27:20: 1 1 -2:27:19: 0 1 -15:-7:11 : 1 0
22:-22:22: 1 0 -7:27:19: 0 1 -2:27:15E: 0 1

22:-22:20: 1 0 -7:27:15E: 0 1 -2:27: 1 1

Table 4.1: Feature vectors for classes (A) NonTaxedDiscItem and (B) NonTaxed-
BulkDiscItem of Figs. 4.1 and 4.2

8 6

The feature type “-22:20”, of which there are two occurrences in “NonTaxed-
Discltem”, identifies three nodes linked by edge types 22 and 20, i.e., a method with a
primitive return that also accesses a primitive field. (The negative signs are a conse­
quence of feature classification and canonical representation as discussed in Section 3.4.
The features prefixed with a “C” are cycles.)

A similarity calculation based on the feature vector data taken from Table 4.1,
using the Tanimoto and Simpson association coefficients is shown below (Raw feature
counts were used, i.e., frequency weighting):

(Tanimoto)

— 85
~ 1 7 2 + 9 4 - 8 5

= 0.470

(Simpson)

S (X A , X B)
ZTi‘=i r n i n (x j A , X j n)

™n(£,”=i Zj-oEjT, xjb)

— 61
— 84

= 0.726

The general structure of the graphs appear quite similar. However, when the
primitives and relationships as represented by the vertices and edges are more closely
inspected, the calculated similarity values can at this stage be reasonably accounted
for. The two classes principally differ in the following respects. The class “NonTaxed-
Discltem” has an additional primitive field “percentDiscount”, which is the focus of
two field operation. It is written to by the class constructor and read by the method
“discount”. The class “NonTaxedBulkDiscItem” has no such operations. The sig­
natures of the constructor and the method “discount” both differ from those of the
corresponding methods in the class “NonTaxedBulkDiscItem”: in the first case there

87

is an additional primitive parameter while in the second case there is an absence of
a parameter. The method “discount” in the class “NonTaxedBulkDiscItem” issues
a call to the parameter object “bulkBuyer”. “NonTaxedDiscItem” issues no method
calls other than that to the superclass constructor, which occurs in both classes.

The similarity value generated by the Tanimoto coefficient does reflect these bi­
lateral differences, suggesting that their structures share less than 50% in common.
Both classes have one identical method, “tax”, and although the remaining method
signatures differ, they do have some parameter and return types in common. The
differences are predominantly the result of additional feature within the “NonTaxed­
DiscItem” representing the field operations. The similarity value given by the Simpson

coefficient tends to support this, suggesting that more than 70% of the structure of
“NonTaxedBulkDiscItem” is contained within “NonTaxedDiscItem”.

Due to both the number of different features extracted and the increasing levels of
context captured as the path length increases, the model is clearly able to distinguish
between classes that are outwardly structurally similar. The combination of feature
variety, and reasonable depth of local context, as provided by the number and varying
length of structure paths associated with each vertex, are the key factors underlying

the potential of this approach.

4.4 M odel Evaluation

4.4.1 Object-Oriented code reuse and plagiarism

The following experimental schedule describes the approach taken to validate the
model of structure and structural similarity developed in Chapter 8. The biggest prob­
lem encountered at this stage was the lack of available reference data with associated
“relevance” judgements, i.e., data sets of classes having been independently scruti­
nised and assigned a measure of pair-wise similarity. The only published approach
to the direct comparison of .lava bytecode appears to be Bakers’s “dup” application
[Baker and Manber, 1998]. Unfortunately, neither the application nor the experimental
data were available in order to carry out a comparative study.

8 8

As mentioned in the review of Chapter 2, there are several approaches to the de­
termination of software similarity. The majority are inappropriate comparisons in the

current context due to differences in emphasis, including the interpretation of similar­
ity, e.g., functional as opposed to structural, or not being freely and openly availability
as implemented applications. The exception in this case is the structural approach to
plagiarism detection developed by Guido Malpohl and Lutz Prechelt at the University
of Karlsruhe. Their “JPlag” engine is freely available to the academic community and
supports the detection of plagiarism within Java source code [Prechelt et al, 2000].
A similar system to JPlag is Alex Aiken’s “MOSS” (Measure of Software Similarity)
developed at the University of California2. This system is also freely available to the
academic community. Both systems have accrued a great deal of anecdotal evidence
as to their individual merits, although a recent academic report has commented that
“there does not appear to be a large degree of consensus between the two engines”
[Culwin et al, 2001], The report concludes that of the two, JPlag, “produces more
comprehensible results”. Working on the initial assumption that neither has been
independently shown to outperform the other in terms of the determination of simi­
larity, JPlag was chosen on the strength of the published reports of its implementation
and evaluation [Prechelt et al, 2000]. These include a comparison with MOSS which,
based on the selected data sets, conclude that in terms of precision and recall, JPlag

performs generally as well as if not better than MOSS.'*

JPlag can handle several language types, including Java source code, but it can not
process Java byte code. It can base the match process on individual files or groups of
files. A JPlag analysis begins by converting the source code text into a string of tokens.
Each token in the token set represents some aspect of the code structure. Whitespace,
comments and the names of identifiers are ignored. 1 he tokens set is chosen so as
to “characterise the essence of a programs structure and tiy and capture as much
semantic information as possible in order to prevent spurious substring matches, e.g.,
“BEGINCLASS” (public class Class{), “APPLY” (System.out.println(“!!”);), “BE-
GINMETHOD” (public void t.est(){), “VARDEF” (int i;), “ASSIGN” (i + = 2). The
token strings from two programs - be they comprised of single oi multiple (lasses

2http://www.c8.berkeley.edu/ aiken/moss.html
»In order to prevent undermining by the determined plagiarist, the implementation details of MOSS

are not available. It is believed to be similar in principle to the tokenisation and string-matching

approach of JPlag.

8 9

http://www.c8.berkeley.edu/

are then compared using a variant of Wise’s “Greedy String Tiling” algorithm, which
in turn is based on Karp-Rabin string matching [Wise, 1993]. This seeks to maximise
the coverage of one string of tokens by disjoint substrings taken from the other. It
is more versatile than longest common subsequence (LCS) in that it does not require
preservation of token order thereby allowing transposition of substrings. This is a pow­
erful mechanism that tries to take account of any order independence found in source
code which is often the focus of plagiarism attacks. Tokens are eventually mapped to
form “tiles”, unique (one-to-one) associations between tokens in matching substrings.
Larger tiles are preferred over smaller ones and a minimum tile size is specified to
prevent spurious or trivial matching. (The “sensitivity” of the JPlag engine can be
altered by setting a minimum tile length, i.e., tiles of size less than this value are
discarded, the larger the value, the coarser the match, and vice versa.) A similarity
value is calculated based on the degree of “coverage” achieved by the tiles:

2 x coverage{tiles)
sim (A ,B) = ------------------

where

coverage(tiles) = ^ \tile\
j S t i l e s

\A\ is the total number of tokens in file A
|£?| is the total number of tokens in file B

Two issues immediately stem from the use of a system such as JPlag as a means of
validating our current model. Firstly, the basic intention behind JPlag is the detection
of plagiarism, defined as the identification of programs that are “more or less” copies
of programs written by different authors [Prechelt, 2001]. Secondly, JPlag is based on
an analysis of source code, while our approach is byte code oriented.

4.4.2 Plagiarism and structural similarity

The model of object-oriented class structure developed here is primarily intended to
identify relational, structural similarity at the granularity of the Java class and its
member elements. In addition, as introduced in Chapter 1 and discussed further in

90

Chapter 2, being able to identify similar structure in terms of cohesive, clearly de­
limited structures is highly desirable, i.e., classes and/or complete method and field
groupings within classes. Although JPlag comparison is based on matching elements
of code structure, it neither respects intra-class relationships nor method boundaries
during the match process. For example, JPlag may map a pair of tokens representing
separate assignments to the same variable of one class, to tokens representing assign­
ments to different variables in a second class. Operations and method calls linked by
the same target field or object in one class may be mapped to independent targets
when compared with a second. Also, if by mapping tokens in a single method of one
class across several methods of a second class a better match is possible in terms of
improved coverage, then JPlag will allow this. This also applies in the case of source
files containing more than one class where cross-class match is possible. JPlag match­
ing can also lead to the creation of tiles that straddle method boundaries, by including
the end of one and the beginning of the next. Baxter describes this type of match as
“nonsensical” [Baxter, 1998]. Again, these are useful features in plagiarism detection,
where class and method splitting are common occurrences but from our perspective it
may also be interpreted as opportunistic, coincidental matching.

The fundamental difference between our model and JPlag is that while our model
concentrates on the relational structure of a class, JPlag matches based on the equiv­
alence of contiguous groups of statements. Nevertheless, although there are obvious
differences in emphasis, there appears to be no significant conflict when one considers
the common goal of identifying structural similarity. Indeed, the association between
plagiarism and structural similarity is well founded, the commonest current approaches
to plagiarism detection, including JPlag (and MOSS), being based on structure met­
rics, i.e., string representations of program structure [Wise, 1996]. Hislop makes a very
pertinent comment in describing the link between plagiarism and structural similarity
in the context of code reuse,

“Plagiarism, after all, is simply a socially unacceptable form of reuse.”
[Hislop, 1998]

In the context of a comparative study of approaches to identifying code reuse by way of
attribute-counting and structure metrics, Hislop concludes that structural approaches

9 1

as exemplified by Whale’s “Plague” plagiarism detection engine [Whale, 1990] are

significantly better.

4.4.3 Source code vs byte code analysis

In the absence of a reference model based on the analysis of Java bytecode, the choice
of source code analysis is justifiable in this instance. The internal structure of a Java
class file is obviously different from that of its corresponding source file. However, due
to the level of information retained in the bytecode, the model we construct based on
an analysis of the bytecode reflects very closely the class structure to be found in the
source code. The primitives and relationships used to build the structure graphs repre­
sent a bijective mapping between bytecode and corresponding source, except possibly
in the case of method control structure. The basic-blocks and branches generated from
the bytecode may not directly match that of the source but the translation should be
consistent at least within the same level of Java compiler, i.e., identical method bod­
ies will generate identical basic-block structure graphs. Inner classes and multi-class
definition within the same source file are potentially problematic. The Java compiler
generates a bytecode file for each class defined, whether it is defined in its own indi­
vidual file or occurs as part of, or in association with, other class definition in a source
file. JPlag does not separate inner classes or multi-class, single file definitions, treating
the source file as a single tokenisable unit. The data sets used for this initial analysis
did contain cases of multi-class, single file definitions, but this did not present a major
problem, as discussed below in Section 4.5.

The principle concern here revolves round the possibility of rejecting our original
hypothesis, i.e., that an attributed, relational model of class structure is sufficiently
able to determine similarity. This could be as a result of using a reference model that
differs in the essential quantity being measured. JPlag is intended to detect plagiarism
whereas our approacli is principally aimed at identifying similarity that preserves intra
and inter class relational structure. An “apples and pears” comparison is problematic
but provided we take account of the potential disparity as outlined above, and can
account for the observed differences, this limitation in our approach is justifiable. In
fact, if our hypothesis is to be proven, differences are inevitable.

9 2

4.5 Some Proof of Concept Experim ents

4.5.1 Setup of the study

In the context of student coursework assessment, plagiarism detection provides a means
of establishing the efficacy of our approach in determining structural similarity. Course
work presents us with a sufficiently large, available collection of small to medium sized
classes that are neither unmanageable in terms of their understanding nor the ease with
which tutor-based judgements of similarity can be made. Student assignments are by
their very nature not independent, i.e., they address the same requirements, are based
on the same course presentation, and are supported by the same group of tutors. In
this respect, course work can be interpreted as a somewhat artificial examples of the
“identical task environments” [Berghel and Sallach, 1984], or product-line domains
which are of interest to us as a target for the identification of reused and reusable
components, i.e., we would expect to find incidences of similarity as a consequence of
the development domain being constrained by the common assignment requirements.
The potentially higher level of similarity also provides an opportunity to establish the
degree to which recurring structure can be identified with sufficient discrimination
to highlight potential cases of plagiarism. The results of this initial study were also
intended to provide further insight into the problems that could be encountered on
transferring and generalising the approach to a less constrained setting.

The aim here was to determine whether the current model could provide an effective
first-pass screen able to limit the number of candidate pairs of classes, or groups of
classes, subjected to a more detailed examination. This was to be based on feature
vector extraction and establishing degrees of substructural and containment match.

4.5.2 Data Sets

Data in the form of Java source and corresponding bytecode files relating to two student
coursework submissions were available for analysis. The first set of data, “Hangman”
(Data set “H”), contained 100 coursework sets. The requirements and deliverables
for this assessment were strictly laid out, specifying not just the precise functionality
required but the number, names and behaviour of each of the classes to be designed

93

and implemented. One class was supplied precompiled. Briefly, the requirement for
this assignment was to implement the children’s game Hangman: one user is required
to identify a word entered by a second user by guessing its constituent characters, being
allowed at most five incorrect attempts. The application had to handle input from the
guessing user and produce output to indicate the current state of play following each
guess, where the nature of the input and output was precisely specified. (The supplied
class was a utility class that provided methods to handle simple terminal input and
output.)

The second set of data, “Snooker” (Data set “S”), contained 91 course-work sets.
The requirements were again clearly specified but the deliverables for this assessment
were not as rigid as in the case of “Hangman”. No additional constraints wore imposed:
provided the functional requirements were met, the actual class design and implemen­
tation were left to the student’s discretion. This was to be a GUI-based application
and as such it was anticipated that the submissions would be based on Java’s Abstract
Window Toolkit (AWT). Briefly, the requirements in this case were to implement an
interactive, event-driven, GUI-based scoreboard that would automate the scoring of a
snooker game in response to potted balls, missed pots, or fouls committed by the two
players.

In both cases, successful compilation of the submitted source code did not equate
to uniform interpretation of the requirements or for that matter successful imple­
mentation of same. The majority of successful compilations did however interpret
and implement t he requirements as stated. The following analysis only considered
source code and associated byte code files resulting from a successful compilation.
Non-compilable source was discarded.

4.5.3 Experiments

All the experiments detailed here were carried out using version 1.3 of the JDK and
were run on a PC under Window NT 4.4 Experiments are described under the headings
and subheadings listed below.

4Pentium III, 26GMH, 128MB

94

1. Application Comparison

(a) General distribution of similarity values

(b) Matched pair comparison of similarity values

(c) Containment

2. Class Comparison

(a) General distribution of similarity values

(b) Matched pair comparison of similarity values

(c) Feature group separation

(d) Some Further Observations

1 - Application Comparison:

Before examining similarity at the level of individual classes, both JPlag (JP) and
the structure path approach (SP) were applied to the comparison of complete course
work submissions, treating the classes contained in each submission as a single appli­
cation. We are interested at this stage in seeing whether there is indeed any degree
of correlation between the two approaches, as well as in whether there is any evi­
dence of “identical task environment” reuse. The respective analyses were carried out
on the Java source code and bytedcode files generated from all successfully compiled

submissions.

JPlag was presented with a set of submission directories containing the source code
of the application classes. It treats the set of source code files in each submission as
a single application and analyses accordingly. The initial sensitivity of JPlag was set
at five, i.e., the minimum tile length had to be at least five tokens. This is less than
the recommended default of nine, as we suspected the size of the classes in the course
work submissions to be generally smaller than those used in the JPlag evaluation.
JPlag’s method of determining similarity in the case of comparing sets of classes is not
documented. From an examination of the similarity breakdown provided as part of
the returned results, it appears that each group of files are formed into one string of

9 5

tokens with a special token inserted between any two files to prevent a cross-boundary
match. The similarity is calculated as before using the JPlag “coverage” measure.5

In the case of SP, the maximum length of structure paths was initially set at three.
Three was chosen as it represented a reasonable balance between discrimination and
computational overhead. Structure paths of length one effectively compare edge counts
and would be a low precision approach. Structure paths of length two would increase
precision but not sufficiently to meet our present needs. The level of context captured
by path lengths of two is limited. Context here refers to the different relationships
that a class element, represented by its vertex, is involved in. The larger the path
length the more context is captured, and so the discriminating power is improved.
Paths of length one describe the immediate context of each vertex, i.e., its immediate
neighbours and relationships. As the path length is increased, so the context of the
vertex is increased through the additional levels of relationship captured. For structure
paths of one or two the diversity within the generated features and the level of context
captured would be too limited. However, values of structure path length greater than
three woidd incur both time and space penalties which were judged unnecessary at
this stage.

For each pair of submissions, the feature vectors generated from the bytecode
analysis were used to construct a full similarity matrix. The matrix entries were the
values of pair-wise comparisons of each feature vector in one submission with all feature
vectors of the second submission. In the case of data set “H” this generated 4950
similarity values and for data set “S” 4095 values. The set of classes from each pair
of submissions were taken as the disjoint sets of vertices forming a complete bipartite
graph. The similarity values for each compared class pair was used to weight the graph
edges. The generation of a similarity value for a match between the applications was
based on establishing a maximum bipartite matching on this graph using Kuhn and
Munkres’ interpretation of the Hungarian algorithm [Bondy and Murty, 1970]. In
order to limit any bias introduced by differences in the means of calculating similarity
between JP and SP, the complemented Bray/Curtis coefficient was used to calculate
the similarity values during SP matrix construction. The complemented Bray/Curtis
coefficient can be shown to be effectively the same as the “coverage” similarity measure
used in the JPlag analysis, based on treating individual feature instances as “tokens’.
Having established the maximal matching, application similarity was calculated in a

5This has since been confirmed by the JPlag author.

90

manner similar to that used in .IPlag, using feature instances instead of tokens, i.e.,
feature frequency equates to the number of instances of that feature:

2 x coveraqe(maximalmatch)
sirn{Appk,Appi) = ---------TT^TTTl----i---------\Appk\ + \Appi\

where

cover age{maximalmatch) = ^ \matchedf eaturesm\
m & m a t c h e d p a i r

\matchedf eaturesm\ total number of matched feature
instances for matched pair m

Appk the set of feature vectors for application k
\Appk\ total number of feature instances in application k

(a) General distribution of similarity values:

The frequency grouped distribution of pair-wise application similarity for data sets
“H” and “S” are shown in Figure 4.3. Frequency grouped data plots are returned
by JPlag as the default view of the analysed submissions, individual measures being
supplied for only the thirty most similar pairs. The distributions are broadly similar
but the summary statistics for the SP and JP plots in Table 4.2 show that although
there is a high rank correlation between the two measures for data set “H” this is not
the case for data set “S”. The lower correlation for data set “S” is due in large part to
the greater numbers of application pairs classified by SP as having very low similarity
and larger numbers showing higher values. (Spearman’s rank-correlation coefficient
was used as we could not assume a parametric distribution of the similarity values.)

The distributions do show a tendency for SP to emphasis the higher levels of
similarity while deemphasising cases that do not have a great deal in common. This
is a very useful characteristic in terms of its potential as a first-cut, similarity filter
- reject only that which is definitely not of interest. The level of similarity tends to
be higher for SP, the median values being higher for both data sets. The spread of
similarity values is similar for JP and SP for the “H” data set but SP shows a greater
diversity within the “S” data set, as evidenced by the larger interquartile range.

97

SP(3) vs JP (5) (Data set "H")

SP (3) vs JP (5) (Data set"S")

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

■ ■ SP (3)
JP (5)

Similarity

Figure 4.3: Application similarity: grouped frequency distribution for data sets “H”
and “S”. (SP (3): path length 3; JP (5): sensitivity 5)

98

Data set “H” Mean Std.Dev. Median Q1 Q3 IQ Range
SP (3) 0.79 0.16 0.81 0.88 0.73 0.15
.IP (5) 0.68 0.12 0.64 0.71 0.56 0.15

Spearman rank-coefficient 0.944
Sig. (2-tailed) 0.000

Sig. at 0.01 level

Data set “S” Mean Std.Dev. Median Qi Q3 IQ Range
SP (3) 0.42 0.25 0.46 0.58 0.27 0.29
JP (5) 0.35 0.14 0.36 0.44 0.26 0.18

Spearman rank-coefficient 0.571
Sig. (2-tailed) 0.084

Table 4.2: Application similarity: summary statistics and rank correlations for plots
of Fig 4.3

(b) Matched-pair comparison of similarity values:

Although the shape of the SP and ,JP distributions are broadly similar, we can not
assume that the application pairs are monotonically matched, i.e., the ordering of SP
similarity values for application pairs may not be matched by the same ordering of
the associated ,1P values. Figure 4.4 and Table 4.3 show the results of a matched-pair
comparison for a random sample taken from each of the two data sets. A random
sample of thirty submission was taken, providing 435 matched pairs, effectively a 10%
sample. For each application pair, the two similarity values from the SP and JP
analyses are linked, the plot being ranked in descending order of the SP similarity
values. Again, the rank correlation is significant.

Using JP as our reference, the sufficiency of the SP approach was investigated
further as follows. Following an extensive evaluation of JPlag, Prechelt concluded that
a simple, absolute similarity threshold of 0.5 generally provided the best plagiarism
detection results, i.e., all similarity values above 0.5 were selected for further scrutiny
[Prechelt et al, 2001]. The evaluation criterion in this case; was maximisation of the
weighted index Precision+ (3 x Recall). Accept for the moment that positive evidence
of plagiarism may be indicative of structural similarity and reuse, and that the JPlag

99

Figure 4.4: Application similarity: matched-pair distribution for two random samples
taken from data sets “H” and “S”, ranked in descending order of SP similarity values.

100

Data set “H” Mean Std.Dev. Median Qi Q3 IQ Range | SP - JP |

SP (3) 0.81 0.08 0.80 0.89 0.75 0.14 Mean S.D. Max.
JP (5) 0.66 0.08 0.65 0.71 0.60 0.11 0.16 0.08 0.34

Spearman rank-coefficient 0.435
Sig. (2-tailed) 0.000

Sig. at 0.01 level

Data set “S” Mean Std.Dev. Median Ql Q3 IQ Range | S P - J P \

SP (3) 0.46 0.18 0.50 0.60 0.34 0.26 Mean S.D. Max.
JP (5) 0.38 0.12 0.37 0.44 0.31 0.13 0.13 0.09 0.54

Spearman rank-coefficient 0.606
Sig. (2-tailed) 0.000

Sig. at 0.01 level

Tahiti 4.3: Application similarity: summary statistics and correlations for plots in

Fig 4.4

threshold of 0.5 is a useful classifier of pair-wise similarity. In order to establish
whether the SP approach produced a similar classification of application pairs, the
performance of SP as a classifier was assessed, based on the JP reference classification
and similarity threshold, by plotting a receiver operator curve (ROC) as described
next6.

Each JP similarity value is initially classified as on-or-above, or below the threshold.
Values on-or-above threshold identify and are labeled as “positive” occurrences. These
positive occurrences provide the reference statistic against which each corresponding
SP value is judged. A ROC analysis begins by setting a second threshold, or cutoff
value, to be applied in this case to the SP similarity values. If an SP value is equal
to or above this cutoff, and the corresponding JP value is marked as positive, the SP
value is counted as a true positive {TP). If the SP value is equal to or above the cutoff,
and the corresponding JP value is not marked as positive, this is counted as a “false”
positive (F P). In a similar vein, based on the SP value being below the cutoff, we
can identify both true negatives (T N) and false negatives (F N). Each SP cutoff value

6Hanley J.A., McNeil B.J. (1982) The meaning and use of the area under a Receiver Operating
Characteristic (ROC) curve. Radiology 143, 29-36. An ROC is basically equivalent to the cumulative
recall curve as applied in the domain of Information Retrieval.

1 0 1

selected generates a pair of measures termed the “True Positive Fraction” (T P F) and
“False Positive Fraction” (F PF) as follows:

TPF =
TP

T P + FN
FPF =

FP
FP + TN

the SP cutoff value, from 0 to 1 in this case, and plotting
a ROC curve is generated. Figure 4.5 shows the ROC

By continuously varying
the resulting pair (FPF, TPF),
curve for the data of Figure 4.4.

ROC Curve (Data set "H")

1 ■ Specificity

ROC Curve (Data set “S")

1 - Specificity

Figure 4.5: Application similarity: ROC analysis for sampled data sets “H” and “S”
of Fig. 4.4.

The ROC curve is normally used to optimise the cutoff value depending on an
acceptable trade-ofT between sensitivity (— TPF) and specificity (= 1 — FPF). In
the current circumstances, varying the cutoff across samples is not appropriate as a
single cutoff value is required to represent the effectiveness of SP as a classifier. The
ROC analysis of data set “H” showed that an SP cutoff value of 0.5 would classify
all cases as positives, giving a sensitivity of 1.00 and a specificity of 0.00. The very
low specificity level is the result of all 10 .IP pairs out of a total of 435 sampled and
below the set threshold were accepted. Restating this result using precision and recall
gives values of 0.98 and 1.00 respectively, indicating that the SP approach, at least
in this instance, is very effective. However, in this case the actual negatives were a

102

small proportion of the total, which is generally not the case, as can he seen in the
“S” sample. In the case of data set “S”, an SP cutoff value of 0.50 gives a sensitivity
of 0.92 and a specificity of 0.54. A good level of recall (0.92) is however not matched
by the same degree of precision (0.26) as for data set “H”: although 56 out of 61 true
positives were identified, 160 false positives were also selected. (A reasonable balance
of sensitivity and specificity is probably not possible: although an SP cutoff of 0.75
leads to a sensitivity of 0.74, it gives rise to a specificity of only 0.40.)

The difference in distribution between data sets “H” and “S” is a consequence of
the less constrained nature of the respective assignments. Data set “H” represents a
more limited, constrained development brief, the large majority of solutions correctly
implementing the requirements. On closer inspection, data set “S” demonstrated
several “noise” inducing factors: the number of classes in each submission varied from
one to nine; there were a greater number of incomplete or incorrect interpretations
of the requirements; and some submissions included classes that were not part of the
solution, e.g., test classes, old versions. As a consequence, data set “H” displays higher
levels of similarity.

(c) Containment:

A different perspective is obtained by examining the calculation of similarity from the
viewpoint of containment, i.e., the degree to which the smaller of two structures is
contained within the other. We would naturally expect an overall increase in similar­
ity, as the element of difference represented by the unmatched portion of the larger
structure is discarded. However, it is important to establish the degree of change.
The plot in Figure 4.6 shows an analysis of the sampled data sets of Figure 4.4 in­
cluding Simpson’s “overlap” coefficient. Table 4.4 provides summary statistics for the

respective samples.

Figure 4.6 and Table 4.4 show that the distribution of similarity values has changed
when comparing the standard SP analysis against a containment analysis. In the case
of the sample taken from data set “H”, the median SP similarity value has increased
from 0.80 to 0.93 and the inter-quartile range has decreased from 0.14 to 0.08. For
the sample from data set “S”, the median has increased from 0.50 to 0.65, while the

103

N
o.

 o
f

A
pp

lic
at

io
n

P
ai

rs

N
o.

 o
f

A
p

p
lic

at
io

n
 P

ai
rs

SP (3) vs JP (5) (Data set "H")

4000

3500

3000

2500

2000

1500

1000

500

0
1.0- 0.9- 0.8- 0.7- 0.6- 0.5- 0.4- 0.3- 0.2- 0.1 -
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Similarity

SP(3)vs JP(5)(Data set"S")

Figure 4.6: Application similarity: an evaluation of containment based on Simpson’s
“Overlap” coefficient for data sets “H” and “S” of Fig. 4.4.

104

Data set “H” Mean Std.Dev. Median Q1 Q3 IQ Range
SP (3) 0.91 0.08 0.93 0.90 0.88 0.08

Data set “S” Mean Std.Dev. Median Q1 Q3 IQ Range
SP (3) 0.64 0.23 0.65 0.79 0.54 0.25

Table 4.4: Application similarity: summary statistics for containment assessment of
sample data sets of Fig. 4.4

inter-quartile range has decreased slightly from 0.26 to 0.25.

2 - Class comparison:

Having generated a set of results based on application comparison, the next stage
involves a more detailed comparison at the level of individual classes. The approach
is essentially the same as the previous analysis but without the grouping of classes
as applications, and the subsequent determination of similarity by way of maximal
bipartite match. The following experiments are essentially a repetition of those above
but in this case all classes are pair-wise compared.

The SP approach is based on bytecode analysis and is not affected by the presence
of multi-class source files. However, for the sake of the current comparison, cases of
multi-class source files that generate more than one corresponding bytecode file were
potentially a problem if we were to maintain matched sets of data, i.e., for each source
file there is a corresponding class file. In order to retain a balanced pairing of source
and bytecode files, this was dealt with by removing the source code for the additional
class to its own file and recompiling. This was considered a, reasonable, consistent
approach that did not affect the analysis, while maintaining the balance of paired
similarity values. Data set “H” has 394 matched source and bytecode files, which on
pair-wise comparison generates 77421 similarity values. Data set “S” has 338 matched
source and bytecode files, which on pair-wise comparison generates 56953 similarity
values.

105

(a) G eneral d istribution o f sim ilarity values:

Both the Tanimoto and complemented Bray/Curtis coefficients were used to calculate
similarity. As in the case of application match, the discussion concentrates on the
complemented Bray/Curtis coefficient due to its being equivalent to the “coverage”
measure of the JP analysis. The Tanimoto measure is included to provide a further,
different, but primarily visual confirmation of the presence of similarity. (The Tan­
imoto coefficient is non-linear, at it implicitly weights against structures that have
little in common.) The results of application comparison suggested that SP similarity
values were generally higher than those of JP. This may have been the result of setting
the JP sensitivity too high for the given class sizes, i.e., the majority of classes in
the data sets were small, de-commented source code files being less than 2K in size.
Consequently, the current comparison also includes a similarity distribution generated
using the lowest JP sensitivity of three. The frequency-grouped distribution of pair-
wise class similarity for data sets “H” and “S” are shown in Figure 4.7. The associated
summary statistics are provided in Table 4.5

Data set “H” Mean Std.Dev. Median Q1 Q3 IQ Range Correlation (SP vs JP)

SP (3) 0.34 0.37 0.23 0.48 0.13 0.35 Spearman rank-coefficient
.IP (5) 0.20 0.40 0.07 0.30 0.04 0.19 0.782 (0.008) Sig. at 0.01
JP (3) 0.31 0.46 0.21 0.42 0.14 0.28 0.855 (0.002) Sig. at. 0.01

Data set “S” Mean Std.Dev. Median Q1 r*
\ IQ Range Correlation (SP vs JP)

SP (3) 0.16 0.37 0.07 0.16 0.04 0.12 Spearman rank-coefficient
JP (5) 0.14 0.35 0.07 0.30 0.03 0.27 0.830 (0.003) Sig. at 0.01
JP (3) 0.21 0.41 0.06 0.38 0.00 0.38 0.794 (0.006) Sig. at 0.01

Table 4.5: Summary statistics and correlations for plots in Fig 4.7

The distributions for both data sets are highly skewed but again show a high rank
correlation based on the grouped similarity values. The overall level of similarity
is generally higher for data set “H”, the corresponding median values being higher.
Increasing the JP sensitivity has made no apparent difference in the case of data set
”S” but has increased the median value to match that of SP for data set ”H”. Again,
the range of similarity values tends to be larger for data set ”S”.

106

S P (3) v s J P (D a t a s e t " H ")

•P (5)
— SP (3) (BC)

SP (3)(T)
~a~ JP (3)

Sim ilarity

SP (3) vs JP (Data set "S")

50000

45000

40000

2 35000

°- 30000 (/>
2 25000u
o 20000

£ 15000

10000

5000

0
1.0- 0.9- 0.8- 0.7- 0.6- 0.5- 0.4- 0.3- 0.2- 0.1-
0.9 0 8 0.7 0.6 0.5 0 4 0.3 0.2 0.1 0 0

Similarity

Figure 4.7: Class similarity: grouped frequency distribution for data sets “H” and
“S”. (SP(3)(BC): Comp. Bray/Curtis; SP(3)(T): Tanimoto)

1 0 7

(b) M atched-pair com parison o f sim ilarity values:

Both monotonicity and sensitivity/specificity are again evaluated in order to assess
the sufficiency of SP class-based comparison relative to the JP reference. Five random
samples of thirty classes were extracted from each of the two data sets, samples “HI”
to “H5” and “S i” to “S5”. (Sets of thirty classes would normally generate 435 pairs
of similarity values. JPlag was parameterised to return a maximum of 500 results
but it appears to operate a minimum similarity threshold below which results are
not provided. SP results that did not have a corresponding JP result were therefore

discarded.)

In terms of JP sensitivity, application similarity for data set “H” shows better
agreement between SP and JP with a sensitivity of 3. Conversely, data set “S” shows
an improved correlation with JP at a sensitivity of 5. To begin with, based on the
better overall correlation, the JP sensitivity was set to three. Each sample was anal­
ysed, the resulting box-plots being shown in Figure 4.8. The matched-pair similarity
distributions of two sets of four samples are displayed in outline in Figure 4.9. The
remaining two samples, “HI” and “S2”, which displayed the largest mean difference
between SP and JP similarity values, are plotted as paired-value comparisons in Fig­
ure 4.10. The associated summary statistics are given in Table 4.6. Again, the rank
correlation is significant.

Using ,JP as our reference, the ability of the SP approach to classify class pairs was
again examined using ROC plots of the sample data sets from Figure 4.10. The JP
reference criterion used to determine a positive match was again set at a similarity of
0.5, the ROC plots being shown in Figure 4.11. The analysis of the sample from data
set “HI” shows that an SP cutoff value of 0.6 gives a sensitivity of 0.94 and a specificity
of 0.97. In the case of the sample from data set “S2”, an SP cutoff value of 0.14 gives
a sensitivity of 0.98 and a specificity is 0.90. In both cases, the sensitivity values show
that we can identify a high proportion of valid pairs (good recall), while keeping the
proportion of those that should have been rejected, but were in fact retained, low.

108

, 425 425 425 425 425 425 425 425 425 425

H1_SP3 H2_SF3 H3_SP3 H4_SP3 H5_SR3
H1_JP3 H2_JR3 H3_JF3 H4_JP3 H5_JP3

D a ta set "H" : p a ire d sam p les

.■& 2

03 0 0
337 337 337 337 337 337 337 337 337 337

S1_SP3 S2_SP3 S3_SP3 S4_SF3 S5_SP3
S1 JP3 S2_JP3 S3_JR3 S4_JP3 S5_JP3

D a ta se t “S": p a ire d sam p les

Figure 4.8: Class similarity: box plots for five random samples taken from data sets
“H” and “S”. The SP and .IP distributions for each sample are presented as paired,
adjacent plots.

109

Figure 4.9: Class similarity: matched-pair comparison of SP(3) and JP(3) for four of
the five random samples drawn from data sets “H” (Right) and “S” (Left), ranked in
descending order of SP similarity values.

110

Sp (3) v s J P (3) (Data set "H": S1)

-SP (3)
-JP (3)

Sp (3) vs JP (3) (Data set "S": S2)

-SP (3)

-JP (3)

Figure 4.10: Class similarity: matched-pair comparison for the fifth random sample
drawn from data sets “H” and “S”, ranked in descending order of SP similarity values.
Of the five samples drawn, these had the largest mean difference in similarity values
between SP(3) and JP(3) (Samples “HI” and “S2”)

111

Data set “HI” Mean Std.Dev. Median Qi Q3 IQ Range | S P - J P \

SP(3)
JP(3)

0.35
0.30

0.29
0.24

0.21
0.20

0.49
0.39

0.14
0.13

0.35
0.2G

Mean S.D. Max.
0.13 0.11 0.47

Spearman rank-coefficient 0.50G
Sig. (2-tailed) 0.000

Sig. at 0.01 level

Data set “S2” Mean Std.Dev. Median Ql Q3 IQ Range | S P - .111
SP(3) 0.17 0.28 0.05 0.13 0.02 0.11 Mean S.D. Max.
JP(3) 0.24 0.26 0.14 0.24 0.07 0.17 0.09 0.09 0.52

Spearman rank-coefficient 0.722
Sig. (2-tailed) 0.000

Sig. at 0.01 level

Table 4.G: Class similarity: summary statistics and correlations for plots in Fig 4.10

ROC Curve (Data set "H ‘: S1)

1 - Specificity

ROC Curve (Data set "S": S2)

1 ■ Specificity

Figure 4.11: Class similarity: ROC analysis for the data sets of Fig. 4.10

112

However, the variation in cutoff value again highlights the classification inconsis­
tency across data sets. By re-setting the JP threshold to 0.75 and retaining the SP
cutoff value of 0.5 this gave a sensitivity of 1.00 and a specificity of 0.81 for data set
“HI”, the corresponding figures for data set "S2” being 1.0 and 0.99. At this higher
threshold, the classification power of SP is dramatically improved.

(c) Feature group separation:

The experiments carried out above highlight a general, rank correlation between the
SP and JP approaches. However, at the level of individual application and class pairs,
we have also identified the presence of significant differences between SP and JP during
the assessment of similarity. This can be seen both in terms of the absolute differences
between similarity values and in the cutoff threshold inconsistency of the ROC plots.

The SP approach can be seen as the combination of two disjoint sets of features.
Firstly, those features that capture intra- and inter-class relationships above the level
of detailed method structure, i.e., “class” features. Secondly, those features that cap­
ture the basic-block control structure of the methods declared within the class, i.e.,
“method” features. Previously, we have combined the features from both sets to de­
termine the overall level of similarity. No account was taken ol the possible difference
in individual contribution. This experiment examines the contribution made by the

two feature sets in isolation.

Each of the two sets of features were independently used to repeat the matched-
pair class comparison experiment based on the “111” and “S2” sample data sets from
Fig. 4.10. Figures 4.12 and 4.13 show the results of the analysis. Comparing the indi­
vidual SP feature sets against the JP reference, for both samples the rank correlation
between “class” features and JP decreased (“HI”: 0.506 —> 0.479 , “S2” 0.722 —> 0.642)
and for “method” features it increased (“HI”: 0.595 —> 0.506, “S2”: 0.739 —> 0.722).
However, again in both cases, the mean and maximum absolute difference between
SP and JP increased: this was most pronounced when comparing the SP “method”
feature set against JP for the sample from data set “S2V (Mean 0.09 —> 0.16, max.
0.52 -> 0.83).

Sp (3) vs JP (3) (Data set "H": S1)

Figure 4.12: Class similarity: matched-pair distribution for data set “H” sample of Fig. 4.10
showing separation of features, ranked in descending order of SP similarity values. The top
plot shows the “class” feature analysis superimposed on the original SP and JP analysis. The
bottom plot shows the “method” feature analysis similarly superimposed.

114

Sp (3) vs JP (3) (Dataset "S": S2)

Sp (3) vs JP (3) (D ataset nS": S2)

T 1 _____I] (| | Jin
-----SP (3)n ol
----JP (3)

’I .'™ ¡1 i i ,, 1 ftiiAiikiMa
1 51 101 151 201 251 301 351

Class Pair Number

Figure 4.13: Class similarity: matched-pair distribution for data set “S” sample of Fig. 4.10
showing separation of features, ranked in descending order of SP similarity values. The top
plot shows the “class” feature analysis superimposed on the original SP and JP analysis. The
bottom plot shows the “method” feature analysis similarly superimposed.

115

The results from Figs. 4.12 and 4.13 show that the overall similarity value assigned
by SP to a class pair is heavily weighted in favour of the “class” features. The “method”
features appear to have little effect on the overall similarity value. The disparity in the
number and the frequency of occurrence of features in each set was the reason behind
this. For example, using a path length of three, there were on average 54% more
class features than “method” features for data set “II”. This is understandable, as
the diversity in the intra-method, edge types is much less than that of the edge types
representing the “class” relationships. The frequency of occurrence for individual
“class” features was on average three times that of the “method” features but this
could in part be attributed to the generally small method sizes.

Several approaches were considered as a means of further clarify the role of “class”
and “method” features. Firstly, calculating two similarity values based on the two
feature sets and combining them as an average or weighted sum. Secondly, combining
the similarity values but initially establishing a maximal bipartite match between the
feature sets of the methods, i.e., finding the best match between the two sets of method
based on their individual features. Thirdly, reducing the number of “class” features
extracted. This latter option could be achieved by reducing the maximum path length
but at the expense of reducing the ability to differentiate sufficiently between structures
as a result of loosing contextual information. A smaller path length captures less local
context, as the possible extent of the relationships captured by individual features is
reduced. Alternatively, this could be achieved using “rooted” class features. Rather
than visiting all nodes in the structure graph and extracting all structure paths up to a
given maximum length, “class” features would only be extracted for paths starting at
the “root” vertex, i.e., that vertex representing the analysed class itself. Conceptually,
this is reasonable, as the class structure is naturally hierarchic and rooted at the main
class vertex. Practically, the loss of local contextual information resulting from the
reduction in number of features might be problematic. However, from the perspective
of “class” features, the path length being at least three, and the depth of the graph
relative to the “root” vertex being only two, this should provide sufficient variation in
the feature, while maintaining a reasonable level of context. The main loss of context
would involve relationships between vertices at the lower level of the structure graph,
i.e., parameter, return, external field and external method vertices. The rooted path
approach has a major, additional benefit in that it can reduce the overall complexity

116

of feature extraction. Combining these options was also considered but this could have
lead to overcompensation. Re-weighting the “class” features was also considered, e.g.,
using relative as opposed to raw frequency. The reduction in computational overhead
provided by “rooted” paths was initially preferred but we return to the issue of feature
weighting in Chapter 5.

A further experiment was conducted based on “rooted” class features. The ex­
traction of method features remained unchanged: adopting a “rooted” approach here
would not be practical, due to the potential depth of the basic-block method graph.
In order to capture sufficient context, the path length would have to be increased to
at least the depth of the largest method graph, well beyond acceptable computational
limits. Figure 4.14 shows the result of introducing “rooted” features into the similarity
calculation as applied to the data set of Fig. 4.12. The rank correlation has increased
slightly from 0.506 to 0.578, but the difference between SP and JP values has been
only slightly reduced from a mean of 0.13 (Std.Dev. 0.11), to a mean of 0.12 (Std.Dev.
0. 10) .

Sp (3)(R) vs JP (3) (Data set "H": S1)

1.2

1

0.8
£■
= 0.6
£
35

0.4

0.2

0
1 51 101 151 201 251 301 351 401

Class Pair Number

Figure 4.14: Class similarity: matched-pair distribution for data set “H” sample of Fig. 4.10 showing
the effect of using rooted “class” features. The plot shows the “rooted” feature analysis superimposed
on the original combined analysis of SP and JP. The ranking is in descending order of the original SP
similarity values.

117

A second experiment using bipartite matching of method features and an arith­
metic averaging of “class” and ” method” similarities produced the results shown in
Figure 4.15. In this case the rank correlation decreased from 0.506 to 0.478, while the
distribution of differences between SP and JP values has remained the same.

F igure 4.15: Class similarity: matched-pair distribution for data set “H” sample of Fig. 4.10 showing
the effect of using an average of the “class” and maximally matched “method” features. The plot
shows the averaged feature analysis superimposed on the original combined analysis of SP and JP.
The ranking is in descending order of the original SP similarity values.

(d) Some further observations:

Some of the class pairs from the samples of Figures 4.12 and 4.13 were examined in
more detail in order to gauge the general performance of the two approaches and in
particular to try and identify factors responsible for the observed differences.

In general, those cases where there was a large difference in assigned similarity
value can be placed in one of two main categories, “missed match” and “inappropriate
match”. •

• High SP value, low JP value
In some cases, the similarity value assigned by SP was much higher than that

118

of .IP . On closer examination, the classes did indeed have very similar rela­
tional structure, including method signatures, called methods, field operations
and method control structure. The low value assigned by JP was due to the
number and order of statements within the methods’ basic blocks being suffi­
ciently different to prevent, the formation of matching tiles. These differences
represented either “missed match” where the corresponding code blocks were
essentially equivalent and the SP value justified, or spurious, “inappropriate
match” where the code block were indeed significantly different and the SP value
unjustifiable. This type of spurious match, where the identification of similar re­
lational structure could not adequately reflect differences in the method detail,
was identified several times in the SP analysis.

In some cases of “missed match”, the difference between SP and JP could be
markedly reduced by reorganising the source code. By reordering the position
of methods and statements, where statements and code blocks were order inde­
pendent, the similarity value returned by JP could be increased by as much as

35% in selected cases.

• High JP value, low SP value
JP can assign a much larger similarity value than SP in cases where tiles are
matched inappropriately. Tokens can be matched across methods: tokens from
a single method of one class can be matched with tokens from more than one

method in the compared class. This was more apparent following the reduction
of the JP sensitivity from five to three. Indeed, Prechelt warns that a sensitivity
of three can lead to potentially high levels of spurious match which may well
be the case here [Prechelt et al, 2000;2001]. The converse was also observed
in that cases of higher SP values on comparison with JP and a sensitivity of
five were legitimately reduced on comparison at a sensitivity of three. This was
more pronounced in the case of the “H” data set, which has smaller methods,
the larger minimum tile size preventing the identification of small sections of
matching code.

The current JP token set makes no distinction between reference and primitive,
static and non-static fields, between different methods and method calls, e.g., con­
crete, abstract, static, or indeed between method signatures. As a result, fields, field

119

operations, methods and method calls are represented by tokens that do not apply any
form of subcategorisation. This can lead to an indiscriminate mapping of these tokens,
irrespective of the actual subcategorisation found in the code. SP encodes this type of
subcategorisation in its feature set and additionally encodes the relational structure
existing between the various elements of the class. It also explicitly captures method
signatures in a form that is order independent. This constrains the allowable match,
principally at the “class” level rather than the internal “method” level, although the
two are not independent. Due to the inappropriate matching of tiles by JP, and the
additional relational constraints imposed by SP, this can account for some of the JP
similarity values being higher than the corresponding SP values.

As mentioned above, SP can generate spurious matches based on essential differ­
ences at the level of method statements. This can be compounded by an “averaging
effect” which in some ways is similar to the cross-method tile match that can occur in
JP. Pairs of classes with differing method numbers and structures can be assigned high
method-level similarity values. In these cases, the aggregated frequencies of “method”
features for both classes are broadly similar. This is usually due to the presence of a
large method supplying enough feature instances to counter, or average out, the differ­
ence in method number and structure. This “averaging” or diffuse match can give rise
to an artificially high value of “method” similarity. The current SP “method” feature
set has a limited effect on the overall calculation of similarity. Feature aggregation, in
addition to the already limited “method” feature types, further undermines the sole
use of method control structure as a means of qualifying the structural match, leading
to the generation of inappropriate SP similarity values.

In the case of application match, the JPlag assessment of similarity does not prevent
cross-class matching: although tiles can not be generated that cross class boundaries,
tiles from a file in one set can be matched across more than one file in the second
set. Again, useful in the context of plagiarism detection but here it distorts the
comparison between SP and JP, as SP prevents cross-class match. This appears to
be more prevalent at lower levels of similarity and probably accounts in part for the
pattern seen in Figure 4.4, where at lower levels of similarity the SP values tend to be
smaller than or closer to the corresponding JP values.

120

4.6 Discussion

This discussion focusses primarily on the similarities and differences between the SP
and JP results but begins by considering some general issues relating to reuse in the
context of the coursework submissions.

Application comparison aimed at establishing whether the SP approach could pro­
vide any evidence to support the notion of “identical task environment” reuse. The
levels of similarity found in both data sets can not be considered coincidental and does
clearly identify the recurrence of similar structure, being more pronounced in the case
of data set “H” (Figures 4.3 and 4.4. Tables 4.2 and4.3). Data set “If” represented
a more constrained development exercise and this is reflected by the level of struc­
tural similarity being higher than for data set “S”. The similarity levels for “S” could
have been higher were it not for the presence of “noise”, in the form of incomplete or
incorrect submissions, or additional, unnecessary classes.

It was reasonable to expect an increase in similarity when investigating contain­
ment, as it expresses the degree of common structure relative to the smaller of the
compared classes. However, what is interesting is the size of the change and how it can
affect the process of identifying significant common structure (Figure 4.6, Table 4.4).
Doth data sets show an increase in the level of similarity, particularly in the case of
data set “S”: the shift in median value is such that more than 50% of the values are
above a similarity threshold of 0.5. This represents a significant increase with respect
to the original calculation of similarity, which placed less than 25% of cases above
the same threshold. What this experiment does not take into account is the absolute
size of the common structure identified. Small, potentially trivial structures that are
largely or completely contained within larger structures, will generate high similarity
values based on a containment measure. Two similar, small structures may generate
ft high similarity value but be of little consequence due to their size. That said, any
frequently recurring common structure, be it large or small, is potentially significant
as a reuse marker. Alternatively, a small and a large structure, although generating
a low similarity value, may represent a significant amount of common structure when
stated in terms of the smaller of the two. Again, the frequency of recurrence is a
key issue as is the absolute size of the common structures identified. This experiment
highlights the need to carefully consider the choice of appropriate similarity thresholds

121

- absolute and relative - when deciding what is potentially of interest.

Turning to the comparison between SP and JP, the two approaches differ in intent
and this is indeed generally reflected in the presented results. However, they both
approach similarity from the common standpoint of the analysis of code structure
and this is also reflected to some degree in the results. In general, the levels and
spread of similarity do not form a consistent pattern of difference between the SP
and JP approaches. From the application-level analysis, the median similarity values
and inter-quartile ranges show that although the SP values for data set “H” tend
to be higher but similarly spread, those for data set “S” tend to be lower and more
widely spread. As mentioned above, this is probably related to the level of “noise” in
the “S” submissions. Class comparison is similar in that data set “H” shows higher
levels of similarity than set “S” but in this case the spread of vales is less for “H”
(Figures 4 .7 , 4.8 and 4 .1 0). Rank correlation is significant between the matched-pair
results for both application and class comparison (Tables 4.3, 4.5 and 4.6). Irrespective
of whether the measurement of structural similarity is carried out using SP or JP, the
likelihood that two pairs of applications or classes are placed in the same order of
similarity is significant. However, we can clearly see from the graphs that SP and JP
are not strictly monotonic and indeed the measured differences can be quite large.
The plots in Figures 4 .4 , 4 .!) and 4.10 clearly illustrate the disparity between the two
approaches. On examining the absolute differences between matched similarity values
ft'om the applications analysis, although the mean difference was less than 0.15, the
maximum difference was greater than 0.3 for both data sets: data set “H” had a mean
difference of 0.16 (Std. Dev. 0.08; Max. 0.38) while data set “S” had a mean difference
°f 0.13 (Std. Dev. 0.09; Max. 0.54). The difference is not so great for individual chiss
comparison but again the plots of Figure 4.10 and the associated summary statistics
nr Table 4.6 show that although there is a deal of agreement between the analyses, the

differences can not be ignored.

Applying a ROC analysis to the application similarity values, comparing SP against
JP as our reference, showed that reasonable and consistent levels of sensitivity and
specificity are not generally possible, i.e., a single, universal and effective cutoff value
can not be set (Figure 4.5). While we can achieve both good sensitivity and specificity
>n the case of data set “H”, good sensitivity for data set “S” comes at the expense of
Poor specificity. At an SP cutoff level of 0.5, we can detect almost all positive cases but

122

at the expense of accepting a very high proportion of those pairs that should have been
rejected. In the case of class comparison (Fig. 4.11) we can again achieve very high
levels of sensitivity and specificity but the variation in cutoff value required confirms
the classification inconsistency that occurs across the data sets. By raising the JP
threshold from 0.5 to 0.75 and repeating the ROC analysis for the class pairs, a cutoff
value of 0.5 gave good sensitivity and specificity for both data sets. In general, SP
similarity values are higher than those of JP, suggesting that SP may not discriminate
between compared structures as well as JP. Rasing the JP threshold for ROC analysis
suggests that SP is currently able to better identify instances of higher similarity.
Of course, this conclusion assumes that JP provides a valid, useful classification in
the first place. The JP approach is not without its limitations, leading on occasion
to inappropriate or missed matchs. This must be born in mind when drawing any

conclusions based on the comparison of SP with JP.

In addition to the observations relating to “missed match” and “inappropriate
match” outlined above, the principle factors contributing to the observed differences
between SP and JP are the “class” feature orientation of SP, and the limited ability
of SP to capture and use method details as a means of qualifying the higher-level,
“class” feature match. SP concentrates on matching relational structure representing
the associations and interactions that occur between the elements of a class, above
the level of detailed method structure, i.e., it takes account of the field operations and
method calls occurring within a method but not the details relating to the number,
type and ordering of individual statements. JP concentrates on matching tokenised
blocks or tiles corresponding to one or more sequential statements thus capturing
a more detailed picture of internal method structure. However, this can be at the
expense of missed match or inappropriately matched t iles as discussed above. The SP
feature set is also sufficiently rich to take account of a limited subcategorisation of
fields, methods and method calls, which is not reflected in the current token set used
by JP.

While JP concentrates on identifying a mapping between disjoint blocks of to­
kenised source code from two classes, the level of abstraction is such that semantics
governing the relationships between methods and fields are not explicitly captured.
I'he tokenisation process of JP captures a great deal of the structure of the source
code in terms of statement-level, method structure, i.e., the control structures used,

123

method calls and variable assignments made within a method. SP on the other hand
concentrates on capturing the inter- and intra- class relationships, primarily in terms
of the hierarchical structure of the elements forming a class, including its methods,
fields, field operations and method calls. In particular, although SP captures the in­
teractions between a method and other internal and external fields and methods, the
representation of the method itself is limited to its control structure. Whereas .IP
relies on the tokenisation process operating at the statement level, SP does not. SP
distinguishes between reference and primitive field types and the operations performed
on them. The current .IP token set doesn’t make this distinction. However, both ap­
proaches do not force a consistent mapping of tokens or features, in that all operations
on a given field, or all calls to a given method, are not necessarily mapped onto the
same matched fields or methods in the two classes.

The JP approach relies on the minimum tile size to build context and so help
disambiguate between various possible mappings within the code. The larger the
tile size the greater the level of context captured and the less likely it is to generate
inappropriate matches, e.g., cross-method matching. In the case of SP, context is
provided by the set of features associated with each vertex and is again based on
the relationships that exist between elements of the class as opposed to operating at
the level of individual and groups of contiguous statements. These factors probably
account for a proportion of the observed differences, a large part of the remainder

being due to spurious match at the “method” level.

A limitation of the current SP model is its inability to adequately differentiate
between structure at the method level. The model attempts to capture the method
control structure in order to qualify the “class” level match. Unfortunately, as seen
in Figures 4 .1 2 and 4 . PI the overall determination of similarity is heavily weighted to­
wards the “class” features. This was improved upon slightly by reducing the number
of features and feature counts by introducing “rooted” paths when extracting “class”
features. However, the resulting difference, in terms of rank correlation and the profile
of absolute difference, was minimal (Fig. 4.14). The “averaging” effect of aggregated
“method” features is also problematic. This does not respect method boundaries, fea­
tures being indiscriminately matched across methods ol the compared classes. Again,
this leads to a distortion of similarity values. The “class” match needs qualification:
better than expected similarity values can be obtained due to the “class’ structure

being very similar but the methods being quite different. Different both in terms of
control structure and the more detailed semantics of the types, temporal order and
frequency of the relationships existing within the method, and between the method
and other internal and external elements associated with the class. In these cases,
the relational aspects of the modelled code do not compensate for the loss of method

detail in determining similarity.

Further, due to the rich “class” feature set, and the number of feature associated
with each ARG vertex, differences identified at the “class” level resulting from only one
different method can have a disproportional effect on the calculated similarity, leading
to an artificially low value. This appears to be due to the nature of the structure
path features: larger features contain or are associated with many overlapping smaller
features and consequently disparity in the numbers of larger features is seen to have a
disproportionate effect on the calculated similarity value. As previously discussed in
Chapter 3 , this could lie addressed by weighting features in inverse proportion to their
size, smaller structure paths being more heavily weighted. However, as the similarity
values of identified cases tended to correctly identify significant comparisons, this was

set aside as further work.

Two problems remain to be addressed here. Firstly, we require a means of lim­
iting the “averaging” effect of cross-method feature matching, a means of localising
the comparison. Secondly, in order to improve discrimination, we need to increase
the amount of information captured for each method. This could possibly be dealt
with by (a) increasing the context associated with vertices in the basic-block graph of
each method, by adding edges between basic blocks and related fields or methods, or
(b) incorporating edges that capture information relating to data dependency between
basic blocks, or c) enhancing the internal control structure currently captured by cat­
egorising basic-blocks based on their individual properties, e.g., internal and external
method calls.

Whether or not the structures identified as common do in fact, represent a poten­
tially useful classification of classes is not clear at this stage. We have shown that
there is a link between the SP and JP approaches in terms of rank correlation and
to a lesser degree classification. However, significant differences exist due to the pro­
cesses emphasising different aspects of the same structure. In its current form, the SP

125

approach is limited due to its inability to adequately differentiate between methods
thereby resulting in inappropriately high similarity values in some cases. In one re­
spect, this is beneficial, being as the tendency is to promote recall at the expense of

precision.

4.7 Summary

This chapter took the formal model of object-oriented code developed in Chapter 3
and gave it an instantiation in the context of the Java language and its executable class
format, bytecode. An experimental assessment of the structure path (SP) approach as
a means of determining structural similarity between classes and groups of classes was
carried out. The JPlag (JP) plagiarism detection system was selected as a reference

against which the structure path approach could be compared.

Although the SP approach is currently limited by its failure in some cases to
adequately discriminate between individual method structure, the results of the eval­
uation are promising. At a level of structure represented by the relationships between
constituent elements of a class, SP is capable of identifying the presence of common
structure. This conclusion is based on the assumption that the reference JP method is
itself capable of correctly classifying source code structure. 1 his assumption is reason­
able in the light of the original JP evaluation carried out in [Prechelt et al, 2000;2001].
Although the two approach emphasise different aspects of code structure in calculating
similarity, and some limitations in the JP method have been identified, the classifi­
cation power of SP relative to JP is reasonable, particularly in cases demonstrating
higher levels of similarity. It should be noted that in contrast to JP, SP emphasises
the peculiarly object-oriented features of the class as an organising principle: classes,
those entities comprising a class, and the intra and inter class relationships existing
between them, are the significant factors upon which similarity is based. SP attempts
to capitalises on the more discriminating features of its underlying model, e.g., the
explicit relational structure and the order-independent capure of method signatures.

Given the nature of the selected data sets, and their interpretion as examples
of particularly constrained “identical task environments”, confidence in the reported
results and the predicitve power of SP, were it transferred to a less constrained, gen­

120

eralised setting, is further enhanced. The a priori, higher probability of the presence
of similarity did not undermine the degree to which recurring structure could be iden­
tified, the approach providing sufficient discrimination to highlight potential cases of
significant similarity, while simultaneously rejecting dis-similar cases.

The main failing of SP is its global assessment of similarity, in particular its in­
ability on occasion to localise and accurately determine the degree of similarity at
the individual method level. The next chapter examines an approach to the local
measurement of similarity which aims at addressing these shortcomings.

127

Chapter 5

S tru c tu re G rap h M atch ing

5.1 Introduction

Chapter 4 defined a formal, relational model of object-oriented code structure which
provided the foundation for an approach to Java bytecode analysis and class compar­
ison. The derived vector-space representation of a Java class was used to quantify the
(sub-)structural similarity between individual classes, thus providing a global measure
of structural similarity. This provides a reasonably low-cost method that effectively
attempts to approximate the potential similarity between two AEGs. However, this
global measure is limited in two key respects: firstly, it is an approximation of overall
class similarity and secondly, it doe not identify those AEG elements responsible for
the measured similarity. In order to address these limitations we require a more de­
tailed, local examination of individual vertices and edges, and their respective syntactic
(names) and semantic (attributes) labelling.

This chapter concentrates on developing a method of extracting common sub­
structure from pairs of Java classes as represented by their ARGs. This involves
applying graph matching techniques to the Java byte-code graphs as explained in
Chapter 3. An introduction to the general concept of graph matching is followed
by a more detailed look at one particular approach based on clique detection [Ear-
row and Burstall, 1970]. In order to support searching for common structure in Java
class files, limitations imposed by this generic approach are addressed through modifi­

1 2 8

cations that incorporate specific characteristics and constraints peculiar to the domain
of class-file analysis. In addition, this chapter describes a novel combination of a de­
terministic clique detection algorithm and a heuristic approach based on an hybrid
genetic algorithm, as a means of maximising the possibility of identifying common
structure in larger classes.

A direct parallel is drawn between the proposed approach and that currently em­
ployed within similarity searching of molecular databases by implementing a two-phase
analysis of structural similarity, i.e., feature-vector extraction and a global measure
of similarity acting as a possible filter to the more demanding local assessment of
common (sub-)structure. Searching a database of molecular structure first involves
screening out unlikely candidate molecules using a low-complexity similarity measure
based on feature vector representation. Those remaining candidates are subjected to
a more detailed, but complex, local, atom-centered comparison in order to finally de­
cide if an appropriate match has been found [Downs and Willett, 1996]. Based on
a set similarity threshold, feature-vector screening could provide a predictive ranking
of paired classes, those above threshold being candidates for further local analysis.
Essentially, this rationale aims at minimising the number of local comparisons, which
are expensive in relation to the global measure of similarity.

5.2 Graph M atching

The concept of graph matching is applied across a wide variety of problems and dis­
ciplines. In particular, pattern matching and assessment of structural similarity by
graph theoretic means are key techniques within the domains of computer vision [Bal­
lard and Brown, 1982] and molecular chemistry [Willett, 1999].

In describing and defining the concept of an ARC. in Chapter 3, the complementary
notion of matching ARGs based on structure preserving mappings, i.e., morphisms,
was briefly introduced. All structural similarities between ARGs can be formally
represented as ARG morphisms. Their relevance within the current context relates to
the identification of those structural elements responsible for any perceived similarity
between two Java classes, as represented by their respective ARGs.

129

Informally, a matching between two graphs identifies a set of vertices and edges
in one graph that allow a consistent, one-to-one correspondence with a set of vertices
and edges in a second graph. Consistency in this case refers to one of two basic
structure-preserving constraints, giving rise to two distinct notions of match. A vertex-
induced match requires that the number and types of connecting edges between pairs
of matching vertices must be the same in each graph. An edge-induced match requires
the correspondence of vertices that connect pairs of corresponding edge units, where
an edge unit comprises an edge and its two incident vertices. In the case of directed
graphs, edge orientation constitutes a further constraint on the match - in order for
two edges to match, their adjacent vertices must match and in turn edge orientation
must be consistent based on this vertex match.

5-2.1 Fundamental Graph Match

At, its most fundamental, graph match is formally characterised by the morphisms
previously described. The various morphisms effectively represent an hierarchy of
constraints that capture types and degrees of match. Graph isomorphism (GI), which
requires a bijective mapping between vertices and edges of the matched pair of graphs,
can be interpreted as structural equivalence. Subgraph isomorphism (SGI), which rep­
resents a bijective mapping between a graph and a proper, vertex-induced subgraph
of its match partner, can be interpreted as containment - the degree of match between
t he two graphs being quantified in terms of the order of the smaller relative to the
order of the larger of the two graphs. Subgraph monomorphism (SGM) also repre­
sents containment but relaxes the SGI constraint requiring that vertex adjacency be
preserved. In this case the subgraph is edge-induced as opposed to vertex-induced,
t he degree of match being quantified in terms of the size of the smaller relative to the
size of the larger of the two graphs. Finally, bi-directional subgraph isomorphism can
be interpreted as structural overlap, an isomorphism existing between vertex-induced,
proper subgraphs of the two graphs. Relaxing the SGI constraint in this case defines
a bi-directional subgraph monomorphism. As a general measure of similarity and a
means of identifying the structural basis of the similarity, bi-directional subgraph mor­
phisms are of particular interest. It is shown in [Bunke and Shearer, 1998] that the size
°f a maximum, bi-directional subgraph isomorphism (Maximum Common Subgraph)

130

can be incorporated into a valid similarity metric. Given two graphs G\ and f/2 i the
similarity between them is given by:

s{Q i ,a 2)
\mc.s(Q\,Q2)\

max(\Gi\, l&l)

where |mcs(^1,^2)| is the order of the MCS between the two graphs and \Gi\ is the
order of graph Gi- (Based on treating vertices as features, this similarity metric is
basically equivalent to the complement of the Soergel metric described in Chapter 3.

Although graph isomorphism is in itself extremely useful as a means of identifying
and expressing exact match, the practical application of graph matching is predomi­
nantly based on subgraph and bi-directional subgraph isomorphism. At the expense of
being computationally more demanding, the graph-isomorphic constraint is relaxed to
provide degrees of containment or overlap, up to and including structural equivalence.

It is important to draw a distinction between a relative measure of similarity as
provided by the graph match process and the absolute size of identified common struc­
ture. Depending on the size of the compared ARGs, high levels of similarity can be
represented by common structure of widely differing size, while low similarity may
mask common structure which could in absolute terms be significant. In addition,
significance or triviality may not be solely a function of size but of other factors, such
as frequency of occurrence, or more abstract notions of validity based on the properties
- good and bad - of known structural patterns. In this chapter our initial concern is
with the identification of common structure between similar ARGs but we must not
loose sight of the fact that in terms of absolute size, frequency of occurrence, or other
factors, significant, common structure may lx; present in otherwise dissimilar ARGs.

The difference between monomorphic as opposed to isomorphic match can lx1 a sig­
nificant factor in defining the nature of structural similarity. [Barrow and Burstall, 1976]
is an early example of a large body of work based on a vertex-induced model of graph
match. In [McGregor, 1982], [Nicholson et al, 1987], and more recently [Chen and
Yun, 1998], the choice of edge-induced subgraph monomorphism is argued as being
less restrictive and more appropriate in terms of the particular domain semantics,
and in addition more computationally manageable. The choice of morphism is obvi­
ously determined by those features of the domain semantics reflected by the edges of
the model graphs: where consistency equates to the equivalence of the relations be­

131

tween corresponding vertex pairs, a vertex-induced, isomorphic match is required. The
proposed approach to class-based ARG comparison is based on an isomorphic, vertex-
induced model of graph match. This is primarily based on the initial formulation of
a domain-level constraint requiring matched pairs of vertices to be similarly related.
A de cision was made at the outset requiring that ARG vertices representing matching
elements of two class structures also maintain edge consistency, e.g., if a method-field
pair in one ARG matched to a method-field in the second, any edges representing field
operation in the first must be present in the second. At the expense of violating this
requirement, the use of a monomorphic, edge-unit model of match could reduce the
order of the correspondence graphs and so make larger classes amenable to analysis
[Nicholson et al, 1987][Chen and Yun, 1998]. This issue is the subject of further work.

5.2.2 Labeled Graphs

The main problem associated with graph matching is its associated complexity. In
general, graph matching belongs to the class of problems which in the worst case tend
towards exponential time and space requirements as the order of the graphs increases.
Subgraph isomorphism, and consequently the more demanding bi-directional subgraph
isomorphism, is known to belong to the class of decision and enumeration problems
which are NP-complete, i.e., no algorithm is currently known which guarantees to
solve such problems in polynomial-time [Garey and Johnson, 1979]. Consideration of
average-case rather than worst-case complexity may present approaches to manage­
able solutions in some circumstances. [Ullmann, 1976] states that graph isomorphism
for randomly generated graphs can be achieved in time roughly proportional to the
cube of the order of the smaller order graph. Some problems are tractable if they can
be represented by certain restricted classes of graphs: domain-specific characteristics,
reflected as topological constraints within the representative model graphs, may re­
sult in linear or polynomially-bounded approaches. For example, planar graphs have
linear-time complexity for subgraph isomorphism [Eppstein, 1994]; subgraph isomor­
phism of trees, and almost-trees of bounded degree, is also possible in polynomial-time
[Akutsu, 1993]. Where the use of such topological constraints is limited, incorpora­
tion of domain-specific knowledge associated with individual vertices and edges of the
model may be the only means of limiting complexity. This is illustrated later in this

1 3 2

chapter.

Fundamental graph match assigns no significance to graph elements other than
their definition as either vertices or edges. Vertices are indistinguishable except possi­
bly by degree, while edges are distinguishable ordy by virtue of their incident vertices,
and the ordering of these vertices in the case of directed graphs. In Chapter 3 this basic
graph model was extended to incorporate syntactic and semantic domain knowledge.
Vertices and edges were labeled as named and attributed primitives and relations.
Labeling introduces an additional computational overhead in that vertex and edge
comparison is more involved, and in order to assign names and attributes, elements in
the problem domain corresponding to vertices and edges in the graph model require
deeper analysis. Offset against this, the introduction of domain-specific knowledge
into the matching process helps limit the number of potential matches, which in turn
can substantially reduce the overall complexity.

5.2.3 Matching Labeled Graphs

Initial approaches to graph matching aimed at deterministic, optimal, exact solu­
tions [Corneil and Gotleib, 1970; Ullraann, 1976; Levi, 1972]. Their goal was to pro­
vide tractable solution to finding maximum matchings, where elements of the graphs
matched exactly, i.e., no account was taken of possibly legitimate distortions in the
compared graphs, which, given the domain semantics, would be otherwise considered
equivalent. Labelling, if any, tended to be limited to symbolic or numeric naming
of vertices and edges. It became apparent that in the absence of further domain
knowledge able to limit the scope of the matching process, finding solution to such
combinatorial problems was in general going to be extremely difficult. The exten­
sion to incorporate structured labeling, such as the names and attributes associated
with the primitives and relations of our ARG model, was seen as a means of re­
ducing the search space for potential matches and allowing for the incorporation of
inexact match [Tsai and Fu, 1979]. Recent algorithms which capitalise on the im­
proved knowledge content of such ARGs are Mesmer’s network-based approach to ex­
act, and inexact match [Messmer and Bunko, 1998] and Cordelia et alls “VF” algorithm
[Cordelia et al, 1999]. Both these approaches are in essence based on backtracking tree
search.

133

Backtracking Search

Traditional backtracking tree search or state-space search [Nilsson, 1982] forms the
basis of direct approaches to both exact [Ullmann, 1970] and error-correcting graph
match [Tsai and Fu, 1979; Shapiro and Haralick, 1981; Tsai and Fu, 1983]. In the
worst case, and where an uninformed, “brute-force” approach is taken, this is expo­
nential in the order of the graphs. However, improvements are realised in practice
by introducing various admissible heuristics such as forward checking; discrete relax­
ation techniques such as lookahead [Ullmann, 1976; Shapiro and Haralick, 1983]; and
future-error estimation [Messmer and Bunke, 1998].

Correspondence Graphs

An alternative, indirect, matching strategy is based on the analysis of a correspondence
(association) graph derived from mutually compatible pairs of corresponding vertices,
one taken from each of the two graphs being compared [Barrow and Burstall, 1976].
This clique detection approach to graph match is described in detail in Section 5.3. As
in the case of backtracking tree search, worst case performance is exponential, the order
and density of the derived graph being the determining factors1. Again, heuristics can
be introduced in order to reduce the complexity in specific cases to within useable,
useful limits. Consequently, this approach finds successful applications in areas such
as molecular matching [Gardiner et al, 1997] and the matching of relational structures
in computer vision [Ballard and Brown, 1982].

The approach benefits from its ability to deal with the previously identified range
of match possibilities based on establishing various morphisms between two graphs,
and in particular, bi-directional subgraph isomorphism [Barrow and Burstall, 1976].
When comparing similar domain-specific problems, it can have a significantly lower
complexity than backtracking tree search [Chen and Yun, 1998]. The specific details
captured by an ARG, and the criteria governing the process of mapping corresponding
vertices and edges between matched ARGs are domain dependent. Graph match by
clique detection enables a separation of the domain-specific details from the actual

1 Given a correspondence graph G c = (V C} E c) , graph density is a measure of the likelihood that an
edge exists between two vertices and is calculated from

process of identifying common subgraphs. This is particularly useful as the indepen­
dence of the graph-theoretic clique detection process from the domain-specific factors
provides a greater degree of implementation stability, while enabling the introduction
of a wealth of theoretical experience in the field of clique detection as summarised in

[Boinze et al, 1999].

Graph match can be further classified depending on whether an exact or error-
correcting match is required, and further still based on whether an optimal or approx­
imate solution is generated.

Inexact Match

The concept of inexact graph match was introduced in order to accommodate the pos­
sibility that differences between compared graphs could be due to legitimate variation
in the modelled domain and / or errors introduced as part of the modeling process.
One approach to inexact graph match has been realised by way of calculating the
edit-distance between two graphs: similarity is determined by calculating the cost of
inducing a graph or subgraph isomorphism through the application of a series of “edit
operations” to one of the graphs. Vertices and edges are substituted, deleted or in­
serted and a cost associated with each operation, the minimisation of the total edit
cost providing a measure of similarity [Tsai and Fu, 1983; Bunke and Messmer, 1998],

Depending on the domain being modelled, inexact match by edit-distance may
not be appropriate: edit operations may not translate into meaningful actions in the
modelled domain giving rise to difficulties interpreting the measure of similarity. As a
means of determining image similarity [Shearer et al, 1998] advocate an approach to in­
exact match based on the maximum bi-directional subgraph isomorphism rather than
edit-distance. It is interesting to note that the effective equivalence of the two meth­
ods was demonstrated in [Bunke, 1997] where bi-directional subgraph isomorphism is
shown to be a special cased of edit-distance under a particular cost function. While
edit-distance emphasises the structural differences between two graphs, bi-directional
subgraph isomorphism emphasises commonality in the compared structures. Conse­
quently, as a means of determining both exact and inexact graph match, in addition to
identifying the contributing commonality, the use of bi-directional subgraph isomor-

pliism ¡h a significant element of our approach to the analysis of structural repetition
in object-oriented code.

Approximate Approaches

The NP-complete nature of graph matching is ultimately inescapable: for problems
where the order and density of input graphs is large, and neither heuristic nor domain
knowledge can sufficiently limit the search space size, approaches based on optimal
solutions to exact and inexact match become impractical. In such circumstances,
polynomially-bounded, approximate approaches have been used at the expense of op­
timality. Approximations based on advanced search heuristics have shown varying
degrees of success, both by way of direct graph comparison and clique detection.
Techniques such as tabu search, simulated annealing and neural networks, as outlined
in [Bomze et al, 1999]; optimisation using genetic algorithms [Marchiori, 1998]; and
probabilistic relaxation [Wilson, 1990] have been applied to the graph match problem.

5.3 Labeled Graph M atching by Clique D etection

The vertex-induced subgraph defined by a bi-directional subgraph isomorphism is
usually referred to as a common subgraph. A maximal common subgraph is one that is
not properly included in any other common subgraph. A maximum common subgraph
(MCS) represents the largest common subgraph of two graphs. A subgraph in which its
vertices are pairwise adjacent is a complete, subgraph. A maximal complete subgraph,
or clique, is one that is not properly included in any other complete subgraph.

As a measure of similarity, the intuitive appeal of the MCS has been the basis of
many approaches to structural comparison. A more general, “best match” approach, it
relaxes the strict requirements of graph isomorphism. Rather than looking for an exact,
structurally equivalent match, MCS effectively represents structural commonality. As
well as identifying the common structure, it also provides a measure of the degree
of match and indeed its metric properties have been proven as previously mentioned
[Bunke and Shearer, 1998].

136

5.3.1 MCS by Clique Detection

In [Levi, 1970], an approach to the extraction of maximal common subgraphs is de­
fined based on the notion of “compatibility classes”, i.e., sets of vertex pairs that
define isomorphic subgraphs. By representing sets of corresponding vertex pairs, one
from each graph, and their mutual compatibilities as a graph, the identification of
maximal “compatibility classes” - equivalent to the previously defined clique - within
th is derived graph provides a means of enumerating all maximal common subgraphs.
These principles of vertex correspondence, mutual compatibility and clique detection
form the basis of an approach to generalised structural match, where the MCS prob­
lem is transformed to that of finding maximum cliques of a general, correspondence
graph (CG). This was pioneered in the context of computer vision as described in

[Ambler et al, 1975; Barrow and Burstall, 1976].

A Simple Example

For the sake of illustration but without loss of generality, the following example is
limited to consideration of ARGs that only employ syntactic labeling, i.e., graph vertex
and edge primitives are named/typed but not attributed. Attributes serve to limit the
specificity of match but their absence does not alter the fundamental matching process.
Where vertex and edge primitives are understood, and an incidence function ?/;r; is
implicit in the edge definitions, an ARC. G = {V, E, ip, P, R, v, e } can be represented
as G = {V, E, v, £}. Given two graphs G\ = {Vf, E\, u\, e i } and G2 = {V2 , E?, v ,̂ £2 }
as shown in Fig. 5.1, the process of graph match by clique detection proceeds as follows.

For each vertex u* G V\ that can map to a vertex Vj G V2 given the constraint
i'\(vi) = v2(V]), the pair [v{,Vj) is added as a vertex to a derived, unlabeled
correspondence graph Gc{Vc,E c) (Fig. 5.2). Correspondence graph edges are then
inserted depending on the local compatibility of its composite vertices: for any two
correspondence graph vertices and V(rn,n) say, an edge is inserted between them

if the following criteria are satisfied:

i) vk 7̂ I’m and vi ^ vn

137

ii) if edge ex — (vk,vm) G Ex then edge e2 = (vi,vn) G E2 and £i{ex) = e2 (e2).
(Edge sense preserved in the case of directed graphs.)

iii) if edge ex = (vk,vm) Ex then edge e2 = (v/,v„) £ E2

Vertex and edge labels :
-----------► HasMethod
-----------► Extends Class

(^) Class

{ ^) Method

Field

-► HasField
-► OperatesOnField

InvokesMethod

Figure 5.1: Two syntactically labeled graphs, G\ and G2

Figure 5.2: Correspondence graph and cliques for G\ and G2 of Fig. 5.1

138

The cliques of the unlabeled, undirected CG identify common subgraphs of the
compared graphs. MCSs correspond to the highest order, maximum cliques. By
definition, each clique discovered represents a maximal set of mutually compatible
vertices, each vertex comprising a vertex from each of the matched graphs. Given a
clique C, for each vertex npj) G C, Wj is a vertex in a subgraph .Si of Gi and Vj is a
vertex in a subgraph S2 of G2, Si and S2 being isomorphic, common subgraphs.

In the given example, the correspondence graph of fig. 5.2 has eight cliques of
which two are maximum cliques of order four. In the example, all cliques define a bi­
directional subgraph isomorphism between G\ and G2, cliques C\ and C2 additionally
identifying MCSs of the two graphs. A maximum clique of order five is not possible due
to the incompatibility of vertex pair (v2 ,i>i,) and («3 , vc): common subgraphs are vertex-
induced, isomorphic graphs. [Levi, 1970] points out that although an MCS is defined
by a maximum clique, a clique (maximal by definition) does not necessarily equate to
a maximal common subgraph. The example illustrates this point in that the common
subgraphs defined by cliques C4,C5, Cc„ C7 and C8 are all properly contained within at
least one of the maximal common subgraphs defined by C\,C2 or C3 . Consequently, if
we were to concentrate on locating any cliques, this leads to redundancy in the search
for MCSs. Hence, we target maximum cliques, which always represent an MCS. As
MCSs are not necessarily unique, neither are maximum cliques.

Clique D etection Algorithm s

The importance of clique detection is clearly reflected in the extensive literature de­
voted to the construction of efficient clique detection algorithms and their application
across a wide variety of domains. A comprehensive survey of previous and ongo­
ing work related to clique detection can be found in [Bomze et al, 1999]. As in the
case of direct graph match, clique detection algorithms fall into several broad cate­
gories according to whether they are optimal or approximate; enumerative, paitially-
enumerative or maximum; weighted or unweighted; serial or parallel. Our initial in­
terest is confined to optimal, enumerative or maximal, unweighted algorithms, which
are predominantly based on backtracking tree search. Beginning with single vertex
seeds, these algorithms extend a fully connected subgraph until it becomes maximal,
i.e., a clique. The defining difference between these algorithms is the nature of the

139

heuristics incorporated as a means of pruning the search space, e.g., vertex ordering

and partitioning; upper and lower bounds on clique oidei .

At its most naive, clique detection by backtracking tree search inciementally gener­
ates a partial solution comprising a set of fully connected vertices Cd — {cq, c\ , <2 ,..., Q - i }
where d > 1 and C0 = 0. At each level d of the tree search, the set of eligible extensions
to the current partial solution is given by Sd = {c G Sd-A(cd-i) = (cA‘d-\) 6 Ec} where
d > 1 and S0 = Vc. Although this leads to an enumeration of all cliques, a clique of or­
der k will be generated A;! times, once for each ordering of its vertices. This repetition
can be prevented by imposing an arbitrary total ordering on the vertices of the graph
such that the extension set becomes Sd = {c 6 Sd- i ■ (ci cd-i) G Ec and c > cd_ x}.
Further, by maintaining at each level a set Ad — Ad~ 1 C {c G Vc . (c,cd - l) G Lr)
where /1() = Fc, of vertices adjacent to all vertices in the current partial solution, a
clique is found when Ad = 0 and Sd = 0. Fig. 5.3 illustrates the application of this
method to the example of Fig. 5.2. Despite its illustrative intent, the simplicity of this
example is reflected in the basis of several useful clique detection algorithms. It forms
the core of Bron and Kerbosch’s algorithm [Bron and Kerboseli, 1973] and a branch
and bound modification provides an efficient, partially enumerative maximum clique

algorithm described in [Carraghan and Pardalos, 1990].

As previously mentioned, one of the benefits of clique detection as an approach
to graph match is its domain independence. However, characteristics such as the or­
der and density of correspondence graphs generated within a particular domain can
have an important influence on the choice of clique detection algorithm. In [Myr-
vold et al, 1998], a study of the performance of clique detection algorithms highlights
the importance of graph order and density, in addition to vertex ordering and par­
titioning heuristics. They concluded that the characteristics of a specific graph may
require different clique detection strategies, applied individually, or in combination
as a dynamic process driven by the nature of its constituent subgraphs. Correspon­
dence graph order and density are clearly limiting factors in the application of clique
detection in general, and heavily influence the performance characteristics of an im­

plemented algorithm.
T. ~~r ' TT IT- uo.iristira in the clique detection process, please refer toFor more information relating to heuristics 111 me t

[Bomze et al, 1999]

140

T r e e d e p th
(d)

F u l ly
C o n n e c t e d
S u b g r a p h (C d)

A d ja c e n t S e t
(A«i)

C a n d i d a t e S e t
(S d)

C a n d i d a te
S e le c te d (c„)

C l iq u e *
M a x . C l iq u e **

0 j j ___ j j ___ 1 1.2,3,4,5,6,7,8,9} i
i i n 12,3.8.9} 12,3.8.9} 2
2 < 1-2} iXiT, |3 ,8 | 3
3 11.2.3) (81 18} 8
4 {1,2,3,8} J J ___ 11 **
2 1 1 i L-3.8L XXI________________ 8
3 (1.2.8 | 13} J J _________________ -
1 i n 12.3.8.9} 13.8.9) 3
2 11.31 [2,8.91 18.9)______________ 8
3 1 ' .3.8 | 12.9) (9)________________ 9
4 11,3.8.')) (1 J J ___
2 H .3 I 12.8 .9 | J 9 j ________________ 9
3 H .3.9) J K J (1 -
1 H I 12,3,8,9} X M J _____________ 8
2 J U J ___ 12.3,9} J 9 J _________ _ 9
3 H .8 .9) 13) J J _________________ •
1 H I 12,3.8.9} J 9 J ________________ 9
2 H .9) (3 .8) J J ___
0 11 II 12.3,4.5.6.7,8,9} 2
1 |2 | 11.3.8} 13.8)______________ 3
2 12.3) 11.8} J J U ________________ 8
3 12.3.81 H I J J _____
1 12 1 H .3.81 18) 8
2 |2 .8 | 1 1.3} 11 _ _ -
0 _Li___ J J ___ 13.4.5,6.7.8.9} 3
1 [31 11,2,4.5,8,9} 14.5.8,9} 4
2 (3 .4) X L j j - *
i 13) (1 .2.4.5.8.9) 15,8.9} 5
2 13.31 U ___ j j _____ - *
1 131 H .2.4.5.8.91 J M J ______________ 8
2 13.8} 11.2.9} 19) 9
3 13.8,9) X X L J J _________________
1 131 { 1,2,4.5.8.9} J 2 J ________________ 9
1 13.9} 1 1.8 1 (1 -
0 _ U ___ II 14.5.6.7.8.9} 4
1 141 13.7) 17) _______ 7
2 14.71 J J ___ J J _____ . _
0 j j 11 15.6.7.8.9} 5
1 IS! (3,6} (6 | 6
2 [s . d _u___ J J _________________ *
0 u J J ___ 16.7,8.9} 6
1 (6) 16.831)___ 18.9 | 8
2 16.8} 19) J 9) ________________ 9
3 16.8.9} II J J _________________ *
1 16) 16.8.9} 19) 9
2 16.9} 18} J J ______________ ___() J J ___ j j ___ 17.8.9)____________ 7
1 17} (t i l 1 8 1 8
2 17.8 1 {} H *
0 n II 18.9) 8
1 18} 11,2.3.6.7.9} 19) . 9
2 18.9} 13.61 J J _________________ -
0 J J ___ 11 J 2 J ________________ 9
1 J 2 J ________________ 11.3.6.8} 1) -

Figure 5.3: Identifying Cliques in Gc of Fig. 5.2

141

When selecting an appropriate algorithm for their work in 3D molecular matching,
in [Gardiner et al, 1997; Brint and Willett, 1987] Willett and his colleagues demon­
strated the superior performance of the enumerative algorithm of Bron and Kerbosch
(B&K) [Bron and Kerbosch, 1973] and the partially enumerative algorithm of Car-
raghan and Pardalos (C&P) [Carraghan and Pardalos, 1990] over reportedly better
algorithms such as those of Babel [Babel, 1991] '.

The characteristics of our domain in terms of order and density of graphs is still
to be fully verified but initial analysis of the data sets from Chapter 4, alongside
selected classes from the JDK, suggests an average ARC order of less than 100 - the
maximium order being over 2000. At this stage, the expected order and density of
correspondence graphs generated from the matching of class AR.Gs was also unknown.
Willett’s studies dealt with molecular graphs of order < 40 and correspondence graph
densities < 0.3. Although the potential size range was considerable larger the average
graph size and notional similarity between the two domains in terms of structural
representation, suggested our initial approach capitalise on the collective experience
of Willett and others. The public availability and relative transparency of the B&K
and C&P algorithms used by Willett were also a significant consideration. The C&P
algorithm is partially enumerative, finding all maximal cliques. Of more immediate
interest is the B&K algorithm, which generates all cliques. Willett’s study showed
that the B&K algorithm appears to be more effective at higher CG densities. This
was another reason behind its initial selection, being as the potential range of CG
density was unknown. The original B&K algorithm is based on the tree-traversal
approach to clique detection described above. The algorithm and some variants are
described in detail in [Johnston, 1970], pseudocode for the basic algorithm is given in

Figure 5.4.

Accom m odating Inexact Match

The correspondence criterion applied in the previous example was representative of
exact match, based on equivalence of primitives, i.e., vertices mapped to vertices and 3

3For general, random graphs, Babel’s algorithm Is reportedly one of the fastest exact, maximum
clique detection algorithms currently available. It, is based on a branch-and-bound tree search using
Brelatz’s greedy approach to minimum colouring as an upper bound on clique size.

142

i f a vertex e x is ts in usedVertices that is connected to a l l v ertices in candidateVertices then
stop {no new clique can be found}

e lse
for each vertex V in candidateVertices do

remove V from candidateVertices
add V to fullyConnectedSubgraph
create a copy of candidateVertices as newCandidates
remove v er tices in newCandidates not connected to V
create a copy of usedVertices as newUsed
remove v ertices in newUsed not connected to V
i f newCandidates and newUsed are both empty then

output fullyConnectedSubgraph { is maximal so a clique}
e lse

extendFullyConnectedSubgraph (fullyConectedSubgraph, newCandidates, newUsed)
endif
remove V from fullyConnected Subgraph
add V to usedVertices

endfor
endif

endproc

proc extendFullyConnectedSubgraph (fullyConectedSubgraph, candidateVurtices, usedVertices)

Figure 5.4: Pseudocode for the basic B&K algorithm

edges to edges, provided their respective syntactic labels were the same. Inexact
match can be accommodated within the clique detection approach by specialising the
correspondence criteria to depend on both syntactic and semantic factors, i.e., the
potential substitutability of vertices and edges based on the equivalence classes of
their syntactic labels, or their similarity within t hreshold resulting from the semantics
associated with matching their attributes.

For example, under a given partial ordering, a set P = {p\,p>, of syntactic
labels categorising primitives (vertices and edges) may support direct syntactic substi­
tution, edge for edge, vertex for vertex, i.e., pn is substitutable by pn...\ if />n > pn_x.
(liven that they match syntactically, attributed primitives may be judged substitutable
if a measure of similarity over these attributes is within threshold. In this case, the
vertices and edges correspond or not depending on the syntactic order or set thresh­

143

old, the determination of similarity playing no further part in the subsequent clique

detection process.

Although inexact match based on syntactic labelling provides a greater degree of
flexibility within the graph match process as mentioned in Section 5.2.3, this must
be offset against the potential increase in correspondence graph order and density,
and the consequent adverse effect on algorithm performance. Primitives which would
otherwise not correspond under exact match could now match within threshold. Also,
from the perspective of “goodness” of match as measured by the order of the maximum
clique, the effect of introducing inexact match criteria may be counterproductive unless
carefully controlled and interpreted in context. On the one hand, a maximum clique
derived from an inexact correspondence procedure may be accepted as “better” than
a smaller but exact match clique, as it attempts to capture more of what is common
across two structures. On the other hand, the smaller clique captures commonality that
is strictly equivalent. Similarly, inexact match may generate cliques of the same order
that are ostensibly of equal significance, but which actually represent an error range
determined by the nature of the allowable substitutions. The induced correspondence
could be subject to a penalty, or cost, dependent on the nature and semantics of
the substitution: although clique detection based on weighted vertices and edges is
possible, it represents a much harder problem computationally. For the moment, we
limit our analysis to non-weighted clique detection.

Clique detection as a legitimate means of determining inexact MCS is in part jus­
tified by Tsai and Fu’s original paper on isomorphic, graph-preserved deformation
and inexact match, and Shapiro and Haralick’s paper on inexact homomorphic match
[Tsai and Fu, 1979; Shapiro and Haralick, 1981]. Both describe inexact match in terms
ot degrees of similarity across the graph primitives. Matching is based on maximum
likelihood determined by probabilities associated with the possible primitive mappings,
or minimum distance based on a. measure of distance between primitives. In addition,
as MCS extraction is based on subgraph match, the process effectively accommo­
dates missing graph elements, as catered for in Tsai and Fu’s extended treatment by
incorporating an edit-distance associated with deletion (and insertion) of primitives

[Tsai and Fu, 1983],

MCS by clique detection, and tree-search based on maximum likelihood or mini-

mum distance, differ fundamentally in that the inexact approach based on clique de­
tection as described above is dependent on a straightforward binary comparator. The
search space of possible solutions is reduced when a decision is made as to whether
any two primitives match prior to extracting cliques and determining the MCS, i.e.,
primitives do or do not correspond. Tsai and Pu’s approach, alongside others based
on edit-distance and derivatives of the A* state-space search algorithm, execute the
graph match based on the potential correspondence of all primitives, i.e., at any one
time, all primitives correspond but to varying degrees. The aim is to find a match
between primitives that maximises the likelihood or minimises the distance associated
with the match, depending on the match criteria chosen. Although inexact match
by clique detection may neither allow the degree of flexibility provided by other ap­
proaches such as edit-distance [Shapiro and Haralick, 1981; Tsai and Fu, 1983] and
probabilistic relaxation [Wilson, 1996], nor directly quantify the degree of confidence
in the generated match as per probabilistic methods, the priorities of the matching
task at hand suggest that it could be efficient and effective. Here, the emphasis is not
on comparison of a target with a library of known models, but on the initial identifi­
cation of common structure across an arbitrary collection of classes as represented by

their ARGs.

Although inexact match may lead to an increase in CG order, the introduction of
an attributed primitive model has the capacity to reduce the complexity of the match
process by further classifying the higher level, more abstract, syntactic labeling. It may
be appropriate in some circumstances to enforce exact match over these attributes but
the restriction imposed by this constraint would in most part render such an approach
of little practical use. For example, bearing in mind the variability inherent in software
implementation, were we not to allow a certain degree of variation in the match process
between classes, recurring structure and patterns of collaboration would be effectively
restricted to exact match clone detection, at the expense of possibly overlooking more

abstract yet informative structures and patterns.

An example of inexact match

By extending the previous example to introduce a limited attribute set, inexact match
By clique detection can be illustrated as follows. The vertices syntactically labeled

145

as “Method” in Fig. 5.1 have now been assigned two numeric attributes as shown in
Fig. 5.5. Elements of the two graphs are initially matched based on exact, correspon­
dence of syntactic labels as per the original example. Within this, where elements aie
attributed, a further match within threshold is applied. For the sake of illustration,
similarity is measured using the frequency weighted Tanimoto coefficient introduced in
Chapter 3 , with a similarity threshold of 0.75. dhe similarity values foi the matching
attributed elements are also shown in Fig. 5.5. Based on the set threshold, the calcu­
lated similarity values lead to rejection of pairs (v\,Vb) and (w4,Ud) and acceptance of
pairs (u2 ,Vb) and («2 , v<l)- The correspondence graph and extracted cliques are shown
in Fig. 5.6. In this case, enforcing attribute match has resulted in the removal of
vertex (rq, v^), which in turn has lead to a reduction in order and density of the corre­
spondence graph, and in the number of cliques generated. As the complexity of clique
detection algorithms is exponential in the order and density ol the CG, any reduction

in either is of major benefit.

Vertex and edge la b e ls:
(^) Class ^

(^) Method - - - - - - - - ►

Field

HasMethod
ExtendsClass
HasField
OperatesOnField
InvokesMethod

Method Calls (External), Field Ops (External)

Similarity Matrix (Attributed Match)
(Tanimoto Coefficient)

S j V4

v 2

v 4

1,0 1.0

0 . 5 0 . 5

Figure 5.5: Two (partially) attributed graphs, G i and G2

146

1

Cliques of Gc
r 5 W c S i-3-5

a.b.e ^T ».c.e
f 23,5

3 l_d,c,e C‘{H ’{ i

Figure 5.6: Correspondence graph and cliques for G\ and G2 of Fig. 5.5

5.4 Interpreting Graph M atch for Java Class Comparison

In the current context of object-oriented code analysis, structure matching represents
a process of comparison whereby the structural similarity between two Java classes is
both quantified and enumerated. At present, this is an implementation-level approach,
emphasising the internal and external associations within and between classes but
in the main abstracted above the structure of individual method statements. The
problem was modelled in Chapter 4 by means of a translation from Java bytecode to
its structural representation as an ARG. This translation provides the link between
the domain to be analysed and the rich graph-theoretic toolset that enables such an

objective analysis.

5.4.1 General Match

Initially, the identification and isolation of common structure between Java classes is
treated as a general graph match problem, using correspondence graph construction
and clique detection based on Bron and Kerbosch’s algorithm (B&K). I he reported
success of this approach in other domains, alongside an optimal, fully enumerative
clique extraction process, provides a basis for further assessment.

147

public class ValidateableMyString extends MyString{public static final int UNSET " — 1;public static final int INVALID " 0;public static final int VALID “ 1;
private MyStringValidator validator;
ValidateableMyString(String m y S t r i n g)

s u p e r (m y S t r i n g);>
public int valid()

if(validator 1“ null)return (v a l i d a t o r .validate(this)?V A L I D :I N VALID); S y s t e m .e r r .println("Validator has not been sot!"); return UNSET;

public void setValidator(MyStringValidator validator)
I if(validator ■■ null)S y s t e m .e r r .p r i n t I n ("Validator unset I ") ; elset h i s .validator - validator;

Compiled from ValidateableMyString.java
public class chap4eg.ValidateableMyStr ing extends chap4eg.MyString {

public static final int UNSET;
public static final int INVALID;
public static final int VALID;
private chap4eg.MyStringValidator validator;
chap4eg.ValidateableMy3tring(java,lang.String);
public int valid();
public void setValidator(chap4eg.MyStringValidator);

Method chap4eg.ValidateableMyString(java.lang.String)
0 aload_0
1 aload_l
2 mvokespecial #1 «Method chap4eg.MyString(Java.lang.String)>
5 return

Method int valid()
0 aload_0
1 getfield #2 «Field chap4eg.MyStringValidator validator>
4 ifnull 26
7 aload_0
8 getfield #2 «Field chap4eg.MyStringValidator validator>
11 aload_0
12 invoke interface (args 2) #3 «InterfaceMethod boolean validate(chap4eg.MyString)>
17 if eq 24
20 iconst_l
21 goto 25
24 iconst_0
25 ireturn
26 getstatic #4 «Field java.io.PrintStream err>
29 ldc ft5 «String "Validator has not been set ! w>
31 invokevirtual ft 6 «Method void prlntln (Java. lang. String) >
34 iconst_ml
35 ireturn

Method void setValidator(chap4eg.MyStringValidator)
0 aload__l
1 ifnonnull 15
4 getstatic #4 «Field java.io.PrintStream err>
7 Idc #7 «String "Validator unset! " >
9 invokevirtual #6 «Method void println(java.lang.String)>
12 goto 20
15 aload_0
16 aload_l
17 putfield #2 «Field chap4eg.MyStringValidator validator>
20 return

Figure 5.7: Java Source Code and Disassembled Bytecode

148

A second, more extensive example is now introduced based on the source code of
Fig. 5.7. The ARG derived from the bytecode is shown in Fig. 5.8, unattributed for
the sake of clarity. This example represents comparison of relatively small graphs with
almost trivial method structure but it serves to illustrate both the limitations of, and
potential refinements that can be applied to, a general graph match approach based

on clique detection.

Vertex and edge labels:
{ ^) Class

(^ } Method o Abstract Method

Static Primitive Field —

O Reference Field _

(^) Reference Parameter

(^) Primitive Return

>
>

!•

Source Code Ref:

HasMethod
Haslmtialiser
InvokesMethod
Invokes Abstract Method
ExtendsClass
Has StaticPrimitiveF i eld
HasReferenceField
OperatesOnReferenceField
InhentsMethod
HasReferenceParameter
HasPnmitiveR etum

1: ValidateableMyString • Class
2: MyString - Class [supercalss]
3: ValtdateableMyString - Method [constructor]
4: valid - Method [internal]
5: validator - Field [internal, reference]
6: setValidator - Method [internal]
7: UNSET - Field [internal, static, primitive]
8. VALID - Field [internal, static, primitive]
9 INVALID - Field [internal, static, primitive]

10 MyString - Method [superclass constructor]
11: java.tang.String - Parameter [reference]
12 int - Return [primitive]
13. validate - Method [external, abstract]
14: validator - Parameter [reference]
15: java.io.PrintStream - Field [external, reference]
16: pnntln - Method [external]

Figure 5.8: Structure graph generated from code of I' ig. 5.7

Again, as in the previous example, the following discussion is in the first instance
based on non-attributed graphs. This is not merely for expository purposes but in
order to establish a basis from which a reasonable approach to the identification of
common structure can be formulated. The overall intention is to iteratively explore
various degrees of abstraction in the match process, ranging from syntactic match,
through levels of attributed match, i.e., syntactic match qualified by the semantics of
the attributes of the graph primitives and relationships.

149

U nlabeled graph m atch

We actually begin by introducing no additional information, syntactic or otherwise,
using only the fundamental topology of the graphs. In order to provide a reference
point for comparison of the various approaches and incremental modifications applied
to the graph match process, the ARG of Fig. 5.8 was first matched against itself without
the use of any labeling information, i.e., vertices were considered indistinguishable
from each other as were edges. (We will refer to this graph as (a) for the remainder of
this series of analyses.) Self-comparison is useful in that a maximum clique is clearly
identifiable and the presence of a large common structure serves to stress the clique
detecting algorithm and execution environment.

In this case, the clique detection process was terminated having generated greater
than / million cliques in 5.5 secs (Table 5.14). The process did however identify 4
out of !l(j possible maximum cliques, the first clique being a maximum and identified
in 0.21 secs. An important observation made at this stage was the high value of CG
density (0.64), being more than twice the largest value encountered by Willett and his
colleagues [Gardiner et al, 1997].

ARG
Vertices

ARG
Edges

CG
Vertices

CG
Edges

CG
Density Cliques

Max.
Cliques

CPU Time
1st max.(s)

Total CPU
Time (s)

(a) 16 20 256 21056 0.64 1000000* 4 (of 96) 0.12
(c 1)

5.5

Table 5.1: Unlabeled match

Labeled graph match (Syntactic)

The comparison was repeated but this time employing syntactic labeling, i.e., ver­
tex and edge types having to match. (Table 5.2) Although the CG density has in­
creased slightly to 0.69, the reduction in correspondence graph order, clique num­
bers and execution time is obvious and dramatic. However, in order to clarify con­
text, a further experiment was carried out based on an analysis of two medium sized

1 All results in this chapter are averaged over 10 runs using a Pentium III, 266MHz, 384Mb

150

ARG
Vertices

ARG
Edges

CG
Vertices

CG
Edges

CG
Density Cliques

Max.
Cliques

CPU Time
1st max.(s)

Total CPU
Time (s)

(a) 1G 20 48 77G 0.G9 GGG G (of G) 0.10
(c 1)

0.11

Table 5.2: Syntactic label match (1)

classes drawn randomly from the Java Development Kit (JDK), one in the range
2K < bytecodeSize < 5K, the other in the range 5K < bytecodeSize < 10A".
The classes selected were WindowsComboBoxUI5 (2K) (e.g.(b)) and GridBagLayout6
(9K)(e.g.(c)). The results below (Table 5.3) show that both analyses terminated hav­
ing generated 1 million cliques. Again, the B&K algorithm found a maximum clique in
both cases, supporting Broil and Kerbosch’s original claim that large cliques tend to
be discovered fairly early in the search process. In all these cases, a maximum clique
was the first clique discovered but in general this is not the case as will be seen in later
examples. Significantly, the CG order and density have once again increased. This has
given rise to a comparatively much larger time to extraction for the first maximum
clique in the case of ARG (c).

ARC
Vertices

ARC
Edges

CG
Vertices

CG
Edges

CG
Density Cliques

Max.
Cliques

CPU Time
1st max.(s)

Total CPU
Time (s)

0>) 50 GG 1042 4G7997 0.8G 1000000* 12 (of ?) 0.4G
(c 1)

8.18

(c) 144 242 4GG8 10123588 0.93 1000000* 4 (of ?) 14.0G

(c 1)
21.28

Table 5.3: Syntactic label match (2)

Problems with the general approach

Although the introduction of syntactically labeled vertices and edges has reduced the
complexity of clique extraction for small ARGs and enabled an analysis of larger ARGs,

J ‘com. sim. java, swing, plaf. windows. WindowsComboBoxUI. class’
fi‘java.awt.GridBagLayout.class’

151

hese experiments highlight several potentially limiting problems associated with such
i general approach:

• Large number of cliques generated:

The number of cliques generated can be excessive, even in the case of a pair of
comparatively small classes. In the case of small labeled graphs, the presence of
large numbers of cliques in the generated correspondence graph is of itself not
problematic when considered as an isolated comparison. Clique extraction is
very quick and a full analysis can be completed in less than a second. However,
using this approach in the context of greater numbers of pair-wise comparisons
of larger classes, and taking into account further processing and analysis of the
extracted cliques, clique numbers become potentially limiting.

• Redundancy in discovered common structure:

A contributing factor to the large number of cliques generated is the symmetry
present in the compared graphs. Other than the trivial, identity mapping, each
graph may be isomorphic with itself, i.e., automorphic. The presence of auto­
morphism groups, i.e., permutations of vertices within the graph that preserve
structure, including any labeling, results in the same, isomorphic structures be­
ing repeatedly identified. From the example, on self comparison, the labeled
graph of Fig. 5.8 generates fi maximum cliques, the common subgraphs being
the same up to isomorphism, i.e., structurally identical. Vertices 7, 8 and 9 are
identical and adjacent to vertex 1 via identical edges. Their permutation gener­
ates six vertex-pairs in the correspondence graph, which in turn generates the (i
maximum cliques.

In general, symmetric properties of the compared graphs are reflected in the
matching process by the generation of sets of cliques, which determine sets of
subgraphs within each compared graph that are themselves pair-wise isomor­
phic, i.e., a clique by definition determines an isomorphism between common
subgraphs but additionally in this case, multiple cliques determine sets of iso­
morphic subgraphs. Duplication results from the same, isomorphic structures
being identified but contributed to by different vertices and edges, i.e., sets of
common subgraphs are determined that are unique according to the identity of

1 5 2

individual vortices and edges but are otherwise structurally isomorphic. Again,
from the example, the two cliques

2 7 8 9 12 11 10 13 16
2 7 8 9 12 11 6 10 13

2 7 8 9 12 11 6 10 13
2 7 8 9 12 11 10 13 16

determine two sets of common subgraphs, which are pairwise isomorphic within
and between the sets. The extraction of one of the cliques is redundant as no ad­
ditional, new structural commonality is identified, being as they are structurally
identical at the current level of vertex and edge definition.

This example further illustrates redundancy in the match process in that cliques
may determine common subgraphs which are not maximal. Levi [Levi, 1970]
pointed out that although all maximal common subgraphs correspond to cliques,
the reverse is not generally the case. Although maximum cliques do determine
maximum common subgraphs, a non-maximum clique can determine a non-
maximal common subgraph. Given that in the current example a maximum
clique determines the entire graph as the contributing common subgraph, each
subgraph of the common subgraph pair identified in either Crn or Cn above is
itself subgraph isomorphic to the larger, maximum common subgraph. Similarly,
Cm and C,i are “contained” by

which itself does not determine a pair of maximal common subgraphs being
“contained” by any one of the maximum cliques. Again, the detection of Crn
and Cn are redundant as the common structure is captured by C/, which is itself
redundant being subsumed by the maximum clique.

It must be stressed that the discovery of isomorphic subgraphs represents equiv­
alent structure at a given level of analysis: based on syntactic match alone, what
are seen as equivalent structures may not match on closer inspection by way of

Ci =
2 3 7 8 9 12 11 10 6 13
2 3 7 8 9 12 11 10 13 6

attribute comparison. A less constrained matching process will inevitably lead
to the identification of greater numbers of more abstract common structures.
Tightening the match criteria will lead to the identification of fewer, more con­
crete, common structures.

The main caveat at this stage relates to ensuring that any attempts at simplifying
the match process that may lead to the removal of repeated structure must take
account of the potential loss of information. The permuted elements of the
compared graphs that give rise to the isomorphic common subgraphs may have
associated information that is useful during further analysis, e.g., Cm and Cn
determine isomorphic sets, the common structure being represented by either
the vertices {2,6,7,8,9,10,11,12,13} or {2,7,8,9,10,11,12,13,16}. Although
these sets determine the same structure at this level of analysis, the permuted
vertices, 6 and 16 in this case, possibly identify different external associations.
If an arbitrary choice of representative leads to the omission of vertex 16 say,
information relating to any external association, which may be useful later in
determining larger common structures linked via these associations, is lost.

• Lack of Specificity:

If we were to base the search for common structure purely on syntact ic labeling,
it is likely that match quality will not significantly improve on that of the global
SP approach of Chapter 4. The lack of discrimination across reference type
fields, parameters and return values, and particularly in the case of methods,
will lead to higher than acceptable levels of inappropriate/spurious match.

• Scaling to larger classes:

From the estimated maximum clique detection times for random graphs reported
in Myrvold’s experiments, assuming a CG density 0.8, exhaustive analysis of CGs
of the order encountered in the case of the two larger classes would be entirely
impractical [Myrvold et al, 1998]. As the order of compared graphs increases, so
the size of the correspondence graph increases, especially in cases where there is
a significant and sizeable degree of common structure. Constraints imposed by
available hardware, in terms of processor number, processing speed and memory,
are such that the analysis of large, similar graphs presents significant practical
limitations to such a general approach. The case of the JDK classes referred to

154

above, which generate CGs having densities greater than 0.8 and order greater
than 1 thousand, suggests that in addition to the lack of match specificity, this
initial approach may not be applicable across a useful range of developed code.
That said, it is worth noting that by using labeled ARGs we have managed to
extract a large clique (maximal in this case) from a high density CG of order
approaching 5 thousand. However, as the search was terminated, in general, we
can not be sure that the solution is optimal or indeed near-optimal. In order
to accommodate larger, high similarity ARGs, CG order must be still further

reduced.

5.4.2 Incorporating Domain Specific Knowledge

Finding a practical, usable approach to graph matching is in general known to be a
very difficult combinatorial problem. In the light of the problems identified above,
suitable domain knowledge and heuristics able to limit the scope of the search are now
introduced. The intention is to refine the problem by applying reasonable, domain-
specific constraints to guide and limit the search process.

The formulation of the attributed graph model of bytecode, including both syntac­
tic and semantic labeling of vertices and edges, represents the incorporation of domain
knowledge into the match process at its most fundamental. As was shown by the
simple examples of Figs. 5.1 to 5.5 and the comparison of labeled against un-labeled
match for the graph in Fig. 5.8, labeling can have a dramatic effect on the complexity

of the clique detection process.

Before considering the inclusion of vertex and edge attributes within the match
process, we introduce two further refinements to CG construction and the B&K clique

extraction algorithm.

Partial order and hierarchy

The notion of an hierarchy of relational structures whose primitives may be atomic,
terminal entities, or themselves hierarchical substructures, is described in the context

155

of matching as part of computer vision [Haralick and Shapiro, 1993]. The character­
istics of, and relationships between, the structures and substructures represented by
our modelled ARGs can also exploit the implicit hierarchy within the class model.
Haralick and Shapiro show that “an hierarchical, relational structure can be thought
of as an hierarchy of relational structures whose terminal entities are feature vectors”.
This model essentially generates a tree structure with a designated root. Within any
given level of the hierarchy, individual vertices can be treated as atomic and com­
pared based on their defining attributes. In addition, the comparison process can
successively refine or disambiguate a potential match by iterating through the levels,
expanding provisionally matched pairs of vertices at one level, based on their con­
stituent components at the next level. These components are in turn matched based
on their associated relationship and attributes, the process recursing until a match is
established or dismissed.

As it stands, the method of constructing our CG takes no account of the partial
order imposed on the graph vertices, i.e., the inherent hierarchy is not respected. As
mentioned in Section 15.3, based on the nature of the modeled code, we can capitalise
on the fact that some vertices are the “parents” of others by virtue of composition,
definition, and internal or external association, e.g., vertex 1 in Fig. 5.8 represents
the class being modelled, which is effectively composed of and defined by its adjacent
vertices {2,10,3,4,5, 6, 7, 8, 9} which in turn are composed of, defined by, or associated
with the entities represented by vertices {11,12,13,15,10,14}. As such, vertex 1 may
be designated the “root” of the hierarchy lying at level 0, those vertices adjacent to
it lying at level 1, the remainder at level 2. Unfortunately, the hierarchy neither
conforms to a pure tree structure, nor is it strictly moral in that vertices at level
2 may lie “children” to related “parents”. Level 1 vertices may be directly related
through internal method calls and field operations. (Currently, relationships between
level 2 vertices, such as method and field ownership, are not recorded.) Assuming that
the root vertices of two compared ARGs match, two additional constraints derived
from this hierarchic approach can be introduced into the clique detection algorithm.
Firstly, CG vertices can be generated based on within-level correspondence. Secondly,
any extracted clique should contain the CG vertex representing the matched root pair.

Based on rooted ARGs, correspondence graph construction was modified to limit
comparison to vertices within the same level. Vertices incompatible with the matched

root pair are also removed as they can not belong to a clique containing said root. The
B&K algorithm was altered to ensure that the CG vertex representing the matched
root pair is always present in the clique being extracted: the designated root vertex
is always the initially selected seed and the algorithm is terminated when all cliques
associated with t his seed have been identified. Incorporating these changes produced
the results shown below for self comparison of the three classes previously analysed.
(The times for (b) and (c) are again based on the process terminating having extracted
1 million cliques.)

ARG
Vertices

ARG
Edges

CG
Vertices

CG
Edges

CG
Density Cliques

Max.
Cliques

CPU Time
1st rnax.(s)

Total CPU
Time (s)

(a) 1G 20 2G 287 0.88 30 G (of G) 0.09
(c l)

0.09

(b) 50 GG 33G 50660 0.90 1000000* 430 (of ?) 0.16
(c 1)

13.05

(c) 144 242 2810 3784909 0.96 1000000* 4320 (of ?) 6.57
(c 1)

22.G3

Table 5.4: Hierarchic match

The introduction of a partial order on the graph vertices; separating the vertices into
mutually exclusive, comparison levels; requiring that the root vertex be present in all
cliques and removing vertices incompatible with the root vertex; has further reduced
CG order. In the case of the smallest CG, the total number of cliques extracted
has been significantly reduced. The reduction in CG order has not been undermined
by the increased density, so not increasing execution time. However, the density of
the two larger CGs has increased and their order remains high. In the case of (b),
the reduction in time to first maximum clique is probably due to reduced CG order,
while the increase in overall time is a consequence of the increased density. For (e),
although the CG order has been significantly reduced and the time to first maximum
clique extraction almost halved, the combination of high order and increased density
si ill levy a heavy penalty on the overall process. The numbers of maximum cliques
extracted for (b) and (c) have both increased due to the search tree having been pruned
via the reduction in CG order.

1 5 7

E lim inating d isconnected subgraphs

A large portion of the common subgraphs determined by the extracted cliques are
disconnected, i.e., they are composed of multiple components. Taking account of the
hierarchic nature of the graph models, and the incorporation of this hierarchy into
the match process, it would appear reasonable to accept that isolated vertices and
/ or components not connected to the “root” vertex are invalid. In the context of
establishing common structure between classes, the match process effectively begins
at the level of the root vertex. As a representative of this root vertex, the initial global
measure of similarity introduced in Chapter 3 is based on a feature vector intended to
characterise the entire graph. This matching process should naturally continue through
the remaining levels of the graph. Consequently, as the root vertex is connected to all
vertices at level 1, and vertices matching at level 2 must be connected to vertices that
match at level 1, common subgraphs must contain the root vertex in addition to being
connected. Connectivity could be established in polynomial time by means of a depth
first search of each generated subgraph. However, a slight modification of the B&K
algorithm can prevent generation of unconnected subgraphs as an integral part of the
clique detection process. This approach is similar to that of Koch et al as applied to
the matching of protein structure [Koch et al, 1996].

The modification of B&K essentially imposes the constraint that vertices can only
be used to extend the current, fully connected subgraph if they are both compatible
with all the current vertices in this subgraph and maintain the connectivity of the
underlying common subgraphs in the ARGs. As discussed above, the pair of level 0
ARC vertices, i.e., the “root” pair, always and exclusively correspond. This forms the
seed vertex for clique detection. Fully connected subgraphs are grown based on the
extension of this initial single-vertex set by adding CG vertices that are both eligible
for inclusion in a CG clique, and for which their constituent ARG vertices preserve
connectivity in the underlying common subgraphs.

Correspondence graph construction is altered such that edges between vertices
are classified as being either “compatibility” edges or “connecting” edges: as before,
two CG vertices are compatible if their constituent vertices (and associated edges)
drawn from the compared ARGs match according to type, number and orientation. In
addition, capitalising on the rooted, 3-level ARG hierarchy, if the underlying vertices

1 5 8

arc taken from different levels of the compared ARGs, and the match is based on these
vertices having at least one joining edge, the resulting edge between the two CG vertices
is classified as “connecting”. Put simply, all CG vertices representing matching level
1 ARG vertices are always joined by connecting edges with the root-pair CG vertex;
all CG vertices representing matching level 2 ARC vertices are joined by a connecting
edge to a level 1 CG vertex if the constituent ARC. vertices are adjacent.

Introducing these restriction, and repeating the syntactic, self-comparative analysis of
the three graphs gave the results below. (The times for (b) and (c) are again based
on the process being terminated, each having extracted 1 million cliques.)

ARG
Vertices

AIIG
Edges

CG
Vertices

CG
Edges

CG
Density Cliques

Max.
Cliques

CPU Time
1st max.(s)

Total CPU
Time (s)

(a) 16 20 26 287 0.88 12 6 (of 6) 0.11
(c 1)

0.11

(b) 50 66 336 50660 0.90 1000000' 481601 (of ?)

(order 46)

5.07
(c 518401)
(0.17 (cl))

9.74

(c) 144 242 2810 3784909 0.96 1000000’ 414720 (of ?) 1.7

(c 1)
23.73

Table 5.5: Hierarchic, connected match

Again, in the case of the smallest CG the number of cliques has been significantly
reduced with no increase in execution time. In the case of the larger CGs, although
the number of maximum cliques identified was increased considerably, again reflecting
the pruning of the search tree, their order and density still remain significant factors
limiting the clique extraction process. However, the additional overhead of checking
for connected subgraphs appears to be offset by the reduction in CG order. The overall
run time has been markedly reduced for (b) but has not significantly changed for (c).
In the case of (c) the first maximum clique was clique number 1 and was found in a
much reduced time. However, the first maximum clique for (b) was number 518401,
and although the time taken is possibly within practical limits, it is much greater than
in the previous analysis. In this case, a first clique of order 46 was found in 0.17 secs.,
which is still relatively large in comparison to the maximum. An analysis of a larger

159

class, ‘java.lang.String’ (10K) was abandoned as it, could not be contained in a CG of
order 8000.

The use of an hierarchic, connected approach to clique detection is able to further
significantly reduce the number of cliques extracted, without compromising the rele­
vance and usability of the information generated. However, although the number of
maximum cliques identified increased, the order and density of larger CGs severely
limits the analysis. ARC pairs that generate large, dense CGs suffer a heavy time
penalty, if they can in fact be accommodated within the analysis environment.

Reducing C G order using automorphism groups

In order to try and further reduce CG order, construction was amended to take account
of the presence of a certain type of automorphism in the analysed ARGs. It was noted
that in many cases, large CGs were the result of automorphism in the compared ARGs
resulting from the presence of identical, pendant vertices. For example, in Fig. 5.8,
permuting the pendant, vertices 7, 8, and i) gives rise to the automorphism group that
in t his case corresponds to the (i maximum cliques generated on self comparison. If we
were to limit CG construction such that only 3 vertex pairs were created, corresponding
to each of the vertices in the ARG mapping with one and only one vertex in the copy,
only one maximum clique would result - being isomorphic to the 6 previously extracted.
CG creation was further modified to enable this type of automorphic reduction.

In addition to the existing labeled, hierarchic and rooted matching constraints, the
mapping of pendant vertices within each level of the ARGs was restricted as follows:

1. if a pendant vertex in the first graph maps to a pendant vertex in the second,
neither is allowed to map with another pendant vertex having the same parent.

2. if a pendant vertex from the first graph maps to a non-pendant vertex in the

second then

• the pendant vertex can not map to another non-pendant vertex having the

same parent, and

• a second, same-parent pendant vertex from the first graph can not map to
the non-pendant vertex mapped in the second.

I C O

3. if a non-pendant vertex from the first graph maps to a pendant vertex in the
second then

• the non-pendant vertex can not map to another pendant vertex having the
same parent, and

• a second, same-parent, non-pendant vertex from the first graph can not
map to the pendant vertex mapped in the second.

The results of applying this approach to the previous three example graphs, along with
the larger ‘java.lang.String’ class (e.g. (d)), which could not be handled by the previous
analysis, are shown in Table 5.6. We again observe a reduction in CG order in all cases,
alongside a significant reduction in the numbers of maximum cliques extracted. The
time to first maximum clique extraction has also been markedly reduced for both (b)
and (c). The total run time for (b) has once more increased, which is surprising, as the
CG order and density have decreased. Although a maximum clique was not extracted
for (d), analysis of this larger ARC was manageable, once more producing a large
clique early in the process.

arc;
Vertices

ARG
Edges

CG
Vertices

CG
Edges

CG
Density Cliques

Max.
Cliques

CPU Time
1st max.(s)

Total CPU
Time (s)

(a) Hi 20 18 143 0.93 2 1 (of 6) 0.10 0.10
(c 2)

(b) 50 GG 158 10669 0.8G 1000000* 4 (of ?) 0.13 21.42
(c 5)

(<•) 144 242 1514 1065989 0.93 1000000* 192 (of ?) 0.71 23.31
(c 1)

(6) 2G8 438 3G5G 6426368 0.96 1000000* 0 (of ?) - 95.16
(order 244) (G.87 (cl))

.____ (order 252) (80.43 (c5))

Table 5.6: Antomorphic reduction

In terms of identifying the common subgraphs between two compared ARGs, in­
troducing automorphism reduction will have no effect on the range of structures iden­
tified. The reduction can only filter out isomorphic subgraphs. This approach does

1 6 1

have a limitation however. Although the resulting common subgraphs are represen­
tative up to isomorphism of all the possible mappings, the semantics of the match
can vary depending on which of the possible vertices that define the automorphism
group are actually mapped between the two graphs. For the sake of illustration, let
us slightly alter the scenario by comparing ARG (a), modified by replacing one of the
three static primitive vertex types by a reference type7, with a copy having two of
the three replaced by reference types. The number of maximum common subgraphs
is now reduced to four but if we introduce automorphism reduction, as applied in this
case to pendant vertices, only one will be extracted. Of the four possible permutations
that could give rise to the extracted subgraph, any one is potentially different from the
other if we examine the detail of those vertices included and excluded. At the current
level of abstraction, where we match using syntactic labels, the structures would be
isomorphic but the underlying semantics could potentially differ. Although in this
case it makes no difference as the original primitives are of the same type, in other
circumstances the types of the vertices mapped could differ. This is particularly the
case for level 2 reference types, where their inherent outgoing associations and depen­
dencies are not recorded in the model but could in fact differ. This will be addressed,
at least in part, by the introduction of semantic attributes, thereby improving the level
of detail, and so the specificity, in matching individual vertices and edges.

5.4.3 Refinement using attributed match

The simple example of Section 5.3.1 went some way to illustrating the efficacy of
attributed match in improving the specificity (quality) of the mapping between the
ARGs, while also reducing the order of the CG and the number of enumerated cliques.
The introduction of attributes into the current match process should serve to reduce
the overall complexity and improve the manageability of the matching process and its
products. It will also lead to a shift in focus from the discovery of abstract structures
to those that are more concrete, e.g., field types as opposed to just fields. The intro­
duction of attributed match carries with it the possibility of increased computational
requirement, in terms of the actual comparison of graph elements. In practice, the

7Replace the static primitive with a class acting as a basic, reference type wrapper providing direct
access to the stored primitive, i.e., no methods.

162

additional overhead of attribute matching during CG construction is generally small
in comparison to the time taken by the actual clique extraction process. CG construc­
tion for the large ARC (d) above took less than 2 seconds, that of the smaller ARC
taking less than 0.1 second. Attributed match also introduces the thorny problems
of weighting individual attributes, in addition to choosing an appropriate similarity
coefficient and threshold.

General attributed match

Attributes are introduced into the matching process during CG construction. The
attributes associated with both the vertices (primitives) and edges (relationships) de­
fined in the model of Chapter 3 are now used to qualify the match currently based on
syntactic labels alone. Vertices and edges that provisionally match based on their syn­
tactic labeling are now additionally compared using their respective attribute sets. As
in the SR approach of Chapter 4, each set of attributes associated with a vertex or edge
of the ARC is treated as a vector, the two vectors being compared based on weighted
elements, an appropriate similarity coefficient and the selection of a similarity t hresh­
old. Two attribute vectors that are similar above a given threshold identify a pair of
matching ARC vertices or edges. Consistency in the match process is maintained by
ensuring that attribute vectors are compared only if they are compatible. In this case,
the prerequisite syntactic label match ensures that only compatible vertex and edge
are subjected to attribute comparison. The use of a similarity threshold effectively
determines a discrete approach to matching vertices and edges, i.e., they either match
or do not match. We could in principle remove the threshold and generate CG vertices
for all compatible ARG pairs, assigning weights to each CG vertex based on the cal­
culated similarity value. The weighted CG so formed could then be analysed using a
weighted clique detection algorithm. The relative simplicity and lower computational
overhead of the threshold-based discrete approach was the principle reason behind not
attempting a continuous formulation at this stage.

W eighting and thresholding

In practice, one of the main problems associated with attributed, semantic match is
that of determining appropriate weighting and thresholding. Attributed matching of
graph elements needs a means of assigning appropriate weights to individual attributes
within a vector, as well as setting a threshold on the validity of the match.

Attribute vectors differ from SI' feature vectors in being heterogeneous, i.e., some
attributes are counts, and some identify categories. Initially, attributes represented
by counts are weighted by their frequency of occurrence. Categorical attributes are
effectively unweighted. We continue to apply the complemented Bray/Curtis simi­
larity coefficient but modified to take account of categorical attributes. Categorical
attributes are effectively converted into binary counts prior to calculating the simi­
larity value between two vectors. If two compared categorical values are the same,
each is replaced by a count of I. If the categories are deemed different, one value is
replace by a count of 1 while the other is replaced by a count of 0 - the choice of which
is arbitrary. For some of the primitives, e.g., any of the reference types, one of the
attributes is a unique structural type identifier, i.e., elements of the same structural
type are structurally identical. This allows us to apply an hierarchic matching policy.
In such cases, if the structural type values are the same, an exact match is flagged and
the remaining attributes can be ignored. If the two values are different, the remaining
attributes are then used to determine the degree of similarity.

The similarity threshold was set at 0.5 to begin with, i.e., any pair of vectors with
a similarity equal to or greater than 0.5 were considered to match. At this stage,
and guided by the results of the SP analysis of Chapter 4, a threshold of 0.5 was
considered reasonable in that values below this would be unlikely to represent com­
mon structure of any significant, practical value. In the case of vertices representing
concrete methods, this match criterion is further qualified by using the basic-block
“method” feature vector extracted during the SP analysis: if two concrete methods
match within threshold based on attribute values alone, but their “method” feature
vectors differ by more than 75%, the match is invalidated. This was an attempt to
prevent methods matching that demonstrated superficial similarity based solely on
their attributes but which were in fact significantly different. In determining method
similarity, simple attribute counting metrics have been shown to be possibly inferior

to structural approaches [Wise, 1996]. The SP “method” feature vector captures a
picture of a method’s control structure, and it seemed reasonable to suggest that
if this picture differed significantly between two compared methods, they should be
considered different.

The results of re-analysing the four ARGs (a to d) using self-comparison are shown
in Table 5.7. Data is also included for examples (c) and (d) with the clique limit
reduced to 10 thousand. Using vertex and edge attributes has again made a significant
difference to the matching process. ARGs (a) and (b) can now be fully analysed in
that the clique detection process runs to completion having searched the entire state
space tree. The improvement for the two larger CGs is also impressive, particularly
in the case of (d), where a maximum clique has now been identified. The time to
first maximum has also been improved. In case (c), the CG order and size, plus the
number of clique and associated times, have not improved as much as expected given
the improvements for (d). On closer inspection, ARG (c) has a greater proportion
of level 2 vertices, which include methods external to the class. Our current model
is limited in its implementation in that level 2 methods do not record a full set of
attributes. Vertices representing level I methods are fully attributed as the results of
their analysis are immediately available during the class analysis. However, attributes,
other than those relating to method signature, would have to be added retrospectively
for these external methods. (This is planned for inclusion as part of further work.)
Consequently, without a full attribute set, or rather the presence of zero-valued pairs
of attributes, discrimination between level 2 method vertices is reduced. As there
are proportionally more such vertices in (c) than (d), this accounts for the relatively
smaller reduction in CG order for (c) when compared with (d).

A large class, ‘java.awt.Component’ (36K) (e.g.(e)) could also now be accommo­
dated within the analysis framework but the computational cost of clique extraction
severely limited the search for a maximum clique, in this case the process was further
compromised by the depth of the search tree and the recursive nature of the B&K
algorithm exhausting available memory. Nevertheless, a clique of order 401 was dis­
covered in a CG of order 7453 and size 27313208 in 46.03 secs. (The original ARG had
780 vertices and 1392 edges.) It is important to note that CG order has been reduced
such that CGs derived from large ARGs can at least be accommodated, even though
the clique extraction process is limited. We attempt to address this problem below in

A R C

V e r tic e s

A R G

E d g e s

C G

V e rtic e s

C G

E d g e s

C G

D e n s ity C liq u e s

M a x .

C liq u e s

C P U T im e

1 s t m a x .(s)

T o ta l C P U

T it t le (s)

(a) 16 20 16 120 1 .00 1 I (o f 6) 0 .0 9 0 .1 0

(c 1)

(b) 50 66 08 21 7 8 0 .9 6 96 4 (o f ?) 0.11 0 .1 2

(c l)

(c) 14'! 242 1030 5 0 0 8 3 6 0 .94 1000000* 192 (o f ?) 0 .4 5 18.14

(c 1)

10000* 96 (o f ?) 0 .4 5 0 .6

(c 1)

(d) 268 438 1106 5 9 2 5 2 2 0 .9 7 1000000* 1 (o f ?) 0 .8 0 6 8 .6 4

(c 7 65)

(o rd e r 264) (0 .7 7 (c l))

10000* 1 (o f ?) 0 .8 0 1.21

(c 7 65)

Table 5.7: Attributed match

the section relating to an heuristic approach to clique detection.

The significance of using the basic-block “method” feature vector to qualify at­
tributed match in the case of concrete methods was at this stage inconclusive. The
above analysis was repeated, first without the qualification, and then with a 50%
as opposed to 75% threshold on the difference in “method” feature vector similarity:
although there were minor changes in the CG order and size, larger without the qualifi­
cation, smaller with the reduced threshold, the results effectively remained unchanged
in terms of CG density, clique numbers and times. The correlation between attributed
match and “method” feature vector match may be such that at the set threshold lev­
els the qualification is redundant. Current confidence in the discriminating power of
the “method” feature vector is such that reducing the threshold further may unduly
compromise the attribute match. This is a topic intended for further investigation.

A further exploratory analysis

An exploratory, attributed, MGS analysis of one of the sampled data sets of Chapter 4
- data set “S2” - was now carried out. Overall similarity between ARGs was calculated
based on the metric described in Section 5.2.1, i.e.,

S(A H Ç U A'JIQ2) =
\mcs{Angu A n g 2)\

■max(\ARGi\,\Âng,\)

The results obtained were surprisingly poor: several cases from sample “S2” showed
that the expected improvement in discrimination over both SP and JP was not im­
mediately forthcoming. On closer examination, it was found that the presence of a
few high frequency, matching attributes were sufficient to overwhelm the contribution
of several lower frequency unmatched attributes. This gave rise to an higher than
expected similarity value. (Similarly, several low frequency, matching attributes could
be overwhelmed by a single, high frequency, unmatched attribute in one of the vectors,
giving rise to a lower than expected level of similarity.) Hodes demonstrated how the
choice of weighting and coefficient could significantly affect the eventual assessment
of similarity, particularly in situations where the choice of coefficient gave “too much
weight to already highly weighted features” [Hodes 1988]. The coefficient eventually
used by Hodes is very similar to the complemented Soergel metric as defined in Chap­
ter 3. Using the complemented Soergel metric as a replacement for the complemented
Bray/Curtis coefficient did not however improve matters in this case. Standardisation
or normalisation of the attribute values was considered but the difficulty here lay in
determining appropriate, generally applicable values for the statistical parameters or
ranges required, given the potentially dynamic nature of the class collections. The code
samples at our disposal were limited, and certainly not representative of the overall
population as a whole. Consequently, an alternative, more straightforward approach
based on what one might term “relative normalisation” was tried.

5.4.4 A similarity coefficient based on “relative normalisation”

First, the relative similarity of each pair of corresponding attribute values is calculated
by dividing the minimum of the two values by the maximum of the f.wo values, effec­
tively a local application of the complemented Soergel metric. The similarity value for
the two vectors is then calculated by dividing the total of all the relative similarities
by the number of non-zero attribute pairs. (Categorical attribute values are assigned
a relative similarity of one or zero depending on whether they match or not.) This
differs from Gower’s approach to attribute normalisation in that it does not depend on
a static, collection-based value for the range of each attribute. Relative normalisation
is dependent only on the values of the actual attributes being compared. However, it
does require calculation of the minimum and maximum value of each pair of compared

167

attribute values, so increasing the computational overhead. Repeating the exploratory
analysis using this revised similarity calculation for attribute match suggested that the
original source of bias had been largely eliminated, if not entirely removed.

5.4.5 Compromises and larger classes

It is clear from the above analysis that the complexity of the clique detection process
is a significant limitation to our approach in general. We have managed to improve the
MCS extraction process within the framework of the B&K algorithm by introducing
various domain-specific approaches to pruning the potential search tree. However,
the improvement is such that only small to medium sized classes can be adequately
catered for. Adequacy in this case equates to the identification of a maximum clique in
a CG, and the corresponding MCS in the compared ARGs, within a short extraction
time. The given examples, and the use of self-comparison in order to generate large,
common structures, are not typical of what we can expect in general. However, the
range of ARG sizes and the possibility of encountering large common structures must
be reasonably catered for.

As the order and density of CGs increases, so does the associated time and memory
overhead. The MCS extraction process using B&K tends to generate large clique
early in the process but for large CGs the analysis times can be prohibitive, if indeed
available memory allows the heavily recursive process to run to completion. We have

also seen that the number of cliques generated can be considerable and potentially
problematic in terms of any further analysis.

Let us for the moment accept that a maximum clique is a sufficient expression
of the common structure between two classes, at the possible expense of dismissing
smaller but potentially significant structures. If we also accept that in practice, ARC
comparison and maximum clique identification will reasonably require extraction times
of the order of seconds, or fractions of a second, only the two smallest CGs examined
above fall within this threshold. In the case of the larger CGs, the total run time is
considerable greater, even accounting for termination at the 1 million clique point. As
a consequence of stopping the analysis in order to limit output or prevent exhaustion
of system resources, we can not be sure that the largest clique extracted is indeed a

108

maximum, or good approximation to a maximum for that matter. The results obtained
suggest that the time to first maximum clique is within our somewhat arbitrary time
limit except in the case of the very large example (e). The point at which a maximum
was extracted occurred well within the 10 thousand clique point in all the above cases.
Repeating the analysis of the four examples (a to d) but limiting clique output to 10
thousand resulted in the largest total run time being reduced to 1.21 secs. Based on
these observations and assumptions, we propose the following strategy as a reasonable,
general approach to clique extraction:

• Use the deterministic B&K algorithm but limit clique output to 10 thousand:
this should provide a maximal clique in most cases where the order of the CG
and common subgraph are not too large. In cases where a maximal clique is
not identified, the largest clique found should be a good approximation to the
maximum except in the most extreme cases.

• Use an heuristic approach to try and improve on the largest clique extracted: if
the B&K search is terminated, in order to limit the chance of missing a maxi­
mum clique or a good approximation to same, we introduce a low complexity,
approximate clique detection method to try and improve on the current largest
clique. In such cases we can not infer that the largest current clique is a max­
imum, except where the order of the clique is the same as that of either of the

two compared ARGs.

As we are now looking for maximum cliques as opposed to enumerating all cliques,
the B&K algorithm could have been replaced by a partially enumerative, maximum
clique algorithm such as the previously mentioned C&P or Babel algorithms. Rather
than introduce such a significant change, the following factors suggested we retain the
B&K algorithm. Although the largest CG density was much less than in the cases
reported here, Willett and his colleagues showed that B&K is faster than the C&P
algorithm for higher density CGs [Gardiner et al, 1997]. (Their results for Babel’s
algorithm did not show a consistent pattern of improvement.) In any case, being as
we currently limit the number of c l i q u e s extracted, and the B&K extraction time per
clique is generally very short (< lms), the benefit to be obtained from introducing
an algorithm with a potentially better overall performance in such a clique-limited

1 6 9

scenario is questionable. The most significant factor in this case relates to the limits
imposed by the size and density of the larger CGs encountered. These would make
a full search totally impractical irrespective of the choice of deterministic algorithm.
Babel reports run times of the order of hours for graphs with order and density consid­
erably smaller than some of those encountered here [Babel 1991]. Similarly, Myrvold
reports estimated times quoted in days for graphs of order -100 and density 0.7 [Myrvold
et al, 1998].

Heuristic approaches

Heuristic approaches that produce approximate, non-optimal, but fast solutions to
the maximum clique problem are available [Bomze et al, 1999]. These include simple

“greedy” heuristics, “local search” approaches, and more advanced methods such as
tabu search and simulated annealing.

A common problem with “greedy” heuristics is that they terminate on finding any
clique, i.e., they return the first maximally connected subgraph which may not be a
maximum or even a good approximation to the maximum in terms of its order. This
is improved on by “local search” which tries to increase the order of the current clique
through a series of modifications directed at the clique and its local neighbourhood.
The main problem with “local search” is the classic trap of terminating at a local
maximum, i.e., although a larger clique exists, the available operations can no longer
“see” a local modification that allows an improvement in the order of the current clique.
Simulated annealing addresses this deficiency by allowing the algorithm to escape from
local maxima and so examine more of the search space. In [Homer and Pienado, 1996],
the authors state that simulated annealing has been shown to outperform all other
competing clique detection algorithms, particularly for very large, dense CGs, ranking
among the best heuristic approaches to the solution of the DIMACS benchmark graphs.

The main criticism of simulated annealing is that it only deals with one candi­
date solution at a time. No information is retained across successive states in the
search process and as such, the picture of the overall state space is always limited.
In contrast, genetic algorithms (GAs) employ an highly parallel, exploratory and ex­
ploitative approach to the state space. Until recently, GAs have not performed well

170

when applied to direct graph match or indirect match via clique detection. However,
a recent contribution based on an hybrid, heuristic GA (HGA) that combines a simple
“greedy” heuristic within a simple GA, has proven to be as effective, if not better than
current clique detection algorithms, including simulated annealing [Marchiori, 1998].
The heuristic element of our overall strategy is based on the template provided by
Marchiori’s HGA.

5.4.6 Heuristic match using an hybridised genetic algorithm

Genetic algorithms were introduced in 1997 by John Holland in an attempt to solve
complex search and optimisation problems by analogy with the natural process of
Darwinian evolution. A GA effectively mimics the process by which populations of
organisms evolve, enhancing their survival potential by virtue of improving the level
of fitness inherent in their genetic makeup. In passing from one generation to the
next, recombination and modification of this genetic material can lead to the pro­
duction of individuals better fitted to their environment and consequently more likely
to succeed/survive. A concise and readable introduction to GAs can be found in
[Beasley et al, 1993], more detail being available in [Goldberg, 1989; Davis, 1991].

A G A evolves a population of individuals representing potential solutions to a given
problem. A commonly adopted, simple template for a GA is provided below:

1. Randomly generate an initial population of individuals each representing a potential
solution to the problem: individuals are often represented by strings of bits, T s and
’0’s. This string representation is referred to as a chromosome, individual or grouped
bit positions as genes, and the allowable values for the bits or groups of bits, alleles.

2. Assign a fitness value to each individual based on the quality of the problem solution
they represent: a fitness value is generated by a problem specific function that directly
relates this value to the problem’s objective function. The fitness value is subject to
additional scaling or thresholding in some cases.

3. Select pairs of individuals (parents) based on their assigned fitness to produce the next
generation of individuals: the probability of an individual being selected is usually pro­
portional to its fitness, the higher the fitness the greater the chance of selection (pro­
portionate selection).

171

4. Apply the genetic operators “crossover” and “mutation” to each pair of parents to
produce offspring (children):

• Crossover in its simplest form involves splitting both parent at some randomly
chosen single point in their representation. This produces a “head” and “tail”
section for each chromosome. By swapping the “tail” sections, offspring are pro­
duced having inherited genetic material from both parents. Crossover is generally
only applied to a proportion of all pairs of parents selected, the proportion usually
being > 0.7. Uniform crossover is a variant in which a crossover point is effec­
tively set between each adjacent bit-position, corresponding bits being swapped
between parents according to a set probability independent of the overall crossover
probability (typically 0.5). The broad intention behind crossover is to combine the
best features or genes from both parents thereby giving rise to fitter offspring. It
effectively allows the GA to rapidly explore a large search space.

• Mutation is a low probability, random event that alters the genes of the offspring,
for example, by swapping a T to a ‘0’ in a bit-string. The mutation probability is
typically set such that at most one mutation occurs per selected individual. These
infrequent, local changes to the genetic profile effectively ensure that the search
space is not limited by those alleles in the current population. It improves the
chances of all areas of the solution space being searched.

5. Use the offspring to form a new population: the next generation can be built simply by
generating sufficient offspring, discarding the old population. In order not to discard
good solution, it is common practice to retain a proportion of the best individuals from
the parental population (Elitism).

G. Repeat the generation cycle until a termination condition is reached: termination con­
ditions can be fixed, dynamic or a combination of both. For example, a limit on the
number of generations or a maximum run time can be established. Also, if the current
best solution is above a known quality threshold, the GA can be stopped. The GA can
also be stopped if the level of similarity within the population has converged to a set
level: a gene or bit-position is said to have converged when 95% of the population share
the same value, the population having converged if all genes have converged.

The GA proposed by Marchiori is built upon this basic pattern. Each individual
consists of a string of bits of length equal to the number of CG vertices. An entry
in the string is ‘1’ if the corresponding CG vertex is currently selected, ‘O’ otherwise.
The population size is set at 50. The fitness of each individual depends on whether
the selected vertices form a clique, in which case it is simply the number of T s in

172

the string, i.o., the size of the clique. The fitness is zero if the vertices do not form a
clique. The mechanism used by Marehiori to select pairs of parents is not documented.
Children are produced via crossover and mutation from pairs of parents: the quoted
crossover rate is 0.8 and uniform crossover is applied; the mutation rate is 0.1 and swap
mutation is used. The next generation is formed by selecting the best two individuals
by fitness from the resulting group of four parents and children. Additionally, an elitist
strategy is adopted whereby the two fittest individuals from the previous generation
are also retained. Marchiori also employs a “diversification factor” in order presumably
to allow the population to continue evolving in the face of premature convergence to
a possibly sub-optimal solution: “depending on the total fitness of the population”,
an individual is selected at random with a “very low probability”, replacing it with a
randomised pattern of bits. The terminating condition was a 100 generation limit.

The significant element of Marehiori’s approach is the heuristic algorithm used to
post-hybridise the GA. The GA as it stands is not very effective, “getting easily stuck
on local sub-optimal solutions”. By applying a heuristic clique extraction algorithm
to each new individual generated by the GA, Marchiori has shown that the result­
ing hybrid GA is very effective. The heuristic algorithm is reproduced below. The
description assumes a CG representation based on N sequentially arranged vertices

(n i,..., n/v):

1. Relax: (Enlarge the subgraph)
Add a few vertices randomly chosen from the graph

2. Repair: (Extract a clique)
Choose randomly a position idx with 1 < idx < N:

(a) for i — idx to N: if n,- belongs to the subgraph then
- either delete m or
- for j = i + 1 to N: delete i i j if it belongs the subgraph and r ij is not connected

with rii;
for j = 1 to i — 1: delete n } if it belongs to the subgraph and r i j is not
connected with m

(b) for i = idx - 1 downto 1: if n, belongs to the subgraph then
- either delete n,: or
- for j = i — 1 downto 1: delete nj if it belongs the subgraph and rij is not

connected with m

178

3. Extend: (Enlarge the clique)
Choose randomly a position i d x with 1 < i d x < N :

(a) for j = i d x to Ar: add rij if it connected with all the vertices of the subgraph
(obtained so far)

(b) for j = 1 to i d x - 1: add i i j if it connected with all the vertices of the subgraph
(obtained so far)

In order to implement the HGA, Spears’s ‘C’-based simple GA (GAG), was mod­
ified to incorporate Marchiori’s heuristic. (GAG is a freely available implementation
of a generational GA that uses fitness scaling and sampling based on Baker’s SUS8
algorithm, giving rise to a form of proportionate selection. [Spears, 2000) The initial
population of 50 individuals was created from randomly generated bit strings. Uniform
crossover and swap mutation were used, the GAG crossover and mutation constants
being set at 0.8 and 0.001 respectively, i.e., typical crossover but low mutation rate.
Successive generations were created by replacing the parents with Marchiori’s ‘best-
two- from-four’ approach. An elitist strategy was adopted by retaining the two best
individuals from the previous generation. A diversification factor was also included by
way of randomising a randomly selected individual (probability 0.1) if the population
shows > 80% convergence. (The precise details of Marchiori’s “diversification factor”
were unavailable.)

The heuristic algorithm was also modified to take account of the rooted, connected
constraints imposed by our current approach to the MGS extraction process. As in
the modified B&K algorithm, this was achieved by ensuring that the CG vertex repre­
senting the root pair of ARG vertices was always present in each individual. Vertices
added to or removed from the current clique were checked to ensure they preserved
connectivity in the underlying ARGs. Unfortunately, this latter requirement was seen
as a potential cause of significant analysis overhead. Consequently, the termination
condition was initially set at 10 generations rather than 100 as in the original HGA.

The three ARGs (c - e) were once again self-compared using HGA (Results aver­
ages over 10 runs) (Table 5.8). In comparison to the currently modified B&K based
approach, using a 1 million clique limit, the HGA result for case (c) is comparable,

sSUS: Stochastic Uniform Sampling. Baker, J.E. Reducing bias and inefficiency in the selection
algorithm”, Proc. ICGA 2, 14-21, Lawrence Erlbaum Associates, 1987.

174

while that for (d) shows a greater than 50% improvement. Case (e) has shown a
marked improvement in the order of the largest clique extracted but this is at the
expense of a thirty-fold increase in the time required.

ARG ARG CG CG CG Largest Total CPU
Vertices Edges Vertices Edges Density Clique Time (s)

(c) 144 242 1030 500836 0.94 144 24.95

(d) 2G8 438 1106 592522 0.97 268 41.86

(e) 780 1392 7453 27313208 0.98 743 1423.0

Table 5.8: Heuristic GA match

These comparisons are based on the total time taken to complete the respective
analyses: the 1 million clique mark for B&K and the 10 generation mark for HGA.
Comparison with times from the B&K analysis using a 10 thousand clique limit show
that HGA can not generally compete: we see that B&K produces a maximum or
good approximation to a maximum clique early in the extraction process, cases (a) to
(d) showing sub-second times to maximum clique detection. However, we can neither
assume that this is generally the case nor that maximum cliques will always appear
within the 10 thousand clique point as is the case for these examples. In addition, the
result for example (e) shows that HGA can accommodate exploration of a solution
space entirely outwith the computational constraints imposed by the deterministic
B&K algorithm. As a result, in would appear reasonable to test the compromise
inherent in our suggested combined approach, where we use B&K to begin the search
for a maximum clique, applying HGA as a means of limiting the possibility of missing

large cliques and their associated MCSs.

To begin with, we re-analysed these three examples using the proposed combined
approach with an extraction limit of 10 thousand cliques. As expected, the results
shown in Table 5.9 indicate that the solution quality is at least as good as if not better
than HGA alone. The overall run times have been increased due to the introduction
of the initial B&K analysis. Given the possibility that HGA can generate both inferior
and superior solutions to the clique-limited B&K approach, in order to maximise the
possibility of identifying maximum cliques the run time overhead of the combined
approach may be justifiable in practice.

In the next section we take a further look at the performance HGA and B&K 4-

175

ARG ARG CG CG CG Largest Total CPU

Vertices Edges Vertices Edges Density Clique Time (s)

(c) 144 242 1030 500836 0.94 144 31.89

(d) 268 438 1106 592522 0.97 268 46.66

(e) 780 1392 7453 27313208 0.98 766 1813.67

Table 5.9: Combined B&K+HGA match

HGA, relative to that of B&K alone, using the data sets of Chapter 4.

Comparison of B&K, HGA and HGA + B&K

In order to evaluate our combined strategy, the two samples “111" and “S2” used in
the matched-pair evaluation on page 108 were analysed using BfeK alone, IIGA alone,
and the combined B&K/IJGA approach. In the combined B&K/HGA approach, the
HGA was pre-hybridised by replacing two individuals in the randomly created initial
population with two individuals representing the best clique identified by B&K. The
HGA was further modified to terminate if a clique of order equal to that of one of the

compared ARGs was found.

At this stage of the project, a data set used in the original JP evaluation was
made available courtesy of Guido Malpohl, the designer of JPlag. This data set was
from a graduate advanced programming course that introduced Java and the AWT
to experienced students. The requirement here was to design and implement a simple
graphical game where the player has to move the mouse into a square jumping around
on the screen. The mouse must enter the square from a particular side indicated by
an ever-changing color code. This was the largest program in the JPlag evaluation
and was also a large program set (with 59 programs). The average class file size was
7K, much larger than that of data sets “HI” and “S2”. The problem allowed for fairly
large variation in some aspects of the program design. (The program set contains 4
program pairs that are confirmed plagiarisms.)

The criterion used to gauge the success or otherwise of the various individual and
combined approaches was that a maximum clique, or good approximations to a max­
imum, should be identified within an “acceptable” time. Acceptability at this stage
was difficult to determine, performance of the order of seconds rather than minutes

17(>

being a reasonable provisional limit. In particular, it is important that introduction of
the HGA should not add significantly to the computational overhead in terms of time
and space, unless it is able to identify large cliques, or for the combined approach,
significantly larger cliques where they exist.

For the three data sets examined, the results obtained using the HGA and the
combined B&K+HGA approaches were compared to those obtained using B&K (10
thousand and 1 million clique limits) (Table 5.10). Where the comparison involved an
HGA invocation, the table gives counts for clique order being equal to (=), greater
than (+), or less than (-) B&K. Also included are a count of those instances where
the clique size was increased such that the similarity value now met or exceeded the
0.5 threshold (++), and a count where the threshold was no longer met when it was
originally (- -). The times quoted are the minimum and maximum run times for all
pair of ARGs compared. The last column gives the total number of ARG pairs with a
similarity greater than or equal to the threshold of 0.5 for the combined B&K + HGA
approach, i.e. significant matches.

Class files in the “III” data set (median 2K, range 2K (l-.'iK)) are on average
smaller and have a smaller range than those in the “S2” data set (median 3K, range 9K
(1-1 OK)), which in turn have an average size less than that of the “j5” set (median 7K,
range 10K (1-1 IK)). It is clear from these results that as the average size of the ARGs
increases the computational overhead increases irrespective of the approach adopted.
In terms of CG order, in the case of data set “HI”, the HGA and combined B&K +
HGA methods do not improve on B&K alone. For larger classes with potentially larger
common subgraphs, as represented by data set “S2”, we see a small improvement in
both the HGA and combined approaches. Instances of matches that would otherwise
have been missed are identified.

1 7 7

Data
Set

Clique
Cutoff

B & K CPU Time (s) H G A CPU Time (s) B & K + H G A CPU Time (s) Sim.
> 0.5Min. Max. = + + + - Min. Max. = + + + - Min. Max.

“HI" 1E4 0.17 0.27 435 0 0 0 0 0.19 0.50 1 0 0 0 0 0.17 0.56 92
“HI" 1E6 0.18 0.43 435 0 0 0 0 0.19 0.50 0 0 0 0 0 0.16 0.46 92
“S2” 1E4 0.17 0.42 431 2 2 0 0 0.18 5.01 8 2 2 0 0 0.17 5.85 54
“S2” 1E6 0.18 7.33 431 2 2 0 0 0.18 5.01 6 2 2 0 0 0.17 9.59 54
“jo" 1E4 0.26 2.70 362 787 3 24 0 0.42 14.80 383 791 2 0 0 0.24 13.78 7
“jo" 1E6 0.26 247.89 518 576 3 79 0 0.42 14.80 588 586 2 0 0 0.24 253.39 7

Table 5.10: Comparison of BfeK. HGA and B&K+HGA

Still larger average class sizes as found in data set “j5” show that both the HGA
and combined approaches improve the order of the largest clique in a large number of
matches, the number of significant matches having also been increased by a factor of
more than 25%. However, in this case, HGA has resulted in 24 matches being worse
than for the original BfeK, although none represent the loss of a significant match.
Using B&K with a 10 thousand clique limit, the HGA and combined approaches have
little to choose between them in terms of analysis time. The time for the combined
approach is significantly increased for the larger clique limit, with no perceptible im­
provement, in solution quality. It is also worth noting that the number of significant
matches for all the data sets is at most 21% of the total number of ARG pairs tested.
In particular, significant matches in the “j5” data set are less than 1% of the total.

At this stage, the general problem of identifying the largest clique in a CG remains
simple to define but still extremely difficult to address with any confidence. By using
the clique-limited deterministic B&K approach, and examining small to medium sized
classes, we can find a large order clique in sub-second time. However, we can not
be certain that this represents an optimal or near-optimal solution. By applying a
combined deterministic plus heuristic approach we can improve on the quality of the
solution, in some cases significantly. The degree of confidence in the quality of the
solution is also higher than with HGA alone: HGA can sometimes produce a solution
of smaller order than clique-limited BfcK, whereas the combined approach can only
improve on the B&K result. Unfortunately, this confidence carries with it the overhead
of increased analysis times for larger CGs. That said, at least in the 10 thousand clique
limited approach, the worst case time remains within our initial objective of analysis
in seconds rather than minutes. As seen in example (e) of the previous section, the
real benefit to be gained from using the combined approach is its ability to identify
large cliques in large CGs. In these cases, time to completion can be well outside our
target of seconds as opposed to minutes. Very large cliques have so far proven to be the
exception rather than the rule. In cases where the analysis framework encounters times
over a set threshold (currently 60 secs.) it flags the pair of ARGs for off-peak analysis
or manual assessment. Based on this analysis, the combined B&K+HGA approach
using a clique limit of 10 thousand was selected as a basis for further investigation.

179

5.5 R evisiting the Structure Path analysis: SP, JP and

MCS

We have shown that by a judicious selection of domain-specific heuristics and the intro­
duction of attributed match, a local measure of similarity based on the MCS between
two ARGs is feasible in all but possibly the more extreme cases of very large, similar
ARGs. In principle, we have developed a means of defining the degree and composi­
tion of a structural match between two ARGs. It now remains to establish whether
our underlying model, including the selection and weighting of attributes; choice of
similarity coefficient; and applied thresholds, are adequately justified in practice. As
in the case of the SP analysis, the lack of appropriate independently assessed data sets
presents the same difficulty in obtaining an objective assessment of the efficacy of out
local similarity measure. Based on the same argument as presented in Chapter 4, for
the moment we continue to use the JPlag plagiarism detector as our reference.

We also include results from the SP analysis here, for two reasons. Firstly, the ob­
servation relating to the calculation of similarity in the exploratory analysis of page 1(57
raised similar concerns about the weighting of SP features and the calculation of sim­
ilarity. There is nothing to suggest that bias in the similarity calculation due to
high frequency features overwhelming the effect of lower frequency features is not also
present in the SP analysis. In addition, the SP features are obviously not independent,
in that different feature occurrences may be contributed to by the same physical edge
in an ARG. The denser the neighbourhood of an ARG vertex, the greater the chance
that an adjacent edge will appear in multiple features. This in turn may also be re­
sponsible for introducing bias into the similarity calculation based on the number of
permutations not being linear but a factorial function of the density. Originally, it was
thought that the large number of different features present in an SP analysis would
compensate for this. However, at this stage it merely added to concerns relating to
feature weighting. Consequently, the “relative normalisation” introduced above was
also applied here in the context of the SP analysis, possibly enabling an improvement
in the results from Chapter 4. As described in Section 4.5.3, the SP analysis ap­
plied here also used separated “class” and “method” feature sets: “method” similarity
is calculated by way of bipartite match, the final similarity value calculated from a
weighted average of the two (70:30 in favour of the “class” similarity, reflecting current

180

confidence in the two feature sets as valid discriminators).

A second, fundamental reason for including SP here is based on one of the original
motivations behind the SP approach. The intention is to develop a low complexity,
global measure of structural similarity, which could possibly act as a filter to a more
expensive local analysis as presented here. We examine the predictive quality of SP
in relation to MCS as part of the following analysis and discussion. It is worh noting
at this stage that in practice, an analysis based solely on SP may be sufficient to
meet the needs of a given operational scenario. The values of recall and precision
asociated with SP may be such that a more detailed, computationally demanding and
time consuming MCS analysis could be dispensed with, i.e., a user may be prepared to
accept the results generated by SP at the possible expense of some spurious or missed
matches.

Figures 5.9, 5.10 and 5.11 show the results of analysing the data sets “HI” ,“S2” and
“j5” using SP (path length 3), JP (sensitivity 5) and the combined B&k+HGA MCS
(vertex/edge similarity threshold 0.5; B&K cutoff 10000). The larger class and method
size found in the “j5” data set prompted the inclusion of a JP plot using a sensitivity
of 5, JP (sensitivity 3) is included for comparison. Absolute difference and Spearman
rank-correlation statistics for the three data sets are shown in Table 5.11. In general,
all three approaches show a significant correlation. Inspecting the corresponding plots
and statistics for “HI” and “S2” from Chapter 4 (Figure 4.10 and Table 4.6), the
change in SP similarity calculation has improved the relationship between SP and JP
to a certain degree. This is reflected in the lower absolute difference statistics, and
the rank correlation remaining significant, although not showing a consistent, positive
change. At the outset, the most striking observation to be made relates to the SP
- MCS comparison: the mean absolute difference values are generally lower and the
correlation between SP and MCS consistently high for all data sets.

Although SP correlates well with MCS it is clearly not a strict upper bound to
the MCS measure: the similarity value provided by SP is often less than that based
on MCS. This difference in not generally significant when considering SP as an MCS
predictor, a point discussed later in this chapter. However, on closer analysis, the
disparity can on occasion represent a large MCS / small SP combination. This is
principally due to a combination of a) the nature of their respective similarity measures

181

and b) the disproportionate influence of larger SP features.

Figure 5.9: Comparative analysis of data set “HI”: SP, JP and MCS (Sorted by SP
value)

Figure 5.10: Comparative analysis of data set “S2”: SP, JP and MCS (Sorted by SP
value)

182

SP(3) vs JP (5) vs MCS(0.5) (Data s e t MJ5")

1.2

□ 8

0.6 ---------
- S P (3)

-JP (5)

- MCS(0.5)
JP(3)

1 101 201 301 401 501 601 701 801 901 1001 1101

C la s s P a i r

Figure 5.11: Comparative analysis of data set “j5”: SP, JP and MCS (Sorted by SP
value)

The difference in emphasis between the edge-oriented, multi-featured SP measure,
and the vertex oriented MCS measure, will inevitably be reflected in their individual
inductive bias’. More significantly, two structure graphs may differ in only one or two
edges but have a high MCS and a disproportionately lower SP similarity value. This is
due to the amplification of differences in the frequency of occurrence of larger structure
paths in the compared ARGs. In general, the effect is not marked, mostly affecting the
comparison of smaller classes. As discussed in Chapter 3, and echoing similar concerns
voiced in Chapter 4, weighting structure path features in inverse proportion to their
size may be an appropriate consideration for future improvement.

Although the correlation between JP and MCS is significant, it is not generally as
strong as that between SP and MCS. The weaker correlation between JP(5) and MCS
is somewhat surprising, given the evidence of the plot, and the absolute difference
statistics. (The generally higher JP(3) similarity values for data set “j5” reflects
the presence of spurious matches due to the combination of small tile size and larger
methods. The better performance of JP(3) over JP(5) in the experiments of Chapter 4
was, significantly, for the ‘'H” data set, which has small methods. In that case, the
larger tile size of JP(5) lead to missed matches.)

183

Data
Set

Spearman Rank Corr.
(* Sig. at 0.01)

Absolute difference
SP - MCS MCS - JP SP - JP

SP - MCS MCS - JP SP - JP Max. Mean Std.dev. Max. Mean Std.dev. Max. Mean Std.dev.
“HI” 0.861 * 0.579 * 0.525 * 0.73 0.05 0.06 0.56 0.09 0.09 0.48 0.09 0.08
“S2” 0.632 * 0.656 * 0.691 * 0.45 0.08 0.08 0.53 0.08 0.07 0.46 0.08 0.08

“j5” (5) 0.633 * 0.169 * 0.192 * 0.29 0.07 0.05 0.30 0.08 0.06 0.28 0.07 0.05
“J5” (3) 0.633 * 0.250 * 0.274 * 0.29 0.07 0.05 0.50 0.29 0.08 0.45 0.22 0.08

Table 5.11: Comparison of SP(revised), JP and MCS

A scatter plot of the JP(5) vs MCS data showed a dense, circular cluster of similar­
ity values of approximate radius 0.1 formed around the point (0.2,0.3). These points
account in large part for the measured differences between the two approaches. Due to
the threshold on attributed vertex and edge match being set at 0.5, at lower levels of
similarity MCS is more aggressive than JP in discarding small, probably insignificant
common structure. If we discard all pairs having an MCS similarity < 0.4, providing
a 10% margin of error for our current MCS pairwise similarity threshold, the picture
changes significantly. A higher level of correlation and lower absolute difference values
are restored, as shown in Table 5.12.

On closer comparison of MCS and .IP(5), those cases where they markedly differ
arc in the main due to missed or inappropriate match on the part of JP, or significantly,
inappropriate method match on the part of MCS - as per the observations relating to
the SP-JP comparison of Chapter 4. A further factor that can significantly alter the
MCS similarity calculation relates to the hierarchic, connected constraints placed on
the match. If a method vertex at level 1 of the ARG fails to match within threshold, all
those level 2 pendant vertices adjacent to it are excluded from the common subgraph.
This makes the MCS approach highly dependent on the quality of attributed match.

For example, data sets “HI” and “S2” have high values for the class pairs giving
rise to the maximum absolute difference. In both cases the MCS similarity value was
very low in comparison to JP. This was due to the failure of one level 1 vertex to match
within threshold leading to the elimination of a large proportion of the level 2 vertices

from further consideration in the case of MCS match. In contrast, JP matched code
corresponding to these level 2 vertices as it is not. governed by having to respect either
connectivity or relationships between the elements of the matched code.

185

Data
Set

Spearman Rank Corr.
(* Sig. at 0.01)

Absolute difference
SP - MCS MCS - JP SP - JP

SP - MCS MCS - JP SP - JP Max. Mean Std.dev. Max. Mean Std.dev. Max. Mean Std.dev.

“j5" (5) 0.740 * 0.797 * 0.891 * 0.14 0.05 0.04 0.19 0.07 0.05 0.18 0.06 0.05

Table 5.12: Comparison of SP(revised), JP and MCS for filtered “j5”

A detailed examination of the classes and their attribute sets showed that the
degree of commonality was indeed higher than reported by MCS. The failure to match
was due to mismatch in those attributes recording method calls and field operations:
the current model records each explicit instance of a method call or field operation but
it does not take account of multiple calls or operations implicit in looping constructs.
Consequently, the methods vertices in question failed to match although they were
essentially the same. This is a serious limitation and needs further investigation: one
simple remedy might be to record calls to, or operations on, distinct methods and
fields, only once.

In addition to MCS’s tendency to produce smaller similarity values than JP at
the lower end of the comparison spectrum, it can also generate relatively higher cor­
responding values than JP at the top end. Taken together, these over and under
estimates account for many of the observed differences. Most of these differences are
not significant in that they are comparatively small and do not place the measure­
ments on opposite sides of the set threshold. They result from a combination of the
granularity of the MCS similarity calculation and the use of thresholding in match­
ing vertices and edges. MCS is based on the mapping of discrete, complete vertices,
which is dependent on the set threshold, i.e., vertices either match or do not match.
JP on the other hand produces a similarity value based on the tile as the unit of
match. Although dependent on the minimum tile length, JP in general generates a
more continuous measure of similarity.

Superficially, it appears that MCS has not improved on SP in determining the
degree of similarity. Neither the correlation with JP, nor mean and standard deviation
of the absolute difference figures have shown an improvement over those of SP. This
is somewhat misleading bearing in mind that the SP-.IP comparison is itself prone
to misclassification as discussed in Chapter 4. As with the SP approach, the MCS
calculation experiences problems in discriminating at the method level. Cases still
occur where methods match based on their relational context and attributes but which
do not actually represent a valid mapping. Although examination of the data sets has
been necessarily limited due to the sheer number of comparisons involved, the majority
of these cases fall below the current MCS threshold of 0.5 and none have been found
with a similarity > 0.75. (In terms of plagiarism detection, three cases identified by
the JPlag team and included in the sample analysed were the top three significant

1 8 7

matches reported by MCS extraction.)

However, in many observed cases where the .JP similarity value is shown to be
valid, in comparison to SP, the attributed, local determination of similarity provided
by MCS does improve on the context and relational constraints captured within the
base SP model by:

• localising the match process to deal with individual vertices and edges, and their
immediate neighbourhoods

• providing better matching of reference types by improving discrimination based
on their attribute profiles

• removing the “averaging” effect of aggregated method features and cross-method

feature match by matching methods individually

What is not clear at this stage is how crucial the deficiency in method match is
in practice. We are not looking to identify code clones, but higher level, abstract
structural similarity, closer to the defined interfaces rather than the detailed imple­
mentation. The variability inherent in the development process is such that structure
can differ dramatically between methods with similar functionality. Conversely, sim­
ilar structure may also not be indicative of similar function. This is pointed out in
[Jilani et al,2001] where they attempt to match software specifications based on a
formal approach employing partial orders on relations over sets of functional specifica­
tions. Although they highlight this variability in implementation as a reason behind
not being able to derive a valid measure of similarity based on structure, their experi­
ence is such that functional and structural similarity are generally well correlated, i.e.,
similar structure being indicative of similar function9. This is echoed by Whitmire in
the specific context of object-oriented design, and is of particular relevance given that
our current approach is predicated on a relational model of class-based development.
He states that on comparing two classes “1 have not seen a case in which two classes
participate in a similar set of relationships where they did not also serve the same
purpose and were not also internally structurally similar” [Whitmire, 1997, pp404].

9This has a parallel in the “similar property" principle of molecular chemistry, which states that,
in general, similar molecular structures have similar chemical properties.

188

The “cut and paste” and “idiomatic” development practices described by Baxter also
support the argument that structural similarity can in fact serve to identify useful
instances of reused or reusable code and associated specification [Baxter, 1998], By
overly tightening matching constraints at the method level, we may be inadvertently
removing the element of variability necessary to support the search for useful common
structure. Admittedly, overly lax constraints can lead to the identification of spuri­
ous matches, thereby reducing the efficiency and ultimate effectiveness of the overall
process. Our current model is designed to compensate for the lack of detailed method
structure by concentrating on the relational aspects of class structure represented by
the associations between the fields and methods, both internal and external. Although
the analysis presented tends to supports this general hypothesis, it is also clear that de­
ficiencies in our current model give rise to exceptions that slightly weaken the validity
of the claim.

5.5.1 Using SP as an MCS predictor

A significant observation to be made from the preceding analysis is that in all but
the most trivial of cases, MCS identification is going to be time consuming. Given
a sample of 50 ARGs drawn from data set “j5” and an average analysis time of 2.02
secs, per pair-wise comparison, it would take over 41 minutes to perform a full MCS
analysis. Scaling this to larger collections and class sizes could be difficult to justify: an
analysis of 1000 such classes would take over 11 days. Irrespective of the potential gains
to be made in aggressively attacking the design of the code, in terms of optimising
the data structures and algorithmic fine detail, it is unlikely that we can achieve a
significant, order of magnitude, improvement in performance. Running the analysis
on more powerful hardware is an option but again the degree of improvement is not
likely to be generally significant. It is also clear that in the vast majority of cases the
results of MCS comparison are negative, in that no significant common structure is
discovered. If a mechanism were available that limited the MCS analysis to cases that
were potentially of interest, this could reduce the overall analysis time considerably.

Although the SP approach of Chapter 4 is flawed and subject to ongoing improve­
ment, it has nevertheless been shown to correlate well with an existing measure of
structural similarity (JP), as well as to the current MCS definition of structural sim­

189

ilarity. Calculating the time for an SP analysis of 50 ARGs based on an average
pair-wise comparison time of 0.012 secs, takes 15 secs, and for 1000 ARGs just over

1.5 hrs., a considerable reduction over MCS.

The three data sets “HI”, “S2” and “j5” were subjected to ROC analysis using
MCS as the benchmark reference and SP as the classifier. ARG pairs were classified as
similar if the MCS similarity measure was greater than or equal to a threshold of 0.5.
The ROC plot statistics for the three data sets are given in Table 5.13. The sensitivity
and specificity values are provided based on an SP cutoff of 0.5.

Data
Set

Sensitivity Specificity

“HI” 0.99 0.97
“S2” 0.76 0.95

“j5” 0.86 0.99

Table 5.13: SP as predictor of MCS: ROC analysis using MCS reference threshold 0.5,
SP cutoff 0.5

We observe that as a classifier, based on the reference MCS similarity values, SP
with a cutoff of 0.5 appears to perform well in all three cases. The sensitivity and
specificity figures equate to good recall and precision. However, even given the high
sensitivity value, our current context is such that any missed significant, pairs should
not be ignored. Although a somewhat uncompromisingly stringent requirement in
practice, let us consider the scenario where we attempt to enforce perfect sensitivity
(recall) within set MCS threshold levels and SP cutoff values. Taking data set “j5” and
enforcing perfect sensitivity would require the SP cutoff to be lowered to 0.45. This in
itself is not a problem until we consider data set “S2”: in order to achieve a sensitivity
of one, the SP cutoff would need to be reduced to 0.22, giving rise to a reduction in
specificity to 0.71. Carrying this cutoff value back to the “j5” data set would indeed
give a sensitivity of 1.0 but in this case a totally unacceptable specificity of 0.13. Again,
as in the case of the ROC analysis of Chapter 4, finding a universally applicable cutoff
value is problematic as a result of the current weaknesses in the SP approach. The

190

improvements to SP suggested in Chapter 4 may provide a better SP cutoff value,
one that provides universally perfect sensitivity while retaining a reasonable level of
specificity. A further improvement in performance may be attainable by using the
extracted class attributes to additionally qualify the SP match. For the moment, SP
can only be regarded as a reasonable but imperfect filter to the MCS analysis.

5.6 Summary: problems and opportunities

We set out in this chapter to develop a means of improving the global measure of class
similarity of Chapter 4 by tightening the bounds on the assessed degree of similarity
and identifying the ARC elements contributing to that similarity. Our local approach,
based on the identification of maximum common subgraphs, supported by clique de­
tection based on a novel combination of a deterministic and heuristic algorithm, does
indeed identify the contributing substructure for a wide range of class sizes.

In order to limit the computational overhead associated with clique detection,
a novel combination of techniques was introduced to reduce correspondence graph
size. This principled, and not necessarily domain-specific, approach to correspondence
graph size reduction was provided by i) adopting a hierarchic approach to vertex
classification ii) requiring MCSs to be rooted and connected, and iii) using graph
symmetry in the form of automorphism groups.

However, confidence in the general classification power of this MCS-based approach
is again occasionally weakened by inadequacies in the matching of individual class
methods. Despite this limitation, the evidence in support of our hypothesis that
the lightweight, attributed, relational model of Chapter 3 is able to support a viable
classification of structural similarity in object-oriented code is compelling, particularly
when dealing with the more significant, upper quartile of similarity values. However,
the limited availability of pre-judged data sets, and the sheer number of comparisons
involved in the assessment of even small data sets, contribute to the difficulty in
accurately assessing classifier performance.

The use of MCS as opposed to MOS10 may be overly restrictive. Insisting that the

10MOS: maximum overlapping set is defined as finding a common edge-induced subgraph of two

191

relationships between matched vertices must match exactly could be relaxed such that
unmatched edges are discarded [McGregor, 1988; Chen and Yun, 1998]. Adopting an
approach based on MOS could also reduce the computational overhead by reducing
correspondence graph size [Nicholson et al, 1987].

The next chapter introduces clustering as a means of limiting the overall computa­
tional overhead associated with the search for common structure within the context of
classifying larger, dynamic collections of classes. In addition, by grouping the classes
into small, manageable clusters, it affords an opportunity to take a closer look at the
structure imposed on the collection by our approach to class comparison.

graphs with the maximum number of edges.

192

Chapter 6

C lass C ollections: classifying
re c u rrin g s tru c tu re

6.1 Introduction

In Chapter 4, a model of object-oriented code structure was developed and a means
of establishing a global measure of similarity between pairs of Java classes described.
This approach was extended in Chapter 5 to include a higher precision, local mea­
sure of similarity based on graph morphisms, specifically maximum common subgraph
(MCS). In both cases, quantification of similarity was limited to comparing pairs of
classes over small data sets, with Chapter 5 highlighting the computational expense
associated with structure graph matching and MCS analysis, in this chapter the
emphasis changes from the quantification of similarity in small data sets to the re­
lated issues of minimising computational overhead and maximising the potential for
identifying common and recurring structure in larger, possibly dynamic collections of
classes.

As the foundation of our approach to the identification of recurring, common struc­
ture in class collections, we begin by exploring the principles and techniques behind
the grouping, or clustering, of similar elements within a larger collection. The basic
hypothesis being tested here is that an approach based on such a clustering is valid,
in that clustered classes are similar by virtue of repeated occurrences of the same

193

or very similar common structure. Taking a justifiably modified standard algorithm,
the “Leader” algorithm, we use it as a reference for comparison with our novel, but
more complex hybrid algorithm, Limited Hierarchy Bisecting K-medoids (LIIBKM).
This chapter also introduces a naive but effective incremental clustering approach,
Incremental Limited Hierarchy Bisecting K-medoids (ILHBKM).

G.2 H arvesting and searching for com m onality

6.2.1 Larger collections

Briefly restating one of the fundamental goals of this work, through the analysis and
comparison of Java classes, via a representation based on a attributed, relational model
of class structure, the intention is to investigate an approach to determining the pres­
ence of common, recurring structure within object-oriented code. The implied dis­
tinction between common structure and recurring common structure is intentional:
although the capacity to identify similarity through common structure is fundamen­
tal, and of itself essential in establishing pair-wise match, the presence of recurring,
common structure is of particular interest. Repetition lends weight to the significance
of the repeated structures both as components in the development process and as
patterns of and for reuse. As such, a means of efficiently and effectively analysing col­
lections of code in order to provide indicators to the possibility of repeated structure
is required.

Determining the level of repetition within a given collection of classes would ideally
require that each class be pair-wise compared with every other collection class, followed
by a recursive, exhaustive comparison of the extracted common structure. Such an
exhaustive approach is unlikely to be tractable except in the case of trivially small
collections. In this chapter we investigate an approach to identifying common structure
that is sub-optimal but useful, based on unsupervised classification.

As previously discussed in Chapter 5, SP feature-vector screening using ranking
and thresholding is able to limit the number of detailed, MCS-based, local assessments
of similarity. Consequently, one might expect such an approach to limit complexity
within the bounds of practicality. However, for other than trivially small collections,

194

consideration of the 0 (n * 2) complexity of pair-wise comparison might suggest other­
wise.

Given a set C of classes { 6 \ , 6 b . . . C n } to be analysed for significant common struc­
ture, the minimum number of pair-wise comparisons generated during the construction
of a full similarity matrix M , j = f s { C i , C j) is given by n(n — l)/2 . A relatively small
data set containing 50 classes would give rise to 1225 initial feature-vector based pair­
wise comparisons, which if using SP and an average pair-wise analysis time of 0.012
secs, would take less than 15 secs.1. Having to deal with a larger, yet reasonable,
set of say 1,000 classes would require 499,500 comparisons and an SP analysis time
of over 1.5hrs. A large collection of 10,000 classes increases the SP analysis time to
nearly 7 days. (In the case of a new class being added to collections of size 50, 1000
and 10,000, the SP analysis time required to update the similarity matrix would be
approximately 0.6secs., 12secs, and 2mins, respectively.) Although exhaustive pair­
wise analysis, carried out “off-line” if necessary, provides a complete ranking suitable
for determining candidate MCS calculations, it has some drawbacks when we consider
the management and use of larger, dynamic collection of classes.

For the sake of discussion and in the context of locating common structure, let
us concentrate on collections of between 1000 and 10,000 classes and consider what
aspects of the collections might be of potential interest and how best to exploit them.
Principally, we are interested in i) identifying groups of classes that are similar, this
similarity being indicative of common structure, and ii) identifying collection classes
that are similar to a “target”2 class, resulting matches again acting as pointers to
common structure and potential reuse scenarios.

For any given class, a fundamental requirement would be the identification of those
classes to which it is similar above a given threshold. Based on average SP compari­
son times, for collections of size 1000 such, “significant neighbour” lists can reasonably
be generated either interactively, or as a natural consequence of an off-line, exhaus­
tive pair-wise comparison within a collection. The union of these lists can then be

'Times are averaged over several analyses and include database retrieval of feature vectors in
addition to the time taken to execute a similarity calculation. These times do not include the formation
of ARGs or extraction and storage of corresponding feature vectors.

2The use of “target” here refers to a class against which all collection classes are effectively being
matched. A “target” would be termed a “query” in the context of document retrieval.

195

used as input to an MCS analysis, the result of which would form the basis of an
index of common structure. It is most likely in practice that an exhaustive search for
common and repeated structure would occur within the context of an initial, but po­
tentially time-consuming, whole-collection analysis, followed by sporadic, reasonably
quick incremental updates. However, in certain circumstances, the interactive, real-
time derivation of a best-match list of significant neighbours for a newly introduced
class will be of more immediate utility.

As shown above, for a collection of size 1000, an individual class’s significant neigh­
bours can be established in less than 15 secs. If the significant neighbour list were to
contain 5 classes3 the associated MCS analysis would take less than 25secs, given an
average time of 2.02secs. per MCS extraction, based on the data sets analysed in
Chapter 5. Class collections of size 10,000 might be unusual in many contexts but
it is worth remarking that the corresponding 42min. (SP 2mins. + MCS 40mins.)
overhead for significant-neighbour list creation and MCS extraction may no longer be
seen as viable in the context of an interactive analysis. Although not a limiting fire-
tor in the context of small to medium sized class collections, techniques are available
that can in certain cases improve the efficiency of such best-match searches for large
collections, e.g., the use of inverted files to limit the number of collection elements
selected for comparison [Willett, 1983]. The use of inverted files is generally best ap­
plied in cases where feature vectors are sparsely populated and feature generality is low
[Murtagh, 1982]. Although our current SP feature vectors are generally sparse, several
features are present in a large proportion of the collection and as such undermine the
use of an inverted file approach4.

In any case, and irrespective of the vast majority of SP-based comparisons being
effectively redundant, i.e., not identifying significant pairs, the SP filter is very quick in
comparison to the significant overhead associated with MCS extraction. As collection
size increases, the waiting time between initiating a search and obtaining results could
however becomes unacceptable. Were we able to limit the number of comparisons
during SP filtering, tins could lead to a minor improvement in the overall analysis
time. However, given that the performance of an interactive query is dominated by

-,A figure of < < 1% of the total is a somewhat arbitrary but reasonable estimate based on the
sample data sets analysed.

4The features retain some degree of discrimination based on their relative frequencies.

the computation overhead of the MCS analysis, in order to provide an acceptable,
usable system, we must necessarily compromise on the number of MCS analyses carried
out. Consequently, a means of quickly identifying size-limited but typical groups of
matching classes within a collection is required.

In order to address this more pressing limitation imposed by MCS extraction, clas­
sification of a collection into groups (clusters) of similar classes, and filtering based
on the similarity between a target class and a smaller number of individual represen­
tatives of these groups is an option. Further, if we confine ourselves to best-match,
ranked retrieval, we are dismissing the additional information relating to patterns of
association provided as a consequence of classification, i.e., the identification of clus­
ters of similar structures where that similarity may be indicative of recurring, common
structure.

As collections of classes grow, in addition to the increasing analysis times, the
space overheads of exhaustive pair-wise comparison may in fact be seen as exces­
sive or indeed prohibitive: accommodating the in-memory structures associated with
the input to and results of a full analysis, in addition to constraints placed on the
performance of interactive matching, could likely invalidate or at least severely com­
promise the utility of such an approach. The issue of exhaustive pair-wise analysis
is further compounded in the case of an approach based on classification: in gen­
eral, a dynamic collection of classes will require periodic re-organisation in order to
optimise the classification. Incremental update can undermine the validity of a clas­
sification due to, for example, issues of order dependence associated with addition of
new collection elements, and the gradual degeneration of a previously optimal struc­
ture [Can, 1993][Charikar et all, 1997]. If this classification process is itself based on
an exhaustive pair-wise analysis, the time required to carry out such re-organisations
could again be prohibitive.

6.2.2 The need for partitioning

In light of these concerns, the adoption of a best-match, ranked list approach and/or
the derivation and maintenance of a complete matrix of pair-wise feature-vector sim­
ilarity measurements may be impractical, both as a means of supporting exhaustive,

1 9 7

whole-collection analysis, and individual class-to-collection match. In order to address
this, we reinforce the distinction between the long-term identification of repeated, com­
mon structure and the interactive, real-time search of a collection based on a given

target class.

In the first case, rather than carry out an exhaustive MCS analysis based on a union
of all significant-neighbours lists, we may in the first instance be able to compromise
by limiting MCS extraction to selected, representative groups of similar collection
elements. In the case of interactive match, it may be necessary to compromise on
the production of an optimal ranked list of class pairs suitable for input to the MCS
extraction process. We suggest that a sub-optimal but usable analysis - in terms of
a practical balance between performance and coverage - may be achieved through
a process of classification, via the induction of an appropriate partition on a static
collection or dynamic stream of classes. Any instances of missed comparison could be
dealt with by means of a more time consuming, exhaustive but off-line process, which
would ultimately and effectively maintain the integrity of significant neighbour lists.

It must be stressed that the use of a partitional approach is being promoted prin­
cipally as a means of i) addressing the limitations imposed by the computational com­
plexity associated with MCS extraction, and ii) isolating significantly similar groups of
classes. It is not intended as an alternative to threshold-based ranked retrieval in the
context of the longer-term need to maintain a complete digest of common structure.

Given a set of classes, a reasonable initial goal would be to generate a partition such
that the inter-clusterdntra-eluster similarity ratio is maximal. An optimal algorithm
would involve generating all the possible partitions of the set, selecting the partition
that maximises this ratio.

Given a set C of classes {C \ , C'2 . . . Cn}, the number of ways it can be partitioned
into disjoint, non-empty sets is given by the nth Bell number:

t Sn iK)
K - 0

where Sn^ is the number of possible K partitions of the set. Sn K̂ ̂ satisfies the

198

recurrence relation

Sn - 1 (K 1 ̂ + K S n _ i ■A J otherwise

The values of Sn ĥ ̂ are know as Stirling numbers of the second kind and are expouen-

1 if K = 1 or K — n

tial in the size of S. For example, a set of 5 classes would give rise to 52 distinct parti­
tions, while a 15 member set would generate 1,382,958,545 partitions. Consequently,
for other than trivially small collections, it is obvious that exhaustive enumeration of
the possible subsets is impractical. By way of compromise, a sub-optimal partition at
much lower computational cost is required.

We can approach this combinatorial problem from several directions including the
use of faster hardware, more efficient algorithms, and the use of heuristics to remove
unnecessary comparisons. Hardware and algorithmic considerations are possibly rather
obvious but by no means trivial: the significance of heuristics and algorithmic efficiency
has already been discussed in Chapter 5, while the potential utility of a distributed
approach to computation in relation to repository matching has obvious benefits. The
approach to be considered here is centered on the reduction of the number of pair-wise
comparisons both at the SP feature-vector filtering stage and during MCS extraction.
In principle, comparison of similar elements must be ensured while comparison of
non-similar elements should be avoided or minimised.

So far we have considered the problem of establishing similarity between classes
and ensuring significant, pair-wise common structure is identified within a collection of
classes. This approach aims at providing an indirect means of supporting the isolation
of recurring, pair-wise common structure via the creation of clusters of similar classes
- the suggestion being that these classes are similar by virtue of repeated occurrences
of the same or very similar common structure. In addition, by extending the analysis
of a class collection to include a limited index of the results of MCS extraction, a
means of directly identifying and recording a limited amount of recurring structure
is introduced. We do not currently address the problem of the direct identifying of
recurring structure where the individual structure spans multiple classes.

The combined approach proposed here involves the partitioning and indexing of
a set of ARGs based on a combination of the global and local measures of similarity
introduced in Chapters 4 and 5. Building on an initial collection partition using SP,

199

allowing incremental growth, and including an MCS indexing phase, we investigate
how effective it is as a means of supporting the search for shared structure.

6.3 Cluster Analysis

6.3.1 Unsupervised classification

The partitioning of a data set based on the structural properties of its individual
elements is essentially an exercise in classification. In the case where prototypical pat­
terns already exist, supervised classification can proceed by assigning the elements of
a collection to the partition class labeled by the best matching prototype. Generation
of partitions or matchings based on the existence of such prototypes, alongside a pri­
ori information regarding the class distribution and conditional probabilities, can be
used to develop classifiers based on Bayesian probabilistic models and the principle of
minimum error (maximum likelihood) [Tou and Gonzales, 1974].

In the current case such an approach is limited if not impossible as a result of a)
the absence of prototypical classes, b) the lack of labeled training examples from which
to generate the necessary probabilistic model and c) the fact that each element of the
collection can in principle be regarded as a potential prototype of a pattern class.
Consequently, minimum distance, unsupervised clustering techniques, based solely on
information contained within the data set remain the only viable option.

This automatic generation of data partitions comes under the general heading of
cluster analysis which, as an exploratory form of data analysis, attempts to identify a
“useful” classification within a given data set.

“Clustering is the unsupervised classification of patterns (observations,
data items or feature vectors) into groups (clusters).”

[Jain, Murty and Flynn, 1999]

In essence, clustering can be used for i) classification where it attempts to organise
the elements of collection into naturally cohesive groups [Duda and Hart, 1973]; ii)

200

to improve the efficiency and effectiveness of query-based search where a given target
structure is compared against a small number of representatives of the clusters, rather
than an entire collection [van Rijsbergen, 1979]; and iii) it has been shown to provide
a framework capable of facilitating within-collection browsing [Cutting et al, 1992].

G.3.2 Clustering methods

Data clustering, or cluster analysis, attempts to determine the structural character­
istics of a data set by means of its organisation into subgroups or clusters. There is
an extensive body of literature relating to cluster analysis and its application across
a wide variety of domains, including molecular similarity [Willett, 1987], information
retrieval [van Rijsbergen, 1979], image processing [Sonka et al, 1993], pattern recogni­
tion [Webb, 1999], and many others including Medicine, Social Science, Education and
Archaeology [Everitt, 1993]. This represents a rich and growing variety of approaches
to clustering, which is somewhat undermined by the comparative absence of a theo­
retical basis upon which to base an appropriate choice. Consequently, in the context
of a particular clustering problem, we are inevitably driven towards a somewhat sub­
jective, empirical decision as to which method to adopt. Naturally, a choice may be
guided by the particular problem constraints and any parallels with existing solutions.

A reference model for clustering is provided by Firs four step generalised algorithm
as described in [Looney, 1997]. This is based on the availability of a similarity measure
between collection elements, a measure of partition quality in terms of cluster distinct­
ness, a repartitioning method used to improve the quality of a generated partition,
and a rule determining when the process should terminate.

The general steps are:

1 Partition a collection of elements C = { C \ , C2 ... Cn } represented by n feature
vectors into K trial subsets according to some measure of association.

2 Test the quality of the partition formed in step 1 for sufficient intra-cluster
similarity and inter-cluster dissimilarity.

3 Stop if the test in step 2 satisfies a given criterion function or stopping condition.

201

4 Repartition C by merging or splitting clusters based on threshold levels of asso­
ciation, or by reallocation of elements between clusters, then go back to stop 2.

Taking account of relevance within the current context, a working categorisation
of the major approaches to intrinsic or unsupervised clustering methods is provided
below. As a sufficient basis for class collection clustering, the emphasis here is on
introducing hierarchical and partitional approaches to clustering, density, grid and
model-based methods are not discussed. A recent review of data clustering is provided
in [Jain, Murty and Flynn, 1999] while algorithms used in clustering are discussed in
[Jain and Dubes, 1988] and [Kaufman and Rousseeuw, 1990].

• Hierarchical methods: based on the generation of a proximity matrix rep­
resenting the degree of association between all individual collection elements,
this method forms a tree, the nodes of which are clusters or individual ele­
ments. The root node is a cluster containing the entire collection of elements,
the children of each node representing a binary partition of the parent that
maximises intra-cluster and minimises inter-cluster similarity. A natural conse­
quence of this organisation is the discovery of taxonomies of structure within the
collection, the nested hierarchy additionally providing a convenient navigational
framework in support of searching and browsing. A major reported benefit, of
an hierarchic clustering is the performance improvement over full-search ranked
retrieval: matching (querying, searching) target structures against such hierar­
chies is founded on the cluster itself being the unit of retrieval, i.e., cluster-based
retrieval [van Rijsbergen, 1979]. A retrieved cluster may be a single document
but where it contains multiple elements, these are again hierarchically organised,
providing the same navigational framework.

Creation of an hierarchic clustering can proceed agglomeratively from an initial
consideration of the individual elements towards the single root cluster - step 1
in Fu’s model would involve assigning each individual element to its own cluster.
Alternatively, a divisive clustering can be obtained by proceeding from the root
to the individual elements - step 1 in Fu’s model would initially involve assigning
all element to the one root cluster.

The more popular agglomerative approach proceeds by selecting the two “clos­
est” elements represented in the proximity matrix, combining them into a new

2 0 2

cluster, and recalculating the proximity values dependent on this combination.
This combination and recalculation continues until only one cluster remains.
Specific algorithms differ in the definition of similarity underlying the choice of
elements for combination, cluster representation, and the method subsequently
used to update the proximity matrix [Willett, 1987], Both agglomerative and
divisive approaches are usually complete in that a full hierarchy is generated.
However, construction of an agglomerative hierarchy may be stopped, as per st ep
3 of Fu’s model, when a threshold level of within-cluster similarity is reached. It
has been shown that typically only the bottom-level clusters in the hierarchy are
useful due to the undifferentiated, diffusely represented clusters found at higher
levels [El-Hamdouchie and Willett, 1989]. Both approaches have been criticised
in that once two element have been either assigned to a given cluster (agglomera­
tive) or separated into disjoint clusters (divisive), they will respectively never be
separated or regrouped. Irrespective of the dynamics of the clustering process,
where individual cluster evolution may be such that separation, regrouping or
relocation could improve an existing classification structure, neither hierarchic
approach can accommodate this.

• Non-liierarchical (partitional) methods: non-hierarchic or partitional clus­
tering methods produce a flat, single-level partition of collection elements into
clusters or subsets. Unlike the hierarchical model, which requires a global, si­
multaneous measure of similarity in the form of a proximity matrix, partitional
methods proceed directly from the local properties of collection elements, clus­
ter assignment being based on comparison with existing cluster representatives,
variously referred to as “prototypes”, “centroids”, “medoids” or “centrotypes”
depending on context. This difference is significant, as it is the principal factor
in the reduction of algorithmic complexity over hierarchical clustering.

Depending on the algorithm, a partition is generated based on a user-defined,
static number of clusters or on a dynamically changing cluster population, where
clusters are created, aggregated, divided or deleted under a combination of user
parameterisation and/or algorithmic control.

A typical algorithm results in the creation of K clusters based on an initial se­
lection of K cluster representatives. Elements are assigned to these provisionally
represented clusters such that a criterion function defined over individual cluster

203

elements (local) or the partition as a whole (global) is optimised. This initial
partition can be subjected to a process of refinement by optionally iterating over
the reselection of cluster representatives and reallocation of elements to existing
or new clusters, until such time as a stopping condition is met, e.g., on conver­
gence of the criterion function, or where this is not guaranteed, based on minimal
change, or following a set number of iterations.

Each cluster is characterised by means of a typical, representative element - con­
crete or abstract - which can be interpreted as its “center”. These centrotypes5
vary depending on the nature of the feature space and the similarity measure:
“medoids” are centrotypes whose average dis-similarity with all other cluster (de­
ments is minimal, while the “centroid” minimises the overall Euclidean squared-
error between itself and the remaining elements. They differ in that the former
represents an actual cluster element while the latter is potentially abstract, not
necessarily corresponding to a concrete cluster element.

Global criterion functions are often based on minimising the sum of Euclidean
squared-error or within-cluster variation [Jain, Murty and Flynn, 1999]. The
Euclidean sum of squared-error sse{C, V} for a I\ -partition, V, of a collection C
is given by

K a ,

sse{C, V} = I*ij - Cj|“
l *=l

where Xjj is a feature-vector representation of the ith element in the j th cluster,
Cj is the centroid of the j th cluster given by

n T >
•i i=i

and 7ij is the number of elements in the j th cluster.

However, in many situations, the use of a centroid as cluster representative is
inappropriate. An alternative approach focusses on minimising the error or dis­
tance between a defined, concrete cluster center and the remaining cluster ele­
ments, e.g., the PAM clustering approach uses a representative medoid, which is
the most centrally located element in a cluster [Kaufman and Rousseeuw, 1990].

5Centrotype: a generic term drawn from numerical taxonomy where it is defined as that operational
taxonomic unit closest to or at the geometrical center of its cluster.

204

The quantity to be optimised is given by a generalisation of the centroid-based,
sum of squared error shown above, expressed here as a maximisation of a sum
of similarities (ss) rather than a minimisation of distances:

K nj

ss{C ,V \ = ^ 2 Y t S(xi j ,r j)
j - 1 i ~ 1

where r, is the feature-vector of the j th cluster’s representative, and S a similarity
coefficient.

An example of a local criterion function is cluster assignment based on an el­
ement’s nearest neighbours: once each element’s nearest neighbours are estab­
lished, an element is assigned to the cluster containing the greatest number
of its nearest neighbours. Approaches based on nearest-neighbour partitioning
are described by [Jarvis and Patrick, 1973], [Gowda and Krishna, 1978] and
[Guha et al, 2000].

• Hybrid methods: hybrid clustering methods represent an amalgamation of
hierarchical and partitional approaches, in order to ameliorate the drawback
of computational complexity associated with hierarchical clustering applied to
large data sets. An hierarchical approach can address the difficulty associated
with the determination of initial clusters or cluster representatives: a partitional
algorithm is seeded with the result of generating an hierarchic clustering of a
typical, representative subset, or random sample, of the main collection [Cut­
ter et al, 1992]. For example, by judicious selection of a stopping rule, i.e.,
a threshold level of similarity, the construction of an agglomerative hierarchy
continues until such time as a cluster combination exceeds this value, a union
of the elements in the hierarchies of connected clusters giving rise to a parti­
tion. (The significance of Fu’s stopping condition in an hierarchic clustering
context rests on applying such a stopping rule during the generation of a suit­
able partition.) The generated partition can then be used as either an initial
set of clusters to which remaining collection elements can be assigned according
to a partitional algorithm, or representative labels can be extracted and used
as initial seeds, e.g., cluster centroids. Apart from the potential drawback of
temporal and spatial computational overhead, the importance of hierarchy rests
on improved search effectiveness and the navigational structure afforded by the
layered, linked structure.

205

In contrast to hierarchical clustering as a means of generating a partition, the
disjoint groups resulting from an initial partitional approach - from hereon in re­
ferred to as top-level clusters - can be individually subjected to an hierarchic clus­
tering, the intention being to capitalise on the lower complexity of the partitional
algorithm, while retaining the reportedly better cluster quality and navigability
of an hierarchical clustering. Received opinion states that in general, high-level
clusters within an hierarchic structure are of little use during target-collection
matching / searching due to the rather diffuse nature of their representatives.
Indeed, several studies have demonstrated the utility of restricting the process
to lower-level clusters [Croft, 1980; El-Hamdouchi and Willett, 1989].

• Overlapping clusters: standard hierarchical clustering methods are typically
“crisp” in that clusters are disjoint subsets of the main collection. In contrast,
partitional clustering can be “fuzzy”, clusters no longer being necessarily disjoint
in that they are allowed to overlap. A strict interpretation of a fuzzy clustering
depends on collection elements being associated with clusters based on degrees of
membership, total membership across all clusters for any given element summing
to one [Klir and Yuan, 1995]. This effectively establishes a clustering but not a
partition: in order to generate a partition, elements must be assigned to concrete
clusters by means of membership thresholding. This assignment generates a
“fuzzy” (or “soft”) partition, where collection elements may be simultaneously
assigned to more than one cluster.

• Increm ental update: incremental methods are a response to the potential
overhead of reclustering as a result of the addition or removal of collection ele­
ments, particularly when dealing with large data collections. Incremental meth­
ods aim at maximising “stability under growth”, one of the theoretical clustering
adequacy criteria: cluster structure should not change drastically as a result of
dynamic collection activity [Jardine and Sibson, 1971]. In the current context of
generating and maintaining a repository of classes and their common structure,
repository searching and browsing should preferably be consistent under update
- principally addition - while in no way limiting recovery of commonality in code.

In general, although hierarchical clustering is a well represented and favoured ap­
proach, for large collections it has been shown to be relatively expensive in both

206

time and space complexity. A general hierarchical agglomerative algorithm, based on
the determination of all inter-element similarities, can have 0 (n A) time and 0 (n 2)
space complexities. This is markedly improved upon by approaches based on nearest-
neighbour and, in particular, recipricol nearest neighbour determination, giving rise
to O (ir) and in some instances 0{n logn) performance [Murtagh, 1983]. However,
even given the improvements available through increasing processing power, storage
capacity, algorithmic efficiency and parallelisation, potentially sub-optimal partitional
or hybrid approaches may generally be better suited to the clustering of large data
sets due to their rectangular 0 (k n) time and 0(n) space complexity.

Consideration of time and space constraints are implicit in the proposed methodol­
ogy. Reasonable time complexity is a subjective expression of domain specific demands.
In the current context, analysis of class-file collections for common structure is seen as
a predominantly offline procedure taking place during periods of inactivity or planned
maintenance. Repository construction, including collection partitioning and update,
MCS extraction and storage, can reasonably be accommodated as off-line processes.
In contrast, matching (searching) against, and browsing within, the repository would
be an essentially user-centric, interactive task. Space constraints are dictated less
by the characteristics of the specific domain and more by the nature of the generic
algorithms and data structures employed: in combination with the fixed constraints
imposed by the available hardware, operational margins are more stringent, particu­
larly those associated with the in-memory structures such as collection data, proximity
matrices, and search trees described in this chapter. A little more memory is often
not as immediately available as a little more time.

6.3.3 Clustering tendency

It should be noted that having argued the need to partition larger collections or dy­
namic streams of classes, an untested assumption is being made in relation to the
inherent clustering tendency of such a collection. The premise implicit in the discus­
sion thus far is that sets of classes exhibit a natural tendency to form clusters based
on common structure, i.e., that class collections have a strong cluster structure.

[Jain and Dubes, 1988] emphasises the need to

2 0 7

.. guard against the embarrassment of applying elaborate clustering tech­
niques and cluster validity methodology to data in which the clusters can
only be artifacts of the clustering algorithm.”

This cautionary comment is particularly relevant when generating a classification
where the intrinsic structure of a collection element is the fundamental basis for clas­
sification and the identifying characteristics of the clusters are at a higher level of
abstraction than the elemental representation employed, as in the case of biological
taxonomy and speciation; molecular similarity and structure-activity relationships;
and information retrieval and document semantics. This additional level of abstrac­
tion is not an immediate issue in the current model of class structure: inferring a
higher-level classification of a collection of classes based on the represented underlying
structure is subordinate to the need to induce a good quality partition in terms of
the balance between localisation of common structure and computational overhead.
Remembering that the current study looks to recover instances of common structure,
even in the extremely unlikely worst case where there is little evidence of strong cluster
structure, with collection elements randomly distributed throughout the feature space,
forcing a partition still remains valid. The principal objective here is to try and rea­
sonably reduce the computational overhead of exhaustive comparison in determining,
for a given target class, whether significant degrees of (sub-) structural commonality
actually exist across a collection. Reasonable in this context relates to real-time per­
formance in identifying a significant proportion, or at the very least, a typical sample,
of any common structure present.

6.4 Partitioning Collections of Classes

6.4.1 Problems, compromises and consequences

In order to make an appropriate choice of partitioning technique, this section discuses
several potential logical and implementational problems, alongside their immediate
consequences and any implied compromises.

208

Hierarchical or non-hierarchical

The choice of clustering method is necessarily problem specific as no formal selection
framework is known to exist. The debate as to whether, for example, an hierarchical
as opposed to partitional approach is best, or for that matter whether a particular
method within either of these categories is a better choice, is somewhat academic. As
reported in [Jain and Dubes, 1988], “...the comparative analysis of clustering methods
presents a continuing problem for research”. This is arguably still the case. The
inevitable consequence is a reliance on pragmatic issues as expressed by the analytic
efficiency of cluster extraction, and the resulting efficacy of the classification produced,
in terms of its “usefulness” [Barnard and Downs, 1992]. Usefulness here equates to
obtaining a good quality partition of a class collection: a good quality partition can
be simply defined as one that is quick and easy to generate, and which promotes but
doesn’t limit the timely identification and search for common structure between the
constituent collection elements, i.e., it doesn’t prevent detailed comparison of elements
that exhibit significant structural commonality but limits comparison of those that do
not.

As previously mentioned both time and space complexity are crucial factors: irre­
spective of the nature of the generated partition, there is no point in applying a method
that doesn’t scale given the temporal and physical constraints associated with avail­
able resources. Where there is no immediate need for a complete hierarchic clustering,
and/or potential collection size mitigates against the generation of a full similarity
matrix and hierarchical algorithm, a lower complexity partitional approach is justi­
fied. In addition, it has been argued that in many situations the benefits of building
a full hierarchical structure are questionable: in practice only the lower levels of the
hierarchy are useful due to the amount of information reduction at higher levels [Ru­
ral et al, 1999]. Within the context of molecular property prediction, the performance
of non-hierarchic relocation methods have been shown to be comparable with those
given by hierarchic, agglomerative methods [Willett, Winterman and Bawden, 198(1;
Willett, 1987]. A recent approach applied to document clustering also suggests that
a refined partitional approach can outperform hierarchical agglomerative clustering,
from the perspective of both efficacy and complexity [Steinbach, Karypis and Kumar,
2000].

209

“Single-pass” or centrotype-based (“K-means typ e”) relocational cluster­
ing

Partitional clustering algorithms range from simple, single-pass, algorithms such as
Hartigan’s “leader” and Bow’s “thresholding” algorithms [Looney, 1997], through
squared-error minimising, iterative, relocational techniques such as K-means and its
more sophisticated, heuristic “ISODATA” derivative as described in [Ton and Gonza­
les, 1974]. Partitioning Around Medoids (PAM) [Kaufman and Rousseeuw, 1990] and
its scalable derivatives, CLARA [Kaufman and Rousseeuw, 1990] and “CLARAN S”
[Ng and Han, 1994] relax the K-means dependency on a metric similarity measure
and an abstract, representative centroid, relying solely on the selected measure of
inter-element similarity to determine a concrete cluster centrotype, or medoid.

The single-pass algorithms are simple, efficient and self-organising in that they au­
tomatically determine both the number of clusters and their membership: employing
a threshold-based, minimum-distance, sequential assignment of elements to clusters -
the minimised quantity is usually the Euclidean distance between an element’s feature-
vector and that of each cluster centroid. The initial centroid is provided by the first
collection element, creation of new clusters occurring if a stipulated similarity thresh­
old is not met on comparing remaining collection elements with existing centroids.
Unfortunately, the performance of these algorithms is highly dependent on the order
in which the collection elements are processed and on the specified similarity threshold
[Willett, Winterman and Bawden, 1986].

The iterative, relocational nature of the centrotype-based group of algorithms such
as K-means improves on the simple single-pass approach and to a degree limits the
problem of order dependence: by attempting to minimise the overall squared-error, an
initial partition is iteratively refined by relocation of cluster elements to their closest
cluster center followed by recalculation of these centers. The process is repeated until
no further relocations occur or a set number of iterations has been completed. Using-
traditional K-means, if cluster centroids are recalculated at the end of an iteration
pass, as per the “Forgy” method, the process is independent under a reordering of
the collection of elements. However, recalculating centroids immediately on relocating
of an element between clusters, as in the “MacQueen” approach, has been shown to
improve the speed of convergence, in addition to producing superior classification, at

210

the expense of order dependence [Pena et al, 1999]. PAM adopts an iterative approach
to determining cluster representatives (medoids) by attempting to minimise the overall
average dissimilarity between collection elements and their closest medoid.

The main problems presented by algorithms such as K-means relate to determining
K , the number of clusters; the initial assignment of cluster representatives; the disrupt­
ing influence of outliers; and the lack of support for overlapping clusters. Selecting
the number of clusters and initial cluster representatives have been shown to crit­
ically influence the performance effectiveness, robustness and efficiency of K-means
[Pena et al, 1999]. In practice, K-means algorithms have been shown to converge
rapidly, though not necessarily to a global minimum. Several variants of the K-means
approach take other factors into account, such as limiting cluster size, escaping local
minima, dealing with outliers, catering for categorical data, and using multiple cluster
representatives to overcome linear separability (see below). Irrespective of the specific
algorithm, the principle, overriding performance factor is the selection of and assign­
ment to initial cluster representatives. Although computationally more demanding,
approaches such as PAM are more resistant to the effects of outliers and noisy data, are
order independent, and effectively independent of the means by which inter-element
similarities are established. However, as discussed below, current modifications to the
basic PAM method have beexr shown to handle very large data sets quite efficiently.

The majority of partitional algorithms based on minimal distance (maximum simi­
larity) assignment, including those mentioned above, are theoretically limited by being
linearly separating: clusters produced by these approaches are distinguished by being

hyperspherical or hyperelipsoid, separable by linear hyperplains. Although this can
prevent the location of long, narrow or curving clusters, as in the discussion relating to
clustering tendency and forced induction of a collection partition, this is not an issue
in the current context. Here, we effectively attempt to reasonably limit the extent of
an exhaustive pair-wise, ranked similarity of a collection. Discovery of an underlying,
natural classification, although of interest, is at this stage subordinate to the efficient
and effective identification of significant samples of any common structure that may
be present.

211

O verlapping clusters

Partitioning based on the principle of minimum-distance assignment leads to the gen­
eration of disjoint clusters, membership of an element being restricted to oidy one
cluster, even though it may show a significant degree of similarity to elements in
other clusters. This introduces a limit on the extraction of structural commonality
in the proposed approach, as only pairs of classes within selected clusters arc directly
subjected to the more complex MCS analysis. By allowing overlapping clusters, the
chance of finding common structure could be improved. Algorithms have been devel­
oped that directly support overlapping of clusters [Cole and Wishart, 1970], while the
membership function of a fuzzy K-means algorithm can be used to indirectly induce
an overlapping partition as mentioned above. Such approaches are generally more
involved in terms of their implementation, as well as exhibiting greater time and space
complexity. The initial approach adopted here is based on an initial, straightforward
“crisp” partition, being followed by a simple, single-pass overlap phase, in the hope
that these additional overheads can be minimised without unduly compromising the
utility of the approach.

Increm ental update

Software development is an inherently dynamic activity and inevitably the repository
of classes will change through time, raising the issue of dynamic update of a previ­
ously generated partition. On the one hand, the addition or deletion of elements from
a collection may induce a full reclustering to ensure continuing, effective performance
of the cluster structure. Alternatively, the robustness of a clustering approaches may
be such that limited additions and deletions do not significantly affect the existing
clusters, thereby minimising the frequency and inconvenience of full reclustering. The
Incremental Cover-Coefficient Clustering Method (IC'*M)of [Can, 1993] is an exam­
ple from the domain of document clustering of a dynamic approach capable of dealing
effectively with large collection expansion and contraction. The “leader”, “thresh­
olding”, and “K-means-type” relocational algorithms such as classical K-means and
PAM, show a certain degree of robustness to the addition of limited numbers of new
elements. Incremental update is discussed further in Section 6.8.1.

212

C luster size

Echoing the findings of Chapter 5, MCS extraction is a time consuming process. In
order to establish a balance between computational efficiency, the identification of co­
hesive groups of similar classes, and class-collection match effectiveness, the point at
which a full MCS-based similarity assessment is instigated must be carefully consid­
ered. Consequently, practical constraints on individual, bottom-level cluster size are
such that a means of controlling the size of matched / returned clusters must be pro­
vided. In the current context, we define a bottom-level cluster as any cluster having
a size equal to or below a set threshold. (This differs from the generally accepted
definition given in the document clustering literature where it refers to that smallest
cluster that contains any individual document as opposed to just sub-clusters.)

6.5 An hybrid algorithm for clustering class collections

6.5.1 Requirements

To summarise the previous discussion, a partitioning method is required that provides
or addresses some or all of the following:

• Good quality: generates high quality partitions in terms of i) co-locating similar classes
ii) optimising the number of induced SP and MCS comparisons during class-to-collection
matching.

• Low computational complexity: scales to handle large collections (1000’s).

• Cluster size control: allows the size of a matched / returned cluster to be controlled such
that they are within the practical limits imposed by exhaustive pair-wise MCS analysis.
(MCS analysis is only to be applied to bottom-level clusters.)

• Robustness under dynamic update: allows a degree of addition of cluster elements with­

out the need to frequently regenerate an entire existing partition. •

• Support for searching/browsing: provides a framework for navigating through a collec­
tion.

213

6.5.2 The generic algorithm

Taking account of their relative performance factors and drawing on the rationale
behind both partitional and hierarchic clustering, the basis of the presented hybrid
approach is to use a low-complexity algorithm based on SP similarity to generate an
initial “crisp” partition of a collection, followed where necessary by a set of refinement
procedures. Refinement is primarily employed to improve the quality and practical
usability of the initially generated partition. This involves a combination of limiting
cluster size, “K-means-type” relocation of cluster elements, a degree of overlap, and
a final within-cluster hierarchical clustering. An high-level description of the generic
algorithm is given in Figure 6.1.

A major difficulty associated with the proposed algorithm relates to its parameter-
isation: base parameters include top-level and bottom-level cluster size thresholds;
element-to-representative and representative-to-representative similarity thresholds;
and a cluster quality threshold. All of these will ultimately determine effectiveness6.
In addition, implemented solutions may vary across several steps, e.g., the method
of initial partition creation and representation, the cluster splitting method, and the
point at which representatives are recalculated during refinement. These issues are ad­
dressed by way of a combination of the results obtained in Chapter 5 and the predictive
experiment described in Section 6.7.

The dangers associated with allowing overlapping clusters are violation of the pre­
viously imposed size limitation and a possible reduction in location effectiveness: if
overlapping is controlled merely by a similarity threshold applied between element
and centroid, clusters which are very similar could effectively assimilate each other,
leading to redundant MCS comparison and probable violation of the size constraint.
For example, this could arise as a result of splitting a large, highly cohesive cluster.
This is addressed in practice by preventing overlap in situations where the clusters
involved are similar in the sense of their respective representatives are similar within
a given threshold.

In situations where multi-cluster membership of an element is prohibited, otherwise
flThe use of GA in determining parameterisation might be worth considering based on a fitness

function such as the “F” measure defined in section 6.7.1 but the time overhead of non-trivial partition
generation and evaluation is possibly prohibitive.

214

1 GENERATE (an initial partition)

1.1 Process the entire collection to produce an initial, “crisp” partition using a low-complexity
algorithm. (Input: collection of SP feature vectors. Output: partitioned collection of
disjoint subsets, the t o p - l e v e l clusters)

2 REFINE (improve the structure to generate a set of u s a b l e top-level clusters)

2.1 WHILE there are large clusters DO

2.1.2 SPLIT (control cluster size)

if a cluster is large, i.e., above a set threshold, then split it into two or more
sub-clusters. This limits cluster size and indirectly limits the resulting depth of
hierarchy.

2.1.3 RELOCATE

2.1.3.1 recalculate cluster representatives

2.1.3.2 subject the generated partition to a “K-ineans-type” relocational refinement,
where each element is assigned to its closest cluster representative.

3 OVERLAP (improve “co-location” of significant pairs)

3.1 As a final pass, compare each element with the recalculated top-level cluster representa­
tives and c o p y the element into clusters where a) the level of similarity between element
and cluster representative is above a similarity threshold and b) the clusters involved are
sufficiently well separated in terms of the similarity of their respective representatives.

4 CREATE INTRA-CLUSTER HIERARCHY

4.1 Within each top-level cluster, generate an hierarchical structure in order to provide a
means of selectively limiting the size, and overall similarity, of a returned bottom-level
cluster with respect to a supplied target. This limited hierarchy also provides a framework
for navigation within the partitioned collection, by way of correlation and expansion.

Figure 6.1: Generic Partitioning algorithm

215

similar elements may not be “co-located”. This is not necessarily problematic in terms
of missed commonality. In such situations, the level of commonality between the
clusters containing the similar elements is likely to be significant: if a representative
of the common structures discovered in the first cluster is recorded, followed by the
discovery and recording of a very similar representative of common structure in the
second cluster, indexing the results of comparing representatives could be used to
create an implicit link between elements across cluster boundaries. (This is the subject
of further work).

The induced hierarchy need not be complete in that clusters at the lowest level of
the hierarchy need only be of size less than or equal to a maximum returned cluster
size: in response to a search of the collection based on a target class, the maximum
size of returned cluster is controlled by a set threshold, determined by the overhead
associated with pair-wise MCS analysis of the returned cluster elements. It is therefore
unnecessary to develop the hierarchy as far as single element clusters.

0.5.3 Similarity measurement: coefficients, representatives and con­
tainment

Similarity coefficients and cluster representatives

The similarity coefficient based on the process of relative normalisation introduced
in Section 5.4.4 has proven useful. As an integral part of the SP model of deter­
mining similarity between ARGs, it would be reasonable to retain it as the means of
determining similarity between cluster elements, and element-representative similarity
when relocating elements between clusters based on assignment to the nearest cluster
representative or center. However, this presents a problem when selecting an appro­
priate cluster representative and effectively limits any implementation to that which
does not dependent on the metric properties of its similarity coefficient or the use of
an Euclidean centroid as previously defined '. 7

7K-means partitioning requires that the measure of dis-similarity obeys the triangle inequality.
The coefficient based on “relative normalisation” is possibly metric, as it is derived from the Soergel
coefficient which is itself metric, but this has not been formally demonstrated.

216

The classical implementation of a partitioning algorithm such as K-means com­
monly relies on the optimisation of the within-cluster, Euclidean, sum of squared
error, with each element in a cluster being compared to the cluster centroid as being
representative - defined above as the mean values of the individual descriptive features
of the cluster elements. In our current context, we are effectively attempting to min­
imise the non-Euclidean sum of errors criterion function, the error being defined as the
complement of the current relative normalisation similarity coefficient, as opposed to
the Euclidean distance. In selecting an appropriate cluster representative in this case,
the classical cluster centroid is not suitable - if we require the center of a cluster to
represent the point that minimises the sum of squared error for that cluster. A simple
example in a integer-valued, two-dimensional Euclidean space illustrates the problem:

S S E (E u c .)
C e n tro id
A lt . R ep .

(10 , 10)
(9, 9)

1 0 0 .0 0 0
1 0 4 .0 0 0

S S E (Rel. N o rm .)
0 .694
0 .669

Figure 6.2: Centroid-based representation and relative normalisation

Figure 6.2 shows two data points (5,5) and (15,15). Their true centroid, which
minimises the sum of squared error based on the Euclidean distance (SSE-Eucl.), is
the point (10,10). If we replace the euclidean measure with the complemented relative
normalisation coefficient, the calculated sum of squared error (SSE-Rel.Norm.) can
be show to be non-optimal. This is evidenced by the alternative representative data

217

point (9,9) having a lower value for SSE-Rel.Norm., whereas SSE-Eucl. has increased
as expected. Determining the medoid of a cluster as its most central element is oidy
dependent on calculating the similarity values between pairs of elements. It is neither
dependent on the metric properties of the similarity coefficient nor an averaging of
the combined, global properties of all the cluster elements. Consequently, a cluster
representative such as the medoid would be more appropriate if we wish to continue
using similarity measurements based on relative normalisation.

Containment similarity

The issue of containment raised in Chapter 4, and illustrated by the use of Simpson’s
overlap coefficient, is not taken account of as part of the initial partitioning process.
However, it is discussed as part of the MCS indexing process described later in this
chapter.

6.5.4 Reference Partitioning Algorithms

The tested implementation of the generic algorithm relies on a combination of features
drawn from two existing partitional approaches, i) a K-means derivative, Bisecting
K-means (BK-means) and ii) Partitioning Around Medoids (PAM) and a scalable
derivative, CLARANS.

The K-means and Bisecting K-means Partitioning Algorithms

The K-means algorithm is a squared-error minimising approach to partitional cluster­
ing. An high level description of the algorithm based on the “Forgy” model, where
centroids are calculated following the relocation pass, is given below, a detailed de­
scription and discussion appearing in [Ton and Gonzales, 1974]:

1 Select K initial centroids

2 Assign all elements to their closest centroid

3 Recompute centroids

218

4 Repeat steps 2 and 3 until centroids are stable (or for a set number of iterations)

Bisecting K-means is essentially an hybrid clustering method that generates a
partition by way of a hierarchical, polythetic, divisive clustering. It is optionally
refined by application of the standard K-means algorithm. An high level description
of the algorithm is given below, a detailed description appearing in [Steinbach, Karypis
and Kumar, 2000]:

1 Select a cluster to split, based on size, similarity or both, e.g., the largest or the one with
the highest variance with respect to its centroid (initial cluster is the entire collection)

2 Bisect: find two subclusters using steps 1 and 2 of the K-means algorithm (An iteration
of steps 3 and 4 of K-means over the entire partition may or may not be included,
corresponding to “refined” and “unrefined” Bisecting K-means)

3 Repeat step 2 for a given number of iterations taking the split that has the highest
overall similarity, i.e., minimises the summed squared-error.

4 Repeat steps 1,2 and 3 until a given number of clusters is obtained or some other stopping
condition is reached, e.g., all clusters within a given size or variance threshold .

The hierarchy implicit within the BK-means algorithm may be made explicit at
any stage during the iterative division, by way of retaining the links between the split
clusters and their children. At the point where the hierarchy is retained, the following
iterations are unrefined, i.e., no relocation occurs across the entire partition.

The fact that both K-means and Bisecting K-means have proven efficient and effec­
tive approaches to partitioning prompted initial interest in these algorithms. However,
due to the nature of the relative normalisation similarity coefficient employed here, as
previously discussed, the constraints inherent in the application of K-means could not
be met. K-means relies on the definition of a centroid, as above, and additionally re­
quires that the applied distance metric be just that, a metric. In addition, the original
Bisecting K-means approach uses the cosine coefficient to determine similarity, as it
has certain computational benefits. For our immediate purposes, it is inappropriate
due to its inability to differentiate between elements in the feature space which lie
along the same line through the origin, i.e., the dot product is such that elements

219

which are scaled copies of each other are considered identical. Although this scaling
is acceptable in the context of document clustering, when comparing class structure,
such a differences in scale can not be ignored.

The reported performance and basic principles underlying the use of BK-means
are appealing. This lead to the notion of adapting the BK-means algorithm, replacing
a centroid with a medoid and creating the Limited Hierarchy Bisecting K-medoids
algorithm introduced below.

Partitioning Around Medoids (PAM), CLARA and CLARANS

As in the case of K-rneans, Partitioning Around Medoids (PAM) is a partitional al­
gorithm, developed by Kaufmann and Rouseeuw to find k clusters in a collection of
elements. The principle difference lies in how clusters are represented and generated.
The PAM algorithm is described in outline below, a detailed account appearing in
[Kaufman and Rouseeuw, 1990].

PAM relies on determining a representative element for each cluster drawn from
the elements of in the cluster. The chosen centrotype, termed a “medoid”, is meant to
be the most centrally located cluster element. Cluster formation is based on nearest
neighbour assignment of non-medoid elements to their nearest medoid. The essence
of PAM is its approach to medoid determination. It starts from an initial arbitrarily
selected set of K medoids and iteratively replaces one of the medoids by one of the non-
medoids if it reduces the total medoid-element distance within the resulting cluster
structure. The cost of replacing each medoid by each non-medoid is calculated. The
medoid-element pairing that produces the lowest negative cost induces a swap, whereby
the element becomes the medoid, and the medoid is returned to the pool of unselected
collection elements. The criterion function being optimised (minimised) is the sum of
element-medoid dis-similarities.

PAM:

1 Arbitrarily select K elements to act as initial medoids

2 For each pair of non-selected element h and selected element i, calculate the total swap-

220

ping cost TCi'h.:
TCi,h = }^ C htJl

j
where Cj<i%h is the cost associated with each non-selected element j if the currently
selected medoid i were replaced by h. The cost Cjj j t is derived as follows:

d{j, n) - d{j, i)

d(j, h) - d{j, i)

0

d(j, h) - d(j, n)

if j is currently in the cluster represented by medoid i
and element j is more similar to n, the second
most similar medoid to j

if j is currently in the cluster represented by medoid i
and element j is less similar to n, the second
most similar medoid to j
if j is not currently in the cluster represented by medoid i
and element j is more similar to its current
closest medoid than to h
if j is not currently in the cluster represented by medoid i
and element j is less similar to its
current closest medoid than to h

where d(j, n) is a distance coefficient returning the distance between j and n. (Obviously,
the cost function may be expressed in terms of a complemented similarity measure if
required.)

3 For each pair of i and h:

— If TCi'h < 0, replace i with h
- Assign each non-selected element to the cluster represented by its most similar

medoid

4 Repeat steps 2 and 3 until there is no change

As in the case of K-means, a limitation of the PAM approach is the need to specify
the number of clusters at the outset. Determining the number of natural clusters
in a collection is in fact one of the most difficult problems in cluster analysis, one
which we essentially manage to avoid. As described below under the heading “The
Generic Algorithm Implemented”, our clustering algorithm is divisive and controlled
by cluster size thresholds. These features act together to automatically impose a
cluster structure, including the number of top-level and bottom-level clusters. (This
reflects our previous comments regarding the imposition of structure as a means of
limiting the computation overhead of MCS-based analysis.)

221

E xtendin g PA M

Although PAM is suitable for partitioning small collections of elements (100 elements
over 5 clusters) its computational complexity (0(k[n — k)2) for one iteration) is such
that it doesn’t scale to larger collections. However, the basic PAM algorithm has
been adapted to handle larger collections, firstly by the original authors in the form of
CLARA (Clustering LARge Applications) [Kaufmann and Rouseeuw, 1990], and more
recently by Ng and Han who developed CLARANS (Clustering Large Applications
based on RANdomised Search) as an improvement on CLARA [Ng and Han, 1994].
Ng and Han’s experiments using CLARANS have shown that a K-medoids approach
can scale well to handle large collections (e.g., 3000 elements over 20 clusters). A
basic outline of CLAR.ANS is supplied below, a detailed description appearing in the
author’s technical report [Ng and Han, 1994b].

In an attempt to address the computational overhead imposed by the basic PAM
algorithm, Kaufmann and Rouseeuw developed CLARA: by drawing multiple samples
from the collection to be clustered and applying PAM to each sample, the sample
medoids are used to cluster the entire collection, the best quality clustering being
output. Five iterations using a sample size of 40 was shown to be effective in clustering
1000 elements into 10 clusters. Although CLARA deals with larger collections than
PAM, reducing the complexity to C9(A:3(n — k), its efficiency depends on the sample
size. Unfortunately, a good clustering based on samples will not necessarily represent
a good clustering of the whole data set if the sample are not sufficiently representative.

CLAR.ANS: Clustering Large Applications based on RANdomised Search
Ng and Han extend the CLARA model basing their CLARANS algorithm on a ran­
domised, dynamic sampling process as opposed to the static sampling of CLARA.
They have shown CLARANS to be as effective as PAM, reporting almost O(n) perfor­
mance, thereby allowing it to handle large collections. CLAR ANS essentially operates
a randomised search process based on gradient ascent using a PAM template driven by
two parameters, maxneighbours and numlocal. The first parameter, maxneighbours,
controls the number of total cost calculations carried out at step ‘2’ of the PAM al­
gorithm: rather than carry out an exhaustive examination of all possible selected and
unselected elements as in PAM, CLARANS constructs an abstract graph, the nodes
of which represent all possible medoid sets, the edges linking neighbours that differ in

222

only one medoid. Prom a randomly selected start node, CLARANS randomly selects
one of its neighbours and calculates the cost difference between the two nodes using
PAM’s total cost function TClgl, where in this case i and h are the medoids that dif­
fer between the node and its neighbour. If the selected neighbour represents a better
partition by virtue of a descent in cost, it becomes the selected node. The process con­
tinues until such time as all of a selected node’s neighbours have been examined or the
number exceeds maxneighbours. Being a limited, random search process, CLARANS
can inevitably get trapped in a local minimum and as such the process iterates for as
many as numlocal times in order to try and escape local minima and improve overall
cluster quality. In their report, Ng and Han recommended values for maxneighbours
and numlocal of 250 and 2 respectively. As the value of maxneighbours increases,
CLARANS increasingly tends towards PAM, in the limit being equivalent.

CLARANS:

1 Set parameters maxneighbours and numlocal. Initialise localCount. to 1 and set minCost
to a large number

2 Set current to an arbitrary medoid set

3 Set neighbourCount to 1

4 Randomly select a medoid set neighbour, a neighbour of current

5 Calculate the cost differential between neighbour and current using PAM’s total cost
function T„,c where n and c are the medoids that differ between neighbour and current

6 If neighbour has a lower cost, set current to neighbour and go to step [3]

7 Increment neighbourCount by 1 and if less than maxneighbours go to step [4]

8 If the cost of current is less than minCost, set minCost to the cost of current and
bestMedoidSet to current (The cost of a medoid set is the total dissimilarity between
every collection element and its cluster medoid.)

9 Increment localCount by 1 and if greater than numlocal, otherwise go to step [2]

11 Assign each elements to the cluster represented by its most similar medoid taken from
the medoid set identified by bestMedoidSet

223

6.6 The Generic A lgorithm Im plem ented

In order to establish the validity of the generic approach to limited-hierarchy partition
generation, given the identified requirements and constraints, the hybrid approach -
“Limited Hierarchy Bisecting K-medoids” - was implemented and tested.

6.6.1 Limited Hierarchy Bisecting K-medoids (LHBKM)

LHBKM is essentially a polythetic, divisive, hierarchic clustering algorithm that re­
tains only the lower hierarchical levels. This approach uses Ng and Han’s CLARANS
algorithm to combine and implement the initial “GENERATE” and “SPLIT” stages
of the generic algorithm of Figure 6.1. A collection is divided up into top-level clus­
ters by successively employing CLARANS to split any cluster that exceeds the set
threshold for top-level cluster size, the initial cluster being the whole collection. The
process of division is such that a proportion of otherwise similar elements may be
separated at higher levels of the implicit hierarchy, due to the more diffuse cluster
definition and questionable quality of cluster representation. In order to address this,
following the generation of any new clusters, the resulting partition is further refined
by implementing the “RELOCATE” stage of the generic algorithm. Each collection
element is relocated to that cluster represented by its most similar medoid. If an
element relocates to a different cluster, the medoids of both affected clusters are re­
calculated - this was preferred to recalculation of medoids following the completion of
the entire relocation process as it generally produced better quality clusters in terms
of the “LE” and “F” measures. The current LHBKM algorithm only carries out one
relocation pass per cluster division in order to minimise the computational overhead.
This refined, iterative, bisecting, “2-medoid”, cluster division produces an initial, size
limited, “crisp” partition of the collection.

In order to improve co-location of significant neighbours, LHBKM incorporates
an implementation of the generic “OVERLAP” step. This allows any element to be
copied into another cluster, provided it meets the criteria outline above relating to
element-medoid similarity and the medoid-medoid threshold for cluster separation.
At this point, the top-level clusters have been finally defined, the next step being the
creation of the explicit hierarchy and bottom-level clusters.

224

The iterative, bisecting, “2-medoid”, process of cluster division described above is
now applied to each top-level cluster, thereby implementing the “CREATE INTRA­
CLUSTER, HIERARCHY” stage of the generic algorithm. This stage differs from that
described above in that i) the size threshold is now that for bottom-level clusters, ii)
the generated hierarchy is retained and iii) neither relocation nor overlap are allowed8.

As a natural consequence of the non-ideal mechanics of clustering, elements may
be separated during the bisection process but which are in fact similar. Steinbach et
al showed that even in the case of an unrefined partition, i.e., no relocation, the results
of the bisection process were as good as, if not better than, those corresponding to
an agglomerative hierarchic clustering [Steinbach, Karypis and Kumar, 2000]. For the
moment, we rely on the relocation process in the non-hierarchical, top-level partition
to limit the problem.

At any point in the above process, the splitting of highly cohesive cluster is pre­
vented: very high quality clusters, as determined by the average element-medoid sim­
ilarity being greater that a set threshold, are retained intact being as they probably
represent instances of the same or very similar common structure.

LHBKM:

1 Set LHBKM parameters maxTopLevelClusterSize, rnaxBottomLevelCiusterSize, maxS-
plitQuality, m in El e m e n t. Med o i dSi in and maxMedoidMedoidSim.

2 Set CLARANS parameters maxneighbours and imrnlocal.

3 Set the entire collection as the first top-level cluster

4 If there are top-level clusters of size greater than maxTopLevelClusterSize

4.1 Select the largest not previously selected

4.2 If its quality is less than maxSplitQuality use CLARANS to split it in two (Bisec­
tion) otherwise go to step [4]

^Relocation across a given cluster level is impractical as the possible movement of elements be­
tween clusters not on the same hierarchic path would invalidate higher level clusters. Overlap proved
problematic as it lead to the creation of many duplicate or near-duplicate bottom-level clusters with
no discernable improvement in performance.

225

4.3 For all collection elements, relocate each element to the cluster represented by its
most similar medoid and if a relocation takes place re-calculate the medoids of the
source and destination clusters

4.4 Go to step [4]

5 For all collection elements, copy each element j of cluster i into any cluster t where i)
the similarity between j and the medoid of t is greater than minElementMedoidSim and
the similarity between the medoids of i and t are less than maxMedoidMedoidSim

6 Set all the top-level clusters as the first set of bottom-level clusters

7 If there are bottom-level clusters of size greater than maxBottomLevelClusterSize then

7.1 Select the largest bottom-level cluster bp

7.2 If the quality of bp is less than maxSplitQuality use CLARANS to split it in two
to produce clusters bci and bc2

7.3 Retain the cluster hierarchy by i) setting bc\ and f>c2 as the children of bp and
ii) unsetting bp as a bottom-level cluster and setting bci and bc2 as bottom-level
clusters (Limited Hierarchy)

7.4 Go to step [7]

8 Stop

The computational complexity of the LHBKM algorithm is effectively the same as
that of the underlying CLARANS algorithm: for small collections it tends to that of
PAM but as collection size increases it is tends to 0(n). The additional relocation
and overlap stages are linear in the number of collection elements.

6.6.2 Implementing SPLIT and OVERLAP

The implementation of the generic stages SPLIT and OVERLAP is necessarily heuris­
tic, reflected in the parameterisation of the implemented LIIBKM algorithm. •

• SPLIT

During the SPLIT phase, cluster division occurs if a given size threshold is ex­
ceeded. The determination of a size threshold in this case is driven both by the
limitations imposed by the final “CREATE INTRA-CLUSTER HIERARCHY”

226

step of the generic algorithm, and the potential depth of hierarchy generated
above the bottom-level clusters. The computational overhead in terms of space
and time, associated with the creation of a limited hierarchy beneath each top-
level cluster should preferably be such that a) the associated data structures for
all clusters should if possible be held in memory, b) the time taken to recluster a
top-level cluster as elements are added should preferably be such that it can be
completed quickly. The utility of browsing / navigating a full collection hierarchy
must be balanced against the time taken to traverse the hierarchy and the ques­
tionable validity of higher-level clusters. Initially, we limit the depth of hierarchy
such that on average it leads to the creation of less than 10 levels. (Given an
average comparison time of 0.012 secs for SP comparison, matching/searching
a target element to the best bottom-level cluster by traversal from a selected
top-level cluster in a 10-level hierarchy would take 2 * 0.012 * 10 = 0.24.secs.)

• OVERLAP

Where OVERLAP is implemented, the criterion that determines whether an el­
ement can be placed in multiple clusters is based on first comparing source and
destination cluster medoids. If the inter-medoid similarity is too high (above
a set medoid-medoid similarity threshold) and the element is within a second
threshold of the destination medoid, it is copied from the source into the des­
tination cluster. (This simple, straightforward approach to determining cluster
similarity is similar to that adopted by the “ISODATA” algorithm in decid­
ing whether two clusters are sufficiently similar to warrant “lumping” into one
[Ton and Gonzales, 1974].)

Parameterisation and selected values for the various thresholds employed are discussed
further in Section 0.7.3.

6.7 Predictive experim ents

In order to assess the effectiveness of the proposed algorithm, a set of experiment was
carried out based on the LIIBKM implementation given above, alongside a medoid-
based “Leader” algorithm acting as a known low-complexity reference. The standard

227

“Leader” algorithm, as used for example by Hodes as a means of clustering large
collections of chemical molecular structures [Hodes, 1988], was adapted to use a medoid
as cluster representative as opposed to a centroid:

M edoid-based “Leader”

1 Set the element-element similarity threshold s im T h re sh o ld

2 If there are collection elements left to cluster then

2.1 Get the next element

2.2 Find its most similar medoid

2.3 If the similarity is above s im T h resh o ld , assign the element to the represented clus­
ter, recompute the cluster medoid and return to step [2]

2.4 Create a new cluster with the current element as its medoid and return to step [2]

3 Stop

The initial test data were the sets of classes “H”, “S” and “j5” used in the experi­
ments of Chapter 5. A further, larger test set was generated based on the combination
of these three. These data sets are small enough to be manageable in terms of the
overhead of test repetition, while being large enough to predict the utility of the ap­
proach when applied to larger collections. The data sets also show varying degrees
of common and repeated structure. Initially, each data set was analysed as a static
collection. An approach to clustering a dynamic stream of classes is presented later in

this chapter.

6.7.1 Partition evaluation

Following on from the comments made above in relation to clustering tendency, the
validity of any generated partition is interpreted here in terms of “usefulness”, rather
than the theoretical notion of “uniqueness” as a departure from a randomly generated
partitional structure [Jain and Dubes, 1988]. Rather than merely trying to uncover
a natural classification inherent in the structure of a class collection, we are more
concerned in this case with the amelioration of the computational overhead associ­
ated with the search for common structure, if necessary imposing a structure on the

228

collection. The intention is to provide both a means of identifying occurrences of re­
peated, common structure within a collection, and a classification able to support the
search for matches between individual target classes and the collection classes. The
essential characteristic in the first case is the co-location within a cluster of elements
that exhibit significant structural commonality. The proposed approach to discovery
of common structure involves exhaustive MCS extraction within all bottom-level clus­
ters: in order to avoid unnecessary comparison during MCS extraction, bottom-level
cluster elements must demonstrate a significant level of pair-wise similarity and pairs
of elements exhibiting significant similarity must be contained in the same cluster. In
order to evaluate the results of partitioning a static collection of classes, in terms of
locating common structure, we first of all derive a measure of quality to be applied
to the bottom-level, size limited clusters of a collection9. The quality of a partition
is effectively its index of validity. The intention here is to establish how effective the
partitioning process is in identifying significant pairs of classes, assuming that MCS
analysis and the extraction of common structure is only applied at a given cluster
level.

Knowing the number of significant pairs in a test collection, we define a quality
measure based on a combined index of the number of missed significant-pairs, and the
number of unnecessary comparisons, resulting from a full, exhaustive analysis of all
clusters at a given hierarchic level, in this case all the bottom-level clusters. This is
defined below as “Location Effectiveness” (LE).

Given a collection C — {ci,C2 . . . c n} of n elements or feature vectors, partitioned
into K clusters {C\, C2 ■ . ■ Ck }, where \Ĉ \ is the number of elements in cluster k:

Location Effectiveness

Location Efectiveness is intended to measure the quality of the generated clustering
structure in support of whole-collection analysis of common structure.

Based on a full ranking of pair-wise similarity, a collection can be divided according
to whether class pairs are above or below a similarity threshold. Those pairs above the
threshold are deemed relevant or “significant”, the remaining pairs being irrelevant. If

9 A size-limited duster is used as the unit of MCS analysis.

229

each of the classes belonging to a significant pair occur in the same cluster the pair is
said to be “co-located”. Given that a pair-wise comparison of all the constituent ele­
ments of all bottom-level clusters is to be carried out during MCS extraction, partition
quality can be quantified as follows.

Knowing the number of significant pairs in a test collection, we define a quality
measure based on a combined index of the number of missed significant-pairs, and
the number of unnecessary comparisons, resulting from a full, exhaustive analysis
of all clusters at a given hierarchic level. This is defined below as the “Location
Effectiveness” (LE).

Given a collection C = {ci,C2 .. . cn} of n elements or feature vectors, partitioned
into k clusters {C\, C2 ■.. C/v}, where \Ck\ is the number of elements in cluster k. SP
is the set of all significant pairs, \SP\ its cardinality, and SVco~iocated the current set of
identified, co-located pairs. The number of significant pairs in cluster k not previously
located in other clusters (as can happen when cluster overlap is enabled) is given by:

\Ck\
sr*= £ 1 if (Cj, C j) E S P A (Cj, C j) (f: S P co -located i 7̂ j

0 i f (C i , C j) < £ S P

The number of actual intra-cluster, pair-wise comparisons that would be carried
out during a full cluster analysis is given by:

pc=T.
k=l 2

The location effectiveness ratio is defined in terms of “Missed Comparison” (MG)
and “Unnecessary Comparison” (UC) as follows:10

\SP\ - E L i SPkM C —
\SP\

UC = max{ 0,
PC - |S'P|

PC

The Location Effectiveness is then given by:

L E - ! (**MCf) + UC
6

10The m a x function is applied in the calculation of U C: defining it as TfirLiZ1 can give negative
values in some cases due to \S P \ being greater than P C when not all relevant element pairs are located
and cluster sizes are small, e.g., when fairly cohesive clusters are forcibly split.

230

where the relative importance of M C over UC is reflected in the higher penalty applied
to MC, i.e., we value the co-location of instances of common structure over that of
limiting unnecessary comparison, although in practice the latter is a more significant
computational limitation. The lower the values of both MC and UC the higher the
value of LE, i.e., the better the location effectiveness, or more useful the partition.

F measure of partition quality

In order to assess performance in deriving the significant neighbour list for a given
target class - relative to a collection - an interpretation of the “F” measure (F — 1 — E
[van Rijsbergen, 1977]) of cluster quality is also included. This give us a means of
assessing the match / search effectiveness in relation to the generated cluster structure.

Treating each class (cj) in a collection as a potential target to be matched against
the collection, for each matched / returned cluster we can establish the total number of
induced pair-wise MCS comparisons (mcsj), and within these the number of significant
pairs (spi) previously identified for the target class. Using the size of the actual
significant neighbours list for each target class (|a»t|) extracted by way of an exhaustive
analysis, we can then calculate a quality value for each cluster - the “F” measure -
based on the harmonic mean of precision and recall:

n sPirecalli — ----- -
\ s r i i I

. . spi
p r e c i s i o n i = --------

mesi

_ 2 x recalli x precisioni
recalli + precisioni

This can be averaged to give a global index

l 11
F = - f l Fin i- 1

Better quality partitions have higher values of F.

231

6.7.2 Static collection analysis

Each collection (data sot) was partitioned using the two implemented algorithms.
Applying the location effectiveness measure provides a means of gauging the degree of
structural commonality identified as a consequence of the partitioning, relative to an
exhaustive analysis. (For the moment we accept the validity of both the SP and MCS
similarity measures.) Each collection element was matched against both the top-level
and bottom-level clusters of the resulting cluster structure. In each case, the best top-
level and bottom-level clusters, in terms of element-centroid similarity, were returned.
Determining the element-centroid similarity was based on the SP similarity model. The
“F” measure was applied to each returned cluster in order to provides a measure of
the structured collection’s capacity to respond to “queries” of this type. At this stage,
in applying the “F” measure, the significant neighbour list for each target (“query”)
class was based on the SP feature-vector model of similarity. (Initially, and guided
by the results of Chapter 5, the threshold for significant neighbour list membership
was chosen such that it was sufficiently discriminating to limit false positives but not
too high such that it lead to the rejection of true positives as determined by MCS
analysis.)

6.7.3 Parameterisation

Based on a combination of trial-and-error, and the findings of Chapters 4 and 5, the
two algorithms were parameterised as shown below. It is important to accept that the
clustering process described in this chapter relies on the predictive power of SP as an
indication of MCS-based similarity. To that end, and based on the results of Chapter 5,
parameterisation is predicated on the belief that, in general, an SP similarity value of
0.5 provides adequate predictive strength.

• Limited Hierarchy Bisecting K-medoids (LHBKM):

- Top-level cluster size threshold: SIZEtlc — 100
This value limits the eventual height of the hierarchy generated above the bottom-
level clusters. In practice, the deepest hierarchy had 11 levels which provided
ample scope for browsing by hierarchic navigation within the more representat ive

232

lower-levels (of a complete hierarchy) while limiting the time take to carry out a
top-down search.

- Bottom-level cluster size threshold: SIZEhlc — 10
A value of 10 here is dictated by the limitations imposed by MCS comparison. An
exhaustive pair-wise analysis of 10 class ARGs (45 comparisons) would on average
take less than 2mins.

- Quality threshold: Q = 0.95
Based on the experience of analysing the test sets in Chapters 4 and 5, classes that
show similarity above 0.95 are invariable almost identical. Splitting highly cohesive
clusters is sees as unnecessary and in fact counterproductive. This threshold is
applied to both top-level and hierarchic clusters.

- Overlap similarity threshold element-medoid: SIMe:m — 0.5
This is based on the simple notion that if two classes show a similarity greater
than 0.5, the current quality of SP-MCS prediction implies that they will probably
demonstrate significant MCS-based similarity.

- Overlap similarity threshold medoid-medoid : SIMm:rn = 0.75
It is likely that clusters having medoid similarities above 0.75 are the result of a
cohesive parent cluster being forcibly split. Allowing overlap in such cases would
probably lead to multiple reconstitution of the parent in the form of its substan­
tially overlapping children.

• Medoid-based “Leader” (ML):

- Similarity threshold: SIMieader — 0.5

6.7.4 Results: evaluating LHBLM

The experimental results shown in Table 6.1 are illustrative, the values reported11,
being averages across a series of 10 runs. In each case, the order in which the classes

11NE - no. of collection classes; SI’ - no. of significant pairs; LE - Location Effectiveness; MC -
Missed Comparisons; UC - Unnecessary comparisons; F - avg. “F” ; R - avg. recall; P - avg. precision;
TLC - number of top-level dusters (initial partition); > D L T - number of top-level clusters exceeding
bottom-level cluster size threshold; BLC - number of bottom-level clusters; ACQ - average cluster
quality; SC - number of singleton clusters; OT - overall clustering time; O T t l c - O T for top-level
cluster formation; ST - avg. match time for target vs all bottom-level clusters (top-level for “Leader”);
MDH - max. depth of hierarchy. Subscripts indicate top-level or bottom-level where a distinction is
appropriate, e.g., Fb l - avg. “F” for bottom-level clusters.

233

were presented to the algorithms was randomised.

Algorithm LHBKM ML LHBKM ML LHBKM ML LHBKM ML
Data set H H S S J'5 j5 COMB COMB

N E 394 394 338 338 76 76 808 808
S P 12972 12972 2696 2696 9 9 16624 16624
TLC 4 25 5 70 1 56 12 148

(.A C Q t l c) 0.714 0.662 0.494 0.613 0.252 0.535 0.536 0.605
(> B L T) 4 4 5 9 1 0 12 13

(S C t l c) 0 13 0 33 0 47 0 91

L E t l c 0.946 0.963 0.869 0.894 0.834 0.769 0.835 0.946

(M C t l c) 0.000 0.007 0.003 0.082 0.000 0.111 0.091 0.027
(U C t l c) 0.325 0.187 0.771 0.226 0.997 0.830 0.532 0.188

F t l c 0.756 0.857 0.329 0.713 0.032 0.834 0.496 0.791

(R t l c) 1.000 0.971 0.989 0.868 1.000 0.960 0.937 0.918

{P t l c) 0.676 0.811 0.252 0.666 0.016 0.795 0.447 0.748

BLC 67 51 14 143

(.A C Q k l c) 0.793 0.666 0.353 0.691

(S C b l c) 14 4 1 27

L E b l c 0.525 0.821 0.840 0.593
(M C b l c) 0.570 0.215 0.000 0.488

(U C b l c) 0.000 0.000 0.958 0.000

F b l c 0.426 0.620 0.318 0.487
(R b l c) 0.388 0.726 0.882 0.554
(P b l c) 0.923 0.675 0.208 0.749
ST(sec) 0.020 (0.009) 0.014 (0.020) 0.028 (0.095) 0.049 (0.083)
OT(sec) 326 10 190 5 87 4 1023 39
(O T t l c) 247 119 10 794
M D H 9 7 5 10

Table 6.1: LHBKM and medoid-based “Leader” algorithm applied to data sets “H’\
“S”, “j5” and their combination set “COMB”

Table 6.2 shows the relative values for data set “COMB” when the CLARANS
parameter maxneighbours was reduced from Ng and Ban’s recommended value of 250.
This was intended to establish whether LHBKM run-times could be improved without
significantly altering the quality of the clustering produced. The effect of leaving out
the relocation and overlap steps in generating the top-level clusters is also included.

234

Algorithm
Data set
maxneighbours

LHBKM
J5
250

LHBKM
J5
10

LHBKM
COMB
250

LHBKM
COMB
100

LHBKM
COMB
50

LHBKM
COMB
10

LHBKM
COMB
10

LHBKM
COMB

250
(relocation off)
(overlap off)

N E 76 76 808 808 808 808 808 808
S P 9 9 16624 16624 16624 16624 16624 16624
T L C 1 1 12 13 13 13 16 15
(A C Q t l c) 0.252 0.252 0.536 0.503 0.560 0.519 0.529 0.567
(> B L T) 1 1 12 13 13 13 14 11
(S C t l c) 0 0 0 0 0 0 0 0
L E t l c 0.834 0.834 0.835 0.833 0.840 0.892 0.796 0.742
(M C t l c) 0.000 0.000 0.091 0.092 0.090 0.014 0.167 0.230
(U C t l c) 0.997 0.997 0.532 0.538 0.497 0.577 0.397 0.398
F t l c 0.032 0.032 0.496 0.494 0.514 0.524 0.477 0.454
(rtrrc) 1.000 1.000 0.937 0.935 0.931 0.968 0.770 0.730
(Pt l c) 0.016 0.016 0.447 0.443 0.471 0.456 0.445 0.443
B L C 14 13 143 140 148 147 127 135
(A C Q m c) 0.353 0.360 0.691 0.697 0.681 0.697 0.661 0.671
(S C b l c) 1 1 27 24 32 23 16 27
L E b l c 0.840 0.655 0.593 0.592 0.593 0.602 0.586 0.589
(M C b l c) 0.000 0.222 0.488 0.490 0.488 0.478 0.496 0.494
(U C b l c) 0.958 0.962 0.000 0.000 0.000 0.000 0.000 0.000
F b l c 0.318 0.281 0.487 0.478 0.482 0.479 0.475 0.477
(R-b l c) 0.882 0.849 0.554 0.541 0.541 0.546 0.539 0.529
(P b l c) 0.208 0.184 0.749 0.735 0.745 0.728 0.725 0.734
S T (sec) 0.028 0.025 0.049 0.052 0.059 0.049 0.064 0.046
OT(sec) 87 38 1023 873 638 192 153 1132
(<OTt l c) 10 10 794 582 344 116 85 945
M D H 5 5 10 11 11 10 8 10

Table 6.2: Effect of reducing the CLARANS parameter maxneighbours during an LH-
BKM analysis of data sets “J5” and “COMB”. The right-hand column also illustrates
the effect of omitting relocation and overlap during the analysis of “COMB”.

6.7.5 Discussion

If we begin by examining the top-level clusters produces by LHBKM and ML, location
effectiveness is high in both cases - few significant pairs are being missed, particularly
by LHBKM. ML gives rise to proportionally fewer unnecessary pair-wise comparisons,
principally due to the high number of singleton clusters it produces. However, the
presence of such a high number of singletons can lead to a three-fold increase in target-

235

collection search times in comparison to LHBKM. ML gives consistently good “F”
scores, based on both high recall and high precision. In contrast, LHBKM produces
“F” scores that vary widely being consistently worse than those of ML. Significantly,
LHBKM recall is consistently very high. The most startling difference between the
two approaches is the overall analysis time: the time taken by ML to create top-level
clusters can be 25 times faster than LHBKM. At this stage, the overall performance
of ML suggest that it would be a better choice of partitioning algorithm, were it not
for several inherent limitations:

• ML demonstrates a sensitivity to the order in which collection elements are
presented to it whereas LHBKM is almost invariant to element order.

• ML has no control over cluster size, producing many singletons and being unable
to break up large clusters.

• Although ML achieves good location effectiveness, the level of unnecessary com­
parisons can be prohibitive, e.g., the figure of 0.188 for data set “COMB” rep­
resents over 3000 additional pair-wise MCS analyses, which in turn equates to
nearly 2hrs. processing time.

When we consider the creation of a limited hierarchy and the bottom-level clus­
ters, the limitations of LHBKM are to an extent ameliorated by improvements in the
utility of the resulting cluster structure. In the case of data set “J5” the location
effectiveness has increased, despite the very high level of unnecessary comparisons:
significant pairs missed is zero and although “LE” is very high, the actual number of
unnecessary comparisons is small as a consequence of the limited cluster size. For the
remaining three data sets, location effectiveness has decreased due to the number of
missed pairs having increased. This results from the increased cluster numbers and
decreased cluster size. In these three cases, the number of significant pairs in each
collection is large and as an inevitable consequence of the divisive nature of LHBKM
in generating the bottom-level cluster hierarchy, some significant pairs are going to be
separated. However, in each case, the number of unnecessary comparisons have been
eliminated, which would have a significant, beneficial effect on MCS extraction times.
The number of clusters has increased, as has the overall quality of these clusters. Add
to this the fact that levels of precision associated with search (match) effectiveness

236

have also improved and it, is apparent that the bottom-level clusters are highly cohe­
sive and individually highly representative of the common structures present in the
collection as a whole. This was borne out by “backtracking” up the cluster hierarchy
during cluster-based retrieval: when a target class was compared against a retrieved
cluster, and precision was high by virtue of the number of contained classes being
above threshold similarity (0.5) when compared with the target, moving back up a
level in the hierarchy generally improved recall without unduly compromising preci­
sion, or the number of unnecessary comparison12. Although significant pairs are indeed
missed, the cluster structure provided by LHBKM provides good quality samples of
the contained similarity, while minimising the overhead associated with unnecessary
MCS extraction.

An analysis of the “COMB” clustering showed that in terms of separating elements
from the three constituent data sets (“HI”, “S2” and “j5”), on average, the bottom-
level clusters were 97% pure, i.e., clusters are predominantly made up of elements from
the same subset.

The results of Table 6.2 suggest that the time taken to generate a cluster structure
could be markedly reduced, without unduly compromising the resulting quality, by
reducing the maxneighbours parameter of the CLARANS algorithm. The degree to
which the value of maxneighbours could be reduced was surprising - even a value of 10
produced adequate results. The nature of data sets “H” and “S” is such that they both
exhibited high levels of significant pairs. This was due to the presence of i) repeated
instances of the same class(s) and ii) instances of a slightly modified class. (This was
clearly identified by LHBKM as large, maximally or near maximally cohesive top-level
clusters.) As the value of maxneighbours is reduced, the search for a local maximum
is limited but at the top-level this is countered by the process of relocation (and to a
lesser degree overlap): as the value of maxneighbours is decreased, so the relocation
frequency increases by as much as 10%. The quality of the generated top-level clusters
is such that the limited search is sufficient to produce a reasonable cluster structure.
The precise relevance of this result is still unclear, requiring further analysis based on
a wider portfolio of data sets in order to determine whether the changes are in fact
statistically significant and indeed not an artefact of the data sets. It is worth noting

12 This feature is currently not automated, requiring a manual analysis

237

that the random search approach underlying CLARANS was surprisingly stable, there
being little variation in either “LE” or “F” resulting from the analysis of bottom-level
clusters, e.g., data set “S” had a mean “LE” of 0.821 with a corresponding Std.Dev.
of 0.004, a mean “F” of 0.623 with a corresponding Std.Dev. of 0.007)

The last two columns of Table 6.2 show that the omission of relocation and over­
lapping lead to a reduction in location effectiveness as a result of an increased number
of significant pairs being missed. A reduction in the “F” measure is also present due
to both recall and precision having been reduced. The increase in overall analysis
time and the reduction in quality support the inclusion of relocation and overlapping.
Top-level relocation and overlap could in principle lead to violation of the size thresh­
old but in practice this did not happen. Relocation and overlapping are not currently
applied within the explicit, lower-level hierarchy but as MCS extraction is currently
only applied to bottom-level clusters, and target-collection search is principally based
on nearest-neighbour bottom-level cluster retrieval, it may prove beneficial to relocate
across bottom level clusters.

In terms of meeting the dual objectives of i) co-locating typical samples of similar
classes and ii) providing an effective and efficient matching structure, the LHBKM
algorithm has proven extremely useful. It is however undermined by its poor run-time
performance, which may be amenable to improvement through further code and/or
data structure optimisation of the current beta version of the analysis framework. A
significant proportion of the time taken to form the cluster structure is taken up by
that of establishing the top-level clusters - over 70% in some cases. We are currently
investigating a combination of ML and LHBKM as a means of reducing the overall
time while maintaining the utility of the LHBKM algorithm: by quickly generating
an initial top-level structure using ML, re-assigning singletons to their nearest non­
singleton cluster, relocating across clusters, and applying LHBKM to the resulting
top-level clusters, we hope to be able to address, at least in part, the time factor
undermining LHBKM. The issue of analysis times must however be placed in context:
although currently LHBKM takes approximately 17mins, to cluster 808 classes based
on feature vector representation, by extrapolation based on a linear trend between
the available collection sizes and times, a collection of 5000 classes would take less
than 1.5hrs. to cluster. In the unlikely worst case, an order-2 polynomial trend would
suggest a 9hr. processing time. In practical terms, this is not prohibitive given that

238

off-line, overnight cluster generation is an option.

The main bargaining point underlying LHBKM is its ability to produce a reason­
able clustering that limits bottom-level cluster size to within practical MCS analysis
times. Limiting top-level cluster size is simply a means of introducing some degree
of hierarchy above the bottom-level clusters, providing scope for “backtracking” and
browsing. As it stands, LHBKM provides a balance of utility against tractability in
providing a framework for extracting good samples of common structure, alongside
support for class-to-collection searching and browsing. However, a more extensive in­
vestigation into the performance of LHBKM is required, particularly in relation to its
parameterisation.

6.8 Further refinement

6.8.1 Incremental update

The generic algorithm above assumes the presence of a static collection of classes.
However, in practice, we may be faced with incremental update of an empty or very
small collection. In order to accommodate dynamic collections, we require a means of
dealing with both the extreme case of an initially empty collection, and update of an
existing, clustered collection. Accepting that periodic re-partitioning of a collection
will be necessary, the following naive approach to incremental update is intended to
minimise the disruptive effect of these changes, while maintaining a reasonable degree
of effectiveness in the face of such changes. •

• Initially empty collection:

Classes are added to a first cluster until the threshold governing the maximum
size of a bottom-level cluster is reached, at which point the “CREATE INTRA-
CLIJSTER HIERARCHY” stage of the generic algorithm is applied. Further
additions are treated as updates to an existing collection.

• Updating an existing collection:

A new class is added to the bottom-level cluster identified as a result of matching
said class against the representatives of all bottom-level clusters in the existing

239

collection structure. The class is also added to each parent cluster up through
the hierarchy. If an updated top-level cluster exceeds its size threshold, the
“CREATE INTRA-CLUSTER HIERARCHY” stage of the generic algorithm is
applied to it, the existing hierarchy associated with it being replaced. Alterna­
tively, if only the updated bottom-level cluster exceeds its size threshold, the
“CREATE INTRA-CLUSTER HIERARCHY” stage of the generic algorithm is
applied locally to it. (Periodic re-partitioning / clustering of the entire collection
will be necessary, based in general on criteria such as the number of updates since
a previous re-organisation and other issues such as the availability of resources.
Reorganisation criteria remain an open question in the current context and is a
consideration for further work).

An implementation of this generic, incremental clustering approach is presented in
the following section, based on the previously implemented LIIBKM algorithm.

G.8.2 Incremental Limited Hierarchy Bisecting K-medoids (ILHBKM)

The above strategy was applied to the four data sets used in the experimental evalu­
ation of the LHBKM algorithm. Clusters are SPLIT using step ‘7’ of the previously
described Limited Hierarchy Bisecting K-medoids algorithm giving rise to Incremen­
tal Limited Hierarchy Bisecting K-medoids (ILHBKM). (This algorithm employs no
relocation or overlap.)

6.8.3 Results: evaluation of ILHBKM

Table (i.3 shows the results of an initial experiment based on an incremental clustering
of a randomised stream of elements taken from each of the previous four data sets.
A complete incremental clustering (without re-organisation or overlap), was carried
out using ILHBKM, the results being compared with those previously obtained using
LHBKM and ML (Table (i.l). A further experiment was carried out using the smaller,
“j5” data set, in order to evaluate the cluster structure as it evolved through increments

240

Algorithm LHBKM ILHBKM LHBKM ILHBKM LHBKM ILHBKM LHBKM ILHBKM

Data set H H S S j5 j5 COMB COMB

N E 394 394 338 338 76 76 808 808

S P 12972 12972 2696 2696 9 9 16624 16624

TLC 4 5 5 5 1 1 12 12

(A C Q t l c) 0.714 0.717 0.494 0.496 0.254 0.254 0.536 0.576

(> D L T) 4 5 5 5 1 1 12 12

(S C t l c) 0 0 0 0 0 0 0 0

L E t l c 0.946 0.921 0.869 0.865 0.834 0.834 0.835 0.735

(M C t l c) 0.000 0.038 0.003 0.007 0.000 0.000 0.091 0.231

(U C t l c) 0.325 0.287 0.771 0.777 0.997 0.997 0.532 0.432

F t l c 0.756 0.726 0.329 0.322 0.032 0.032 0.496 0.437

(R t l c) 1.000 0.915 0.989 0.909 1.000 1.000 0.937 0.746

(P t l c) 0.676 0.687 0.252 0.249 0.016 0.016 0.447 0.421

BLC 67 64 51 54 14 13 143 128

(.A C Q b l c) 0.793 0.761 0.666 0.643 0.353 0.345 0.691 0.664

(SC 'b l c) 14 10 4 9 1 1 27 23

L E b l c 0.525 0.523 0.821 0.810 0.840 0.655 0.593 0.588

(M C b l c) 0.570 0.572 0.215 0.228 0.000 0.222 0.488 0.494

(U C b l c) 0.000 0.000 0.000 0.000 0.958 0.960 0.000 0.000

F b l c 0.426 0.413 0.620 0.599 0.318 0.249 0.487 0.485

(R i n e) 0.388 0.377 0.726 0.678 0.882 0.753 0.554 0.542

(P lìL C) 0.923 0.897 0.675 0.659 0.208 0.162 0.749 0.731
ST (sec) 0.020 0.020 0.014 0.022 0.028 0.031 0.049 0.054
O T (s e c) 326 103 190 127 87 18 1023 453
M D H 9 14 7 9 5 7 10 9

Table 6.3: Comparison of LHBKM and Incremental LHBKM when applied to data
sets “H”, “S”, “j5” and a combined set “COMB” comprising “H”, “S” and “j5”

of 5 additional classes. The graph in Fig. 6.3 shows values of location effectiveness,
its components, significant, pairs missed and unnecessary comparisons, in addition to
values for average recall and average, precision. These measures are plotted against
the size of the growing collection, alongside the cumulative fraction of final significant
pairs.

241

Figure 6.3: Incremental LHBKM applied to the data set “j5”, dynamically profiling
the quality measures as classes are added to the collection in batches of 5.

6.8.4 Discussion

The single most important observation to be made here concerns the analysis times
and the relative quality of ILHBKM as compared to LHBKM. The time taken to clus­
ter each data set has been markedly reduced while the quality of the resulting cluster
structure, although reduced, remains reasonable in terms of both “LE” and “F”. Im­
proved times are principally the result of not having to deal with the re-structuring
of large individual clusters, as is the case at the top levels of an LHBKN based clus­
tering. Although ILHBKM potentially requires more applications of CLARANS, as
these are confined to relatively small clusters at the lower levels of a full hierarchy,
the net effect is one of a reduction in processing time. (Applying a two-sample t test
to both the “LE” and “F” measures in order to establish whether the difference in
quality between LHBKM and ILHBKM were not merely attributable to chance was
inconclusive. At a significance level of 0.05 data set “H”, “S” and “COMB” showed
no significant difference while data set “j5” did.) This result was unexpected and as
in the case of the effect of the maxneighbours parameter requires further investigation

242

based on a wider portfolio of data sets, in order to determine whether the reduction
in quality can in fact be offset against the reduced time.

As can be seen from the graph of Figure 6.3, the dynamic cluster structure appears
to behave well in terms of the key indices, significant pairs missed and recall. As in
the case of the LHBKM static analysis, precision is low in the case of data set “j5”.
This is due to a combination of there being few significant pairs, and the size-limited
bottom-level clusters, i.e., cluster splitting stops when a cluster is below a threshold
size. However, this is offset, by the high recall and the manageable analysis overhead
associated with the maximum bottom-level cluster size. The performance of ILHBKM
in providing a relatively effective and robust means of dealing with the clustering of
dynamic collections of classes is encouraging and we feel worthy of further investigation

and testing.

6.8.5 MCS indexing and sub-structure matching

The clustering of a class collection, followed by the analysis of all bottom-level clusters
leads to the generation of MCSs that represent examples of common structure. How­
ever, this provides only a limited insight into the presence of recurring structure, i.e.,
common structure occurring in more than just one pair of classes. MCS extraction may
occur directly via an exhaustive bottom-level cluster analysis, or as a consequence of
target-based search, and retrieval of a matching cluster(s). VVe have previously shown
that exhaustive, within-cluster MCS analysis is both time consuming and at best in­
complete, in terms of identifying all potential matches or significantly similar class
pairs. In order to reduce the associated overheads and attempt to capitalise on prior
extraction, the results of within-cluster MCS analyses were used to provide matchable
indices for each bottom-level cluster. Initially, the largest and smallest order MCSs

(if distinct) were retained as representative of common structure to be found in each
cluster. Indexing is contingent on the similarity between compared classes being above
threshold (0.75 initially) in order to ensure stored structures represented significant
commonality. These indices are a direct indication of shared structure, and given rea­
sonably cohesive clusters, are typical of the common structure found in the cluster as
a whole, irrespective of their being derived from only two pairs of classes.

243

As a means of supporting bottom-up searching for instances of recurring, common
structure, the overhead of linear comparison of a target class against all bottom-level
MCS indices still remains prohibitive. However, MCS indexing has proven useful,
particularly in the case of target-collection search: if the cluster returned from an
initial SP-based nearest-neighbour, bottom-level search of all clusters contains more
than three classes, where a cluster has been previously indexed, containment matching
against the MCS index provides a good indication of potential similarity, without the
need for exhaustive pair-wise comparison. Containment matching, in the form of
index-to-target graph-subgraph isomorphism is attempted, i.e., we look for a copy
of the graph representing the index, within the graph of the target. A similarity
measure equivalent in principle to Simpsons’s overlap coefficient (As defined in Ch. 3),
but based on the proportion of matched nodes in the index relative to its order is
used. High values indicate the presence of significant common structure between the
target and at least one pair of cluster elements. This is a limited form of a linear-
progressive approach to identifying recurring structure across collections of elements,
as described in the context of protein analysis and multiple structure comparison by
Eidhammer [Eidhammer et al, 1997]. Start with one element and successively compare
the remaining elements with the result. Here, we limit ourselves to an index based on
the comparison of two elements, but the effect of extending the order of the linear-
progressive match is to be investigated.

The full significance of MCS indexing has still to be explored and a further dimen­
sion may be provided by the work of Messmer and Bunke [Messmer and Bunke, 1996].
They build highly efficient, searchable networks of stored graphs. If such an approach
was found justifiable, search / match efficiency could additionally benefit from the
grid-based distribution of such networks of common structure and the parallelism such
an approach could afford [Foster et al, 2002].

6.9 Late life-cycle activated reuse

The principle of late life-cycle activated reuse was briefly introduced in Chapter 1 as a
possible means of preempting informal / unregistered reuse, superimposed on the code-
test-code development cycle. In order to establish whether the current approach to

the identification of similarity could support this idea, a simple development scenario

was simulated13.

A required class14 was selected from the specification of the student assignment
associated with data set “H” - the “hangman” exercise. The class was written in­
crementally (Stage 1 : attribute definition; Stage 2: method signatures; Stage 3:
individual method bodies (5)) and the various compiled versions of the code matched
against the clustered “COMB” data set ("H" + "S' + “j5”). Although this was a
somewhat constrained experiment, in that the individual stages were logically ordered
and individually complete, the results were promising. Using a containment similarity
threshold of 0.75 - target against cluster medoid - Stage 2 of the class construction
returned a cluster containing classes that satisfied the original specification, i.e., in
this case, class attributes and method signatures were sufficient to identify a case of
unregistered reuse. Obviously, a more rigorous, less constrained evaluation is necessary
in order to prove the validity of the approach.

6.10 Summary

This chapter set out to establish a means of reducing the computational overhead
of identifying and extracting common and recurring structure within a collection of
classes. We have shown how a process of unsupervised classification can provide a
structure, though not ideal, capable of meeting our needs. This is achieved by way
of cluster formation based on a combination of partitioning and limited hierarchy.
The cluster structure provides both a means of grouping together significantly similar
classes that are representative of common, recurring structure, alongside a framework
for target-to-collection matching and hierarchic browsing.

The Limited Hierarchy Bisecting K-medoids (LHBKM) approach introduced here
is able to produce size-limited, bottom-level clusters that collectively provide a reason­
able sample of the common structure present. By controlling top-level cluster size, it
effectively removes the undifferentiated clusters that would normally occupy the upper
levels of a full hierarchy. The issue of identifying recurring structure is addressed in

13 Due to time constraints, a full evaluation was not possible. This is the subject, of continuing work
14 The “wordplay” class.

245

part by a process of cluster indexing, which records the smallest and largest order
MCS for each bottom-level cluster. In addition to straightforward target-to-collection
match, these indices provide the basis of a searchable repository of existing common

structure.

In order to cater for dynamic collections of classes, an incremental clustering ap­
proach was also introduced. Incremental Limited Hierarchy Bisecting K-medoids (IL-
HBKM) was shown to produce a cluster structure of reduced quality in comparison to
that produced by LIIBKM. However, the difference in quality was not marked and the
accompanying improved analysis times suggest that in practice IHBKM may actually
be preferred to LHBKM. This is the subject of further investigation.

The principle of late life-cycle activated reuse was briefly demonstrated and al­
though it shows promise, given the limited coverage of the single simulation, no sig­
nificant conclusions can be drawn.

The main limitation underlying the experimental results and conclusions of this
chapter relates to the somewhat unrepresentative data sets employed. More testing is
required, based on a larger and wider portfolio of data sets, in order to confirm the
general utility of the developed approach. This is particularly true of assessing the
potential benefits of late life-cycle activated reuse.

Chapter 7

C onclusions an d F u r th e r W ork

This chapter summarise the research presented in this thesis, draws conclusions within
the context of the original objectives, constraints and hypotheses, and describes op­
portunities for further work.

7.1 Research sum m ary

7.1.1 Contributions

The main contributions of this thesis stem from the definition and instantiation of
an attributed, relational, graph-theoretic (ARG) model of class-based object-oriented
code structure and structural comparison. This ARG representation of a class was
introduced as part of an analysis framework aimed at supporting software reuse “in the
small”. Our approach demonstrates the potential of this formal model in the context
of identifying common structure within an existing code-base consisting of collections
of Java byteocde. Based on code-level analysis, it makes no assumptions about the
nature of documentation or identifier naming, as it is solely reliant on the structural
characteristics of the code. It emphasises the peculiarly object-oriented features of
the class as an organising principle: classes, those entities comprising a class, and the
intra and inter class relationships that exist between them, are the significant factors
in defining a two-phase similarity measure as a basis for the comparison process.

247

This thesis also illustrates a successful transfer of techniques from the domains of
molecular chemistry and computer vision, as applied here to the problem of identi­
fying class-based similarity within an object-oriented code-base. Both these domains
provide an existing template for analysing structures as graphs, and determining struc­
tural similarity based on the comparison or matching of graphs. The inspiration for
representing classes as attributed relational graphs, and the application of graph-
theoretic techniques and algorithms to their comparison, arose out of an intuition that
a common basis in graph-theory was sufficient to warrant further investigation. The
results presented in this thesis demonstrate that this intuition was well founded, the
analogy being reasonably transferrable to the problem of determining similarity in
object-oriented code.

In addition to demonstrating the general premise relating to the utility of the

ARG model, several techniques developed as part of the analysis framework make
contributions in their own right. The global, vector-space measure of class-based
similarity using feature vectors of characterising structure paths, the SP approach
applied here in the context of code-comparison, is novel. In determining local similarity
between ARGs, in terms of maximum common subgraph extraction based on clique
detection, the combination of correspondence graph size reduction and an hybrid clique
detection approach is also novel. A principled, and not necessarily domain-specific,
approach to correspondence graph size reduction was provided through l) adopting
a hierarchic approach to vertex classification ii) requiring MCSs to be rooted and
connected, and iii) using graph symmetry in the form of automorphism groups. An
hybrid approach to clique detection enables a wide range of correspondence graphs to
be accommodated by using a modified version of Bron and Kerbosch’s clique detection
algorithm in isolation, and as a means of pre-hybridising Marehiori’s Heuristic Genetic
Algorithm.

In order to accommodate the identification of recurring instances of similarity
within an object-oriented code-base, techniques were borrowed from data clustering
and information retrieval to develop two new hybrid partitioning/clustering algorithms
introduced in this thesis. The Limited Hierarchy Bisecting K-medoids (LHBKM) and
Incremental Limited Hierarchy Bisecting K-medoids (ILHBKM) algorithms are de­
signed to provide a means of quickly identifying recurring structure in either static
or dynamic collections of classes. The partitioned/clustered collections produced by

248

these algorithms provides a framework, which in the first instance supports the iden­
tification of recurring similarity, or at least a reasonable sample of that present in a
collection, and additionally enables target-to collection matching and within collection

browsing.

The concept of late life-cycle activated reuse was introduced and a very limited
evaluation performed. Although the available evidence is currently insufficient to
adequately comment on the efficacy of this concept, the tools and techniques required
to support a fuller investigation have now been established in the main body of the

thesis.

The practical application of the work presented here relates to the identification
and indexing of instances of recurring, class-based, common structure present in estab­
lished and evolving collections of object-oriented code. A classification so generated
additionally provides a framework for class-based matching over an existing code-base,
both from the perspective of newly introduced classes, and search “templates” pro­
vided by those incomplete, iteratively constructed and refined classes associated with
current and on-going development. The tools and techniques developed here provide
support for enabling and improving shared awareness of reuse opportunity, based on
analysing structural similarity in past and ongoing development, tools and techniques
that can in turn be seen as part of a process of domain analysis capable of stimulating
the evolution of a systematic reuse ethic.

7.1.2 Realised Objectives

In terms of the original objectives and associated constraints as stated in Chapter 1
and revisited in Chapter 2, the tools and method developed in this thesis clearly satisfy
these by providing a means of automatically identifying similar and recurring code in
an existing object-oriented code-base. The approach makes no assumptions about the
m aturity of the development process or the quality of code documentation, and is not
dependent on any additional expertise or information sources. It clearly addresses the
question as to what is currently being reused and in that respect satisfies the original
objectives.

Restating the original hypotheses,

249

• An attributed, relational model of object-oriented class structure is sufficiently
discriminating to enable the determination of useful degrees of similarity between

classes.

• A two-phase, graph-theoretic approach based on an attributed, relational model
of object-oriented class structure can effectively and efficiently identify recurring
similarity in an existing object-oriented code-base.

the work presented in this thesis provides ample supporting evidence as to their
validity.

7.1.3 Limitations

The main limitations of the current approach are

• the level of false positives is still higher than desired, although well within ac­
ceptable levels. This is due to the level of captured method detail, on occasion,
being insufficiently discriminating.

• the ARG-based match process is possibly overconstrained, e.g.,

- the class model does not explicitly include inherited methods and fields,
which can lead to missed matches between a class and a class-subclass
combination, thereby loosing a refactoring opportunity.

- the class model does not take account of possible equivalence based on tran­
sitive relationships, e.g., “setter” and “getter” methods being equivalent to
direct field access.

- local matching of AIlGs is based on subgraph isomorphic rather than monomor-
pliic match

• level 2 methods in the class model do not record a full set of attributes.

• the approach only identifies single-class similarity and recurrence, it can not
automatically identify multi-class similarity and recurrence

• the approach currently operates only with Java bytecode

2 5 0

the computational overheads associated with code analysis and cluster formation
are high in comparison with other approaches, although well within acceptable
operational levels

7.2 Further work

This work has plenty of scope for improvement and extension. Two main avenues of
further research and development are currently being planned. Firstly, current limi­
tations are being addressed. Secondly, a larger, user-centric study is being considered
as a means of validating the tools and techniques presented here in the context of late
life-cycle activated reuse.

7.2.1 Improving the current approach

Attention is currently being focussed on improving precision in the match process.
Some key changes are being investigated:

• assessing and extending the characterising metrics associated with defining both
methods and the class as a whole. (This includes an analysis of individual metric
significance, possibly by way of principal component analysis.) The current
model does not capture sufficient internal method detail to consistently prevent
false positives. A different metric set, such as those used by Maynard et al
[Maynard et al, 199G] or a reasonable, low-complexity graph-based approach
such as Krinke’s [Krinke, 2000] may help deal with this. •

• attributing basic blocks and additionally relating them individually to the class
attributes. Including the relations between a method’s basic blocks and the
class attributes might provide the necessary discriminating power but the effect
on graph size could be problematic in terms of computational overhead.

• level 2 methods in the class model will record a full set of attributes.

• introducing a further SP feature weighting in inverse proportion to SP feature
size

251

• improving parameterisation, particularly in relation to thresholds, which are
currently selected based on intuition and limited empirical evidence (A larger

study should help.)

The limitations relating to the ARC model and comparison of classes being over­
constrained can be addressed in part by

• including two representations of each class, a second representation being based
on “flattening” the hierarchy, i.e., including all inherited methods and fields in
the class’s ARG. If initial similarity includes a measure of containment, a high
value could be used to suggest comparison with the “flattened” representation
of the contained class.

• introducing “normalising ” transformations to convert transitive relationships
into the lowest common form, e.g., a simple “getter” method being transformed
into a direct field access operation.

The issue of com putational overhead can be addressed in at least four ways

• there is scope for code optimisation as the current framework is an experimental
prototype.

• the current structure profile feature vector has not been subjected to any form of
feature selection, i.e., there may be features that are highly correlated and so ren­
dering some redundant. Consequently, this could help minimise the comparison

overhead.

• the approach to local match could be changed from a vertex-induced, bi-directional
subgraph isomorphism analysis (MCS) to an edge-induced, bi-directional sub­
graph monoomorphism analysis (MOS)1. The latter has been shown to reduce
the computational overhead by reducing the size of the correspondence graph
[Chen and Yun, 1998] but in this case it would be at the expense of relaxing
the constraints on the semantics of the match - momomorphic, as opposed to
isomorphic, match does not require that all pairs of matched vertices have the
same number of matching relationships between them.

1 MOS - maximum overlapping set,.

252

• the possibility of fast, direct ARG comparison is suggested by recent develop­
ments in attributed graph matching, e.g., Cordeliaet al’s VF1 algorithm [Cordeliaet al, 1999].

The clustering algorithms, LHBKM and ILHBKM, require further analysis in
order to establish whether the difference in performance as indicated by the applied
quality measures is indeed significant. If the difference is not significant, the lower
computational complexity of ILHBKM would render LHBKM redundant.

7.2.2 Extending and enhancing the approach

The developed framework is currently unwieldy to use as it is not supported by a
graphical user interface. Prior to further evaluation, an integrated interface capable
of graphically visualising the results of class match in addition to supporting collection

browsing is to be developed.

Other ares of future work include the accommodation of more object-oriented
languages such as C ++ via source code analysis using existing parser technology,
e.g., Devanbu’s GEN++ as used by Keller et al [Devanbu, 1992; Keller et al, 1997].
(Adaption to design-level, description languages such as UML may be difficult due
to its being heavily orientated towards interface specification, and inter-class, rather
than intra-class, relationships.)

Extending the method to accommodate the identification of m ulti-class similarity
and recurrence is also being considered. Michail’s approach to the identification of
patterns of library reuse by data-mining associations between classes is one possible
approach [Michail and Notkin, 1999].

The m etric properties of the structure profile have not been fully investigated. It
is possible that there may be correlations between the structure profile feature vector
and properties of the class such as quality and maintainability.

Having earlier rejected the use of a probabilistic approach to the classification
of class structure it should not be dismissed altogether: its the repository of classes
grows, the analysis could gives rise to a probabilistic model of common structure,
i.e., automated categorisation giving rise to probabilistic classification. There would

253

appear to be scope for building probabilistic models as the cluster structure becomes
established and the level of commonality recovered stabilises.

The most interesting avenue for continuing work is validation of the third hypoth­
esis relating to late life-cycle activated reuse. As part of the larger evaluation of
the developed method in the context of an “eXtreme programming” environment that
emphasises the code-compile-test cycle of development [Beck, 1999; Jeffries et al, 2000],
it is intended to examine users reaction to the provision of a real-time, class matching
and prompting environment based on monitoring and feedback during the class build
process. A further interface, similar to that of Ye and Fischer [Ye and Fischer, 2001],
is also being developed to support this.

254

A ppendix A

F o u n d a tio n G ra p h T h eo ry

A .l Introduction

The work described in this thesis is based on the representation of object-oriented
classes as graphs, where a graph in this context is the algebraic structure rather than
the more familiar cartesian data plot of analytic geometry. The study of graphs,
“graph theory”, has a long history beginning in the 1700’s with the work of Leonhard
Euler. It is now extensively applied across a wide range of disciplines, e.g., switching
and coding theory, electrical network analysis, computer program analysis, molecular

chemistry and operational research.

This appendix serves as a concise introduction to those elements of graph theory
essential to an understanding of the presented material, particularly that of Chapters
3, 4 and 5. It provides sufficient background information for the reader unfamiliar with
the terminology of graph theory to be able to interpret the main text. For a more

detailed account of graph theory, its applications, and graph theoretic algorithms, the
reader is referred to [Bondy and Murty 1976], [Deo 1974] and [Skiena, 1997]. The
section on graph morphisms is derived from [Messmer and Bunke, 1993] and the note
on invariants, certificates and automorphism groups is taken from [Rosen, 1999].

255

A .2 Graphs as algebraic structures

A graph Q is an algebraic structure composed of a set of elements V(C?) known as
vertices, and a (possibly empty) set of elements £(G), disjoint from V(G), known as
edges. An incidence function ipg associates each edge in £(G) with a pair of (not
necessarily distinct) vertices from V(£7), each vertex being an end of the edge. A
graph can thus be represented by the 3-tuple:

G = {V (G),£ (G)A q}

A Directed graph

0 —<D 0-<D

0 d r
Edge-induced {a,b} Maximally connected, node-
subgraph of A induced {1,2,3} subgraph of

A, i.e.,a clique

B Undirected graph

4 } Level2

Figure A.l: Some example graphs and subgraphs

A finite graph has a finite number of vertices and edges. The number of vertices
{yg) in a graph is the order of the graph and the number of edges (eg) is its size.

Edges are incident with their associated vertices and vice versa. An edge joins its two
vertices, the two vertices being adjacent. A simple graph has at most one edge joining
any two vertices, and each edge has distinct vertices. A loop is an edge with identical
ends. A general graph allows both loops and multiple edges between any two vertices.

256

A graph can be visualised as points and lines, the points representing its vertices
and the lines its edges (Fig. A.l). If an order is imposed on the pair of vertices associ­
ated with each edge, the graph is directed, otherwise it is undirected. A directed edge
is called an arc and is usually distinguished by the presence of an arrow at one end of
its line, indicating the order imposed on the incident vertices. The number of edges
incident to a vertex v is its degree (dg(v)). In the case of a directed graph, degree can
be subdivided into in-degree and out-degree according to the order imposed on the
adjacent vertices. A vertex with degree zero is an isolated vertex, while a vertex with
degree one is a pendant vertex.

We can extend the definition of a graph to include a finite set of symbolic labels
C(G), a function /¿(V) that maps labels to vertices, and a function <f>{£) that maps
labels to edges. Such a labelled graph can be represented by the 6-tuple:

G = {V(G),£(G)^g,C(G),p(V),4>(S)}

A graph V. is a subgraph of G if V(£H) C V(£), £(%) C £{Q) and V’w is the restric­
tion of ij)g to £(7i). A vertex-induced subgraph of G has a vertex set V'(Q) that is a
subset of V(G) and an edge set comprising those edges of V{G) having both ends in
V'(G)- An edge-induced subgraph of G has an edge set £'(G) that is a subset of £(G)

and a vertex set comprising those vertices of V(G) that are ends of £'(G)-

Starting from any vertex in a graph, the finite sequence of vertices and edges
vi, ei, V2 , e2 , ..., en, vn (n > 1) traced out by moving along a series of edges between
successively adjacent vertices is called a walk. If we constrain the walk such that its

edges are distinct it forms a trail, while limiting the walk to distinct vertices induces
a path. A walk for which rq and vn are the same vertex is closed. A closed trail that
additionally has distinct internal vertices is called a cycle. If a graph has a single
distinguished vertex - the root vertex - it is a rooted graph. The vertices of a rooted
graph can be assigned levels depending on their minimum distance from the root
vertex. The minimum distance is the number of edges in a path from the root vertex
to the vertex in question.

If a path exists between two vertices u and v the vertices are said to be connected.

257

Wo can partition the vertices of any graph into nonempty, disjoint subsets such that a
pair of vertices u and v are connected iff they belong to the same subset. These subsets

are the connected components of the graph. If a graph lias only one component, the
graph is connected, otherwise it is disconnected.

In a fully connected graph, each vertex is connected to all other vertices. A clique
is a subgraph that is fully connected (and maximal, i.e., not a subgraph of a fully
connected subgraph). The largest order clique of a graph is a maximum clique. A
maximum clique is not necessarily unique. A bipartite graph is a graph that contains
no odd length cycle, i.e., the set of vertices of V(Q) form two disjoint sets such that
no two vertices within the same set are adjacent.

A .3 Graph m atching and morphisms

A .3.1 Matching

Graphs are often used to represent and compare relational structures and concepts.
This process of comparison is generally termed graph matching. Graphs are matched
against each other in order to determine the degree of similarity between the entities
they represent. The degree of similarity ranges from exact match, through various
levels of approximate and partial match depending on the application. Based on

the previous definitions of a labelled graph Q and a vertex induced subgraph, the
comparison of structures represented by graphs can be formulated in terms of structure
preserving mappings or graph morphisms (Fig. A.2).

A .3.2 Graph morphisrns

Given a pair of graphs Q and Q', each morphism is defined in terms of (a) a function
/ : V((y) V(G') which maps each vertex v £ V(G) onto a vertex v' £ V(G') and (b)
a set of constraints governing the mapped vertices and the relationships modelled by
the corresponding adjacent edges.

258

A
i }

monomoiplusm
Bto A

subgi aph isomoiplnsm isomoiplnsm
C to A D to A

Figure A.2: Graph morphisms

• monomorphism
The function / is a graph monomorphism if

A*(v) = # * (/ («)) Vu G V{G)

and

<j)(e) = 4>(e') \/e = (vi,Vj) € £(Q) and Ve'G (f {v i) , f {v j))e£{G')

• subgraph isomorphism
The function / is a subgraph isomorphism if it is a graph monomorphism and it
also satisfies

Ve' = K ,u ') G £{G') n /(V (0)) X f(V(Q))

3e = (/ - 1(« i) , / - 1 (« $)) G £{Q) where p{e') = //(e)

• isomorphism
The function / is a graph isomorphism if it is bijective and a subgraph isomor­
phism.

259

• bi-directional subgraph isomorphism
If two graphs Q\ and Q-> have respective subgraphs Q[and Q'̂ any isomorphism

between these subgraphs is a, bi-directional subgraph isomorphism. A subgraph
induced by a bi-directional subgraph isomorphism is often referred to as a com­

mon subgraph, or maximum common subgraph if it is the largest order common
subgraph.

Exact graph match is usually defined in graph-theoretic terms as establishing an
isomorphism or subgraph isomorphism between the two compared graphs. Alterna­
tively, degrees of graph match can be expressed in terms of bi-directional subgraph
isomorphism (or maximum common subgraph), the larger the common subgraph the
greater the similarity. In some contexts, the semantics of subgraph isomorphism are
made more explicit in that the term “graph-subgraph” isomorphism is employed, em­
phasising the fact the first graph is entirely contained within the second.

A relaxation of the bijective mapping inherent in subgraph-isomorphism, by which
the mapping of vertices need not be one-to-one, and relationships can be n-ary rather
than binary, i.e., involve more than one edge, is known as relational-homomorphism.
This is useful in the field of computer vision where the match process may be more
relaxed [Haralick and Shapiro, 199.'], pp382]

A .3.3 Invariants, certificates and automorphism groups

Invariants and certificates

Isomorphism can be determined by means of establishing invariants called certificates
on families of graphs. An invariant is a function over a graph such that families of
isomorphic graphs generate the same value of the function. However, graphs that
generate the same invariant value are not necessarily isomorphic. A certificate is an
invariant that requires the function to be both necessary and sufficient.

260

G raph sym m etry: autom orphism groups

Identifying symmetries within a graph can be usefully applied when trying to limit the
size of the search space during graph matching. A permutation of the vertex set V(G)
of a graph Q is a bijective mapping from V(Q) to V(G)- If (u,v) is an edge of Q and
a is a permutation of V(G) then define a((u, v)) = (a(u),a(v)). An automorphism of
the graph Q is a permutation a such that a ((u ,v)) E £(G) (u, u) E £(G)- An
automorphism group of a graph Q is the set of all permutations of its vertex set V(G)
that are automorphisms of G, i.e., the set
£(G) of G.

Automorphism group of B
Aut(B) = {I. (1)(2,3)(4). (1)(2.4)(3).
(1)(2)(3.4).(1)(2.3.4).(1)(2.4.3)}

Where I is the identity permutation
(1 - 1 . 2 - 2 . 3 - 3 . 4 - 4) . the
remainder being cyclic
representations of the graph
automorphisms, e g . (1)(2,4.3)
represents the permutation (1 - 1 . 2
- 4 . 4 - 3 . 3 - 2)

of permutations of V(G) that fix the edges

These two maximum common
subgraphs between graphs B and A are
isomorphic The existence of
automorphism (1)(2.4.3) points to a
redundant match in this case

Figure A.3: Graph Automorphisms and Automorphism Groups

Automorphism groups identify potential re-labellings of a graph that are indis­
tinguishable from each other, i.e., the graphs are isomorphic but for the labelling.
Figure A.3 illustrates how knowledge of the automorphism group of a graph could
inform the match process by limiting redundant comparisons: the two example MCSs

261

are isomorphic but were it possible to restrict the mapping of nodes to exclude con­
sideration of automorphic mappings such redundant comparisons could be avoided.
Brendan McKay’s “Nauty” program, which is based on the extraction of automor­
phism groups, is currently recognised as the most efficient, graph isomorphism detector
available [McKay, 1990].

262

A ppendix B

C lass A nalysis F ram ew ork

Figure B.l shows the architecture of the class analysis and classification framework
developed as part of this thesis. It identifies the main components and subcomponents
of the framework implemented to date. A brief description of each component is pro­
vided below. The framework has been developed in Java using SUN’s JDK1 except
for the clique detector module which is written in C2. All the code is bespoke, inde­
pendently developed as part of the current work, except for the heuristic element of
the clique detection module, which was adapted from a C-based simple GA template
developed by William Spears [Spears 2000],

[1] The Class Analyser

The class analyser is responsible for extracting the information necessary to construct
an ARC from a Java class file. It is made up of three components, the bytecode

analyser, the ARG builder, and the SP feature vector builder. The bytecode analyser
comprises a parser and disassembler, and collaborates directly with the ARG builder
in order to produce an attributed, relational representation of a class.

• The bytecode parser:
The parser analyses a class file according to its internal format as described in

‘ J D K v l .3 .
2G N U C 2.95.2

263

Static Collection SP

Dynamic Collection

Matcher SP

Class Analyser
Bytecode Analyser

Parser

Disassembler

ARG Builder

SP feature vector builder

Similarity Calculator
MCS Extractor

CG Constructor

Clique Detector SP;

SP Comparator

Figure B.l: Class Analysis and Classification Framework

[Lyndholm and Yellin, 1999]. This process extracts information relating to the
class, such as whether it is abstract or concrete, its visibility, name, superclass,
and any interfaces it implements. Each analysed class is indexed by a combina­
tion of its physical location and its fully qualified class name. The ARG builder
assigns a unique Structure Type identifier (STID) to a class, unless it already lias
an index entry and is known to be unique. Each STID is in turn associated witli
the set of attributes characterising its class, as and when these attributes are
made available to the ARG builder. (Primitive types are also assigned unique
structure type STIDs.)

The parser further identifies declared fields and methods, and their defining
structures within the bytecode. Each field structure is parsed and passed to the
ARG builder to create an attributed field vertex, these attributes including its
name, its type !, and visibility. Information is passed to the ARG builder in 3

3A primitive type or a reference type as defined by an STID, including its dimensionality if an
array

264

order for method vertices to be created, partially attributed by name, signature
and visibility4. Vertices representing method parameters and return types are
also created and partially attributed. Edges that describe relationships between
the class and its constituent fields and methods, its superclass and interfaces,
are also created, again only partially attributed. At this stage, in many cases
only partial attribution is possible until the methods have been examined in
more detail and/or information relating to referenced classes is made available.
In order to complete method analysis, including method attribution, and the
creation and attribution of edges between a method, the fields it accesses, and the?
methods it calls, each method’s code is extracted and passed to the disassembler
for further analysis.

• The bytecode disassembler:
A first pass disassembly of a method’s code provides the information necessary
to identify accessed fields and called methods, both internal and external to the
class. At this point, partially attributed vertices can be created to represent
these entities. A second pass disassembly is carried out to try and resolve the
source of method calls and field accesses within the method, e.g., establishing
whether a call was made via a class’s field or transitively by way of a field having
been copied locally. This second pass also extracts the basic-block structure of
the code, which is again passed to the ARG builder.

During the entire parse and disassembly process, any reference (“class”) types
encountered are noted. In order to complete ARG construction, those reference

types previously noted, but not already indexed, are themselves analysed, if the
corresponding class file is available. This recursive process attempts to produce
a complete class analysis but will proceed in the absence of any of the noted

reference types. With all available reference type now indexed, the ARG builder
can be instructed to complete attribution of the current ARG by referencing the
class file index and extracting the required class attributes.

• The ARG builder:
The ARG builder coordinates the construction of an ARG based on the output
from the bytecode analyser as described above. The results of the build process,

4The attributes associated with individual vertices and edges are as described in Chapter 3.

265

a set of attributed vertices and edges, are stored in the code repository database
(DB).

• The SP feature vector builder:
The SP feature vector builder takes a generated ARG and extracts the set of
path-length-limited features as described in Chapter 3. The algorithm used here
is a simple depth-first-search (DFS) [Aho Hopcroft and Ullman, 1983] designed
around the “visitor” design pattern [Gamma et al, 1995]. Each vertex is visited
in turn, and all structure paths beginning at a given vertex, up to a maximum
length, are extracted by means of a backtracking “search”. At the outset, a
unique integer identifier is assigned to each edge in the ARG and the sorted
integer combinations of each structure path extracted is recorded. This enables
a check to prevent recording of duplicate paths. SP feature vectors are also
stored in the DB.

[2] The Sim ilarity Calculator

The similarity calculator provides a means of determining a global measure of similarity
by comparing structure path feature vectors (SP), or a local determination of similarity
based on the extraction of an MCS between two ARGs. The similarity calculator is
made up of the MCS extractor and the SP comparator. The MCS extractor comprises
the correspondence graph (CG) constructor and the clique detection modules.

• The SP comparator:
The SP comparator calculates the similarity between two SP feature vectors
according to a supplied similarity measure. The module has a “specification
point”, i.e., an abstract interface, that allows any similarity measure to be applied

provided it is encapsulated in an object that meets the interface specification.
This is based on the “strategy” design pattern [Gamma et al, 1995].

• The CG constructor:
The CG constructor build a correspondence graph from two ARGs representing
the compared classes. The precise details are described in Chapter 5. The re­
sulting CG is then passed to the clique detector.

260

• The clique detector:
The clique detector identifies maximum cliques in the CG using a combined
deterministic/heuristic algorithm, as documented in Chapter 5. The clique de­
tection module allows any clique detection algorithm to be applied provided it
satisfies this interface of the specification point.

[3] The Classifier

The classifier provides a means of clustering either a static or dynamic collection of
classes as represenetd by their SP feature vectors. It is made up of two components,
the cluster builder and the matcher. Although the cluster builder has been rep­
resented as comprising two components, they are essentially the same, differing only

in the clustering algorithm specified. In the current framework, the two algorithms
are LIIBKM and ILIIBKM, used for static and dynamic collections respectively. The
details of these algorithms are given in Chapter 6.

The classifier can be triggered to carry out an MCS analysis of all, or a selected
group of, bottom-level clusters, which additionally leads to the creation of an MCS
index for each cluster, i.e., the analysed clusters are indexed according to their smallest
and largest MCS.

The classifier also supports target-collection matching by way of the matcher, where

a target ARG can be matched against the current cluster structure. A search based
on an SP feature vector representation of the target, and its matching against all
bottom-level cluster representatives, returns the best matching cluster. This can in
turn be processed by the MCS extractor or the SP comparator to produce a ranked
list of similar classes. The MCS index can be used at this point to limit the search if
necessary. Again the specific details are given in Chapter 6.

[4] The code repository

The code repository is made up of the existing code-base, in situ, i.e., the analysed
code does not have to reside in a specific location. The analysis and classification

2G7

framework only needs to point to the directories containing code to be included in the
analysis.

Those parts of the repository shown in Fig. B.l within the dotted border are
referred to as “the database”, or DB. This database holds information relating to
the ARGs, the SP feature vectors and the cluster structure. Part of the database is
currently implemented as flat files, e.g., the SP feature vectors and ARG descriptions,
part as memory-resident structures loaded from file prior to a new analysis, e.g., SP
feature types and cached STIDs.

This framework is an experimental prototype, which has ample scope for improve­
ment. Some of the tasks referred to above are currently reliant on the creation of
temporary files and/or manual intervention, e.g., the interface between the matcher

and the MCS extractor is based on a list of ARGs being generated by the matcher,
which are manually fed to the MCS extractor. Issues relating to integration, fuller
automation, and particularly visualisation, are the subject of continuing work.

2(i8

B ib liog raphy

[Aamodt and Plaza, 1994] Aamodt, A., and Plaza, E. Case-Based Reasoning: Foun­
dational Issues, Methodological Variations, and System Approaches.
AI Communications, 7(1), pp39-52, 1994.

[Aho, Hopcroft and Ullman, 1983] Alio, A. V., Hopcroft, J. E., and Ullman, J. D.
Data Structures and Algorithms. Addison-Wesley, 1983.

[Akutsu, 1993] Akutsu, T. A polynomial time algorithm for finding a largest common
subgraph of almost trees of bounded degree. IEICE Trans. Fundamen­
tals, E76-A, i)i)1488-1493, 1993.

[Ambler et al, 1974] Ambler, A.P., Brown, C.M., Burstall, R.M., Popplestone, R.J.,
and Barrow, H.G., A Versatile Computer-Controlled Assembly Sys­
tem, Proc. Third Int. Joint Conf. on AI, Stanford, California, pp98-
307, 1974.

[Antoniol et al, 1998] Antoniol, G., and Fiutemm R. and Cristoforetti, L. Using Met­
rics to Identify Design Patterns in Object-Oriented Software. In Pro­
ceedings of the Fifth International Symposium on Software Metrics
(METRICS’98), Bethesda, Maryland, Nov, 20-21 1998, pp23-34.

[Babel, 1991] Babel, L. Finding maximum cliques in arbitrary and in special graphs.
Computing, 46, pp21-341, 1991.

[Baker and Manber, 1998] Baker, B.S. and Manber, U. Deducing Similarities in Java
Sources from Bytecodes. In Proceedings of the 1998 USENIX Techni­
cal Conference.

269

[Baker, 1993] Baker, B.S. A Theory of Parameterized Pattern Matching: Algorithms
and Applications (Extended Abstract). Proc. 25th ACM Symposium
on Theory of Computing, May 1993, pp71-80.

[Baker, 1996] Baker, B.S. Parameterized Pattern Matching: Algorithms and Appli­
cations. Journal of Computing System Science, 52, pp28-42, February
1996.

[Balazinska et al, 1999] Balazinska, M., Merlo, E., Dagenais, M., Lague, B. and Kon-
togiannis, K. Partial Redesign of Java Software Systems Based on
Clone Analysis. In Proceedings of 6th Working Conference on Reverse
Engineering (WCRE’99), IEEE Computer Society Press, pp326-336,
1999.

[Balazinska et al, 2000] Balazinska, M., Merlo, E., Dagenais, M., Lague, B. and Kon-
togiannis, K. Advanced Clone Analysis to Support Object-Oriented
System Refactoring. In Proceedings of 7th Working Conference on
Reverse Engineering (WCRE’2000), IEEE Computer Society Press,
pp98-107, 2000.

[Ballard and Brown, 1982] Ballard, D. and Brown, C. Computer vision. Prentice Hall,
1982.

[Barnard and Downs, 1992] Barnard, J. M. and Downs, G. M. Clustering of chemi­
cal structures on the basis of two-dimensional similarity measures. J.
Chem. Inf. Comput. Sci., 32, pp644-649, 1992.

[Barrow and Burstall, 1976] Barrow, 14.G. and Burstall, R.M. Subgraph Isomorphism,
Matching Relational Structures and Maximal Cliques. Information

Processing Letters, 4(4), pp83-84, 1976.

[Barrow and Popplestone, 1971] Barrow, H. G., and R.J. Popplestone, Relational De­
scriptions in Picture Processing, Machine Intelligence, 6, pp377-396,
1971.

[Baxter et al, 1998] Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M., and Bier,L.
Clone detection using abstract syntax trees. In Proceedings of lnter-

270

national Conference on Software Maintenance, ACM Press, Bethesda,
Maryland, November 10-19, 1998, pp368-377.

[Beasley et al, 1993] D. Beasley, D. R. Bull, and R. R. Martin, An Overview of Genetic
Algorithms:Part I, Fundamentals. University Computing, 15(2), pp58-
09, 1993.

[Beck, 1999] Beck, K. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

[Berghel and Sallach, 1984] Berghel, H. L. and Sallach, D. L. Measurements of pro­
gram similarity in identical task environments. ACM SIGPLAN No­
tices, 19(8), pp05-7G, 1984.

[Biggerstaff et al, 1994] Biggerstaff, T.J., B.G. Mitbander, and D.E. Webster, Pro­
gram Understanding and the Concept Assignment Problem. Commu­
nications of the ACM, 37(5), pp72-83, 1994.

[Biggerstaff, 1989] Biggerstaff T.J., Design recovery for maintenance and reuse, IEEE

Software, 22(7), pp30-49, July 1989.

[Bomze et al, 1999] Bomze, I.M., Budinich, M., Pardalos, P.M. and Pelillo, M. The
Maximum Clique Problem. In Handbook of Combinatorial Optimisa­
tion, D.-Z. Du and P.M. Pardalos (Eds.), Kluwer Academic Publishers,
1999.

[Bondy and Murty, 1970] Bondy, J.A., Murty, U.S.R. Graph Theory with Applica­
tions. Macmillan, 1970.

[Booch, 1994] Booch, G. Object-Oriented Analysis and Design With Applications
(2nd Ed.). Benjamin-Cummings, 1994.

[Boone, 1999] Boone, J. Harvesting Design. Chapter 0 in Fayad, M.E., Schmidt,
D. C., and Johnson, R. E., (Eds.) Building Application Frameworks.
John Wiley k Sons, 1999.

[Brint and Willett, 1987] Brint, A.T. k Willett, P. Algorithms for the identification of
three-dimensional maximal common substructures. Journal of Chem­
ical Information and Computer Science, 27, ppl52-158, 1987.

271

[Broil and Kerbosch, 1973] Bron, C. and Kerbosch, J. Algorithm 457, Finding all
cliques of an undirected graph. Communications of the ACM, 1G,
pp575-577, 1973.

[Bunke and Shearer, 1998] Bunke, H. and Shearer, K. A graph distance metric based
on the maximal common subgraph. Pattern Recognition Letters, 19(3
- 4), pp255-259, 1998.

[Bunke, 1997] Bunke H. On a Relation Between Graph Edit Distance and Maxi­
mum Common Subgraph. Pattern Recognition Letters, Elsevier Sci­
ence, (18)8, pp689-694, 1997.

[Caldiera and Basili, 1991] Caldiera, G. and Basili, V.R. Identifying and Qualifying
Reusable Software Components. Computer, 24(2), pp61-69, February
1991.

[Can, 1983] Can, F. Incremental clustering for dynamic information processing,
ACM Transactions on Information Systems (TOIS), 11(2), ppl43-164,
April 1993 .

[Carraghan and Pardalos, 1990] Carraghan, R. & Pardalos, P.M. Exact algorithm for
the maximum clique problem. Operations Research Letters, 9, pp375,
1990.

[Charikar et al, 1997] Charikar, M., Chekuri, C., Feder, T., Motwani, R. Incremental
clustering and dynamic information retrieval. In Proceedings of 29th
Annual ACM Symposium on Theory of Computing, El Paso, Texas,
May 04-06, 1997, pp626-635.

[Chen and Cheng, 1997] Chen, Y. and Cheng, B.H.C. Formalizing and Automating

Component Reuse. In Proceedings of 9th International Conference on
Tools with Artificial Intelligence (TAI 97), Newport Beach, California,
November 1997, pp94-101.

[Chen and Yun, 1998] Chen, C.-W.K. and Yun, D.Y.Y. Unifying graph-matching
problem with a practical solution. In Proceedings of International Con­
ference on Systems, Signals, Control, Computers, September 1998.

272

[Chon et al, 1998] Chen, Y., Gansner, E.R. and Koutsofios, E. A C ++ Data Model
Supporting Reachability Analysis and Dead Code Detection. IEEE
Transactions on Software Engineering, 24(9), September 1998.

[Chidamber and Kemerer, 1994] Chidamber, S. R. and Kemerer, C. F. A Metric Suite
for Object-Oriented Design. IEEE Transactions on Software Engineer­
ing, 20, pp476-493, 1994.

[Chikofsky and Cross, 1990] Chikofsky, E.J., Cross II, J.H. Reverse engineering and
design recovery: A taxonomy. IEEE Software, 7(1), ppl3-17, January
1990.

[Churcher and Shepperd, 1995] Churcher, N. I. and Shepperd, M. J. Towards a Con­
ceptual Framework for Object Oriented Software Metrics. ACM SIG-
SOFT Software Engineering Notes, 20(2), pp69-76, 1995.

[Cole and Wishart, 1970] Cole, A.J. and Wishart, D. Improved Algorithm for the
Jardine-Sibson method of Generating Overlapping Clusters. Com­
puter Journal, 13, ppl56-163, 1970.

[Cordella et al, 1999] Cordella, L.P., Foggia, P., Sansone, C., Vento, M. Evaluation
Performance of the VF Graph Matching Algorithm. Proc, of the 10th
International Conference on Image Analysis and Processing, IEEE
Computer Society Press, pp.1172-1177, 1999.

[Cormen et al, 1990] Cormen, T.H., Leiserson, C.E. and Rivest, R.L. Introduction to
Algorithms, MIT Press, 1990.

[Corned and Gotleib, 1970] Corned, D.G. and Gotlieb, C.C. An Efficient Algorithm
for Graph Isomorphism. Journal of the ACM, 17(1), 51-64, 1970.

[Croft, 1980] Croft, W.B. A model of cluster searching based on classification. In­
formation Systems, 5, ppl89-195, 1980.

[Culwin et al, 2001] Culwin F., MacLeod A. & Lancaster T., Source Code Plagiarism
in UK HE Schools, Issues, Attitudes and Tools. Technical Report SI3C-
CISM-01-01, South Bank University, 2001.

[Cunningham and Mikoyan, 1993] Cunningham, P. and Mikoyan, A. Using CBR tech­
niques to detect plagiarism in computing assignments. Technical Re­
port: Department of Computer Science, Trinity College, Dublin,
September 1993.

[Cutting et al, 1992] Cutting D., Karger D., Pedersen, J., Tukey, J. Scatter/gather: a
cluster-based approach to browsing large document collection. In Pro-
cedings of 15th ACM SIGIR. Conference on Research and Development
in Information Retrieval (SIGIR '92), 1992, pp318-329.

[Damiani et al, 1999] Damiani, E., Fugini, M.G., Bellettini, C. A Hierarchy-aware Ap­
proach to Faceted Classification of Objected-Oriented Components.
Transactions on Software Engineering Methodology, 8(3), pp215-262,
1999.

[Davis, 1991] Davis, L. Handbook of Genetic Algorithms. Van Nostrand Reinhold,
1991.

[Daylight, 2001] Daylight Chemical Information Systems, Inc.
(http://www.daylight.com/dayhtml/doc/theory/theory.finger.htrnl)

[Deo, 1974] Deo, N. Graph Theory with Applications to Engineering and Com­
puter Science. Prentice Hall, 1974.

[Devanbu et al, 1991] Devanbu, P. T., Brachman, R, J., Selfridge, P. G. and Ballard,
B. W. LaSSIE: A knowledge-based software information system. Com­
munications of the ACM, 34(5), pp34-49, May 1991.

[Donaldson et al, 1981] Donaldson, J. L., Lancaster, A. and Sposato, P. H. A plagia­
rism detection system. ACM SIGSCI Bulletin 13(1), pp21-25, Febru­
ary 1981.

[Downs and Willett, 1996] Downs, G.M. and Willett, P. Similarity searching in
databases of chemical structures. Reviews in Computational Chem­
istry, 7, ppl-66, 1996.

[Ducasse et al, 1999] Ducasse, S., Rieger, M. and Demeyer, S. A language indepen­
dent approach for detecting duplicated code. In Yang, H. and White,

274

http://www.daylight.com/dayhtml/doc/theory/theory.finger.htrnl

L. (Eds.), Proceedings of International Conference on Software Main­
tenance (ICSM’99), IEEE Computer Society Press, Sept. 1999, ppl09-
119.

[Duda and Hart, 1973] Duda, R.O. and Hart, P.E. Pattern Classification and Scene
Analysis. Wiley, 1973.

[El-Hamdouchi and Willett, 1989] El-Hamdouchi, A. & Willett, P. Comparison of
hierarchic agglornerative clustering methods for document retrieval.
Computer Journal, 32, pp220-227, 1989.

[Ellis et al, 1993] Ellis, D., Furner-Hines, J., Willett, P. Measuring the degree of simi­
larity between objects in text retrieval systems. Perspectives in Infor­
mation Management, 3(2), ppl28-149, 1993.

[Eppstein, 1999] Eppstein, D. Subgraph isomorphism in planar graphs and related
problems. Journal of Graph Algorithms & Applications 3(3), ppl-27,
1999.

[Etzkorn and Davis, 1996] Etzkorn, L.H., and Davis, C.G. Automated Object-
oriented Reusable Component Identification. Knowledge-Based Sys­
tems, 9(8), pp517-24, 1996.

[Everitt, 1993] Everitt, B.S. Cluster Analysis. Arnold, 1993.

[Faidhi and Robinson, 1987] Faidhi, J. A. and Robinson, S. K. An empirical approach
for detecting program similarity and plagiarism within a university
programming environment. Computing in Education, 11, ppll-19,
1987.

[Fayad et al, 2000] Fayad, M. E., Laitinen, M., Ward, R.P. Software Engineering in
the Small. Communications of the ACM, 43(3), ppl 15-118, 2000.

[Fenton and Pfleeger, 1997] Fenton, N.E., Pfleeger, S.L., Software Metrics - A Rigor­
ous and Practical Approach. International Thomson Press, 1997.

[Fernandez-Chamizo et al, 1996] Fernandez-Chamizo, C., Gonzalez-Calero, P.A.,
Gomez-Albarran, M., Hernandez-Yanez, L. Supporting Object Reuse

275

through Case-Based Reasoning. In Smith, I., Faltings, B., (Eds.) Ad­
vances in Case-Based-Reasoning (EWCBR’96), Lecture Notes in Ar­
tificial Intelligence, 1168, Springer-Verlag, 1996.

[Fishman and Kemerer, 1997] Fichman, R.G. and C.E. Kemerer, Object Technology
and Reuse: Lessons from Early Adopters. IEEE Software. 14(10),
pp47-59, 1997.

[Foster et al, 2002] Foster, L, Kesselman, C. Nick, J.M. and Tuecke, S. Grid Services
for Distributed System Integration, IEEE Computer, 35(6), pp37-46,
June 2002.

[Frakes and Gandel, 1989] Frakes, W.B. and Gandel, P.B. Representation Methods
for Software Reuse. Proceedings of TRI-Ada ’89 - Ada Technology
In Context: Application, Development, and Deployment, ACM Press,
New York, New York, October 23-26, 1989, pp302-314.

[Frakes and Isoda, 1994] Frakes, W. and Isoda, S. Success Factors of Systematic
Reuse. IEEE Software, 11(5), ppl5-19, September 1994.

[Frakes and Nejmeh, 1987] Frakes, W., and Nejmeh, B. Software Reuse Through In­
formation Retrieval. In Proceedings of the Twentieth Annual Hawaii
International Conference on System Science, Shriver, B.D. and
Sprague, R.H. (Eds), IEEE! ComputerSociety Press, Kailua-Kona,
Hawaii, 1987, pp530-535.

[Fraies and Pole, 1994] Frakes, W.B. and Pole, T.P. An Empirical Study of Represen­
tation Methods for Reusable Software Components. Transactions on
Software Engineering 20(8), pp617-630, 1994.

[Gamma et al, 1995] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[Gardiner et al, 1997] Gardiner, E.J., Artymiuk, P.J. & Willett, P. Clique-detection
algorithms for matching three-dimensional molecular structures. Jour­
nal of Molecular Graphics and Modelling, 15, pp245-253, 1997.

276

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D.S. Computer and In­
tractability: A Guide to NP-Completeness. W. H. Freeman, 1979.

[Gillet et al, 1998] Gillet, V.J., Wild, D.J., Willett, P. & Bradshaw, J. Similarity

and dissimilarity methods for processing chemical structure databases.
Computer Journal, 41, pp547-558, 1998.

[Girardi and Ibrahim, 1993] Girardi, M. R. & Ibrahim, B. A Software Reuse System
Based on Natural Language Specifications. Proceedings of Interna­
tional Conference on Computing and Information (ICCI '93), Sud­
bury, Ontario, Canada, May 27-29, 1993, pp507-511.

[Gitchell and Tran] Gitchell, D. and Tran, N. Sim: a utility for detecting similarity
in computer programs, ACM SIGCSE Bulletin (ACM Special Interest
Group on Computer Science Education), 31(1), pp266-270, 1999.

[Goodrich and Tamassia, 1998] Goodrich, T. and Tamassia, R. Data Structures and
Algorithms in Java. John Wiley & Sons, 1998.

[Gowda and Krishna, 1978] Gowda, K.C. and Krishna, G. Agglomerative clustering
using the concept of mutual nearest neighborhood. Pattern Recogni­
tion, 10, ppl05-112, 1978.

[Grier, 1981] Grier, S. A tool that detects plagiarism in Pascal Programs. ACM
SIGCSE Bulletin (Proc. of 12th SIGSCE Technical Symp.), 13(1),
ppl5-20, 1981.

[Griss et al, 1995] Griss, M.L., Jacobson, I., Jette, C., Kessler, R.R., Lea, D. Sys­
tematic Software Reuse - Objects and Frameworks are not Enough.
Symposium on Software Reusability (SSR’95), Seattle, Washington,
April 28-30, 1995, ppl7-20.

[Guha et al, 2000] Guha, S., Rastogi, R., Shim, K. ROCK: A Robust Clustering Algo­
rithm for Categorical Attributes. Information Systems, 25(5), pp345-
366, 2000.

[Hagdone, 1992] Hagadone, T. R. Molecular substructure similarity searching: Effi­
cient retrieval in two-dimensional structure databases. J. Chem. Inf.
Comput. Sci., 32, pp515-521, 1992.

277

[Halstead, 1977] Halstead, M. H. Elements of software science, North Holland, 1977.

[Haralick and Shapiro, 1993] Haralick, R.M. and Shapiro, L.G., Computer and Robot
Vision Addison-Wesley, 1993.

[Harrold et al, 1] Harrold, M. J., Jones, J., Li, T., Liang, D., Orso, A., Pennings, M.,
Spoon, S. and Gujarathi, A. Regression test selection for Java soft­
ware. In Proceedings of the ACM Conference on Object-Oriented Pro­
gramming, Systems, Languages, and Applications (OOPSLA 2001),
ACM Press, Tampa Bay, Florida, 14-18 October, 2001.

[Helm and Maarek, 1991] Helm, R. and Maarek, Y.S. Integrating information retrieval
and domain specific approaches for browsing and retrieval in object-
oriented class libraries. In Proc. 7th ACM Conf. on Object-Oriented
Programming: Systems, Languages and Applications (OOPSLA’91),
pp47-61, 1991.

[Henninger, 1997] Henninger, S. An Evolutionary Approach to Constructing Effective
Software Reuse Repositories. Transactions on Software Engineering
Methodology, G(2), pplll-140, 1997.

[Hislop, 1998] Hislop, G. Analysing Existing Software for Software Reuse. The Jour­
nal of Systems and Software, 41, 33-40, 1998.

[Hodes, 1989] Hodes, L. Clustering a Large Number of Compounds. 1. Establishing

the Method on an Initial Sample. Journal of Chemical Information
and Computer Sciences, 29(2), ppßü-71, 1989.

[Homer and Peinado, 197G] Homer, S. and Peinado, M. Experiments with polynomial­
time CLIQUE approximation algorithms on very large graphs. In D.
Johnson and M. Trick. Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge. AMS, 1996, ppl47-167, 199G.

[Humphrey, 2000a] Humphrey, W.S. The Personal Software Process (PSP). Technical
Report CMU/SEI-2000-TR-022, ESC-TR-2000-022, Carnegi Mellon
University (Software Engineering Institute), December 2000.

278

[Humphrey, 2000b] Humphrey, W.S. The Team Software Process (TSP). Technical
Report CMU/SEI-2000-TR-023, ESC-TR-2000-023, Carnegi Mellon
University (Software Engineering Institute), December 2000.

[Huu, 1993] van Huu, L. A Software Reuse System for C Codes. Technical Report
TR-93-06, International Computer Science Institute (ICS1), Univer­
sity of California at Berkeley, 1993.

[Jackson and Waingold, 1999] Jackson, D. and Waingold, A. Lightweight Extraction
of Object Models from Bytecode. In Proceedings of 21st International
Conference on Software Engineering (ICSE'99), ACM Press, Los An­
geles CA, USA, May 1999, ppl94-202.

[Jacobson et al, 1997] Jacobson, L, Griss, M. and Jonsson, P. Software Reuse: Ar­
chitecture Process and Organization for Business Success. Addison-
Wesley, 1997.

[Jain and Dubes, 1988] Jain A. K. and Dubes R. C. Algorithms for Clustering Data.
Prentice-Hall, 1988.

[Jain, Murty and Flynn, 1999] Jain, A. K., Murty, M. N., Flynn, P. J. Data clustering:
A review. ACM Computing Surveys, 31(3), pp264-323, 1999.

[Jankowitz, 1988] Jankowitz, H. T. Detecting plagiarism in student Pascal programs.
The Computer Journal, 31(1), ppl-8, 1988.

[Jardine and Sibson, 1971] Jardine, N. and Sibson, R. Mathematical Taxonomy. Wi­
ley, 1971.

[Jarvis and Patrick, 1973] Jarvis, R.A. and Patrick, E.A. Clustering Using a Similar­
ity Measure Based on Shared Near Neighbors. IEEE Transactions on

Computers, C22, ppl025-1034, 1973.

[Jeffries et al, 2000] effries, R., Anderson, A., Hendrickson, C. and Beck, K. Extreme
Programming Installed. Addison-Wesley, 2000.

[Jilani et al, 2001] Jilani, L., Desharnais, J. and Mili, A. Defining and Applying Mea­
sures of Distance Between Specifications. Transactions on Software
Engineering, 27(8), pp(i73-703, 2001.

279

[Johnson, 1992] Johnson, R.E. Documenting frameworks using patterns. ACM SIG-
PLAN Notices, 27(10), G3-76, Oct. 1992.

[Johnson, 1993] Johnson, J. H. Identifying Redundancy in Source Code using Finger­
prints. In Proceedings of CASCON’93, ppl71-183, 1993.

[Johnston, 1976] Johnston, H.C. Cliques of a Graph - Variations of the Bron-Kerbosch
Algorithm. International Journal of Computer and Information Sci­
ences, 5(3), pp209-238, 1976

[Jones, 1994] Jones, T.C. Economics of Software Reuse. IEEE Computer, 27(7),
106-107, July 1994.

[Jurs, 1986] Jurs, P.C. Computer Software Applications In Chemistry. John Wiley
& Sons, 1986.

[Kaufman and Rousseeuw, 1990] Kaufman, L., & Rousseeuw, P. Finding Groups in
Data. John Wiley & Sons, 1990.

[Keller et al, 1999] Keller, R. K., Schauer, R., Robitaille, S. and Page, P. Pattern-
Based Reverse-Engineering of Design Components. In Proceedings
21st International Conference on Software Engineering (ICSE ’99),
ACM Press, Los Angeles CA, USA, May 1999, 226-235.

[Klir and Yuan, 1995] Klir, G. .1. and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory
and Applications. Prentice Hall, 1995.

[Koch et al, 1996] Koch, L, Lengauer, T. and Wanke, E. An algorithm for finding
maximal common subtopologies in a set of protein structures. Journal
of Computational Biology, 3, pp289-306, 1996.

[Komondoor and Horwitz, 2001] Kornondoor, R. and Horwitz, S. Using slicing to iden­
tify duplication in source code. In Eigth International Static Analysis
Symposium (SAS), 2001.

[Kontogiannis et al, 1996] Kontogiannis, K.A., DeMori, IL, Merlo, E. Galler, M.,
Bernstein, M. Pattern Matching for Clone and Concept Detection.
Journal Automated Software Engineering, 3, pp77-108, 1996.

280

[Kontogiannis, 1996] Kontogiannis, K. Evaluation Experiments on the Detection of
Programming Patterns Using Software Metrics. In Proceedings of
Working Conference on Reverse Engineering, IEEE Press, Amster­
dam, The Netherlands, October 6-8 1997, p44-55.

[Korn et al, 1999] J. Korn, Y. Chen, and E. Koutsofios. Chava: Reverse Engineering
and Tracking of Java Applets. In Proceedings of the 6th Working Con­
ference on Reverse Engineering (WCRE’99), Atlanta, Georgia, Octo­
ber 6-8, 1999, pp314-325.

[Kramer and Prechelt, 1996] Kramer, C. and Prechelt, L. Design recovery by auto­
mated search for structural design patterns in object-oriented soft­
ware. In Proceedings of Working Conference on Reverse Engineering,
IEEE Computer Society Press, 1996, pp208-215.

[Kreuger, 1992] Kreuger, C.W., Software Reuse. ACM Computing Surveys, 24, 131-
184, 1992.

[Krinke, 2001] Krinke, J. Identifying Similar Code with Program Dependence
Graphs. In Proceedings of Eigth Working Conference on Reverse En­
gineering, IEEE Press, Stuttgart, Germany, 2001, pp301-309.

[Kural et al, 1999] Kural, Y., Robertson, S. and Jones, S. Clustering Information Re­
trieval Search Outputs. In Proceedings 21st. DCS IRSG Colloquium
on IR, Glasgow, 1999.

[Lague et al, 1997] Lague, B., Proulx, D., Merlo, E., Mayrand, .J., and Hudepohl, .1.
Assessing the Benefits of Incorporating Function Clone Detection in a
Development Process. In Proceedings of International Conference on
Software Maintenance, Bari, Italy, October 1-3 1997, pp314-321.

[Landauer et al, 1998] Landauer, T. K., Foltz, P. W., and Laham, D. Introduction to
Latent Semantic Analysis. Discourse Processes, 25, pp259-284, 1998.

[Leach, 1995] Leach, R.J. Using metrics to evaluate student programs. ACM SIGSCI
Bulletin 27, pp41-43, 1995.

[Levi, 1972] Levi, G. A note on the derivation of maximal common subgraphs of
two directed or undirected graphs. Calcols, 9, pp341-354, 1972.

281

[Li, 1998] Li, W. Another Metrics Suite for Object-Oriented Programming. Jour­
nal of Systems and Software, 44, ppl55-162, 1998.

[Liao et al, 1998] Liao, H.-C., Chen, M.-F. and Wang, F.-J.. A Domain-Independent
Software Reuse Framework Based on a Hierarchical Thesaurus. Soft­
ware - Practice and Experience, 28(8), pp799-818, 1998.

[Lim, 1994] Lim, W. Effects of Reuse on Quality, Production and Economics. IEEE
Software, 11(5), pp23-30, September 1994.

[Lindholm and Yellin, 1999] Lindholm T, Yellin F. The Java Virtual Machine Speci­
fication (2nd Ed.). Addison Wesley, 1999.

[Looney, 1997] Looney, C. Pattern Recognition Using Neural Networks. Oxford Uni­
versity Press, 1997.

[Lorenz and Kidd 1994] Lorenz, M. and Kidd, J. Object-Oriented Software Metrics,
Prentice Hall, 1994.

[Maarek et al, 1994] Maarek, Y., Berry, D.M., and Kaiser, G.E. GURU: Information
Retrieval for Reuse. Landmark Contributions in Software Reuse and
Reverse Engineering, P. Hall (Ed.). Unicom Seminars, Ltd., 1994.

[Maiden and Sufcliffe, 1993] Maiden, N.A. and Sutcliffe, A.G. People-Oriented Soft­
ware Reuse: the Very Thought. In Proceedings of the Second In­
ternational Workshop on Software Reuse, Frakes, W.B. (Ed.). IEEE

Computer Press, Lucca, Italy, March 24-26, 1993, ppl76-185.

[Malefic and Marcus, 2001] Maletic, J.I., Marcus, A. Supporting Program Compre­
hension Using Semantic and Structural Information. In Proceedings
of the 23rd IEEE International Conference on Software Engineering
(ICSE 2001), Toronto, Ontario, Canada, May 12-19, 2001, ppl03-112

[Manber, 1994] Manber, U. Finding Similar Files in a Large File System. USENIX,
Winter 1994 Technical Conference, San Francisco, January 1994, ppl-
10.

[Marchiori, 1998] Marchiori, E. A Simple Heuristic Based Genetic Algorithm for the
Maximum Clique Problem. ACM Symposium on Applied Computing
(SAC98), 1998, pp366-373.

282

[Maynard et al, 1996] Mayrand, J., Leblanc, C., and Merlo, E. Experiment on the
Automatic Detection of Function Clones in a Software System Us­
ing Metrics. In Proceedings of International Conference on Software
Maintenance, Monterey, CA. November 4-8 1996, pp214-254.

[McGregor et al, 1996] McGregor, J.D., Malloy, B.A. and Siegmund, R.L.. A Compre­
hensive Program Representation of Object-Oriented Software. Annals
of Software Engineering, 2, pp51-91, 1996.

[McGregor, 1982] McGregor, J.J. Backtrack Search Algorithms and the Maximal
Common Subgraph Problem. Software Practice and Experience, 12(1),
23-34, 1982.

[McKay, 1990] McKay, B.D., ‘nauty’ User’s Guide (version 1.5), Tech. Rpt. TR-
CS-90-02, Dept. Computer Science, Austral. Nat. Univ., 1990. (The
‘nauty’ page: http://cs.anu.edu.au/ bdm/nauty/).

[Messmer and Bunke, 1993] Messmer, B.T. and Bunke, H. A network based approach
to exact and inexact graph matching. Technical Report I AM-93-021,
University of Bern, Institute for informatics and applied mathematics,
1993.

[Messmer and Bunke, 1998] Messmer, B.T. Bunke, H. A New Algorithm for Error-
Tolerant Subgraph Isomorphism Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(5), pp493-5Q4, 1998.

[Michail and Nothin, 1998] Michail, A. and Notkin, D. Assessing Software Libraries by
Browsing Similar Classes, Functions and Relationships In Proceedings
of International Conference on Software Engineering (ICSE’99), ACM
Press, Los Angeles, CA., 1999, pp463-472.

[Michail and Notkin, 1998] Michail, A. and Notkin, D. Illustrating object-oriented li­
brary reuse by example: A tool-based approach. In 13th IEEE Interna­
tional Conference on Automated Software Engineering, 1998, pp200-
203.

283

http://cs.anu.edu.au/

[Mili, Mili and Mittermeir, 1998] Mili, A., Mili, R. and Mittermeir, R. A Survey of
software Reuse Libraries. Annals of Software Engineering, 5, pp349-
414, 1998.

[Morisio, Ezran and Tulley, 1999] Morisio, M., Ezran, M., Tally, C. Introducing Reuse
in Companies: A Survey of European Experiences. In Proceedings
Fifth Symposium on Software Reusability (SSR’99), Los Angeles, Cal­
ifornia, May 21-23, 1999, pp3-9.

[Morisio, Ezran and Tulley, 2002] Morisio, M., Ezran, M., Tally, C. Success and Fail­
ure Factors in Software Reuse. Transactions on Software Engineering,
28(4), pp340-357, 2002.

[Murtagh, 1982] Murtagh, F. A very fast, exact nearest neighbour algorithm for use
in information retrieval. Information Technology: Research and De­
velopment, 1, pp275-283, 1982.

[Murtagh, 1983] Murtagh, F. A Survey of Recent Advances in Hierarchical Clustering
AlgorithmsThe Computer Journal, 2G(4), pp354-359, 1983.

[Myrvold et al, 1998] Myrvold, W., Prsa, T. and Walker, N. A Dynamic programming
approach for timing and designing clique algorit hms. Algorithms and
Experiments (ALEX ’98): Building Bridges Between Theory and Ap­
plications, 1998, pp88-95.

[NG and Han, 1994] Ng, R. and Han, J. Efficient and effective clustering method for
spatial data mining. In Proc. of the 20th VLDB Conference, Santiago,
Chile, 1994, ppl44-155.

[Ng and Han, 1994b] Ng, R. and Han, J. Effective and Effective Clustering Methods
for Spatial Data Mining, Technical Report 94-13, University of British
Columbia, 1994.

[Nicholson et, al, 1987] Nicholson, V., Tsai, C.C., Johnson, M. and Naim, M. A sub­
graph isomorphism theorem for molecular graphs. In Graph theory
and topology in chemistry, Collect. Pap. Int. Conf., Vol. 51 of Stud.
Phys. Theor. Chem., Athens, G A, 1987, pp226-230.

284

[Nierstrasz and Dami, 1995] Nierstrasz, O. and Dami, L. Component-Oriented Soft­
ware Technology. In Object-Oriented Software Composition, Nier­
strasz, 0 . and Tsichritzis, D. (Eds.), Prentice Hall, 1995, pp3-28.

[Nilsson, 1982] Nilsson, N.J. Principles of Artificial Intelligence. N. J. Nilsson. Prin­
ciples of Artificial Intelligence. Springer-Verlag, 1982.

[O’Reilly, 1997] Flanagan, D. Java in a Nutshell, O’Reilly & Associates Inc., 1996.

[Ostertag et al, 1992] Ostertag, E., Hendler, J., Prieto-Daz, R. and Braun, C. Com­
puting similarity in a reuse library system: An AI-based approach.
ACM Transactions on Software Engineering and Methodology, 1(3),
pp205-228, July 1992.

[Ottenstein, 1977] Ottenstein, K.J. An algorithmic approach to the detection and pre­
vention of plagiarism. ACM SIGCSE Bulletin, 8(4), pp30-41, 1977.

[Papadopoulos and Manolopoulos, 1999] Papadopoulos A.N., Manolopoulos Y.
Structure-Based Similarity Search with Graph Histograms. In Pro­
ceedings DEXA/IWOSS Int. Workshop on Similarity Search, IEEE
Comp. Soc. Press, 1999, 174-178.

[Pena et al, 1999] Pena, J.M., Lozano, J.A. and Larranaga, P. An empirical compari­
son of four initialization methods for the k-means algorithm. Pattern
Recognition Letters, 20, ppl027-1040, 1999.

[Prechelt et al, 2000] Prechelt, L., Malpohl, G. and Philippsen, M. JPlag: Finding
plagiarisms among a set of programs. Technical Report 2000-1, Uni­
versity of Karlsruhe, Germany, 2000.

[Prechelt et al, 2001] Prechelt, L., Malpohl, G. and Philippsen, M. Finding plagia­
risms among a set of programs with JPlag. Submitted to Journal of
Universal Computer Science, November 2001.

[Pree, 1995] Pree, W. Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1995.

[Prieto-Diaz and Freeman, 1987] Prieto-Diaz, R. and Freeman, P. Classifying Soft­
ware for Reusability, IEEE Software, 4(1), pp6-16, January 1987.

285

[Prieto-Diaz, 1991] Prieto-Diaz, R. Implementing faceted Classification for Software
Reuse. Communications of the ACM, 34(5), pp89-97, May 1991.

[Quilici et al, 1998] Quilici, A., Yang, Q. and Woods, S. Applying plan recognition
algorithms to program understanding. Automated Software Engineer­
ing, 5, pp347-372, 1998.

[Ranche and Wilkins, 1979] Randic, M. & Wilkins, C.L. Graph theoretical approach to
recognition of structural similarity in molecules. Journal of Chemical
Information and Computer Science, 19, pp31-37, 1979.

[Rational, 2002] Rational Software Corporation, 2002. (http://www.rational.com/).

[Rayside, Kerr and Kontogiannis, 1998] Rayside, D., Kerr, S. Kontogiannis, K. In
Proceedings of the 5th IEEE Working Conference on Reverse En­
gineering (WCRE’98), Blaha, M. Quilici, A. and Verhoef, C. (Eds.),
Honolulu, October 1998, pplO-19.

[Reeves and Schlesinger, 1997] Reeves, A.A. and Schlesinger, J.D. JACKAL: A Hier­
archical Approach to Program Understanding. In Proceedings of 4th
Working Conference on Reverse Engineering (WCRE ’97)), Amster­
dam, ß-8 October 1997.

[Rich and Waters, 1988] C. Rich and R. C. Waters. Formalizing reusable software
components in the programmer’s apprentice. In T. J. Biggerstaif and
A. J. Perlis, (Eds.) Software Reusability, Voi. 2, Chapter 15. ACM

Press, 1989.

[Rinewalt, 1986] Rinewalt, J. D., Elizandro, D.W., Varneil, R.C. and Starks, S.A.
Development and Validation of a Plagiarism Detection Model for the
Large Classroom Environment. Computers in Education (CoED) 6(3),
pp9-13, 1986.

[Robertson and Spark-Jones, 1997] Robertson, S.E. and Sparck Jones, K. Sim­
ple, proven approaches to text retrieval. University of Cambridge
Computer Laboratory Technical Report No. 356, 1994 (Updated
1996,1997).

286

http://www.rational.com/

[Robinson and Sofa, 1980] Robinson, S. and Sofia, M. An Instructional Aid for Stu­
dent Programs. ACM SIGCSE Bulletin, 12(1), ppl 18-127, February

1980.

[Rosen, 1999] Rosen, K. Discrete Mathematics and its Applications, (4th Ed.), Mc­
Graw Hill, 1999.

[Rucker and Rucker, 1993] Rucker, G. and Rucker, C. Counts of all walks as atomic
and molecular descriptors. Journal of Chemical Information and Com­
puter Science, 33, pp683-695, 1993.

[Rumbaugh et al, 1991] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and
Lorensen, W. Object-Oriented Modeling and Design. Prentice-Hall,
1991.

[SUN, 1999] Java Specification,vl.3, SUN Microsystems, 1999
(http: / / www.java.sun.com/).

[Salton and McGill, 1983] Salton, G. and McGill, M. J. Introduction to Modern In­
formation Retrieval. McGraw-Hill, 1983.

[Sametinger, 1998] Sametinger, J. Software Engineering With Reusable Components.
Springer-Verlag, 1998.

[Sedgewick, 1988] Segdewick, R. Algorithms (2nd. Edition). Addison-Wesley, 1988.

[Seemann and von Gudenberg, 1998] Seemann, J., von Gudenberg, W. J. Pattern-
Based Design Recovery of Java Software. In Proc. of 6th International
Symposium on the Foundation of Software Engineering, ACM SIG-
SOFT, 6, 1998, pplO-16.

[Shapiro and Haralick, 1981] Shapiro L. G. & Haralick R. M. Structural descriptions
and inexact matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-3(5), pp. 505-519, 1981.

[Shearer et al, 1998] Shearer, K., Venkatesh, S. and Bunke, H. An efficient least com­
mon subgraph algorithm for video indexing. Proc. 14th ICPR, Bris­
bane, 1998, ppl241-1243.

[Skiena, 1998] Skiena, S.S. The Algorithm Design Manual. Springer-Verlag, 1998.

287

http://www.java.sun.com/

[Sneath and Sokal, 1973] Sneatli, P.H.A. and Sokal, R.R. Numerical Taxonomy, Free­
man London, 1973.

[Sonka et al, 1993] Sonka, M. Hlavac, V. and Boyle, R.. Image processing, analysis,
and machine vision. Chapman and Hall, 1993.

[Spears, 2000] GAC: Available from Bill Spears, CMU Artificial Intelli­
gence Repository (http://www-cgi.cs.cmu.edu/afs/cs/project/ai-
repository/ai / areas / genetic/ga/systems/0.html)

[Steinbach, Karypis and Kumar, 2000] Steinbach, M., Karypis, G., and Kumar, V.
A comparison of document clustering techniques. In Proceedings of
World Text Mining Conference (KDD-00), Boston, 2000.

[Szyperski, 1998] Szyperski, C. Component Software Beyond Object Oriented Pro­
gramming. Addison Wesley, 1998.

[Tessem et al, 1998] Tessem, B., Whitehurst, R.A., Powell, C.L. Retrieval of Java
Classes for Case-Based Reuse. EWCBR 1998, ppl48-159.

[Tip, 1995] Tip, F. A survey of program slicing techniques. Journal of Program­
ming Languages, 3(3), ppl21-189, 1995.

[Ton and Gonzales, 1974] Tou, .1., & Gonzalez, R. Pattern Recognition Principles.
Addison Wesley, 1974.

[Tsai and Fu, 1979] W. H. Tsai and K. S. Fu. Error-correcting isomorphism of at­
tributed relational graphs for pattern analysis. IEEE Transactions on
Systems, Man, and Cybernetics, 9, pp757-768, 1979.

[Tsai and Fu, 1983] W.-H. Tsai and K.-S. Fu. Subgraph Error-Correcting Isomor­
phisms for Syntactic Pattern Recognition. IEEE Transactions on Sys­
tems, Man, and Cybernetics, 13(1), pp48-62, 1983.

[Ullman, 1976] Ullmann, J.R. An algorithm for subgraph isomorphism. Journal of the
ACM, 23, 31-42, 1976.

[Verco and Wysc, 1996] Verco, K.L. and Wise, M.J. Software for Detecting Suspected
Plagiarism: Comparing Structure and Attribute-Counting Systems.

288

http://www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/ai
http://www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/ai

In Porceedings of 1st Ausutralian Conference on Computer Science
Education, John Rosenberg (Ed.), Sydney, Australia, July 1996, pp86-
95.

[Webb, 1999] Webb, A. Statistical pattern recognition. Arnold, 1999.

[West, 1995] West, A., Coping with plagiarism in Computer Science teaching lab­
oratories. Computers in Teaching Conference, Dublin, July 1995.

[Whale, 1990a] Whale, G. Software Metrics and Plagiarism Detection. Journal of Sys­
tems and Software, 13, ppl31-138, 1990.

[Whale, 1990b] Whale, G. Identification of Program Similarity in Large Populations.
The Computer Journal, 33(2), 1990.

[Whitmire, 1997] Whitmire, S.A. Object-Oriented Design Measurement. John Wiley
& Sons, 1997.

[Willett et al, 1998] Willett, P., Barnard, J.M. &; Downs, G.M. Chemical similarity
searching. Journal of Chemical Information and Computer Sciences,

[Willett, 1983]

38, pp983-996, 1998.

Willett, P. Some heuristics for nearest neighbour searching in chem­
ical structure files. Journal of Chemical Information and Computer
Sciences, 23, pp22-25, 1983.

[Willett, 1987] Willett, P. Similarity and clustering in chemical information systems.
John Wiley & Sons, 1987.

[Willett, 1988] Willett, P. Recent trends in hierarchic document clustering: a criti­
cal review. Information Processing and Management, 24, pp577-597,
1998.

[Willett, 1998] Willett, P. Structural similarity measures for database searching. In:
Schleyer, P.von.R., Allinger, N.L., Clark, T., Gasteiger, J., Kollman,
P.A., Schaefer, H.F. & Schriener, P.R. (Eds.) Encyclopedia of Com­
putational Chemistry. Vol. 4, 2748-2756, John Wiley, 1998.

[Willett, 1999] Willett, P. Matching of chemical and biological structures using
subgraph and maximal common subgraph isomorphism algorithms.

289

In Truhlar, D.G., Howe, W.J., Hopfinger, A.J., Blaney, J.D. &
Dammkoehler, R. (Eds.) Rational Drug Design, Springer Verlag, ppll-

38, 1999.

[Willett, Winterman and Bawden, 1986] Willett, P., Winterman, V. and Bawden, D.
Implementation of non-hierarchic cluster analysis methods in chemi­
cal information systems: selection of compounds for biological testing
and clustering of substructure search output. Journal of Chemical In­
formation and Computer Sciences, 26, ppl09-118, 1986.

[Wilson and Hancock, 1999] Wilson, R. C. and Hancock, E. R. Graph matching
with hierarchical discrete relaxation. Pattern Recognition Letters, 20,
ppl041-1052, 1999.

[Wilson, 1996] Wilson, R.C. Inexact graph matching using symbolic constraints, PhD
Thesis, Dept, of Computer Science, University of York, 1996.

[Wise, 1993] Wise, M. J. Running Karp-Rabin Matching and Greedy String Tiling.
Technical Report Department of Computer Science, Sydney Univer­
sity, 1994. (ftp://ftp.cs.su. oz.au/michaelw/rkr_gst.ps)(Revises Basset
Technical Report 463, March 1993).

[Wise, 1996] Wise, M.J. YAP3: Improved Detection of Similarities in Computer
Program and Other Texts. ACM SICCSE Buletin, 28, ppl30-134, 1996

[Ye and Fischer, 2001] Ye, Y. and Fischer, G. An Active and Adaptive Reuse Reposi­
tory System. 34th Hawaii International Conference on System Sciences
(HICSS-34), IEEE Press, Maui, Hawaii, Jan 3-6, 2001.

[Zaremski and Wing, 1995] Moormann-Zaremski, A. and Wing, J.M. Specification
matching of software components. In Proceedings of 3rd ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, Oc­
tober 1995, pp6-17.

[van Rijsbergen, 1979] van Rijsbergen, C.J. Information Retrieval (2nd Edition). Bnt-
terworths, 1979.

290

ftp://ftp.cs.su

