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Abstract

The work presented in this thesis is principally concerned with the development of a 
method and set of tools designed to support the identification of class-based similarity 
in collections of object-oriented code. Attention is focused on enhancing the potential 
for software reuse in situations where a reuse process is either absent or informal, 
and the characteristics of the organisation are unsuitable, or resources unavailable, to 
promote and sustain a systematic approach to reuse.

The approach builds on the definition of a formal, attributed, relational model 
that captures the inherent structure of class-based, object-oriented code. Based on 
code-level analysis, it relies solely on the structural characteristics of the code and 
the peculiarly object-oriented features of the class as an organising principle: classes, 
those entities comprising a class, and the intra and inter-class relationships existing 
between them, are significant factors in defining a two-phase similarity measure as a 
basis for the comparison process. Established graph-theoretic techniques are adapted 
and applied via this model to the problem of determining similarity between classes.

This thesis illustrates a successful transfer of techniques from the domains of molec­
ular chemistry and computer vision. Both domains provide an existing template for 
the analysis and comparison of structures as graphs. The inspiration for representing 
classes as attributed relational graphs, and the application of graph-theoretic tech­
niques and algorithms to their comparison, arose out of a well founded intuition that 
a common basis in graph-theory was sufficient to enable a reasonable transfer of these 
techniques to the problem of determining similarity in object-oriented code.

The practical application of this work relates to the identification and indexing 
of instances of recurring, class-based, common structure present in established and 
evolving collections of object-oriented code. A classification so generated additionally 
provides a framework for class-based matching over an existing code-base, both from 
the perspective of newly introduced classes, and search “templates” provided by those 
incomplete, iteratively constructed and refined classes associated with current and 
on-going development. The tools and techniques developed here provide support for 
enabling and improving shared awareness of reuse opportunity, based on analysing 
structural similarity in past and ongoing development, tools and techniques that can 
in turn be seen as part of a process of domain analysis, capable of stimulating the 
evolution of a systematic reuse ethic.

l



A cknow ledgem ents

This thesis would not have been written were it not for the generous and continuing 
encouragement of my Director of Studies, Dr. John McCall. I am grateful to John 
for his patience, insight, humour and, above all, his ability to guide me along an often 
exciting but sometimes difficult path to completion. My thanks also to my supervisory 
team, Dr. Deryck Brown and Mr. David Crossen, for their advice and suggestions.

To the many friends and colleagues who I have had the great pleasure to meet and 
work with over the past four years, your stimulating company and varied perspectives 
on fife, love and computer science have been appreciated more than any one of you 
can possibly imagine. Thank you all.

I own a special debt of gratitude to my brother Iain and his wonderful family, for 
their unquestioning support during trying times, their eternal, infectious optimism, 
and above all, their generous welcome. This home-from-home has meant a great deal 
to me.

I dedicate this thesis to my parents, Duncan and Chrissie, whose support and 
encouragement have been ever-present. For instilling and nurturing the belief that any 
opportunity to discover and learn is a precious and powerful gift, I will be eternally 
grateful. You are always with me, and always will be.

[This work was supported by an EPSRC Studentship.]

ii



C o n ten ts

1 Introduction
1.1 Motivation: software reuse “in the small” ...............................................

1.1.1 Software r e u s e .................................................................................
1.1.2 Reuse in small organisations............................................................
1.1.3 Patterns of informal reu se ...............................................................
1.1.4 Source code as the focus of systematic reuse...............................
1.1.5 Object-oriented development and reuse ......................................
1.1.6 Object-oriented code stru ctu re.....................................................
1.1.7 Sum m ary...........................................................................................

1.2 Objectives.......................................................................................................
1.3 Proposed approach........................................................................................

1.3.1 An attributed, relational model of code structure......................
1.3.2 Similarity not exact match ............................................................
1.3.3 A transfer of techniques..................................................................
1.3.4 Existing code as an informal reuse repository............................
1.3.5 A “lightweight” approach...............................................................
1.3.6 Late life-cycle activated reu se ........................................................

1.4 Basic hypotheses...........................................................................................
1.5 Thesis organisation........................................................................................

2 A Review of Approaches to A utom ated, Code-level Comparison.
2.1 Introduction....................................................................................................

2.1.1 Scope of review ..................................................................................
2.2 Direct Code Comparison..............................................................................

2.2.1 Plagiarism detection in software programs...................................

iii

1
2
2
3
4
5
5
6
6

7
8
8
9

10
11

11
12
13
13

17
17
17
19
19



2.2.2 Duplication, code cloning and “near-miss” sim ilarity........  23
2.3 Application Dependent Source Code Representation............................  29

2.3.1 Repository-based reuse............................................................  29
2.3.2 Program understanding and m aintenance................................... 34

2.4 Themes and comments.................................................................................  39

3 M odel Construction: structural sim ilarity in object-oriented code 43
3.1 Introduction....................................................................................................  43
3.2 Modelling Structure and Sim ilarity............................................................ 44

3.2.1 Analogies from molecular chemistry and computer vision . . .  44
3.2.2 Global quantification of structural similarity......................  50
3.2.3 Local quantification of structural similarity - graph morphisms 5G
3.2.4 Sufficiency in determining sim ilarity ................................... 58

3.3 Structural Representation and Similarity in Object-oriented Code . . . 59
3.3.1 A graph-theoretic perspective...............................................  59
3.3.2 Primitives, relationships and attributes ...................................... 61

3.4 A Formal Model of Object-oriented Code Structure and Structural
Comparison....................................................................................................  70
3.4.1 Attributed Relational Graphs (A R G s).........................................  71
3.4.2 Global similarity: “Structure Paths” ............................................  72
3.4.3 Similarity coefficients .....................................................................  78

3.5 Sum m ary........................................................................................................ 80

4 M odel Interpretation: Java classes and bytecode analysis 81
4.1 Introduction....................................................................................................  81
4.2 Java Classes and Bytecode...........................................................................  82

4.2.1 Java B y te co d e .................................................................................. 82
4.2.2 Model instantiation ........................................................................  83

4.3 Bytecode Analysis: structure graph and feature extraction...................  84
4.3.1 A simple illustrative exam p le......................................................... 84

4.4 Model Evaluation............................................................................................ 88
4.4.1 Object-Oriented code reuse and p lagiarism ...............................  88
4.4.2 Plagiarism and structural s im ilar ity ............................................  90
4.4.3 Source code vs byte code analysis..................................................  92

I V



4.5 Some Proof of Concept Experiments.......................................................  93
4.5.1 Setup of the s tu d y ...........................................................................  93
4.5.2 Data S e t s ........................................................................................... 93
4.5.3 Experiments ..................................................................................... 94

4.G Discussion...................................................................................................... 121
4.7 Sum m ary......................................................................................................  126

5 Structure Graph M atching 128
5.1 Introduction....................................................................................................  128
5.2 Graph M atch in g ........................................................................................... 129

5.2.1 Fundamental Graph M a tch ............................................................ 130
5.2.2 Labeled Graphs.................................................................................. 132
5.2.3 Matching Labeled G raphs............................................................... 133

5.3 Labeled Graph Matching by Clique D etection.........................................  13G
5.3.1 MCS by Clique D etection ............................................................... 137

5.4 Interpreting Graph Match for Java Class Comparison .........................  147
5.4.1 General M a tc h .................................................................................. 147
5.4.2 Incorporating Domain Specific Knowledge................................... 155
5.4.3 Refinement using attributed m atch...............................................  1G2
5.4.4 A similarity coefficient based on “relative normalisation” . . . .  1G7
5.4.5 Compromises and larger classes.....................................................  1G8
5.4.6 Heuristic match using an hybridised genetic algorithm ............. 171

5.5 Revisiting the Structure Path analysis: SP, JP and M CS........................ 180
5.5.1 Using SP as an MCS predictor.....................................................  189

5.6 Summary: problems and opportunities.....................................................  191

G Class Collections: classifying recurring structure 193
G.l Introduction.................................................................................................... 193
6.2 Harvesting and searching for commonality...............................................  194

6.2.1 Larger collections............................................................................... 194
6.2.2 The need for partitioning...............................................................  197

6.3 Cluster A n a ly s is ...........................................................................................  200
6.3.1 Unsupervised classification ............................................................  200
6.3.2 Clustering methods...........................................................................  201

v



6.3.3 Clustering ten d en cy ........................................................................
6.4 Partitioning Collections of C la s se s ...........................................................

6.4.1 Problems, compromises and consequences..................................
6.5 An hybrid algorithm for clustering class collections...............................

6.5.1 Requirements.....................................................................................
6.5.2 The generic algorithm .....................................................................
6.5.3 Similarity measurement: coefficients, representatives and con­

tainment ...........................................................................................
6.5.4 Reference Partitioning Algorithm s...............................................

6.6 The Generic Algorithm Implemented.........................................................
6.6.1 Limited Hierarchy Bisecting K-medoids (LHBKM )...................
6.6.2 Implementing SPLIT and O V E R L A P.........................................

6.7 Predictive experiments.................................................................................
6.7.1 Partition evaluation ........................................................................
6.7.2 Static collection analysis..................................................................
6.7.3 Parameterisation..............................................................................
6.7.4 Results: evaluating LHBLM............................................................
6.7.5 Discussion...........................................................................................

6.8 Further refinem ent........................................................................................
6.8.1 Incremental update...........................................................................
6.8.2 Incremental Limited Hierarchy Bisecting K-medoids (ILHBKM)
6.8.3 Results: evaluation of ILHBKM.....................................................
6.8.4 Discussion...........................................................................................
6.8.5 MCS indexing and sub-structure matching...................................

6.9 Late life-cycle activated reu se .....................................................................
6.10 Sum m ary.......................................................................................................

207
208 
208 
213
213
214

216
218
224
224
226
227
228 
232
232
233 
235 
239
239
240 
240 
242
243
244
245

7 Conclusions and Further Work 247
7.1 Research sum m ary........................................................................................  247

7.1.1 Contributions..................................................................................... 247
7.1.2 Realised Objectives...........................................................................  249
7.1.3 Lim itations........................................................................................  250

7.2 Further w o r k .................................................................................................  251
7.2.1 Improving the current approach........................................................ 251

vi



7.2.2 Extending and enhancing the approach 253

A Foundation Graph Theory
A.l Introduction...........................................................................
A.2 Graphs as algebraic structures .........................................
A.3 Graph matching and morphisms .....................................

A.3.1 M atch ing..................................................................
A.3.2 Graph m orphism s..................................................
A.3.3 Invariants, certificates and automorphism groups

B Class Analysis Framework

References

255
256 
258 
258 
258 
260

263

269

vn



List of Tables

4.1 Feature vectors for classes (A) NonTaxedDiscItem and (B) NonTaxed-
BulkDiscItem of Figs. 4.1 and 4 .2 ............................................................... 8(i

4.2 Application similarity: summary statistics and rank correlations for
plots of Fig 4 . 3 ..............................................................................................  9!)

4.3 Application similarity: summary statistics and correlations for plots in
Fig 4 .4 .............................................................................................................. 101

4.4 Application similarity: summary statistics for containment assessment
of sample data sets of Fig. 4 .4 .....................................................................  105

4.5 Summary statistics and correlations for plots in Fig 4.7 ........................ 106
4.6 Class similarity: summary statistics and correlations for plots in Fig 4.10112

5.1 Unlabeled m a tch ...........................................................................................  150
5.2 Syntactic label match (1) ...........................................................................  151
5.3 Syntactic label match (2) ...........................................................................  151
5.4 Hierarchic m a tch ...........................................................................................  157
5.5 Hierarchic, connected m atch........................................................................  159
5.6 Automorphic reduction ............................................................................... 161
5.7 Attributed m atch...........................................................................................  166
5.8 Heuristic GA m a t c h ..................................................................................... 175
5.9 Combined B&K+HGA m atch.....................................................................  176
5.10 Comparison of B&K, HGA and B&K+HGA.............................................. 178
5.11 Comparison of SP(revised), JP and MCS ................................................ 184
5.12 Comparison of SP(revised), JP and MCS for filtered “j5” ..................... 186
5.13 SP ms predictor of MCS: ROC analysis using MCS reference threshold

0.5, SP cutoff 0 . 5 ...........................................................................................  190

vm



6.1 Comparing LIIBKM and medoid-based “Leader” algorithm ................ 234
6.2 Effect of CLARANS parameter maxneighbours...................................... 235
6.3 Comparison of LHBKM and Incremental L H B K M ...............................  241

ix



List of F igu res

3.1 Graphical representation: (a) chemical molecule (b) object-oriented class 45
3.2 Structure P ath s..............................................................................................  75

4.1 Code Example (A) NonTaxedDiscItem.....................................................  85
4.2 Code Example (B) NonTaxedBulkDiscItem............................................  85
4.3 Application similarity: grouped frequency distribution for data sets “H”

and “S” ........................................................................................................... 98
4.4 Application similarity: matched-pair distribution for two random sam­

ples taken from data sets “H” and “S” .....................................................  100
4.5 Application similarity: ROC analysis for sampled data sets “H” and

“S” of Fig. 4,4..................................................................................................  102
4.G Application similarity: an evaluation of containm ent.............................  104
4.7 Class similarity: grouped frequency distribution for data sets “Ii” and

“S” ....................................................................................................................  107
4.8 Class similarity: matched-pair comparison(l).............................................  109
4.9 Class similarity: matched-pair comparison(2).............................................  110
4.10 Class similarity: matched-pair eomparison(3).............................................  I ll
4.11 Class similarity: ROC analysis for the data sets of Fig. 4.10..................... 112
4.12 Class similarity: SP feature separation (“H”).............................................  114
4.13 Class similarity: SP feature separation (“S”).............................................. 11.5
4.14 Class similarity: SP “rooted” feature inclusion ( “111”).............................  117
4.15 Class similarity: averaged “class” and “method” features (“HI”). . . .  118

5.1 Two syntactically labeled graphs, Gi and C? 2 .........................................  138
5.2 Correspondence graph and cliques for G\ and Go of Fig. 5 .1 ................ 138
5.3 Identifying Cliques in Gc of Fig. 5.2 ......................................................... 141

x



5.4 Pseudocode for the basic B&K algorithm ...............................................  143
5.5 Two (partially) attributed graphs, G\ and G2 ......................................... 146
5.6 Correspondence graph and cliques for G\ and G2 of Fig. 5 .5 ................... 147
5.7 Java Source Code and Disassembled Bytecode.........................................  148
5.8 Structure graph generated from code of Fig. 5 .7 ...................................... 149
5.9 Comparative analysis of data set “HI”: SP, .IP and MCS (Sorted by

SP v a lu e ) .......................................................................................................  182
5.10 Comparative analysis of data set “S2”: SP, JP and MCS (Sorted by SP

v a lu e ) .............................................................................................................. 182
5.11 Comparative analysis of data set “j5”: SP, .IP and MCS (Sorted by SP

v a lu e ) .............................................................................................................. 183

6.1 Generic Partitioning algorithm ..................................................................  215
6.2 Centroid-based representation and relative normalisation......................  217
6.3 Incremental LHBKM: dynamic profile for analysis of data set “j5” . . 242

A.l Some example graphs and subgraphs........................................................  256
A.2 Graph morphisms........................................................................................... 259
A.3 Graph Automorphisms and Automorphism G roups...............................  261

13.1 Class Analysis and Classification Framework ......................................... 264

XI



A b b rev ia tio n s

ADT Abstract Data Type JDK Java Development Kit
AL Abstract Language JP JPlag
ARG Attributed Relational Graph JVM Java Virtual Machine
AST Abstract Syntax Tree LE Location Effectiveness
AWT Abstract Windowing Toolkit LCS Longest Common Subsequence
B&K Bron and Kerbosch LHBKM Limited Hierarchy Bisecting
CBR Case-Based Reasoning K-medoids
CLARANS Clustering Large Applications LSA/I Latent Semantic Analysis/Indexing

based on RANdomised Search MCS Maximum Common Subgraph
CG Correspondence Graph ML Medold-based Leader
CfcP Carraghan and Pardalos MOS Maximum Overlapping Set
FGPDG Fine-grained Program Dependency Graph PAM Partitioning Around Medoids
FPF False-Positive Fraction PDG Program Dependency Graph
GA Genetic Algorithm ROC Receiver Operator Curve
GI Graph Isomorphism SGI Sub-Graph Isomorphism
HGA Heuristic Genetic Algorithm SGM Sub-Graph Monomorphism
IRL Intermediate Representation Language SP Structure Path
ILHBKM Incremental Limited Hierarchy ST, STID Structure Type, ST Identifier

Bisecting K-medoids TPF Ttue-Positive Fraction
IR Information Retrieval UML Unified Modelling Language

XU



Chapter 1

In tro d u c tio n

The work presented in this thesis is principally concerned with the development of a 
method and set of tools designed to support the identification of class-based similarity 
in existing collections of object-oriented code. Attention is focused on enhancing the 
potential for software reuse in situations where a reuse process is either absent or 
informal, and the characteristics of the organisation are unsuitable, and/or resources 
unavailable, to promote and sustain a systematic approach to reuse.

The approach described in this thesis builds on the initial definition of a for­
mal, attributed, relational model that captures the inherent structure of class-based 
object-oriented code. Graph-theoretic techniques borrowed from molecular chemistry 
and computer vision are adapted and applied via this model to the problem of deter­
mining similarity between classes. Existing code collections are classified based on the 
developed measure of inter-class similarity, using techniques from data clustering and 
information retrieval.

The practical application of the work presented here relates to the identification 
and indexing of instances of recurring, class-based, common structure present in estab­
lished and evolving collections of object-oriented code. A classification so generated 
additionally provides a framework for class-based mat,eking over an existing code-base, 
both from the perspective of newly introduced classes, and search “templates” pro­
vided by those incomplete, iteratively constructed and refined classes associated with
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current and on-going development. The tools and techniques developed here provide 
support for enabling and improving shared awareness of reuse opportunity, based on 
analysing structural similarity in past and ongoing development, tools and techniques 
that can in turn be seen as part of a process of domain analysis capable of stimulating 
the evolution of a systematic reuse ethic.

The approach is evaluated in the context of object-oriented development based on 
executable bytecode produced using SUN Microsystems’s Java language and develop­
ment environment [SUN, 1999].

1.1 M otivation: software reuse “in the sm all”

1.1.1 Software reuse

A succinct, generally accepted definition of software reuse is provided by Kreuger 
[Kreuger, 1992]:

Software reuse is the process of creating software systems from existing 
software rather than building them from scratch.

This captures the essence of the reuse paradigm but its straightforward simplicity 
belies the complexities and problems associated with both the theory and practice 
of software reuse. In principle, software reuse aims at improving quality, produc­
tivity, performance, reliability and interoperability, while reducing costs and atten­
dant effort. The potential benefits of systematic software reuse have been clearly 
demonstrated and reuse has evidently had its share of success, particularly as part 
of large, organised, industrial programs [Frakes and Isoda, 1994]. Initiatives within 
large, industrial organisations such as Hewlett Packard, IBM, Motorola, GTE, and 
NEC have produced significant levels of reuse in terms of quality, productivity and 
cost [Sametinger, 1998, pp. 14].
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1.1.2 R eu se in  sm all organ isations

In contrast to these large-scale, systematised reuse programs, this thesis is concerned 
with enhancing support for informal reuse “in the small”, i.e., the provision of sup­
port for reuse in small organisations where a reuse process, if any, is loosely defined, 
informal, and based on ad-hoc opportunism and past, sometimes shared, experience.

Despite current initiatives aimed at specifically addressing the needs of personal 
and small team software development [Humphrey, 2000a;2000b], very little factual, 
contemporaneous evidence is available that describes the characteristics of either soft­
ware engineering in general, and reuse practice in particular, within the context of such 
small organisations. However, the majority of software development organisations are 
small, they produce non-trivial products, but are arguably significantly different from 
their larger-scale counterparts: this includes their reduced capacity to accommodate 
development for reuse, dictated in the main by the additional resourcing cost, and the 
potential for time-compromised product release [Fayad et al, 2000].

A recently published analysis of success and failure factors in software reuse con­
firmed many anecdotally held beliefs and provides some interesting insights into the 
perceived differences between large and small organisation reuse. This was the result 
of an ESPRIT/ESSI project that investigated the introduction of reuse in European 
companies and followed their performance from 1994 to 1997 [Morizio, Ezran and Tul- 
ley, 1999;2002]. The analysis showed that organisation size was not a conditional factor 
in determining reuse success. However, small1 organisations were often successful when 
they adopted a simpler, self-sufficient approach, which did not involve specialist reuse 
personnel or a rigid reuse process. In contrast, small organisations that implemented 
a complex reuse infrastructure, with complex procedures and full-time roles, failed.

Small company successes showed that their approach concentrated on the reuse of 
re-engineered code, did not require detailed domain analysis, and was not dependent 
on object-oriented development. Ease of communication and Hie sharing of experience 
were considered key to their success. Although an object-oriented analysis and design 
approach was not seen as a prerequisite for successful reuse it was i) erroneously seen 
by many of the participants in the study as the sole requirement equatable to reuse

1A small organisation was defined as having a software staff of less than 50 personnel.
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and ii) was a contributing factor in the failure of some enhancement initiatives when 
newly and simultaneously introduced with a reuse process. Similarly, the introduction 
of a collection of reusable assets, i.e., a component repository, was seen by some as 
the sole requirement for successful reuse. However, unless the repository was used 
the benefits were not forthcoming and the reuse initiative failed. Significantly, reuse 
processes that worked were shown to be based on approaches that minimised change in 
development practice. Building on existing processes where possible, they introduced 
reuse incrementally, including the reengineering of assets from legacy code, setting up 
a repository, and improving training and awareness among developers.

1.1.3 Patterns of informal reuse

Informal reuse refers to the development practice of “cutting and pasting” artefacts 
such as design or code between projects, or parts of the same project. It is based 
on an individual developer’s prior knowledge of the existence of an accessible artefact 
and recognition of its reuse potential within a new development. Anecdotal evidence 
suggests that in the absence, or despite the presence, of a structured reuse process, 
however limited, ad-hoc or informal reuse is common. Baxter echoes this belief in the 
context of identifying duplicate code, or code “cloning” [Baxter et al, 1998] and it is 
described by Kreuger as a process of design and code “scavenging” [Krueger, 1992]. 
Empirical evidence of software reuse behaviour among developers is scarce but in 
reviewing both formal and anecdotal studies, Sutcliffe and Maiden reinforce the sig­
nificance to programmers of a copying/modifying reuse philosophy based on examples 
and past reuse experience [Sutcliffe and Maiden, 1993].

The problems with informal reuse include both the lack of shared awareness of 
the reused code and development experience, and a lack of maintenance traceability 
due to the undocumented dissemination of the reused code. Sutcliffe and Maiden 
echo Kreugor’s reservations that such an approach is also compromised by being heav­
ily dependent on the cognitive overhead associated with locating, understanding and 
modifying the code - “it must be easier to [find and] use the artifact than to develop 
the software from scratch” [Kreuger, 1992]. The clear implication here is that in the 
face of cognitive barriers, or through an unwillingness to entertain the possibility of 
reuse, code is developed from scratch that may in fact already exist. This type of
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unregistered reuse in effect adds to the lack of awareness and lost experience, which is 
further compounded by development that does not entertain reuse at all.

1 .1 .4  Source code as th e  focus o f sy stem a tic  reuse

Without making assumptions about the level of process maturity within a small soft­
ware; development organisation, the single universal constant is the production of code. 
In the worst case, the code does not just represent the final deliverable but is, unfor­
tunately, in and of itself the sole deliverable and source of project documentation. 
Return on investment is higher the earlier reuse is incorporated into the development 
life cycle [Jones, 1994]. This is somewhat academic if the process is not sufficiently 
complete to provide the necessary specification and/or design level artefacts. (Jones’s 
study also showed that the biggest single return on investment was that associated 
with reuse of source code.)

The case for employing an existing collection of code (a code-base) as the target 
for other than informal reuse is not given much voice. Lim proposes that an existing 
code-base is a valid source of reusable software [Lim, 1994], while Boone recommends 
it as a focus for domain analysis during software framework design [Boone, 1999]. 
Caldiera and Basili, as part of their “software factory” approach to reuse, specifi­
cally identify existing software as the focus for retrieving potentially reusable assets 
[Caldiera and Basili, 1991]. A very persuasive argument is put forward by Hislop 
where he justifies an existing code-base on the grounds that i) it contains successfully 
deployed solutions to problems in the organisations domain of interest and as such 
should at least provide “ideas for reusable assets”, and ii) existing software leverages 
an initial approach to the introduction of systematic reuse, if only by identifying the 
probability of a particular domain’s reuse potential [Hislop, 1998].

1.1.5 Object-oriented development and reuse

The object-oriented software development paradigm [Booch, 1994] is not necessarily 
a universal panacea when it comes to solving the many problems facing the software 
development community. It is nevertheless seen as a positive, contributing factor in ad­



dressing complexity, increasing flexibility, and promoting reuse, for example, through 
leveraging application frameworks supported by design patterns [Gamma et al, 1995]. 
The growth of object-oriented development methodologies and languages and the 
claimed benefits in relation to reuse have had a pervasive influence on the software 
engineering community at large. However, it is not seen as a sufficient reuse model 
in its own right, in order to reap the full benefit a systematic approach to reuse is 
also necessary [Griss et al, 1995; Jacobson et al, 1997]. Tulley’s survey above high­
lighted both the danger of introducing object-orientation and reuse simultaneously, 
in addition to confirming Fishman and Kemerer’s well instantiated misconception, 
“object-oriented — reuse” [Fishman and Kemerer, 1997]. Alongside these concerns, 
the mere fact that so many organisations are using or considering object-oriented de­
velopment lends weight to the focus of this thesis being the provision of support for 
reuse within an object-oriented development environment.

1 .1 .G O b ject-orien ted  cod e stru ctu re

In the context of measuring the properties of object-oriented software, Whitmire states 
that object-oriented development represents a significant shift away from the imper­
ative, algorithmic representation of traditional procedural development, towards a 
model that is more declarative, based on object interaction and composition [Whit­
mire, 1997, ppl8]. He bases his assertion on the work of Churclier and Shepperd, 
which proposes that the relationships inherent in the structure of object-oriented code 
are more important than method content, due to the methods being smaller and less 
complex than their procedural, function-oriented counterparts [Churcher and Shep­
perd, 1995]. In effect, object-oriented development conveniently carries a structural 
formalism, in the form of the “class” as an organising principle, which function- 
oriented, procedural approaches do not. We argue that this structure provides a valid 
means of supporting the assessment of class-based similarity.

1.1.7 Summary

In summary, the following points have an important bearing on the substance of this 
thesis:
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• a complex, intrusive reuse process can fail in small organisations

• informal reuse is common and does not capitalise on the potential of systematic 
reuse through promoting of shared awareness

• exist ing code is an under-used reuse resource, which could support asset identi­
fication and sharing of reuse experience

• object-oriented development is common and growing

• object-oriented development is erroneously seen as encompassing reuse, a reuse 
process in its own right

• object-oriented code has an inherent structural formalism not present in proce­
dural code

1.2 O bjectives

The overall objective of this project is encapsulated in the following question:

How can an existing object-oriented code-base be effectively exploited to 
enhance an informal approach to reuse, or help establish a basis for sys­
tematic development with and for reuse?

Two limiting assumptions are associated with this global objective, which can be 
considered as further objectives in their own right:

• the approach should be automated and noil-intrusive

• analysis is confined to existing code and makes no assumptions about the quality 
of the code or the maturity of the development process

The global objective is addressed in part by this thesis. Firstly, it establishes a 
class-based model of object-oriented code and a method of determining similarity be­
tween classes. This method is fully automated, directed at an existing code-base, and 
dependent only on the structural information contained in a class. This provides the
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basis for a secondary, automatic identification of potential candidates for considera­
tion as reusable assets present in the existing code. The particular questions being 
addressed here relate to the identification and characterisation of i) what classes are 
currently being reused, and ii)what if any groups of classes are sufficiently similar to 
warrant refactoring as generalised, reusable assets.

1.3 Proposed approach

1.3.1 An attributed, relational model of code structure

Hislop approached the issue of identifying reuse in existing procedural code from a 
perspective founded in plagiarism detection [Hislop, 1998]. Drawing on Whale’s work 
in detecting plagiarism [Whale, 1990], he shows that approaches to capturing software 
form, including structure, can successfully identify reused code. In addition, Whale’s 
approach, based on direct and automatic extraction of variable length combinations of 
structure-describing terms was shown to be more successful than competing approaches 
that used single measures, or vectors of measures, of individual characteristics describ­
ing the same form and structure. Using Whale’s structure profile, which essentially 
captures the control structure of a program, Hislop established that structure alone 
could identify instances of reuse in existing software. In this thesis, the approach to 
code comparison based on structural characterisation is effectively extended to the 
object-oriented development model, based on similarity between classes.

The intention here is to establish the presence of similarity based on class structure, 
not function. Functional equivalence is generally considered undecidable, the opera­
tional premise adopted here being one of similar structure usually implying similar 
behaviour and function. Empirical findings suggest that this is in fact the case [Jilani 
et al, 2001]. In particular, the developed approach explores the inherent relational 
structure of an object-oriented class as a means of determining similarity, in terms of 
the entities and relationships that exist within it and between itself and its related 
classes. This relational, structural model of a class is further enhanced by the inclu­
sion of attributes associated with these entities and relationships. These attributes are 
quantified measures of various characterising properties of the class and its internal
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structure.

The reliance on structure is possibly a limitation of the approach. However, the 
attributed, relational model and associated similarity measure reflect the relationships 
and dependencies between entities that comprise a class, and collectively provide a 
representation of the class as a meaningful domain abstraction. This emphasis on the 
peculiarly object-oriented characteristics of the code is intended to reduce the effect 
of procedural, algorithmic detail within individual methods. It is precisely this vari­
ability iu method implementation that could be responsible for introducing sufficient 
structural difference to prompt dismissal of pairs of classes that could otherwise be 
considered similar. The rationale being tested here is that by de-emphasising the al­
gorithmic detail, the probability of matching class-based structures that differ iu the 
detail but are functionally equivalent increases.

An attributed, relational model of class-based object-oriented code is introduced 
in Chapter 3, and instantiated and tested as a means of determining similarity in 
Chapters 4 and 5.

1.3.2 Similarity not exact match

In describing the utility of a reusable artefact, Kreuger identifies a necessary balance 
between the programming leverage provided by the hidden, detailed realisation of the 
fixed specification, and the ease of customisation provide by the variable part of its 
visible specification [Kreuger, 1992]. The developed approach caters for the clustering 
of classes into groups that have sufficient in common to possibly warrant generalisation. 
This is predicated on the developed approach providing a means of identifying degrees 
of similar structure as opposed to merely structures that match exactly: that which is 
the same equating to the hidden implementation and fixed specification, the differences 
representing the potential “hot-spots” [Free, 1995] or “variation points” [Jacobson et 
al, 1997] to be generalised via the visible, variable part of the specification.
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1.3.3 A transfer o f techn iq ues

An attributed, relational model of object-oriented code structure bears a close resem­
blance to graphical structures and structural representation in the fields of molecular 
chemistry [Downs and Willett, 1990] and computer vision [Ballard and Brown, 1982]. 
Both these domains provide an existing template for analysing structures as graphs, 
and determining structural similarity based on the comparison or matching of graphs. 
This comes in the form of a set of techniques and algorithms which this thesis shows to 
be reasonably transferrable to the problem of structural similarity in object-oriented 
code, facilitated by a common basis in graph-theory.

Although graph-theoretic approaches to the matching of relational structures are 
notoriously complex, similarity searching in molecular chemistry provides the inspira­
tion for a two-phase method of determining class-based similarity. Class structure is 
represented by its relational model graph. An initial, approximate, low-cost measure 
of inter-class similarity based on the global properties of this graph acts as a filter to a 
detailed, local but expensive examination of comparable structure. Global similarity 
is measured by comparing vectors of features that individually capture the structure of 
overlapping parts of the graph and collectively approximate the entire graph’s struc­
tural topology. This is a limited-complexity process. Global similarity is the subjects 
of Chapters 3 and 4. Local similarity is based on the comparison of representative 
graphs at the level of their individual vertices and edges. This is a traditionally dif­
ficult problem which is addressed in this thesis by a combination of domain-specific 
heuristics applied to reduction of the problem size, and the application of a combined 
deterministic and heuristic approach to the identification of common structure. Local 
similarity is the subject of Chapter 5.

In order to establish the presence of recurring, similar structure in an existing 
code-base, the developed approach describes how classification techniques applied in 
data analysis and information retrieval can be applied. This is discussed in Chapter (5.
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1.3.4 E x istin g  cod e as an inform al reuse rep ository

The approach documented in this thesis is capable of treating the existing code-base as 
an informal reuse repository and identifying potentially interesting groups of classes 
that may be candidates for generalisation and publicising as reusable assets. This 
could in principle be incorporated as part of a one-off domain analysis, thereby reduc­
ing the load on the domain experts in determining reuse potential within an existing 
development environment. The approach additionally directs attention to potentially 
useful examples of how generalisations are specialised in practice by identifying recur­
ring instances of reuse, i.e., instances of reuse that occur on more than one occasion. 
This active approach can act as a vehicle for knowledge transfer and reinforcement, 
in that the process of identification and context-based learning should provide devel­
opers with more experiences to recall and reuse. This mirrors the intention behind 
Michail’s approach to exemplar-based reuse where he provides developers with ex­
amples of library code reuse within the context of existing, developed code [Michail 
and Nothin, 1998]. The current approach could also help generate a corporate reuse 
“memory”, which is often lost as a consequence of informal reuse as staff and projects 
change.

1.3.5 A “ligh tw eigh t” approach

No assumptions are made regarding the maturity of the software development context. 
The approach is “lightweight” in that by adopting an automated approach based purely 
on the availability of source code and an analysis of its structure, it is reliant on neither 
supporting documentation nor the presence of additional knowledge sources.

This lightweight, code-level approach to reuse is directed at answering the question 
“ What is being reused?”. To that end, this thesis describes the development of an 
automated, non-intrusive method and set of tools capable of identifying similarity 
in an existing object-oriented code-base. However, this is an essentially retrospective 
activity, although as classes are developed and deployed they can of course be compared 
against the existing code-base.
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1.3.G Late life-cycle  a ctiva ted  reuse

A second question was originally posed as “How can the loss of informal or unregis­
tered reuse be preempted during development?”. The method developed in this thesis 
additionally provides the foundation upon which we can take steps to address this.

The underlying strategy is dependent on a key feature of the software develop­
ment process: software is implemented by following a code-compile-test cycle in which 
a developer iteratively develops a class until it meets a given specification. This is 
particularly relevant when one considers the emergence of “rapid”, highly iterated 
development practices, for example, “Extreme Programming” [Beck, 1999]. By moni­
toring the production of classes and comparing them with the existing code-base, the 
development process can Ik; actively informed. The presence of existing code that 
is similar to that being developed may lead to the identification of solutions that 
implement, partially or fully, the required specification. Again this also contributes 
to identifying foci for potential reusable assets but additionally makes the developer 
aware of other contexts in which similar code is deployed. The development process 
benefits by virtue of the additional information regarding the deployed context or the 
provision of insights into potential problems with the code currently being developed, 
e.g., missed opportunities for delegation, reengineering and refactoring. Although in 
principle the presented approach is shown to be capable of supporting this type of acti­
vated reuse occurring late in the software development life-cycle, the balance between 
the benefits and possible drawbacks, e.g., the level of acceptable intrusion, of late life- 
cycle activated reuse have not been fully investigated as part of this thesis2. A similar 
approach to activated reuse but dependent on free-text analysis of code comments has 
recently been published in [Ye and Fischer, 2001].

Irrespective of whether useful indicators of reuse based on code-level structural 
similarity were to be forthcoming using the proposed approach, it was considered wor­
thy of investigation given the potential benefits - identification of reusable assets and 
contextualised, shared, reuse experience. The main point being made here relates 
to the potential heightening of awareness within the development environment of in­
stances (T reuse. Adopting an activated attitude to reuse by short,-circuit ing informal 
or unintentioned and unregistered reuse could additionally improve on this.

“Due to time constraints, this is now the subject of further work.
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1.4 Basic hypotheses

The basic hypotheses being tested in this thesis can be stated as follows:

• An attributed, relational model of object-oriented class structure is sufficiently 
discriminating to enable the determination of useful degrees of similarity between 
classes.

• A two-phase, graph-theoretic approach based on an attributed, relational model 
of object-oriented class structure can effectively and efficiently identify recurring 
similarity in an existing object-oriented code-base.

A further, incompletely tested hypothesis relates to late life-cycle activated reuse 
and is stated here for completeness:

• Late life-cycle activated reuse based on an attributed, relational model of object- 
oriented class structure positively benefits the software development process.

1.5 Thesis organisation

Chapter 2 provides an overview and general introduction to those areas of the litera­
ture that provide a backdrop to the development of the current approach. The review 
is confined to aspects of code comparison and the issues of abstraction and represen­
tation. Specific techniques, introduced in support of the developed approach are more 
appropriately discussed within the context of the relevant chapters, i.e., analogies and 
techniques from molecular chemistry and computer vision (Chapters 3, 5 and 6), graph 
matching (Chapter 5), and data clustering (Chapter 6).

Chapter 3 defines a formal, generic, graph-theoretic model of object-oriented code 
structure and similarity. Identifying the class as the fundamental unit of analysis, a 
model is developed centered on the extraction of an attributed relational graph (ARC) 
as a representation of class structure. This model draws on analogies from molecular 
chemistry and pattern matching in computer vision. Both these domains provide an



existing template for analysing structure and structural similarity. This comes in the 
form of a set of techniques and algorithms which are shown in principle to be reasonably 
transferrable to the problem of structural similarity in object-oriented code, facilitated 
by their common basis in graph-theory.

Chapter 4 tests certain key assumptions made as part of the development of the 
model of object-oriented class structure and structural similarity introduced in Chap­
ter 3. Firstly, that the analysis of structure and structural similarity in object-oriented 
code was sufficiently similar to the reference domains of molecular chemistry and pat­
tern matching in computer vision to enable a successful transfer of the underlying 
applied, graph-theoretic principles and techniques. Secondly, that the derived vector- 
space model of global structure and structural similarity was appropriately parame- 
terised. This chapter describes how this was achieved by instantiating the model of 
Chapter 3 within the context of object-oriented development using the Java language. 
More specifically, it describes the analysis of the intermediate results of compilation, 
the Java bytecode, rather than the original source code. The chapter begins with a 
brief discussion of Java and Java bytecode. It continues with an introductory example 
of the analysis and comparison of two Java classes. The major part of the chapter 
is devoted to an experimental evaluation of global similarity based on a plagiarism 
detection reference model.

Chapter 5 describes a more detailed, local examination of the individual at­
tributed relational graphs in order to address the limitations of the global approach 
to determining similarity described in Chapter 4.

This chapter concentrates on developing a method of extracting common sub­
structure from pairs of Java classes as represented by their ARGs. This involves 
applying graph matching techniques to the Java bytecode graphs. An introduction to 
the general concept of graph matching is followed by a more detailed look at one par­
ticular approach based on clique detection. In order to support searching for common 
structure in Java class files, limitations imposed by this generic approach are addressed 
through modifications that incorporate specific characteristics and constraints peculiar 
to the domain of object-oriented class-file analysis. The chapter also describes a novel 
approach to the problem of graph matching. In order to maximise the possibility of 
identifying common structure in large classes, clique detection is based on a combi­
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nation of a deterministic algorithm, and a heuristic approach that employs an hybrid 
genetic algorithm.

Drawing on existing techniques employed within similarity searching of molecular 
databases, this chapter also describes a two-phase approach to the analysis of structural 
similarity. Feature-vector extraction and a global measure of similarity is applied as a 
filter to the more demanding local assessment of contributing sub-structure based on 
graph matching.

The measurement of local similarity is tested by revisiting the experimental analysis 
of Chapter 4.

Chapter 6 changes the emphasis from the quantification of similarity in small data 
sets to the related issues of minimising computational overhead and maximising the 
potential for identifying common and recurring structure in larger, possibly dynamic 
collections of classes. It describes how this can be effectively achieved using a process 
of unsupervised classification, by way of cluster formation based on a combination of 
partitioning and limited hierarchy. Though not ideal, this cluster structure is shown 
to provide both a means of grouping together significantly similar classes that are 
representative of common, recurring structure, in addition to a framework for target- 
to-colleetion matching and hierarchic browsing.

As the foundation of our approach to the identification of recurring, common struc­
ture in class collections, Chapter (i begins by exploring the principles and techniques 
behind the grouping, or clustering, of similar elements within a larger collection. The 
basic hypothesis being tested here is that an approach based on such a clustering is 
valid, in that clustered classes are similar by virtue of repeated occurrences of the 
same or very similar common structure. A justifiably modified standard algorithm, 
the “Leader” algorithm, is using as a reference for comparison with the novel, but more 
complex hybrid algorithm, Limited Hierarchy Bisecting K-medoids (LHBKM) intro­
duced here. The LHBKM algorithm is shown to produce clusters that collectively 
provide a reasonable sample of the common structure present in a collection.

In order to cater for dynamic collections of classes, an incremental clustering ap­
proach is also introduced. Incremental Limited Hierarchy Bisecting K-medoids (ILH- 
BKM) is shown to produce a reasonable cluster structure based on an analysis of a
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dynamically growing collection.

This chapter also considers the potential benefit of late life-cycle activated reuse.

Chapter 7 summarises the research presented in this thesis, draws conclusions 
within the context of the original objectives, constraints and hypotheses, and describes 
opportunities for further work.

Two appendices are included. Appendix 1 provides a concise introduction to 
those elements of graph theory essential to an understanding of the presented material, 
particularly that of Chapters 3, 4 and 5. Appendix 2 provides an outline structure 
of the analysis framework developed as part of this thesis.
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Chapter 2

A R eview  of A pproaches to  

A u to m a ted , C ode-level 

C om parison .

2.1 Introduction

2.1 .1  Scope o f review

In Chapter 1, the concept of a relational, structural approach to object-oriented code 
comparison was proposed in the context of a lightweight, code-level approach to reuse. 
Certain fundamental assumptions were implicit in this notion, which consequently 
define the scope of this work in relation to previous and on-going research. The 
principal, key constraints governing the development of the proposed approach are 
re-stated below:

• Object-orientation: analysis and comparison is to be confined to class-based, 
object-oriented code development.
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• Code-level comparison: the focus of analysis is to be either implemented source- 
code or its executable derivative.

• Automated comparison: the entire analysis and comparison process is to be fully 
automated, requiring no direct intervention either on the part of domain-level 
experts or the potential user.

• No prerequisite knowledge: other than the cotie itself, no additional knowledge 
structures or information sources should be required to support the analysis and 
comparison task.

• No concept assignment: the intention is to establish similarity based on code 
structure, no direct attempt is made to infer any higher-level conceptual connec­
tion or functional equivalence

This chapter provides an overview and general introduction to those areas of the 
literature that provide a backdrop to the development of the current approach, within 
the limits of the above constraints. Consequently, the review presented here is confined 
to aspects of code comparison and representation. Specific techniques, introduced in 
support of the developed approach, are more appropriately discussed within the con­
text of the relevant chapters, i.e., analogies from molecular chemistry and computer 
vision (Chapters 3, 5 and 6), graph matching (Chapter 5), and data clustering (Chap­
ter 0).

In terms of automated code comparison, the three main areas of interest relate to:

• the detection of plagiarism in program code

• direct approaches to determining code-level similarity or duplication (“cloning”)

• issues relating to source code representation

The significance of the first two is self evident, as assessment of similarity in these cases 
is based on direct, pair-wise code comparison. This is fundamental to the proposed 
approach. Issues relating to the representation of code are of relevance as they lie 
at the heart of any approach to code-level similarity including the two areas already 
mentioned: a chosen representation must encapsulate sufficient information to enable
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appropriate levels of discrimination in the given comparison context. Frakes indirectly 
refers to this discriminating power when he describes the expressiveness or knowledge 
content of any given representation as Representational Adequacy [Frakes and Gandel, 
1989]. The significance of representation in the process of code comparison is further 
illustrated by discussing repository-based reuse as an example of an indirect approach 
to code-level similarity; code understanding based on pattern matching and reverse 
engineering; and code maintenance based on comparative analysis.

2.2 Direct Code Comparison

2.2.1 Plagiarism detection in software programs

Plagiarism detection refers to both manual and automated approaches to deciding 
whether a program produced by one author has been deliberately copied, possibly 
trivially changed, and presented as the work of another. Whale identifies several ap­
proaches to disguising programs such as changing comments and data types; aliasing 
identifiers; adding redundant statements or variables; changing the structure of selec­
tion statements; shuffling independent code segments; or expanding function calls into 
in-line code [Whale, 1990].

The connection between software plagiarism and the potential for reuse in an ex­
isting code-base is well stated by Hislop [Ilislop, 1998]:

Plagiarism, after all, is simply a socially unacceptable form of reuse.

What makes the study of techniques from plagiarism detection particularly relevant 
in the context of reuse is their common goal in trying to identify program pairs that 
are in large part similar. Where differences exist, they should be essentially cosmetic 
or, additionally in the case of reuse, representative of specialisation of a generalisation.
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A ttribute counting system s

The history of plagiarism detection is intimately associated with the development of 
software metrics, i.e., statistical, quantitative measures of the properties and charac­
teristics of a program1. An early approach to plagiarism detection by Ottenstein was 
based on the comparison of four attribute counts as given by the metrics of Halstead’s 
“Software Science”, i.e., the number of unique operators and operands and their respec­
tive frequency of occurrence in a program [Ottenstein, 1977; Halstead, 1977]. (The 
same metrics formed part of Caldiera and Basili’s approach to the identification of 
potentially reusable assets within existing software, the emphasis being on the quali­
fication of individual program parts, not on comparison [Caldiera and Basili, 1991].) 
Systems that base their analysis and comparison on single measures, or vectors of 
measures, that represent individual characteristics of the code, such as the number of 
lines of code, variables declared and used, are referred to as “attribute counting” sys­
tems [Grier, 1981; Berghel and Sallach, 1984; Rienwalt, et al, 1989; Faidhi and Robin­
son, 1987].

Improvements in the performance of early attribute counting systems came with 
increasing numbers and sophistication of the metrics used. Grier’s “ACCUSE” sys­
tem included eight principal attribute counts drawn from a, total of twenty candidates. 
Faidhi and Robinson’s approach includes twenty-four metrics which attempt to mea­
sure intrinsic and hidden features of a program’s structure, including measures of 
control flow and percentages of expression types.

An interesting approach is provided by the “COGGER” plagiarism detection tool 
[Cunningham and Mikoyan, 1993]. It includes an attribute counting system that forms 
the basis of an approach to plagiarism founded in case-based reasoning. Programs 
are initially represented by vectors of frequency counts of structural parameters and 
reserved identifiers extracted from the code, e.g., maximum depth of function calls, 
user-defined function calls, the frequency of “do”,“for” and ”if” constructs. These 
feature vectors are classified using an information-theoretic approach to decision-tree 
indexing (Gennari’s “CLASSIT” algorithm). By initially matching a program’s feature 
vector against tin; decision-tree index, the candidate plagiarisms returned are subjected

lThe subject of software metrics is a significant discipline in its own rigid., a comprehensively 

description being provided in [Fenton and Pfleeger, 199G].
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to a deeper analysis to confirm their validity. The key point here is minimisation 
of the number of comparisons associated with the plagiarism detection process by 
focussing attention on groups of potential candidates rather than testing all pair-wise 
combinations.

Although the statistical, attribute counting systems achieved some success, newer 
approaches based on the comparison of program structure, i.e., structure-metrics, were 
leading to improved plagiarism detection rates. This was based on evidence that 
“no single number or set of numbers can adequately capture the level of information 
about program texts that a structure-metric system is able to achieve” [Verco and 

Wise, 1996].

Structure-m etric system s

Donaldson et al developed an hybrid system based on eight attribute counting met­
rics, alongside an additional representation of program structure in the form of a 
string of tokens: tokens in the string represent the adjacency of structures in the 
program, e.g., variable declarations, assignment statements and procedure calls [Don­
aldson et al, 1981]. Similarity between programs is determined by exact match between 
their respective counts or strings. Donaldson’s strings, as representative of the pro­
gram structure, are an example of a structure-metric. In this context, a metric is 
interpreted as a function over the program text that maps it to an alternative, usually 
more compact, representation2.

The work of Jankowitz [Jankowitz, 1988] is also in part based on a statistical, 
attribute counting approach but, significantly, this is superimposed on comparison 
based on the static call-graphs of the compared code. By extracting the intercon­
nections between the main body of a program and all its procedures, the resulting

‘’Moving from one representational domain of a program to another, with a potential loss of infor­

mation, can be interpreted as a “forgetful” functor between the two domains. In this case the program 

text and the tokcnised strings are the domains, or categories, of representation. This is a common 

theme in structure matching, where rather than compare complex representations, a transformation, 

or morphism, is applied giving rise to a simpler, more compact representation. In turn, comparison of 

representations in the less complex domain give rise to a less accurate but computationally tractable 

solution.
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tree representations are tokenised and matched. Procedures corresponding within any 
common branches found are then analysed by means of selected metrics, e.g., lines 
of code, keyword frequency, assignment statements and, if within a given threshold, 
subjected to a further statement-level metric analysis. Emphasising the relationships 
between program procedures and the general coupling characteristics of modules as a 
means of determining similarity is also described in Leach [Leach, 1995].

The predominant approaches to plagiarism detection are currently those based 
wholly on structure-metrics. Whale developed a structure profile as part of the 
“PLAGUE” system that successfully captures a program’s overall structure by en­
coding elements of its control structure as a variable length series of terms. Each term 
represents a part of the program and its enclosing control structure, a series of terms 
effectively representing the code as a “generalised regular expression” [Whale, 1990a; 
1990b], Comparison of structure profiles is initially used as a filter to a more de­
manding analysis of candidate pairs employing string matching over a tokenised form 
of the program texts. The string matching algorithm1 is capable of handling trans­
posed substrings so addressing the limitation of exact match and the order preserving 
property of simpler string matching algorithms such as longest common subsequence 
[Cormen et, al, 1990]. The structure profile was shown to outperform four attribute 
counting systems as well as Donaldson’s hybrid approach. Hislop recently confirmed 
the efficacy of the structure profile in the context of identifying the reuse potential of 
an existing code-base when he also compared it against traditional attribute counting 
[Hislop, 1998].

The detailed comparison phase of Whale’s approach depends on the tokenisation 
of the program texts. This involves parsing the texts in order to generate tokens 
representing statement block boundaries, various assignment statements and different 
types of function call. More recent approaches have since extended this approach to 
include a detailed lexical analysis resulting in the generation of more expressive token 
sets that are also independent of comments, layout and variable names [Wise, 1996; 
Gitchell an Tran, 1999; Prechelt et al, 2000]. These approaches are all based on various 
string matching algorithms applied to the tokenised program representations.

‘'Heckle’s algorithm: Paul Heckel, A Technique for Isolating Differences between Files, Communi­

cations of the ACM 21(4),pp(264-268), April 1978.
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The string matching approach used by Wise’s “YAP3” system [Wise, 1996] and 
Prechelt et al’s “JPLAG” system [Prechelt et al, 2000;2001] are essentially similar. 
Both systems use a “greedy string tiling” approach based on a variant of the Karp- 
Rabin string matching algorithm. This affords these systems the ability to cope with 
transposition in the code resulting from, for example, the swapping of independent 
blocks of code. This also caters, to a limited degree, with instances of function-call 
expansion. Other features to which both systems are effectively immune or resis­
tant include comment, identifier and type changes; inclusion of redundant statements; 
replacing expressions by equivalents; and changing the structure of iteration and se­
lection statements. These are all well known targets for plagiarism and represent 
legitimate differences that might exist between examples of reused code.

Wise and Prechelt’s publications are significant as they provide recent, empirical 
evidence as to i) the superior performance of variable-length, structure-metrics as 
opposed to attribute counting [Verco and Wise, 1996], and ii) the performance of 
structure-metric system generally [Prechelt et al, 2000;2001].

In general, the majority of approaches to plagiarism detection were developed 
and tested with procedural code, aimed at languages such as Fortran, Pascal, C and 
Lisp. The “YAP3” and “JPLAG” environments do support object-oriented languages, 
CLOS and Java respectively, although they make no specific allowance for the pecu­
liarities inherent in object-oriented code, i.e., the entities that comprise a class and 
the superimposed intra and inter-class relational structure.

2.2.2 Duplication, code cloning and “near-miss” similarity

This section discusses a broad sample of tools and techniques that essentially aim at 
identifying duplication within and between program files, i.e., code “cloning”. Al­
though their principal underlying objective is the identification of exact match, many 
of these techniques accommodate partial (“near-miss”) match, and are not necessarily 
independent of those introduced under the heading of plagiarism detection above. In­
deed, some of them claim to be effective in detecting plagiarism, which in the extreme 
can be considered equivalent to clone detection.



String matching

Identifying the differences between text files is a common requirement as exemplified 
by the UNIX diff utility, diff effectively provides a series of edit operations which 
transform one text file into another, fewer operations implying a higher degree of sim­
ilarity between the files. However, in the context of identifying potentially equivalent 
programs, the dependence of diff on exact, lexicographic string matching leaves it 
highly sensitive to name changes and the reordering of independent blocks of code. 
Baker’s “dup” tool addresses the problem of consistent name changes by means of a 
parameterised string matching algorithm [Baker, 1996]. A parameterised match (p- 
match) occurs when two blocks of program text, or a tokenised form of the text, are 
lexicographically the same except for a consistent change in identifier names, e.g., the 

two statements

pfh->min_bounds.lbearing; pfh->max_bounds.lbearing;

would form an exact p-match with

pfh->min_bounds.right; pfh->max_bounds.right;

“dup” removes the dependence on naming but retains the distinction between iden­
tifiers by replacing their tokens by offsets based on their occurrence in the text, e.g., 
the previous pairs of statements would both be represented as 0— > 0.0; 1— > 1.1;. 
The p-match algorithm is based on a data structure 4 that provides the “dup” tool 
with linear performance enabling it to scale well to large collections of liles.

Baker has developed the only 5 previous approach to the direct comparison of 
executable Java code, i.e., Java bytecode [Baker and Manber, 1998]. Java bytecode 
corresponding to a class is first disassembled and the instructions for each method 
tokenised. Tokenisation includes the assignment of offsets to various types of iden­
tifier, which preserve their individuality within the context of comparison using the

4The parameterised suffix tree: a compacted trie [Baker, 1993].
sTessem describes the use of bytecode as part of a CBR-based approach to reuse but not in the 

sense of direct code comparison (see) [Tessein et. al, 1998].
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parameterised string matching algorithm. The longest p-match between two token 
strings i)rovides an indication of the degree of match. Although this approach can 
take account of consistent name changes, and effectively allows insertion and deletion 
edit operations when comparing two strings, as in the case of dijj\ it is unable to deal 
effectively with the reordering of independent blocks of code.

An approach based on simple, line-based string matching is that of Ducasse et 
al [Ducasse et al, 1999]. The process begins by comparing each line of one program 
with each line of another, both taken in order and stripped of white-space. The result 
is represented as a 2-dimensional matrix indexed according to each program’s line 
count, a 1 indicating exact match, 0 a non-match. Similar sections of code appear as 
diagonally adjacent l ’s in the matrix, perturbations of these diagonals being indicative 
of differences between the files such as line deletions/insertions and local changes within 
lines. They have developed an algorithm that captures the degree of similarity between 
two files based on an analysis of these patterns. A similar approach is used by West in 
the “Bandit” plagiarism detection tool [West, 1995]. Again, the main failing of these 
approaches is their dependence on exact string match. However, they are more robust 
in the face of shuffled blocks of order-independent code.

Fingerprinting

In order to identify duplicated code in large development projects, Johnson adopts 
an approach based on defining a characteristic “fingerprint” for blocks, or “snips”, of 
program text [Johnson, 1993]. All size-limited, formatted blocks of text are assigned 
an integer-valued checksum, or fingerprint, based on an algorithm by Karp and Rabin 
[Sedegewick, 1988]. The collected fingerprints are subjected to a process of filtering, 
aggregation and subsumption, those remaining being representative of the possible 
duplication present. Same-valued, matching fingerprints map matching blocks of code. 
Johnson showed this approach to be both effective and efficient. However, it is limited 
in being based on exact, lexicographic match.

A similar approach based on this notion of characterising fingerprints is the “siff” 
utility developed by Manber [Manber, 1993]. Designed to find similar files in the 
context of large projects, as in Johnson’s approach, a checksum is calculated over size-
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limited strings in each program file. The essential difference here is in the identification 
of what program text to fingerprint. Johnson fingerprints all substrings in the program 
text that satisfy the selection criteria and filters the result. In one version of Manber’s 
approach, all size-limited strings prefixed by any one of a set of “anchor” strings are 
fingerprinted. Alternatively all fingerprints are calculated and those with the least 
significant eight bits set to zero are selected. Files are matched by comparing the sets 
of fingerprints generated for each file, the greater the number of equal fingerprints, the 
greater the similarity. This approach is very efficient for the analysis of large numbers 
of large files but is susceptible to the presence of unrepresentative, bad fingerprints, 
particularly when dealing with small files. The same limitation applies here in relation 
to the exact lexicographic nature of the match between individual fingerprints. As part 
of her evaluation of “dup” in the context of Java bytecode similarity, Baker showed 
that a combination of “dup” and “siff” performed better than either independently, 
reflecting the different emphasis of the two approaches.

Function metrics

Software metrics have already been introduced in the context of attribute counting 
approaches to plagiarism detection. The use of metrics in determining the presence 
of code clones is predicated on the belief that similar programs should have similar 
metric profiles. As an approximate, reasonably precise filter applied over a set of files, 
this has indeed been shown to be the case [Kontogiannis, 1996].

In looking to identify duplicate or near-duplicate functions, i.e., function clones, 
in a large software system, Maynard et al’s “Datrix” tool set employs 21 “function- 
metrics” to characterise and match individual functions [Maynard et al, 1996]. Their 
approach is based on first generating the abstract syntax tree of each function. This 
is in turn converted into a labelled graph, an intermediate representation language 
(IRL), that captures information relating to architectural dependencies in the code; 
static data types; control and data flow. In the context of supporting an evaluation of 
system quality, each function is compared based on four points of comparison, naming, 
layout, expressions and control flow. Each of these points is characterised by a set of 
metrics, counts derived from the IRL representation of the function. For example, the 
expression metrics include counts of the “total calls to other functions”, “number of
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executable statements” and “average complexity of decisions”. Based on empirically 
derived thresholds, these metrics are used to classify the degree of match between 
functions on a eight-point sliding ordinal scale, ranging from level l:“ExaetCopy” 
through level 3:“SimilarLayout” to level 8:“DistinctControlFlow”. They found that 
clone detection at level 1 was reliable but false positives dramatically increased by level 
3. Lague used the same approach in the context of tracking and reacting to cloning 
activity as part of the development process [Lague et al, 1997].

This approach has recently been extended and adjusted to take account of those 
characteristics important to the reengineering of cloned code, as opposed to the evalu­
ation of system quality [Balazinska, et al, 1999]. The revised classification introduces 
an 18-point scale starting from level 1: “identical” and representing increasing degrees 
of difference in going through level 10:“interface changes”, ending at level 18:“Several 
long differences, interface and implementation”. The approach draws on the work of 
Kontogiannis et al [Kontogiannis ct al, 1996] in that it uses a dynamic programming 
approach [Cormen et al, 1990] to establish the best alignment between code fragments 
but differs in using a tokenised representation of the code, rather than a set of features 
describing individual statements and blocks based on metric measures. It represents 
a fine-grained matching process in that small, lexical difference are detected. Metric 
profiling was however suggested as a first-cut filter to the computationally more ex­
pensive, 0 (n 2) complexity, dynamic-programming approach. A further development 
of this approach applied to the computer-aided refactoring of object-oriented code is 
presented in [Balazinska, et al, 2000]. These are further examples of the effectiveness 
of a two-stage analysis process, which additionally do not remove the user as a final 
arbiter in deciding what is potentially significant.

Trees and Graphs

The detection of “near-miss” clones in arbitrary code fragments based on the genera­
tion of abstract syntax trees (ASTs) is presented in [Baxter et al, 1998]. Drawing on 
an existing approach to the detection of common subexpressions during code compi­
lation, based on the calculation and matching of hash values6, an hierarchical method

6Hash values are generated when a hasli function is applied to an item’s key, in this case the 

tokenised AST (sub)-tree, and the resulting value is used as an index to select one of a number of
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of clone detection is presented. All subtrees in the AST are represented by hash val­
ues, those with the same value being potential clones. Similarity, as opposed to exact 
match, is catered for by ignoring the leaves of the AST, i.e., identifier names. The 
approach takes account of the potential aggregation of sequences of clones and clone 
generalisation where sub-tree clones may be part of a larger, containing clone. The 
approach has been shown to be effective at identifying “near-miss” clones in large code 
collections. Although it is based on parsing techniques and the generation of ASTs, 
this is not seen as a major limitation when balanced against the relative ease with 
which standard parsing technology can be applied.

In a similar vein, Komondoor and Iforwitz base their clone detection approach on 
the construction and comparison of a graph-based representation of the code [Komon­
door and Horwitz, 2000]. The program dependency graph (PDC1) contains vertices 
that represent statements and decision-points (predicates), and edges that represent 
the data and control dependencies between them. They begin by matching vertices 
based on their syntactic structure, ignoring names and literals. Starting from pairs of 
matching nodes they then establish the largest matching subgraphs containing these 
nodes: this process is based on “slicing”', or tracking, backwards and forwards from 
the original pair of nodes, adding neighbouring nodes and edges provided the state­
ments, predicates, data and control flows match between the two PDGs.

As in Baxter’s case, subsumed clones are removed and matching sub-clones ag­
gregated into larger clones. The approach was shown to be time-compromised due to 
the analysis overhead, and it suffered from the overidentification of ideal clones, i.e., 
many clones were slightly differing variants of a single containing clone. However, the 
approach was very robust in finding non-contiguous and intertwined clones, as well as 
being resistant to variable name changes and independent statement reordering.

The computational overhead associated with Komondoor and Horowitz’s approach 
are in part addressed by a similar, though approximate, approach developed by Krinke 
[Krinke, 2001]. The PDG is again used as the means of representation but in this case 7

’’hash buckets” in a hash table. The table contains pointers to the original items. In the current case,

(sub)trees hashed to the same bucket should be more similar that those in different buckets.
7 “A program slice consists of the parts of a program that (potentially) affect the values computed

at some point of interest” [Tip, 1995]
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modified to include aspects of the AST that further attribute and classify the vertices 
and edges of the standard PDG, e.g., vertices are typed as expressions, statements, 
procedure calls; they can be assigned operators to qualify the type; and assigned 
names and literals. The data flow and control edges are additionally qualified to re­
flect variable storage, and evaluation dependency. The generated, directed graph is 
termed a fine-grained program dependency graph (FGPDG). Similar blocks of code 
are identified by matching program FGPDGs using an approximate graph matching 
technique called maximal k-limited path-induced subgraphs. A maximal k-limited path- 
induced subgraph, corresponding to two initial vertex sets containing one each of a 
pair of matching vertices, is formed by adding vertices to the sets as follows: edges 
incident to those vertices last added to the matching sets are partitioned into equiv­
alence classes according to their attributes; those new vertices belonging to matching 
equivalence classes are added to their respective matching set. This continues until 
there are no more matching equivalence classes or the number of iterations exceeds a 
given threshold k. Maximal k-limited path-induced subgraphs are established for all 
matching predicate nodes. The approximate nature of this graph matching process 
requires the validity of matching sets to be weighted by comparing the number of 
data dependency edges. Where the difference is again above threshold the match is 
negated. Although again limited by the overhead of PDG construction and analysis, 
and the polynomial complexity of the graph match process, the approach was shown 
to be effective, with manageable run-times and reportedly good precision, claiming no 
false positives.

2.3 Application D ependent Source Code Representation

2.3.1 Repository-based reuse 

Indirect code comparison

One of the key elements in supporting and promoting software reuse is the provision of 
searchable repositories of reusable components, including source code, and a means of 
querying the repository in order to produce a set of candidates that satisfy a specified
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reuse need [Mili, Mili and Mittermeir, 1998]. Code-level similarity can be established 
indirectly given a collection (or organised repository) of appropriately represented code 
and a means of issuing a query against it. If a query or pattern can be formulated that 
sufficiently represents a code-level artefact (source code or executable), the results of 
executing this query against the collection will comprise not merely those collection 
elements similar to that represented by the query, but a collection of similar elements 
in their own right - the candidates returned in response to a given query should be 
similar8. As similarity is a function of representation, the techniques and approaches 
to representation embodied in these indirect approaches are of particular interest.

In [Frakes and Gandel, 1989; Frakes and Pole, 1994] we are presented with a 
survey of approaches to the representation of reusable software components as a basis 
for repository population and query-based retrieval. These approaches can be broadly 
categorised as being derived from Al-based knowledge engineering, or library and 
information science.

A l-based representation

Although Al-based approaches are very important in their own right, the constraints 
introduced above are such that approaches that rely on knowledge-based techniques 
or additional information structures and tools do not warrant further, detailed discus­
sion. Although these “value added” approaches [Henninger, 1997] are common in the 
domain of repository-based reuse, they generally rely on an initial manual, or semi­
automatic, characterisation of reusable artefacts, such as code, by domain experts. 
In order to organise and structure the repository, they use pre-defined classification 
models requiring “domain analysis and a great deal of pro-encoded, manually provided 
semantic information” [Fernandez-Chamizo et al, 1996]. These systems are supported 
by “value-added”, resource-intensive structures such as domain-specific thesauri [Os- 
tertag at al, 1992; Liao et al. 1998], semantic nets and ontologies [Devanbu et al, 1991; 
Fernandez-Chamizo et al, 1996; Etzkorn and Davis, 1996] and formal specifications 
[Zaremski and Wing, 1995]. This heavy reliance on the provision of conceptual and/or 
functional classification and inferencing frameworks, in association with dependent

®This reflects the cluster hypothesis from information retrieval, which states that closely associated 

documents tend to be relevant to the same query [van Rijsbergen, 1979].
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tools and techniques such as natural language processing [Girardi and Ibrahim, 1993; 
Etzkorn and Davis, 1996] and theorem proving [Chen and Cheng, 1997] effectively 
places these approaches outwith the scope of the current work.

The proposed approach makes few if any assumptions about the availability of 
specialist knowledge and tools, or about the context in which the code exists, e.g., 
the maturity of the development and reuse processes. In the extreme, the sole source 
of information available to the proposed approach is the code itself. Further, no 
attempt is made to directly address Biggerstaff’s “concept assignment problem” [Big- 
gerstaff et al, 1994], which is the intention behind many of these “value-added” ap­
proaches, i.e., the association of higher-level, human-understood and domain-oriented 
concepts, to their realisation in implemented code.

Library and Information Science

The main areas of library and information science that may have a bearing on the 
choice of representation are free-text retrieval and attribute-value description and in­
dexing.

Free-text retrieval

From a basis in Information Retrieval (IR) [Salton and McGill, 1983], brakes and 
Nejmeh developed their “CATALOG” system as a means of storing and retrieving C 
modules from a reuse library [brakes and Nejmeh, 1987]. Each item in the library is 
represented and indexed by a set of keywords extracted from its associated documen­
tation. In defining a reuse need, a user supplies a set of keywords that attempt to 
specify this need. These are matched against the indexed keyword sets in the repos­
itory, and a ranked list of candidate modules returned. This approach proved to be 
simple, automatic and effective. However, by using an unconstrained vocabulary, the 
lack of semantic association between keywords required query formulation be informed 
by knowledge of appropriate and relevant keywords. Huu also points out the fallibility 
of such an approach in the face of poor quality documentation [Huu, 1993].

In order to improve the quality of the keyword-based approach, Maarek and her
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co-workers introduced a certain degree of stored semantic knowledge by introducing 
the concepts of Lexical Affinity and Resolving Power into both the representation of 
library artefacts, and the matching process underlying retrieval, [Maarek et al, 1994; 
Helm and Maarek, 1991]. Lexical affinity provides a measure of the “relatedness” of 
two keywords based on their frequency of co-occurrence in the software documentation 
associated with a library item9. Resolving power assigns a measure of discrimination 
to a lexical affinity, the higher the resolving power the more characteristic of the 
document the lexical affinity is. Each item is described by a profile, expressed in terms 
of the resolving power of its lexical affinities. Natural language queries describing the 
functionality of a required component are in turn represented by the same type of 
profile. A measure of similarity between a query profile and the repository of stored 
profiles returns a list of ranked candidates.

The use of free-text, keyword extraction and analysis has also recently been ap­
plied to the detection of clones in source code. Latent semantic analysis/indexing 
(LSA/1) was applied to the source code documentation of NCSA Mosaic, including 
comments and the names of identifiers [Maletic and Marcus, 2001]. This provides a 
measure of conceptual similarity between analysed documents. The LSA/I generated 
vectorial representations of the constituent documents are used to group, or cluster, 
related documents together. Strongly cohesive groups are manually inspected to de­
termine whether they represent higher-level conceptual clones or abstract data types. 
The combined LSA/I profile of any selected group is then used to identify further 
occurrences of the conceptual clone. They found that in the absence of good quality 
comments, and consistency in naming conventions associated with similar concepts 
and structures, the approach was flawed. However, they suggest that it may prove 
useful in combination with an approach based on structural comparison such as those 
discussed in the previous section.

Despite its limitations, simple, free-text, keyword extraction does find favour as an 
adjunct to other techniques, e.g., within a case-based framework alongside a conceptual

9Lexical affinity can be interpreted as a minimal form of Latent Semantic Analysis/indexing 

(LSA/I), a statistical approach to uncovering the relationships between words in large text collections 

[Landauer, 1998]. LSA/I generates real-valued vectorial representations of blocks of text, charac­

terised by the general properties of a larger corpus. These vectors can in turn be used for indexing 

and comparing the represented blocks.



model [Fernandez-Chemizo et al, 1996]. Where the quality of external and/or inter­
nal documentation is sufficiently rich an independent, free-text, IR-based approach 
can be effectively and efficiently applied as illustrated by [Michail and Nothin, 1999; 
Ye and Fischer, 2001].

Attribute-value description and indexing

The problems of unconstrained vocabularies were to some extent addressed by Prieto- 
Diaz’s faceted approach to component representation [Prieto-Diaz, 1991; Prieto-Diaz and 
Freeman, 1997]. Given a list of significant terms and synonyms resulting from an in- 
depth analysis of a domain of interest, a domain expert classifies these terms into 
a limited number of facets. Facets and assigned terms are both ranked in order of 
characterising significance. Prieto-Diaz additionally relates terms by means of a mea­
sure of an informally assigned conceptual distance indicating how close they are within 
the defined facet. Each repository item is classified (usually manually) by assigning 
terms that characterise the item to each of the facets. Query formulation is based 
on assigning terms to facets and matching the results against the items in the reposi­
tory. A measure of similarity is derived from within-facet term matching using exact 
correspondence, or a thresholding process applied to term-term conceptual distance. 
In order to accommodate a simpler, less rigid classification model, the constraints on 
fixed numbers and ordering of facets and terms may in some situations be relaxed. 
The resulting model is usually referred to as an “attribute-value” or “feature-term” 
model.

Approaches to repository reuse based wholly or in part on the principles of faceted 
or attribute-value representation are common [Ostertag et al, 1992; Henninger, 1997; 
Damiani et al, 1999] but they fall into the “value-added” category of repository creation 
and use, being reliant on in-depth domain analysis, and accompanying manual or semi- 
automated expert-driven classification and repository population.

However, where a set of naturally expressive10, easily identifiable and automati­
cally extractable attributes and values exist, such an approach can be both effective 
and efficient to realise and operate. Attributes and values in the form of features, their

'"'Though not necessarily rich conceptually as in the case of Prieto-Diaz’s original facets.



definition, representation and extraction, are an integral part of Cast-Based Reason­
ing (CBR) [Aamodt and Plaza, 1994]. A case-based approach to class-based retrieval, 
predicated on the definition of attributes and values (viz. features and terms) ex­
tracted from binary executable files is described in [Tessem et al, 1998]. A set of 
descriptors or features are extracted from executable files generated using the object- 
oriented Java language from SUN Microsystems [SUN, 1999]. Features include “the 
type signatures of methods and instance variables, inheritance relationships, and lim­
ited semantics inferred from the names of variables, methods and classes”. In addition, 
their approach caters for manually indexed, generic class-type definitions of abstract 
data types (ADT), e.g., a “STACK” ADT. Queries (“target cases”) are specified using 
a Java-like syntax which is translated into a feature set prior to comparison with those 
stored in the case-base, i.e., the repository of known, representative feature sets. Cal­
culating the similarity between the target and stored cases is based on string matching 
between the terms of compatible features. This approach is particularly relevant as 
it illustrates the potential of a method based on neither high-level code nor external 
documentation. However, it does depend on direct string comparison of extracted 
names and a high degree of consistency in the naming process, which in turn is only 
possible due to the semantically rich nature of executable Java code and a high degree 
of consistency on the part of developers. In addition, the authors point out limita­
tions in the comparison process due to its dependence on both the declaration order 
of method terms and within these the order of parameters.

2.3.2 Program understanding and maintenance

The problem of program understanding in the context of continuing maintenance 
is well recognised and widely researched [Biggerstaff, 1989; Biggerstaff et al, 1993]. 
Reverse-engineering and design recovery are key elements in the maintenance ar­
moury used to support the understanding process. Chiofsky and Cross define reverse­
engineering as a process of analysis aimed at creating abstract representations above 
the level of implementation detail, which identify a system’s components and their 
inter-relationships. They go on to define design recovery as a, sub-discipline of reverse 
engineering that aims at assigning even higher-level, human-understood concepts to 
underlying code. Tempered by prior experience, this is a process of inference based



on abstraction recovered from the code and knowledge external to the code [Chiof- 
sky and Cross, 1990]. The importance of program understanding is evidenced by the 
growth in the number of tools and repositories that capture and store structural in­
formation relating to existing code, and dedicated to the task of supporting reverse 
engineering and design recovery [Chen et al, 1998].

Central to the understanding task is the notion of abstraction. A specific type of 
abstraction that has recently come to prominence in the object-oriented development 
community is that of a design pattern [Gamma et al, 1995]. Design patterns are generic 
solutions to common, recurring problems within a given context. As design-level ab­
stractions, often expressed using design-level formalisms such as the Unified Modelling 
Language (UML) [Rational, 2002], they have been suggested as a means of document­
ing implemented designs [Johnson, 1992], either proactively during development or 
retrospectively in aiding understanding during maintenance [Keller et al, 1999]. Pat­
terns are by definition reused and as such can be interpreted as potential pointers to 
the presence of common, recurring code. However, they are often based on multi-class 
collaboration as opposed to single classes, and in addition may represent behavioural 
as well as structural similarity in the underlying code. As pointed out in [Anto- 
niol et. al, 1998], the degree of identifying information required to be extracted from 
the design or code varies between patterns and in some cases t his extraction is difficult 
or impractical. This is particularly the case where the intent behind a design pattern 
is not inferable from the structure of the code alone. Our current interest relates to 
the degree of implementation-level information required to establish the presence of 
an identifiable pattern. It is likely that the same design pattern describes parts of pro­
gram code that are similar, and that dissimilar patterns allow sufficient discrimination 
to suggest significant difference. The fact that in general design patterns are based on 
multiple class collaborations is not seen as a major limitation: a pattern is realised as 
the sum of the contribution of i)its individual classes and ii) the explicit relationships 
between these classes. In a class-based scenario, the former will be given and the 
latter will be at least partially available in the sense that a class identifies its outgoing 
associations. Consequently, representation within pattern-based reverse engineering 
and design recovery may inform the intended approach to class-based similarity.

Kramer and Prechelt developed the “PAT” system as a means of recovering design 
from object-oriented code written in C++ through recognition of design patterns re­
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alised by the code [Kramer and Prechelt, 1996]. Each design patterns is captured in a 
set of Prolog rules based on design-level information extracted from C ++ header files, 
i.e., class and attribute names; method names and signatures; and inheritance, asso­
ciation and aggregation relations. Code to be analysed is represented by Prolog facts 
which are matched against the stored rule sets. Although the approach was effective 
in recognising structural design patterns, the authors acknowledge that precision was 
affected due to the limited amount of information that could be extracted from the 
C++ header files. Potentially useful information was unavailable: the categorisation of 
classes as abstract or concrete; the semantics relating to the type of method, e.g., con­
structor; the identification of method delegation; called method signature matching; 
and differentiating between association and aggregation.

The limitations ident ified by Kramer and Prechelt were addressed in part by See- 
rnann and von Gutenberg’s approach to pattern identification within a Java develop­
ment environment [Seernan and von Gutenberg, 1998]. The essential difference here is 
the level of structural information extracted from the source code and the introduction 
of reasonable heuristics used to infer additional relationships. By means of a parsing 
process over the Java source code, they were able to extend the amount of informa­
tion contained in the representation of the patterns and classes. This was achieved 
as a result of more detailed method analysis and reasonable heuristics applied to the 
inference of aggregation and delegation. This allowed identification of the nature of 
the method, e.g., “constructor”, “creator”, “delegator”, and extraction of a method’s 
call graph, which included called method signatures and a classification of the calling 
relationship. They give no specific, quantified results relating to how effective the ap­
proach is in practice but state that they “can detect more instances of a pattern than 
approaches strictly relying on the pattern structure” in Gamma et al’s pattern library 
[Gamma et al, 1995], However, they also imply that some instances of design patterns 
were not matched, and some code erroneously matched against specified patterns, due 
to limitations in the purely structural representation.

As part of the “SPOOL” environment developed by Keller et al, pattern-based 
reverse engineering is based on an approach to code capture as applied to C ++ source 
code [Keller et al, 1998]. Their repository of source code information is based on a 
comprehensive analysis of the source code, again based on a detailed analysis of the 
class structure, including the method call graph and additionally, the identification of



variable use within methods and polymorphic method calls. They report high precision 
for two out of the three patterns tested. The representative structure of these patterns 
unambiguously reflected the underlying intent. The third pattern gave rise to many 
false positives due to the intent of the pattern being missed and the structure being 
inappropriately matched.

A further approach to pattern-based design recovery based on a similar model of 
code structure as suggested by Kramer and Prechelt is presented in [Antoniol et al, 1998] 
As in the case of Kramer and Prechelt, the representational model of class structure 
is limited due to the depth of analysis. It includes some degree of method analysis 
in being able to determine delegation but it does not identify polymorphic method 
calls as in Keller et al. Where possible, it also differentiates between aggregation and 
association. Their approach is confined to the identification of structural design pat­
terns giving average identification precision. This approach is particularly interesting 
in that it limits the number of potential candidate matches between code and pat­
tern specification by the use of metric analysis. Certain quantifiable characteristics, 
or metrics, common to both the component classes of a design pattern and the anal­
ysed C++ classes are measured, e.g., the number of associations, aggregations and 
inheritance relationships in which a class is involved. In addition to constraints based 
on participation in a necessary set of relationships with other classes, each class is 
compared against all the components of a stored pattern and where its values for the 
chosen metrics are at least as big, it is selected as a potential candidate match. The 
use of metrics in the comparison process proved invaluable in limiting the search space 
of potential candidates.

The detection of lower-level abstraction, representing commonly reused algorithmic 
or structural constructs - “idioms”, “cliches”, “plans” - has received much attention 
[Rich and Waters, 1988; Quilici et al, 1997]. Although these approaches are effective 
at locating specific computational abstractions and data structures, they tend to be 
limited in their ability to scale due to their being based on the detailed represen­
tation of code at the level of annotated abstract syntax trees (AST) or flow graphs. 
The “JACKAL” tool developed by Reeves and Schlesinger attempts to address this by 
initially representing both code and “cliche” in a limited but sufficiently expressive ab­
stract language (AL). These AL representations are converted into labelled, attributed 
trees or attributed strings, and respectively compared using computationally manage­



able tree matching or weighted string matching [Reeves and Schlesinger, 1997]. They 
sacrifice a degree of precision for computational scaleability. The AL representation 
and translation resembles the process of tokenisation used in some of the approaches 
to plagiarism. As such it could possibly be adapted to the representation of classes, 
with the added power of attributes associated with these tokens. However, unlike the 
representation used for design pattern recovery, and as in the case of AST-based clone 
detection, the level of abstraction may be too close to the algorithmic characteristics of 
the underlying code to allow reasonable measures of class similarity other than exact 
or near-miss match.

Design recovery and program differencing

Jackson and Waingold’s “WOMBLE” tool produces UML design documentation by 
means of a lightweight, heuristic design recovery based on the analysis of executable 
Java class files [Jackson and Waingold, 2001]. Their model is similar to that docu­
mented in [Seemann and von Gutenberg, 1998] but is more detailed, their analysis 
of methods allowing the assignment of mutability and multiplicity labels to associa­
tions. In addition, it can infer some semantics related to the identification of container 
classes. The representational model and heuristics underlying “WOMBLE” were at the 
time shown to improve on the Rational Corporation’s commercially available “ROSE” 
design tool, in terms of the quality of recovered design documentation.

The work of Yih-Farn Chen and his colleagues is based on the creation of a rich 
repository of information principally based on relational database technologies and 
the modelling of object-oriented code, both source and executable. For example, by 
capturing the structural properties of C++ and Java code they are able to support 
various visualisations of the code structure such as the class hierarchy and call graph. 
In addition, by querying the repository database their tools can establish reachability 
relationships between modelled entities such as methods and fields [Korn et al, 1999; 
Chen et al, 1998]. The content of the model is broadly similar to that proposed by 
Keller in the context of design pattern recovery as described above. It incorporates 
information relating to entities such as classes, fields, and methods; their attributes, 
and the relationships that exist between them. Of particular interest is their use of 
such a model to investigate program difference. For example, using the structural
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model of Java classes, their “CHAVA” tool can examine the changes that have been 
made between two versions of a Java-based system. A similar approach is adopted 
in [Rayside, Kerr and Kontogianis, 1998], A natural extension of this would be to 
quantify the identifiable difference and establish a measure of similarity between the 
compared code. The significant observation is the discriminating power of such a 
relational, attributed model in being able to identify such differences, the corollary 
being the potential to determine quantifiable similarity.

2.4 Them es and com m ents

The problem of automatically identifying similar programs or parts thereof is obviously 
well researched. Rather than discussing the relative merits of individual approaches, 
various general themes and limitations are summarised here in relation to the potential 
benefits and constraints implicit in the approach introduced in this thesis.

Degree of match

One obvious limitation associated with some of the methods introduced above is their 
comparison of code-level artefacts based on similarity rather than exact match, such as 
Johnson’s “fingerprints”. Those that provide degrees of similarity but without clearly 
identifying the features in the code responsible for said similarity are also potentially 
limiting, e.g., the pure attribute counting systems.

Granularity and Object-orientation

All the approaches to plagiarism detection and direct code analysis outlined above 
are either specifically aimed at the analysis of procedural code, or generic to the 
point of making no allowance for the peculiarities inherent in object-oriented code, 
i.e., the entities that comprises a class and the superimposed intra and inter-class 
relational structure. In these cases, analysis concentrates on procedural algorithmies, 
at times detailed down to statement level semantics. Several cloning techniques are 
based on comparison of methods but none raise the granularity to that of the class. In
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contrast, several of those techniques dependent on identifying patterns, and those used 
to support repository-based reuse, base their representation and retrieval mechanisms 
on precisely those characteristics that exemplify the form of object-oriented code. 
Within the context of procedural code, the approaches of .Jankowitz and Leach lend 
weight to the argument that the relational aspects of code structure can be exploited 
to good effect in determining similarity.

The organising principle inherent in the concept of a class as a tightly coupled and 
cohesive unit presents an opportunity to emphasise relationships, interfaces and refer­
ence types, and de-emphasise the more variable, procedural aspects of the compared 
code. Focussing on the relational aspects, but confined to an examination of structural 
as opposed to a direct semantic/conceptual analysis, may provide a more diffuse but 
useful measure of similarity. Particularly, if this brings us closer to matching classes 
based on their “visible” interface rather than on their notionally “invisible”, and pos­
sibly more variable implementation. The approach being advocated in this thesis is 
based on the structural properties of object-oriented code, and in the first; instance 
aims to test whether such a relational model of class comparison is in fact viable as a 
means of quantifying class-based similarity.

Representation

Code representation in plagiarism and cloning highlight the two extremes of the rep­
resentational problem in that some approaches are possibly too detailed while others 
do not provide sufficient discrimination.

Those approaches based on graphs such as ASTs and PDGs are able to provide 
discrimination in the match process down to the level of individual, attributed state­
ments and expressions. Although this level of detail can provide sufficient information 
to enable detailed refactoring [Balazinska et al, 2000] and automated clone removal 
[Baxter, 1998], the computational overhead is probably inappropriate, if a lower level 
of resolution is adequate. The proposed approach does not entirely remove the de­
velopin', who, as the final arbiter and a powerful discriminator in his/her own right, 
decides whether identified similarity is indeed significant. The key, supporting require­
ment is the limiting of presented cases to those that are potentially relevant, which as
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shown above is possible based on less detailed representation and analysis.

String matching and the structural approaches to plagiarism detection are possibly 
better suited to the current requirements. However, some string matching techniques 
are fallible, particularly with respect to name changes and the relocation of order- 
independent blocks of code. Although some string matching techniques get over the 
problem of consistent name changes, even those based on lexical analysis and pre- 
tokenisation of the program text can blindly and inappropriately match types and 
method calls, leading to mismatch in contexts such as the comparison of method 
signatures, e.g., reordering of parameters. In general, having no concept of type, being 
able to overrun syntactic boundaries in the code giving rise to “nonsensical” matches11, 
and not necessarily respecting explicit relationships between the entities representing 
a class, undermine their capacity to capture valid similarity between classes.

M etrics

Although structural approaches to plagiarism detection were shown to lie superior 
to attribute counts, several clone detection techniques have in contrast used metrics 
based on individual counts to good effect, as shown by Maynard et, al and Lague et 
al’s work on clone identification [Maynard et al, 1996; Lague et al, 1997].

Two-phase approach

A recurring theme has been the use of a two-phase approach in addressing the problem 
of match complexity and scaleability. By initially applying a low-cost, approximate 
matching technique, this reduces the number of candidates subjected to a more de­
tailed, but costly secondary comparison. This type of approach is dependent on i) the 
approximation being sufficiently selective to remove dissimilar pairs of candidates but 
capable of recognising those that are in fact genuinely similar, and ii) the number of 
genuinely similar pairs being a small fraction of the population being examined.

11 As Baxter puts it [Baxter, 1998]
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The proposition

The method proposed in this thesis is:

• automated

• applied to an existing, object-oriented code-base

• employs information contained only in the code and makes no assumptions re­
garding the contained documentation, comments or names

• incorporates an attributed, relational model of class structure where entities and 
relationships are explicitly represented

• includes structural typing, which maps classes and primitive types to unique 
identifiers, based on equivalence classes of similar structure

• uses a two-phase approach to determining similarity
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Chapter 3

M odel C o n stru c tio n : s tru c tu ra l  

s im ila rity  in o b jec t-o rien ted  code

3.1 Introduction

In Chapter 1, a prime motivator behind this work was the provision of a set of com­
putational tools that can be used to assess the nature and degree of similarity and 
repetition within an established object-oriented codebase, based on an automated, 
structural analysis. This chapter describes the derivation of a generic, graph-theoretic, 
structural model of object-oriented code. This forms the basis of a formal model of 
quantifiable structural similarity, capable in the first instance of the following tasks:

• determining the degree of structural similarity between individual classes

• identifying the structural elements that account for similarity

Chapters 4 and 5 go on to interpret this generic model in the specific context 
of Java code development, where a set of experiments is conducted in order to test 
the validity of the model as a means of providing a measure of structural similarity 
between the elements of a collection of Java class files.



The material presented here and in the following chapters assumes a certain degree 
of familiarity with graph theory on the part of the reader. A concise introduction 
to those elements of graph theory essential to an understanding of this material is 
provided in Appendix A.

3.2 M odelling Structure and Similarity

Structure and structural similarity are universal concepts across a diverse range of 
disciplines. Structures can generally be represented as sets with additional proper­
ties over the elements of these sets. Morphisms, as mappings between sets, preserve 
these properties. The motivating example in this case is the notion of structures as 
graphs, and the category of graphs and graph morphisms. Wherever object or concept 
structure can be described in terms of a graph, the problem of determining similarity 
reduces to that of graph matching. The aim of this thesis is to establish a formal, 
graph-theoretic model of object-oriented code structure and quantifiable structural 
similarity. Graphs have long been the choice of representational abstraction when 
modelling structure in the domains of molecular chemistry [Jurs, 1980] and computer 
vision [Ballard and Brown, 1982]. The next section draws on analogies from these two 
domains in order to formulate our initial model.

3.2.1 Analogies from molecular chemistry and computer vision

Similarity in molecular structure

The structure of chemical molecules is traditionally described in terms of the compo­
sitional and spatial relationships between their constituent atoms. Molecules can be 
represented as labeled graphs, where the vertices represent the atoms and the edges 
represent the interatomic bonds or distances (Fig. 3.1(a)). This formal abstraction 
of molecular structure can often allow reduction and translation of many domain spe­
cific problems into an equivalent graph-theoretic format. These problems can then 
be solved using generic graph algorithms [Deo, 1974; Willett, 1999]. An example 
of particular significance is establishing the degree of structural similarity between



molecules by quantifying the match between labeled graphs. The classes of object- 
oriented development, the entities that comprise a class, and the various inter and 
intra class relationships that exist between them, can also be represented as a graph 
(Fig. 3.1(b)). Informally, we don’t have to overly stretch our imaginations to recognise 
that the structure of object-oriented code resembles the graphical representation of a 
chemical molecule.

©  ©
nh2 0

CH3 -----CH------ CH-,-------  C ------ OH
© © ® © ©

(a) 3-Aminobutanoic Acid

©  class MyNumberClass {
(J) int myNumber;

public MyNumbetiint aNumber)
( ©  ©  

myHumber- aNumber;
}
public int getMumberO 
( ©  ©  

return number,
}

}
(b) A simple Java class

Figure 3.1: Graphical representation: (a) chemical molecule (b) object-oriented class

2D and 3D molecular substructure and similarity searching constitutes a mature 
discipline. As such, it provides a rich repository of information that may Ire poten­
tially transferrable as a model of structural similarity to object-oriented code analysis. 
As described in [Willett et al, 1998], molecular substructure and similarity searching 
involves building a repository (collection) of molecular structures, including their as­
sociated properties and active characteristics. This repository is subsequently used 
as a focus for further development and testing. Based on the notions of molecular 
similarity and classification, such a repository can be used to search for molecules hav­
ing similar properties and/or activities to a supplied target structure. The techniques 
involved parallel developments in the area of information retrieval (IR), drawing on 
elements of graph theory, e.g., matching techniques, and classification theory, e.g.,
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feature selection and clustering.

Willett makes the distinction between “substructure”, “similarity” and “subsimi­
larity” searching, all of which represent concepts particularly applicable in the case of 
structural analysis of object-oriented code. Substructure searching aims at partition­
ing the repository according to whether the entries are an exact match to, or contain, 
the target structure. This in effect corresponds to the boolean retrieval model in IR 
where documents in a collection are judged as either similar or not similar to a target 
document or query. Mirroring the extension to best match retrieval in IR, molecular 
similarity searching provides a nearest-neighbour ranking based on the degree of simi­
larity between the fully-specified target and the molecules in the repository. The target 
is associated with the n repository structures to which it is most similar, its « near­
est neighbours. Sub-similarity searching is a further refinement. As with similarity 
searching, this aims at a best-match, ranked order but based on the similarity be­
tween a target’s substructure and (sub-)structures in the stored database of molecules. 
Effectively, match based on sub-similarity establishes a maximum common subgraph 
between target and candidate [Hagdone, 1992].

Differing levels of abstraction are an integral part of molecular similarity search­
ing: searching is often implemented as a two-phase process. A target structure is 
first matched against each repository structure based on a global characterisation of 
individual molecular structure. A global measure of molecular similarity is generally 
based on a vectorial representation of feature counts or values. Features are molec­
ular characteristics variously derived from a combination of the structural topology 
of the molecule; the properties of individual or grouped atoms and bonds; and the 
physio-chemical properties of the molecule as a whole. A common approach involves 
characterising a molecule’s structure in terms of its constituent atoms or atom groups, 
which are referred to as structural fragments [Willett et al, 1998], The screening 
process limits the candidates input to a more detailed, computationally demanding, 
local measure of similarity. The approach is local in the sense that it takes place at 
the level of individual atoms, their properties, and the relationships between them. 
This secondary measure is based on an atom-by-atom analysis and is essentially a 
graph-theoretic matching process applied to the labeled graph representation of the 
molecules. This amounts to determining the presence of structure preserving map­
pings between target and candidate molecules. Given the potential complexity of this



problem, as further discussed in Chapter 5, the effectiveness of the initial screening 
phase is extremely important.

The last two paragraphs highlight key points that provide the link between the 
work of Willett and his colleagues, and the approach to class comparison developed 
in this thesis. There is an existing set of tools and associated algorithms used in 
the analysis of molecular properties and activity. These tools find a basis in graph- 
theoretic analysis. As this basis is independent of the domain from which the graphs 
originated, it is reasonable to suggest that the analytical machinery is transferable 
from the domain of molecular chemistry to that of object-oriented code analysis.

Pattern recognition in com puter vision

Pattern recognition based on a relational graph representation of scene structure has 
become a core element of research in the area of computer vision [Barrow and Pop- 
plestone, 1971]. As in the case of molecular chemistry, graph-theoretic approaches to 
structural matching are common, particularly as applied to scene and pattern recog­
nition [Ballard and Brown, 1982]. The formal structural model adopted involves an 
extension to the basic labeled graph. Edges are relational (directed), and both ver­
tices and edges have additional, descriptive attributes. These attributes are distinct 
from any employed in label assignment, and essentially qualify any such assignment. 
The model so generated is called an attributed, relational graph (ARG). Attribution 
increases the knowledge content of the model by encoding more information about its 
primitives and relations, i.e., the vertices and edges of the underlying graph. By virtue 
of this increase in knowledge, attribution helps increase match precision (See Section 
3.2.4). In general contrast to the graph structures employed in molecular chemistry, 
an hierarchic representation is common in computer vision scene analysis. Vertices of 
an ARG may in turn be represented as ARGs in their own right [Ballard and Brown, 
1982; Wilson and Hancock, 1999]. We can draw convenient parallels between this hier­
archic structure and the structure of objected-oriented code, in that class instances are 
inherently hierarchic due to the possibility of their contained fields themselves being 
class instances.

An attributed model also enhances error-correcting match in the face of pattern
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corruption [Tsai and Fu, 1979; Shapiro and Haralick, 1981]. In contrast to molecular 
similarity, the role of error-correcting match is heavily emphasised in computer vision 
where target structures are often compared with sets of known, candidate prototypes. 
In both domains, the pattern encoded in a target structure’s graph primitives may be 
interpreted as a distortion within a given delta of that of a known structure or class 
of structures. A certain degree of inexact or error-corrected match may be accommo­
dated within molecular matching based on a generalisation of fragment types, with 
legitimate substitution of, for example, elements in the same periodic group, or partic- 
ulat categories of bond chains and rings. In computer vision, the absence of an exact 
match can often be sensibly explained as legitimate errors in the target resulting from 
distortions in the image capture process [Ballard and Brown, 1982], In such cases, 
the two compared structures can often be classified as the same: distortions (errors) 
may in certain circumstances be legitimately ignored. When capturing an image of a 
scene, measurement accuracy, viewing perspective, element orientation and relation­
ships can vary. This may lead to the failure of a target image to match with a library 
image that actually represents the scene in question. The additional presence, absence 
or difference in the underlying primitives between the graph representing the target 
and the stored models may be valid distortions. These distortions can be respectively 
addressed by “edit operations” such as deletion, addition or substitution, given that 
they make sense in the specific context.

If additionally the values of attributes associated with graph primitives are also 
within set tolerances limits, the representative structures can be “made” similar to that 
of a stored model without penalty. If penalty costs are associated with addressing t he 
errors, the minimum associated cost can be used as a measure of dis-similarity. In 
this case, a similarity judgement can be made based on a set threshold or a ranking 
relative to the target structure produced. For example, a scene depicting a box on 
a chair may be captured from several different perspectives and stored as a set of 
prototypes under the heading say of “chair and box”. A captured image of the same 
or a similar scene may have the box on the floor, in front of the chair, obscuring one 
of the chair legs. Although the graphical representation would satisfy the majority 
of structural constraints imposed by the reference model graphs, it would highlight 
the incorrect relationship between chair and box - “in front of” as opposed to “on” 
- and the incorrect leg count - 3 as opposed to 4. Rather than dismiss the captured
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scene, by applying the legitimate, sensible edit operation of substituting the “in front 
of” relationship (edge) by an “on” relationship (edge) and adding the obscured leg 
(vertex) along with its relationships with the remaining elements representing the 
chair (edges), a valid match can be established.

Obviously, the definition of “legitimate” and “sensible” in the last paragraph are 
context specific but a certain degree of objectivity can be obtained through the adop­
tion of a probabilistic model of the scenes in question. This introduces another signif­
icant difference between the approaches to pattern matching and molecular similarity. 
Based on the use of training examples and a priori knowledge, deformation probabili­
ties, as well as label and attribute probability densities, are often involved in determin­
ing structural similarity in pattern recognition [Tsai and Fu, 1979]. Error-correcting 
match using “legitimate” and “sensible” edit operations can be reduced to knowing 
the degree of allowable variation between and within structures that are classified as 
the same or similar, these being provided by the probabilistic models.

Pattern recognition is often framed in terms of error-correcting match. In con­
trast, molecular matching is essentially closer to the pure notion of matchings between 
graphs. In the case of molecular match, errors are generally limited to measurement 
tolerances associated with attribute values, e.g., interatomic distances and inter-bond 
angles, as opposed to errors in detecting the primitives and relationships in the form 
of atoms and bonds. Probabilistic models of molecular structure are generally not ap­
propriate when the representation is predominantly based on constituent atoms and 
connectivity1. Both error in capturing structural details and the variability in model 
representation are minimal.

The attributed, relational, hierarchic graphs of pattern recognition extend and 
enhance the basic labeled graphs of molecular chemistry. This provides another key 
link between an existing body of work with a basis in graph-theoretic analysis and the 
approach to class comparison developed here.

'Particularly if the nature of molecular match is type “C” according to Downs and Willett’s 

classification, i.e., not at the level of electron probability distributions, or grid-based match [Downs 

and Willett, 1996].



3.2.2 Global quantification of structural similarity

As previously mentioned, in determining structural similarity we are interested in both 
global and local measures: global measures provide a numeric value which, in general, 
captures an approximation to the overall similarity between given structures; local 
measures tend to be more accurate and in addition identify those identical or near­
identical structural elements which contribute to the similarity found. The structural 
elements in question are determined by the domain of interest and represented by the 
vertices and edges of the model graphs. In the case of molecular chemistry, they are 
the atoms and bonds, including their individual and combined physio-chemical prop­
erties. In computer vision they are the scene objects, their properties and inter-object 
relationships. Global measures are introduced in this chapter and further discussed in 
conjunction with local measures based on graph rnorphisms and matching in Chap­

ter 5.

A vector-space model of object representation

A simple yet powerful global measure of similarity between domain objects is based 
on representing these objects as vectors. The elements of the vector are referred to as 
attributes or features. Vector models are used in the context of molecular similarity 
screening [Willett, 1987], information retrieval [Salton and McGill, 1983] and pattern 
recognition [Tou and Gonzales, 1974]. Given an object Ok, it can be represented by 

the vector
Afc {2-1/0 ki 2̂ 3k • • • » 2Jjik}

where Xjk is the value of attribute Aj for object Ok- The type of vector feature can 
be homogeneous, such as the set of substruetural features of molecular chemistry, or 
the set of document terms from lit. In both these cases, feature values can be binary, 
indicating the presence or absence of a given feature, or counts, representing the fre­
quency of occurrence of each feature within a molecule or document. Alternatively, 
vector feature types may be heterogeneous representing a variety of structural and non- 
structural properties. In this case, feature values come from across the full spectrum 
of measurement scales, e.g., colour, rank, density. Homogeneous vectors benefit from 
ease of comparison and are the most common representation used in molecular cliem-
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istry. Heterogeneous vectors are more versatile in terms of their information carrying 
capacity but due to the variety of types and scales, and issues such as standardisation 
of feature values, they present greater difficulties when it comes to the calculating of 
similarity.

Where two domain objects Ok and Oi are characterised in terms of the same type 
of feature vector, the similarity between them is calculated based on a function over 
their feature vectors S(Xk,Xi).  This function is commonly referred to as a similarity 
metric or coefficient. The vectorial representation, although commonly referred to as 
the vector space model, does not necessarily conform to the pure mathematical notion 
of a vector space depending on the nature of the feature values.

Drawing on established taxonomic principles [Soled and Sneath, 1973], molecular 
similarity measurement is founded on the following three basic requirements [Willett 
et al, 1998]:

• the appropriate choice of structural features used to characterise a molecule

• the weighting of these features

• the applied similarity coefficient

The molecular entities being compared must be represented by a feature set rich enough 
to adequately characterise their structure. The features should be weighted according 
to their relative importance in determining similarity, those features more indicative 
of higher similarity being associated with a higher weighting. Finally, a similarity 
coefficient must be chosen that accurately reflects the actual empirical evidence relating 
to the degree of similarity between the structures in question. Within the realm of 
molecular similarity searching, an extensive range of options exist. An exhaustive 
review is beyond the scope of this thesis, an excellent overview and comprehensive 
reference set being provided in [Willett et al, 1998].

Features and screening

The commonest features used in molecular chemistry are 2D and 3D “fragments”: 
a molecule is indexed according to the frequency with which particular structural
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fragments occur within it. For example, 2D “augmented atom” fragments represent 
each atom along with its neighbours and any intervening bonds. Other examples of 
feature sets include counts of various structural elements such as individual atoms 
and bonds; physiochemical property descriptors; and topological indices [Willett et 
al, 1998]. Irrespective of the nature of the features, the overriding objective is to 
ensure that the feature set selected represents a balance between ease and efficiency 
of extraction, and effectiveness in “sufficiently” discriminating between comparable 
structures within the application domain. (What constitutes sufficiency is discussed 

in Section 3.2.4.)

Feature weighting and normalisation

The utility of feature weighting lies in emphasising the importance of certain fea­
tures over others during the calculation of similarity. The presence or absence of a 
given feature within two compared structures is fundamental to the determination of 
similarity. Additionally, a higher or lower significance may be assigned to a feature 
depending on its power to discriminate between structures within a collection. The 
more discriminating the feature the higher the weighting applied.

Through a series of experiments documented in [Willett, 1987], it was concluded 
that fragment-based similarity using feature weighting was significantly better than 
the corresponding unweighted results. (Unweighted in this context referred to the use 
of a binary feature vector, a value of 1 indicated the presence of a feature in the given 
structure.) Three weighting schemes were applied. Simple frequency weighting used 
the raw counts of individual features in a structure. This assigned more weight to 
features occurring frequently in a molecule. Size-based weighting assigned a fragment 
in a small molecule a greater weight than the same fragment in a larger molecule. This 
lessened the effect of gross structure size where a feature is a priori more likely to be 
present in a large structure. Finally, features occurring infrequently in the collection 
of structures were weighted higher than those features occurring frequently across 
the collection. This “rarity” factor capitalises on the increased discriminating power 
of such features. [Hodes, 1989] defines an approach to weighting which effectively 
combines the three schemes, a method echoed from an IR perspective in [Robertson 
and Sparc-Jones, 1997]. In a study of molecular classification using a fragment-based,
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vector model of molecular structure, Hodes used a weighting scheme combining the 
raw frequency counts of individual molecule features (multiplicity), fragment collection 
frequency (rarity), and the gross structural size (Indirectly via the coefficient used). 
In addition, he weights based on the size of individual fragments, smaller fragments 
being given more weight due to their better levels of discrimination in this case.

The potentially wide range of feature types and value ranges can lead to bias in the 
comparison process, particularly in the case of heterogeneous vectors. The presence of 
a single, unmatched feature with a normally high value can overshadow the effects of 
several low-valued but matching features. This bias is often countered by normalising 
the values, mapping them to the real-valued interval [0,1]. A common approach to 
normalisation is Gower’s ranging transformation [Willett, 1987, pp50]: subtract the 
minimum collection value for a feature from the current value and divide by the feature 
value range. Standardisation is a process of normalisation based on expressing the 
observed values in terms of the standard deviation from the mean. This attempts to 
address the problem of bias by recalculating feature values to give zero mean and unit 
variance across the collection.

Distance metrics and similarity coefficients

A metric is a function m : X  x X  —> 3i* such that for all x, y, z E X  the following 
three properties hold:

• self-identity: m(x, y) =  0 iff x =  y

• symmetry: m(x, y) =  m(y, x)

• triangle inequality: rn(x, y) -f m(y, z) > m(x, z)

(In the context of distance metrics, it is assumed that m(x,y)  > 0 and that rn(x,x) =  
0) A metric space is the pair ( X m) comprising an arbitrary, underlying set X  and a 
metric m on that underlying set.

Measures of dis-similarity are generally called metrics or coefficients, the latter 
being used where the measure does not satisfy all metric properties. A similarity
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coefficient quantifies the similarity between two structures, represented here according 
to the vector space model. As mentioned above, it can be interpreted as a function over 
the feature vectors representing two structures. It returns a value proportional to the 
degree of similarity between the two structures. A distance metric (or dis-similarity 
coefficient) measures the distance (or dissimilarity) between structures.

The many distance metrics and similarity coefficients proposed in the literature 
are generally classified according to a basis in one of two fundamental measures. The 
distance metrics are derived from a summation over the absolute difference between 
feature vector elements, where the elements are values in some suitable metric space. 
In the main, the underlying set is 5Ii*, real numbers greater than or equal to zero, or 
a restriction on same such as whole or binary numbers. The resulting difference gives 
a measure of the distance between the compared objects, i.e.,

n
5Z -  XA
3 =  1

Alternatively, a similarity coefficient may be expressed as a summation over the scalar 
product of the two feature vectors. In this case it is often referred to as an association 
coefficient, i.e., n

Z  xJk ■ XH
3 =1

In both cases there are n attributes and xjk is the value of attribute Aj  for object Ok-

In practice, although these basic coefficients can be used unmodified, the majority 
of coefficients additionally involve both normalisation and internal weighting factors. 
Normalisation in this case implies a functional transformation such that the returned 
similarity value lies within a specified range, e.g., 0 and 1 or —1 and 1 and internal 
weighting allows various penalties to be associated with feature mismatch. These fac­
tors are distinct from the weighting and normalisation of individual features previously 
introduced but they are not necessarily independent. One approach to coefficient nor­
malisation, as exemplified by the Bray-Gurtis coefficient (see), introduces a division 
by the sum of all the feature values in the two compared vectors. This produces a 
similarity value between 0 and 1 and in addition introduces a weighting factor that 
accounts for disparity in structure size.

54



An example of a distance metric based on the sum of differences is the Mean Euclidean 
distance metric:

V (Xk,X l) =
\/E"= 1 \xjk -  Xji\~

while an example of an association coefficient based on the scalar product is the Tan- 
imota association coefficient:

V{XkìXÌ) = ______ E"=l XjkXjl
E n ,r2 i v n t2 j=\ xjk + 2sj= 1 xjl XjkXjl

both of which are routinely used in molecular matching.

A review of a large collection of commonly employed similarity coefficients is pro­
vided in [Ellis et al, 1993] where they conclude that a choice of coefficient is necessarily 
driven by the specific domain of interest and ultimately arrived at through trial and 
error. Although this study was oriented towards text retrieval systems, the same or 
renamed coefficients are commonly employed for determining molecular similarity and 
their conclusion regarding choice is equally applicable [Willett, 1998]. The coefficient 
chosen requires a balance of computational overhead against sufficiency in determining 
similarity (see). Fitness for purpose in terms of the correlation between calculated and 
judged similarity being the ultimate aim.

It should be noted that similarity searching in molecular chemistry is predicated 
on the belief that structurally similar molecules have similar properties and biological 
activities - the “similar property principle” [Willett et al, 1998]. The intention here is 
not to determine functional equivalence between structures but to argue that structural 
similarity in object-oriented code necessarily correlates with functional similarity to 
a useful, usable degree. Current interest lies initially in interpreting the molecular 
similarity model and matching techniques within the domain of object-oriented code 
structure as a means of examining the potential of such an approach. In so doing, we 
do not dismiss the future possibility that in providing a means of identifying similar 
structure, as in the case of inferring molecular properties and activity, we can not draw 
additional inferences about the more abstract properties of the examined code, e.g, 
aspects of code quality such as reusability and maintainability.



3 .2 .3  L oca l q u a n tif ica tio n  o f  s tr u c tu r a l s im ila r ity  - gra p h  m o rp h ism s

Having described a means of obtaining a global measure of similarity as a process of 
feature vector extraction from a representative attribute relational graph, this section 
briefly introduces local measurement of similarity based on graph matching. Chapter 5 
goes on to describe the graph match process in detail.

More analogies from molecular chem istry and com puter vision

Matching and searching in repositories of chemical molecules has developed from an 
approach based on establishing exact match between a target and stored structural 
model, through identification of a target as a substructure, to match based on iso­
lating common substructure. In graph-theoretic terms, this migration corresponds to 
establishing various morphisms, i.e., structure preserving mappings between graphs. 
Graph isomorphism corresponds to exact match, subgraph isomorphism to substruc- 
tural match, and bi-directional subgraph isomorphism (or common subgraph) to the 
identification of common substructure. In computer vision, pattern recognition based 
on relational graphs employs similar approaches to graph matching. In this case it is 
usually framed in terms of the generic consistent labeling problem and in particular 
as variants of relational homomorphism. Relational homomorphism principally differs 
in allowing higher than binary cardinality of relationships and in not being as strict 
in terms of match criteria as (sub-)graph isomorphism [Shapiro and Haralick, 1981].

In relation to the modelling of code structure, the structure graphs to be used 
to represent analysed classes are based on binary relations, and the nature of the 
required match is such that an injective mapping exists between the primitives (or a 
constrained subset) of one graph and those of another graph. Again, based on the 
techniques employed in both molecular chemistry [Hagdone, 1992; Willett, 1999] and 
pattern match in computer vision [Ambler et, al, 1975; Barrow and Burstall, 197(i] we 
concentrate on the stricter notion of graph morphism and in particular bi-directional 
subgraph isomorphism in the form of maximum common subgraph (MCS).



Exact and inexact local match

Essentially, graph morphisms are based on the principle of exact graph match. Labels 
and relational mappings are necessarily precise, allowing no transformations, such as 
label (name) substitution, prior to mapping. As previously mentioned, the variability 
inherent in pattern matching promotes a further extension to the graph match process. 
In the language of [Tsai and Fu, 1979], account can be taken of possible legitimate 
distortions between a pattern and a stored reference model and the allowable mappings 
altered accordingly. Our approach is in effect based on inexact match when using 
attributes in addition to named primitives and relationships, i.e., semantic labels in 
addition to syntactic names. The difference between this approach and that of error- 
correcting match relates to the absence of insertion and deletion operations, i.e., we 
deal with match at the level of threshold-based equivalence, which in effect amounts 
to primitive substitution. This is discussed in more detail in Chapter 5.

Inexact graph matching may be framed in terms of probabilistic models to deter­
mine the maximum likelihood of match. Alternatively, in the absence of such models, 
it can be implemented based on minimal-distance as applied to the pairwise compari­
son of primitive and relation attributes. [Tsai and Fu, 1979] describe an approach to 
inexact match based on attribute relational graphs and graph-preserved deformations: 
for each comparison, the underlying unlabeled graphs are the same but the primitives 
and relations of an input attribute relational graph may be deformed from those of any 
compared model. [Messmer and Bunke, 1998] interpret inexact match as a minimisa­
tion of the edit-distance between a model prototype and an input graph, effectively 
extending the graph-preserved minimal-distance approach to include the insertion and 
deletion of primitives and relations. All these methods are computationally more de­
manding than exact match and as in the present case may not be appropriate if the 
application domain does not sensibly support such an approach. The model of object- 
oriented code proposed here allows for exact match at the level of named primitives 
and relationships. In addition, it supports further qualification based on tolerances 
over attribute values associated with the individual primitives and relationships. An 
initial exact match based on names, in the sense of classification or typing, can act as 
a filter to the more expensive attribute match.

57



3 .2 .4  S u ffic ien cy  in  d e te r m in in g  s im ila r ity

The notion of sufficiency applies to the entire approach to similarity determination and 
is ultimately domain and application dependent. However, sufficiency in our present 
context can be generally described in terms of a) a monotonic ranking based on a total 
order of collection elements and b) a trade-off between precision and recall. Take a 
collection of structures C and a target structure T  to be compared against C using a 
new approach. Assume that a total order or ranking p(C) has been previously imposed 
on the elements of C based on their individual similarity to T. This order could be 
based on expert evaluation or on a known reference method. Let p'(C) be the ranking 
induced by the new approach. If the relative order of elements in C is the same for 
both p(C) and p'{C) the new method is said to be monotonic with the reference. The 
similarity values may differ but the ranking is the same. Monotonicity is the first, 
criterion for sufficiency. Additionally, a threshold can be set, or individual judgements 
made, as to whereby collection elements are similar or not similar to the target. This 
type of discriminant function over the similarity values is sometimes referred to as 
“relevance” or “nearest-neighbour” determination. Say for collection C and target T, 
the set Reljief contains those structures in C identified by expert review as similar to 
T. Let a similar partition generated by the new approach identify the set Relnew of 
structures deemed to be similar. Precision defines a measure of the level of relevance 
within the list of selected structures, and is given by

n . . | R‘̂ lHt'w I LI \Relref\Precision =  ------ rj—---- ,---- —
\iiClnew\

Recall is a measure of the degree to which the list includes all relevant structures, and 

is given by
| Rclnew | n | Relrej  |

Recall = ----------rjr— ;----------
\Relref\

Good precision and recall are collectively the second criterion for sufficiency. They 
are dependent on the threshold set for determining relevance and ultimately require 
a value judgement on the part of the user as to their individual significance. High 
precision limits the number of dissimilar or irrelevant structures selected but possibly 
at the expense of omitting structures which are of interest. Alternatively, high recall 
ensures that the number of missed structures is limited but at the possible expense of 
selecting too many noil-relevant structures. The combination of precision and recall
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provide an intuitive approach to gauging effectiveness in identifying similar structures, 
recall as an indicator of scope and precision as an indicator of purity. They provide a 
means of assessing the degree of success in finding what is relevant, the positives, while 
at the same time taking account of how much irrelevance or “junk” we are willing to 
accept in the process, the false positives.

Where we may he dealing with samples that are not representative of the popula­
tion, having few non-relevant structures while in the population non-relevance is the 
norm, the a priori likelihood of high levels of precision undermine its value as a mea­
sure of sufficiency. In evaluating an approach to similarity based on samples from a 
much larger population, it is important to consider the extent to which false positives 
are generated, and in turn gauge a method’s capacity to reject them. Rather than use 
precision, we can restate the second sufficiency criterion in terms of the rejection of 
irrelevant structures. In such situations, fallout, or the ratio of false positives to ac­
tual negatives, provides an alternative, more generally applicable measure in assessing 
sufficiency. Fallout, in the form of its complement, i.e., specificity, is used as part of 
the analysis of Section 4.5.

3.3 Structural Representation and Sim ilarity in O bject- 

oriented Code

3.3.1 A graph-theoretic perspective

The analysis described here provides a concise, graph-theoretic representation of object- 
oriented code based on the extraction of static, compile-time structural semantics of 
classes. The model developed is described as generic in the sense that it is based on 
fundamental structures and relationships that are encountered within most object- 
oriented languages. The intention is to provide a reasonable basis from which, in 
combination with the formal structural model presented below, a language-specific 
model of object-oriented class structure can be instantiated.

The model produced is intended to capture the elements and relationships which 
characterise the structure of object-oriented code at a level of granularity intermedi­
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ate between existing design-level formalisms, such as UML [Rational, 2002] and OMT 
[Rumbaugh et al, 1991], and low-level code representations, such as statement-level 
control and data dependency graphs [McGregor et al, 1995]. The former are exam­
ples of graph representations of object-oriented software structure that highlight the 
classes, their constituent attributes and methods, and the direct relationships between 
the classes. These models are generally abstracted above the level of method structure 
and the interaction between methods and attributes. Consequently, although seman­
tically rich and relatively easy to build and interpret, they are too abstract to allow 
a sufficient degree of discrimination in determining class similarity based on structure 
alone. The fact that these models are labeled, attributed graphs does not preclude 
the techniques developed in this t hesis from being applied at this more abstract, ap­
plication level. This is the subject of continuing work. McGregor’s Object Oriented 
Program Dependency graph introduces a model that incorporates the detailed control 
flow and data dependencies found within and between the class methods. McGre­
gor’s approach also models both the static (compile-time) and dynamic (run-time) 
properties of the collection of classes under analysis. The construction of this type 
of model, and the analysis it supports, are computationally demanding, and from our 
current viewpoint of determining structural similarity, unnecessarily complex. Driven 
by the need to balance analytic tractability and representational expressiveness within 
the structural matching process, the model developed here is limited in comparison. 
Nevertheless, it incorporates both elements of gross class structure, method-attribute 
interaction, and method control flow.

The object-oriented paradigm is not necessarily a universal panacea when it comes 
to solving the many problems facing the software development community. It. is nev­
ertheless seen as a positive, contributing factor in addressing complexity, increasing 
flexibility, and promoting reuse, for example, through leveraging application frame­
works supported by design patterns [Gamma et al, 1995]. The concept of an object 
and its representative class are almost universally understood and accepted within the 
software development community, both as an “organising principle” and “paradigm 
for reuse” [Nierstrasz and Dami, 1996]. Given the current debate associated with the 
definition of the term “software component”, for the moment we adopt a standpoint 
echoed by several authors who describe components as conceptually equivalent to, or 
encompass, the object-class component model [Sametinger, 1999; Syperski, 1998]. This
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component model make no assumptions concerning application domain and leaves the 
way open to examine components of larger granularity based on class collaboration. 
Nevertheless, implicit in the notion of a class-based component are reused (intentional) 
and repeated (unintentional) patterns of intra and inter class structure. The object 
as represented by its class is the fundamental unit of analysis for the purposes of the 
current study.

3.3.2 Primitives, relationships and attributes

In [Shapiro and Haralick, 1981] a structural description V of an object O is a primitive- 
relation pair V =  (P ,R ). P  represents the set of object parts and R the set of 
relationships between them. P  — {Pi, Pi , . . . ,  Pn} defines a set of primitives, one for 
each of the n parts of the object. Each primitive is a binary relation P, : Alt, x Val 
where Att is a set of possible attributes and Val a set of possible attribute values. 
]{ =  {R\, R‘2 , ■ ■ ■, Rk} is a set of named N-ary  relations over the set of primitives 
P. Each R, =  (Name^, P/t,) is a pair comprising the name of the relation Namer . 
and a subset Pr, C P N of N  primitives involved in the relationship. Extending this 
definition of relationship as per [Tsai and Fu, 1979], each relation can additionally 
be attributed, i.e., each relation now becomes a triple Rt = (Nameft , Pr ., AVr() 
where AVr{ : Att x Val represents the attribute-value pairs defining and describing 
the relationships.

This attributed, relational description forms the core of our current model of class 
structure. Our model is further constrained in two respects: relationships are always 
binary and primitives as well as relationships are named. In order to accommodate the 
semantics of a categorisation of primitives, e.g., class, method, field etc., we introduce 
named primitives Pt =  (Namep.p AVi>, where Namepi is a syntactic label denoting the 
primitive’s categorisation and AVpx : Att x Val represents the attribute-value pairs 
defining and describing the primitives.

Primitive and relationship attributes are all numeric but may be categorical, or­
dinal, interval or absolute. For example, an attribute designated “structure type” 
defines a primitive as belonging to a particular structural classification and is essen­
tially a semantic label used to classify or categorise, e.g., a class’s structure type is an
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integer-valued injective function over its name (Two classes may have different names 
but the same structure type if structurally identical). The majority of attribute values 
are absolute, i.e., counts. The attributes are metrics in that they are quantitative 
measurements of internal or external class structure (Internal in this context refers to 
the fields and methods belonging to a class whereas external is concerned with the 
relationships between classes [Whitmire, 1997]). The use of metrics as quantitative 
measures of the properties of both the software development process and its artifacts 
is well documented [Fenton and Pfleeger, 1996]. Several metric-based approaches to 
determining code similarity at various levels of abstraction have been demonstrated 
with varying degrees of success [Autoniol et. al, 1998; Kontogianis, 1996; Maynard 
et al, 1996]. These studies demonstrate the value of design and code-level metrics 
in being able to support, though not generally independently determine, similarity. 
The attributes defining the primitives and relationships described below are based 
on recognised counts of structural and logical code elements. They represent a bal­
ance between ease of extraction and the ability to represent both local and global 
properties of the class structure. They include simple counts of individual structures 
such as the number of methods in a class. More global measures such as method 
complexity [McCabe, 1974] and elements of metric sets as described in [Li, 1998; 
Lorenz and Kidd, 1994; Chidamber and Kemerer, 1994], originally developed in order 
to assess the quality of object-oriented code, are also included.

The decision as to whether a primitive could be better represented as an attribute, 
and vice versa, was made based on a consideration of the two proposed approaches to 
determining similarity - global and local. A sufficiently rich set of named primitives and 
relationships is required to support our global measure of similarity as described below. 
In addition, the local, morphism-based measure of similarity described in Chapter 5 is 
dependent on both named primitives and relationships and also on their associated at­
tributes. Again, as in the case of attribute selection, the choice arrived at is somewhat 
arbitrary. The choice of primitives does however mirror representations of class struc­
ture developed in [Seeman and von Guttenberg, 1998; Jackson and Waingold, 1998; 
Harrold et al, 2001].

The information used in constructing a class model was initially limited to that 
explicitly contained in the actual class definition. Although information relating to 
the numbers of inherited or overridden methods, and inherited or shadowing fields,
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are recorded as part of a class vertex when available, they are not included as vertices 
in the models unless explicitly called or referenced within a locally declared method. 
This decision was in one sense pragmatic, in that the analysis had to be robust in 
the possible absence of superclass information. Additionally, as a starting point for 
investigating our approach to structural similarity, it is reasonable to limit the initial 
scope of analysis. This is without loss of generality, as the information relating to the 
missing methods and fields represents additional primitives and relationships, which 
could be added to the generated structure graph.

Primitives

The current model of object-oriented code structure comprises the following eleven 
named, structural primitives and associated attributes.

• Pi : CLASS_____________________________________ ______ _____
«1 S tru ctu re  type N um eric identifier for th is structure
a  2 S tru ctu re  type o f superclass N um eric identifier For this structure
a  3 N um ber o f local m ethods A ll m ethods declared in th is class
04
05  
Ofi

N um ber of public m ethods 
N um ber o f abstract m ethods 
N um ber o f sta tic  m ethods

L o ca lly  declared public m ethods 
L o cally  declared a b stract m ethods 
L o cally  declared sta tic  m ethods

0 7 N um ber o f inherited m ethods All inherited m ethods
a s N um ber o f overridden m ethods All overridden m ethods
a o Total num ber o f m ethod calls All m ethod calls m ade from th is class
a io
a n
0 12
« 1 3
« 1 4

Total num ber of sta tic  m ethod calls 
Total num ber of param eter m ethod calls 
Total num ber of field m ethod calls 
Total num ber o f local m ethod calls 
Total num ber of other m ethod calls

Static  m ethod calls
M ethod calls v ia  param eters
M ethod calls v ia  fields
M ethod class to lo ca lly  created ob jects
O ther m ethod calls

a iR N um ber o f fields A l i  fie lds declared in th is class
a l6 
a  17 
a ï s

N um ber of public fields 
N um ber o f reference fields 
N um ber o f sta tic  fields

L o ca lly  declared public fields 
L o cally  declared fields o f reference type 
L ocally  declared sta tic  fields

a io
Û20

N um ber o f inherited fields 
N um ber o f shadow ing fields

A ll inherited fields 
A ll shadow ing fields

A class, concrete or abstract. Structure Types: a structure type defines a class 
as having a given structure, represented by its attributes, the attributes of its 
methods and fields, and the relationships that exist between them. Two classes 
are of the same structure type if they are identical except for the renaming of 
the class, its fields or methods, or externally called methods or accessed fields, 
provided the underlying semantics are unaffected by such a renaming. Identical 
ARGs is a necessary condition for two classes to be assigned the same Structure 
Type but this is not sufficient.

• p > ■ INTERFACE____________________________________________

| a ,  I N um ber of a lw fracl. m ethods | A hatraet m ethod count 1

A class in which ALL methods are abstract.

• Pi : PRIMITIVE FIELD

[ '» 1  1 Stru ctu re type 1 N um eric identifier Tor this stru ctu re"'!
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A field that is not a reference type. A unique structure type is assigned to each 
primitive type supported.

• ¡\ : REFERENCE FIELD____________________________________

fll -  « 1 6 A s per C L A S S
Q1T_______ A rray  dim ension If an array, the no. o f dim ensions

A field that is a reference type.

• P5 : METHOD (member function, operation)

« 1 N um ber of param eters A ll param eters
a  2 N um ber of reference param eters P aram eters of reference type
<13 R eturn  type N um ber in d icatin g  relerence or prim itive return  type
a 4 Num ber of field operations A ll read /w rite  operations on fields

N um ber o f internal field operations O perations on fields declared lo ca lly  in the class
«6 N um ber of sta tic  field operations O perations bn sta tic  fields
a 7 N um ber o f local field operations O perations oii Helds declared  lo ca lly  in th is m ethod
«8 N um ber of literals  used N um eric arid strin g  lite rals  read
an Num ber o f m ethods called All m ethods called
a m N um ber o f internal m ethods called C a lls  to m ethods declared lo ca lly  in the class
a n N um ber o f abstract m ethods called C alls  to a b stract m ethods
° 1 2 N um ber of param eter m ethods called C alls  v ia  param eters
a 13 N um ber of field m ethods called C alls  v ia  all fields
a 14 N um ber of local m ethods called C alls  v ia  fields declared lo ca lly  in the class
Û1B N um ber of sta tic  m ethods called S tatic  m ethod calls
a m N um ber of other m ethods called O ther m ethod calls
« 1 7 N um ber of non-com m ent lines o f code N um ber of lines of code exclu d ing com m ents
a 18 C yclo m atic com plexity M cC ab e 's  m easure o f m ethod com plexity  

given by | £71 — 1V' | -f- 2 calcu lated  over 
the vertices and edges of the graph 
representing the m ethod ’s control structure

_ o i s _ R ecursive M ethod calls itse lf d irectly

A concrete method.

• P6 : ABSTRACT METHOD (virtual method)

«1 N um ber o f param eters A ll param eters
«2 N um ber o f reference param eters Param eters o f reference type

_ « s _ R eturn  type N um ber in dicatin g reference or prim itive return type

An abstract method.

• P? : PRIMITIVE PARAMETER_______

| a ]  | S tru ctu re  type |' N ùm erÎcirient ifier for tins structure 1

A non-reference method parameter.

• HA REFERENCE PARA METER

a l -  0 1 6 A s per C L A S S
f}±l_______ A rray  dim ension if an array, the no. of dim ensions I

A reference method parameter. 

• Po : PRIMITIVE RETURN

I <ii I Stru ctu re type [ N um eric identifier for th is stru ct urn |

A non-reference method return.
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• Pm : REFERENCE RETURN

-  « 1 6 A b w r  CLAWS
Q 17_______ A rray dim ension IF an array, the no. o f dim ensions |

A reference method return.

• P i  : BASIC BLOCK________________________

| B asic  b locks are curren tly  unattributecT |

A basic block represents a code sequence within a method which has one entry 
and exit point. The basic-block graph essentially captures the control structure 
of its method.

Relationships

The current model of object-oriented code structure comprises the following thirty- 
three named, binary relationships. The relationships, represented as the directed edges 
between vertex primitives, are listed alongside their semantics within the model. The 
number of relationships was initially smaller but in order to allow a more compact 
representation within the selected feature set it was decided that each relationships 
should determine its associated primitives. Doing this allows us to infer the nature of 
the primitives from the type of the relationship. For example, the relationship “HAS 
METHOD” could describe both the presence of an abstract or a non-abstract method, 
the precise nature of the relationship being disambiguated by virtue of the type of 
associated primitive. Recording this information would require both the relationship 
and at least the method details. By defining an “HAS ABSTRACT METHOD” as 
well as an “HAS METHOD” relationship, only the relationship type is required to 
express the full semantics. Disambiguation was not deemed necessary in the case of 
relationships based on method parameters and return. In this case, the relationships 
make no distinction between abstract, static or instance methods. In the initial model, 
only method call and field operation relationships are attributed.

• Polymorphic dependency

R\ : EXTENDS CLASS, 1\ x 1\ (class -> class) 
(inheritance - inclusion polymorphism)
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Ra : INHERITS METHOD, P\ x P5 (class -> method)
(inheritance - inclusion polymorphism)

P 3 : OVERRIDES METHOD, P\ x P5 (class -> method)
(overriding - ad-hoc polymorphism)

/?, : INHERITS PRIMITIVE FIELD, Pi x P3 (class -» primitive field) 
(inheritance)

p 5 ; INHERITS REFERENCE FIELD, Pi x P t (class —> reference field) 
(inheritance)

PG : EXTENDS INTERFACE, P2 x P2 (interface -> interface) 
(inheritance - inclusion polymorphism)

• Initialisation

Il7 : INITIALISATION, P] x P5 (class -> method) 
(constructor)

P 8 : STATIC INITIALISATION, I\  x P5 (class -)• method) 
(static constructor)

State and behaviour

i ?9 : HAS METHOD, P\ x P5 (class -> method) 
P 10 : HAS STATIC METHOD, Pi x PG (class 
Rn  ; //,1ST PRIMITIVE FIELD,Px x Pi (class -> 
P 12 : HAS REFERENCE FIELD, P, x P4 (class 
P 13 : /PIS PRIMITIVE STATIC FIELD,Px x P3 

P 14 : P d 5 REFERENCE STATIC FIELD, P, x

method) 
primitive field)

-» reference field)
(class —> primitive field)

Pt (class -> reference field)

Invocation

P 15 : INVOKES METHOD, P5 x P5 (method -» method)
P,|5 : INVOKES ABSTRACT METHOD, P5 x P6 (method -> abstract metliod)
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n ]7 : INVOKES STATIC METHOD, P5 x P5 (method -> method)
These three relationships have the same set of attributes:

a 1 call type(s) T he m ethod call type(s) represented by this association .
C a lls  are categorised according to the source of 
the o b ject upon which the call is invoked, e .g., 
the current o b ject, a field, a param eter, a m ethod return , 
or lo ca lly  created object.
W hether the ca ll constructs an o b ject or the m ethod delegates 
the call to another class is also recorded. Delegation here 
is based on the callin g  and called m ethods having an equivalent 
signature - forwarded param eters and sam e return type

ao call count N um ber o f m ethod calls m ade v ia  th is association

Pi8 : HAS PRIMITIVE PARAMETER, P5or6 x P7 (method -> primitive pa­
rameter)
Pig : HAS REFERENCE PARAMETER, Psor« x P« (method —> reference pa­
rameter)
P2o : PRIMITIVE RETURN, P5or6 x P9 (method -> primitive return)
P 21 : /P4S REFERENCE RETURN, P5or6 x P10 (method -> reference return)

• Field manipulation

P 22 : OPERATES ON PRIMITIVE FIELD, P5 x P3 (method -> primitive field) 
P 23 : OPERATES ON PRIMITIVE STATIC FIELD, A  x P3 (method -> prim­
itive field)
These two relationships have the same set of attributes:

« 1 def count T h e num ber of tim es the field is assigned a value.
«2 use count T he num ber o f tim es the field is read

P24 : OPERATES ON REFERENCE FIELD, P5 x P4 (method -> reference 
field)
P 25 : OPERATES ON REFERENCE STATIC FIELD, P5 x P, (method -> 
reference field)
These two relationships have the same set of attributes:

« 1 def count I he num ber o f tim es the held is assigned a value.
a 2 use count 1 he num ber o f tim es the field is read
a 3 creation def The operation  creates the field o b ject

. q.i... dow ncast use T h e field is read but m odified by a dow ncast in the class hierarchy

• Abstraction

P 26 : HAS ABSTRACT METHOD, Px x P6 (class -> abstract method)
P27 : IMPLEMENTS ABSTRACT METHOD, I\ x /}, (method method)
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Encapsulation

'  *28 IMPLEMENTS INTERFACE, P, x P> (class -> interface)

• Method Control flow

R29 : HAS CONTROL FLOW, P5 x Pn  (method -> basic block)
P 30 : UNCONDITIONAL BRANCH, Pn  x Pu (basic block -> basic block)
P31 : CONDITIONAL BRANCH,Pn x P\\ (basic block —> basic block)
P32 : DROPTHROUGH BRANCH, Pn  x Pu (basic block ->• basic block)
P 33 : EXCEPTION BRANCH, Pu x Pn (basic block ->■ basic block)
Branches within a method’s control structure: apart from the exception branch these are 
interpreted in the conventional sense. An exception branch is a conditional branch going 
from the first instruction covered by the exception to the entry point of the exception 
handling routine.

As the target of an “INVOKES” or “OPERATES ON” relationship may be a 
structure existing either internally within the class2 or external to the class, these 
relationships can be further subcategorised as being “INTERNAL” or “EXTERNAL” 
respectively. This can provide a further degree of disambiguation during class com­
parison. This applies to the relationships R15, R^, R i7, R2 2 , It?3 , R>\ and R2 5 .

The primitives and relationships represented here allows our model to capture the 
essence of object-oriented class structure as per Booch’s description of the elements of 
a class and the nature of relationships between classes [Booch, 1994]. Several impor­
tant concepts are implicitly captured through the co-occurrence of the relationships 
described above, some of which are illustrated in [Seemann and von Gudenberg, 1998]. 
For example, an “aggregation” between two classes can be inferred if an “HAS REF­
ERENCE FIELD ” relationship exists between the first class and a member field which 
is of the type identified by the second class, and the field is also in an “OPERATES 
ON” relationship having the “creation def” attribute set. In most practical situations, 
determining the stronger “composition” relationship is language dependent and may 
be difficult to determine, if in fact decidable. Booch’s “using” relationship between

2 Fields and methods defined as part of the class.
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two classes can also be inferred if a method from the first class has a parameter which 
is of the type identified by the second class.

Forwarding and delegation [Szyperski, 1999] are important constructs in the run­
time dynamics of object-oriented frameworks based on design patterns and as such are 
of interest. Unfortunately, although the model is rich enough to capture the structure 
of specific instances of these logical constructs, they are often not easily identifiable 
due to ambiguities in inferring the original design decisions. This is also the case 
for some other design-level associations and semantics, e.g., composition, mutability 
and multiplicity. Sou«! heuristic approaches to their identification are presented in 
[Seemann and von Gudenberg, 1998] and [Jackson and Waingold, 1998], in the context 
of design recovery. Although design recovery could be seen as a useful side effect of 
the current approach, the intention here is simply to extract and compare structure 
based on the available information and as such these limitations are not important.

The inherent hierarchical structure of object-oriented classes is captured in the 
model through named relationships between the constituent primitives, e.g., the con­
tainment relationship between a class and a method is captured via the “HAS METHOD” 
relationship. Our initial notion of comparison treats primitives as being independent, 
i.e., directly comparable, although conceptually this may not be the case. For ex­
ample, although a class is conceptually a hierarchical structure if one considers its 
contained methods and in turn the method’s internal structure, this is captured sep­
arately in the model by the “HAS METHOD” and “HAS CONTROL FLOW” chain 
of relationships, i.e., the comparison is initially independent of the hierarchy.

Our structural model is further constrained in terms of reachability, i.e., the sphere 
of influence of one class expressed as those classes reachable from it by a chain of 
relationships. The immediate level of analysis proposed here is limited to a class 
and those classes reachable from it through at most two levels of association. In 
practice, t his allows us to capture method calls and external field operations from 
within a class’s methods and so doesn’t prevent identification of relationships which 
extend beyond the immediate class boundary. While limiting the size of each class’s 
structure graph, thereby making structural matching more computationally accessible, 
this limitation doesn’t preclude the building of larger, compositional structures. By 
combining individual structure graphs we could extend the scope of further analyses.
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(This is the subject of continuing work.)

The relational graph representable by these primitives and relationships contains 
no loops as the object-oriented semantics capable of generating self-connected vertices 
have been expressed as attributes, e.g., recursion. Similarly, at most two, oppositely 
directed, edges exist between any two vertices as a consequence of how the relationships 
have been expressed. For example, the “INVOKES METHOD” relationship between a 
calling and called method is attributed to account for more than one invocation type, 
depending on the source of the called method’s object. These implicit constraints help 
simplify the graph structure but without loss of generality. Additional requirements 
can be accommodated by either creating more named relationships or through the 

existing relationship attributes.

The representation of a method’s internal structure is intentionally limited, based 
solely on control flow as captured by its basic-block graph. The principal hypothesis 
being tested emphasises the relational structure of a class, above the detailed imple­
mentation of its methods, as a means of determining similarity. The inclusion of a 
basic-block graph may however be useful in qualifying potentially spurious matches 
identified by means of compared relational structure but where in fact this similarity 
is unwarranted. An approach to program representation and comparison based on 
the relationships between basic blocks, their internal control flow, and vectors of the 
number of statements they contain was proposed in [Robison and Sofia, 1980], Their 
use here is restricted to inter-block relationships in an attempt to capture elements of 
the control structure within individual class methods.

3.4 A Formal M odel of O bject-oriented Code Structure 

and Structural Comparison

Based on the preceding analogies from molecular chemistry and pattern matching in 
computer vision, alongside the model of object-oriented code presented above, a formal 
model of object-oriented code structure and structural comparison is proposed based 
on the following:
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an attributed relational graph representation of class structure providing the 

basis for

• a vector space model of class structure and similarity (Global similarity) and

• a graph morphism model of similarity (Local similarity)

Attributed relation graphs, and the vector-space model of object-oriented code struc­
ture are described in the next two sections. Structure graph morphisms and graph 
matching are dealt with in Chapter 5.

3.4.1 Attributed Relational Graphs (ARGs)

Relational graphs are a fundamental type of representation for many tasks in applied 
computer science as they provide a generic way of encoding entities and relation­
ships. The comparison and matching of such graphs is an integral part of research 
activity in molecular chemistry [Hagdone, 1992; Willett, 1999] and computer vision 
[Tsai and Fu, 1979; Shapiro and Ilaralick,1983; Messmer and Bunke, 1998].

Our formal representation of an analysed class incorporating the definitions of 
object-oriented code primitives and relationship previously introduced is an attributed 
relational graph (ARC) termed a structure graph. It is defined in the style of [Tsai and Fu, 
1997] by the 7-tuple

where

e : E -> R

V
E
%¡): E -» V x V

P
R

is a finite non-empty set of graph vertices
is a finite, possibly empty, set of graph edges
is an incidence function that associates each
edge with a pair of (not necessarily distinct) vertices
is a finite non-empty set of primitives
is a finite non-empty set of relations
is a mapping between vertices and primitives
is a mapping between edges and relations
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3.4.2 Global similarity: “Structure Paths”

Features, weighting and similarity coefficients

In order to limit an analysis to comparison of structures which are likely to show 
significant levels of similarity, it is common practice to carry out an initial screening 
procedure. Local measurement of graph similarity based on direct comparison of 
vertices and edges is an exponential problem as described in Chapter 5. However, 
an initial screening by way of a computationally loss expensive method selects only 
those graphs which demonstrate a sufficiently high degree of similarity for further, 
detailed analysis. This section describes an instantiation of the vector-space model of 
structural representation and similarity calculation, as a means of providing an initial 
screening of potentially similar classes represented by their structure graphs. We now 
address the three requirements for determining similarity as described in Section 3.2 

in relation to our structural model and application domain.

Features: a representation of structure

Graph invariants and certificates, i.e., descriptive quantities that are independent of 
the choice of vertex labeling and pictorial representation, can be interpreted as charac­
teristic indicators or representatives of a graph’s structure. Just as molecular fragments 
are extracted as invariants representative of a molecule’s structure, the intention here 
is to identify a suitable feature set representative of a class’s structure graph. By 
extracting one or a set of invariants for a molecule, it was originally hoped that indi­
vidual molecules could be assigned a unique numeric or symbolic code. Unfortunately, 
it is yet to be generally demonstrated that such a canonical coding exists [Deo, 1974; 
Rosen, 1999]. Nevertheless, isocodal graphs, i.c., graphs having the same code but 
not necessarily identical structure, generally exhibit a high degree of similarity. Exact 
matching of molecular structure based on sets of invariants has indeed been success­
fully applied in practice [Deo, 1974].
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Feature candidates, extraction and selection

The ease with which features are extracted from the underlying structure graph, and 
the complexity in quantifying similarity, tends to vary in proportion to the associated 
precision. The higher the precision required, the more information that needs to 
he extracted, which in turn leads to increased computational overhead. In addition, 
utilising the increasing information content of the model is generally more complex. 
The ability to accept what is similar, and reject what is not, in a timely manner is 
the ultimate requirement. This harks back to the notion of sufficiency discussed in 
Section 3.2.4. Selection of an acceptable feature set is generally seen as a balance 
between ensuring that complexity is minimised while rejecting of a valid structure is 
prevented, possibly at the expense of accepting some that should have been rejected.

Some candidate features suggested by graph theory are, e.g., the number of vertices 
and edges; vertex degree sequence; characteristic polynomial [Deo, 1974]. Molecular 
chemistry supports an approach based on molecular (graph) fragments, e.g., aug­
mented atoms (vertices); atom (vertex) pairs [Willett et al, 1998], and paths and 
walks, e.g., atom (vertex) path and walk counts [Randic and Wilkins, 1978; Rucker and 

Rucker, 1993].

Invariants and certificates are often difficult to generate and are only indicative of 
similarity up to isomorphism [Rosen, 1999]. Simple counts of individual primitives, 
although easy to compute and compare, are low precision approaches. An approach 
based on the edit-cost associated with differences in degree sequence between graphs 
is described in [Papadopoulos and Manolopoulos , 1999]. Although this appears to 
act as an efficient filter in the determination of similarity, other than stating that 
no candidates are missed, no information regarding precision and recall are provided. 
As in the case of standard graph-theoretic invariants, such as the degree sequence 
or characteristic polynomial, this approach does not take sufficient account of the 
semantics and context contained within the vertex and edge categorisation, attribution 
and relationships to lie found in a structure graph. An approach based on structure 
graph “fragments” was considered, adapted from the “augmented-atom” model of 
molecular chemistry, but it was decided to concentrate initially on a “path and walk” 
approach to feature definition.
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Randic and Wilkins based their work on atomic path counts on a standard molecu­
lar connection table, assigning no significance to the atom and bond types [Randic and 
Wilkins, 1978]. The walk counts of [Rucker and Rucker, 1993] are similarly constrained. 
In our current model, the vertices and edges of the class structure graph are categorised 
according to their named primitives and relationships. By including this additional 
information, over and above the contextual information provided by the relationships 
between primitives, precision should be improved at little additional computational 
expense.

Structure paths

Our initial feature vector is based on a modified form of the “path and walks” ap­
proach of molecular chemistry. It is directly analogous to the path-based molecular 
“fingerprint” method developed by Daylight Chemical Information Systems Inc. [Day­
light, 2001]. The features we introduce are termed “structure paths”.

A structure path is simply any path in a structure graph. Each path is represented 
by the ordered list of named relationship represented by the structure graph edges, 
which in turn determine the adjacent vertex types. Each path is unique in terms of 
its constituent vertices and edges but their representation in terms of the ordered list 
of relationship types is not. The two paths in the graph of Fig. 3.2 represented by the 
ordered vertex ID lists [JL, 3, 2] ! and [I, 3, 4] are different paths but represent the same 
feature, i.e., 27:22. In terms of the relationship types and their orientation, the first 
edge set can be represented as either the string “27:22” or “-22:-27”, the negative sign 
indicating traversal against the direction of the designated inter-vertex relationship. 
The canonical representation adopted is based on the lexicographic comparison of 
the two string. In this example, the string “22:27” is greater than “-22:-27” and so 
the canonical feature type is represented as “22:27”. The overall approach extracts 
a feature vector of counts of all structure paths, i.e., the frequency of occurrence of 
all path-induced features in the structure graph, taking account of the paths’s edges 
(relationships), as well as its length. The maximum length of any extracted path must 
be limited due to the process being exponential in the number of vertices and edges 3

3These are assigned vertex IDs, n o t  vertex or edge l a b e l s .  Vertex IDs are displayed outside the 
actual vertices in green, and underlined, labels are displayed inside the vertices in black.



in the graph. The issue of path length is discussed further in the next chapter, when 
we consider the discriminating power of the features in determining structure graph 

similarity.

Extracted features:
“Structure Paths”

Feature vector: 
frequency of 
occurrence of 
each “Structure Path”

Figure 3.2: Structure Paths

We depart slightly from the strict definition of path when extracting structure 
paths. Rather than insisting all of a path’s vertices are unique, this constraint is 
relaxed to allow inclusion of one cycle. The inclusion of a cycle must not lead to 
the generation of more than one pendant vertex. This is intended to improve the 
discriminating power of the feature set without greatly increasing the complexity of 
feature extraction1.

In choosing this initial global representation, we also draw on Hagdone’s approach 
to screening collections of molecules prior to a computationally complex local assess- 4

4The ‘C’ prefix appearing in one of the example extracted features of Fig. 3.2 indicates that it is, 
or contains, a cycle.

^ p /  2 2 ^

T 2
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ment of similarity [Hagdone, 1992]. Hagdone identifies an upper bound to the size of 
a common structure existing between two molecular graphs by identifying pairs of re­
lated atoms, or atom groups, i.e., atom-bond-atom structures, that are present in one 
graph but not in the other. The structure path approach incorporates an assessment of 
this difference by including and comparing counts of unit paths, i.e., vertex-edge-vertex 
structures, but builds additional, disambiguating context by including longer, overlap­
ping paths. The rationale here being that if Hagdone could achieve good screening 
using paths of length one, our extended approach should improve on this.

In order to further improve this stage of the matching process, feature selection, 
as distinct from extraction, was considered as a means of reducing the computational 
overhead. By removing redundant features and reducing the dimensionality of the 
remaining feature vector, calculation of similarity could be simplified, e.g., using prin­
cipal component analysis [Webb, 1999, pp‘227-2B7]. Some redundancy was already 
evident in the structure path approach based on the presence of the unique vertex 
representing the class itself. This vertex can only occur once in a structure graph and 
paths in which this vertex is non-terminal are redundant. Any path containing this 
“class” vertex as a non-terminal vertex can be replaced by the two constituent paths 
originating from it. The issue of feature redundancy has still to lx; fully addressed and 
is the subject of further work.

Feature weighting

To begin with, the significance of individual structure path features in determining 
structural similarity is unknown. The analysis presented in [Willett, 1987] consid­
ered four weighting schemes, “binary”, “frequency”, “relative” and “repository (col­
lection)”.

Let f  recji represents the frequency of feature i, and the weight applied to feature 
i, giving the weighted feature value x¿w •

• Binary (unweighted):
Features are recorded as either being present or not. This effectively represents
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the unweighted case.
0 if Xi not present
1 if Xi present

• Frequency:
Features are recorded as their frequency of occurrence

UJi =  1

Xiu, = W j X  freqXi

• Relative frequency:
Features are recorded as their frequency of occurrence divided by the total feature 
frequency for the entire structure

• Repository (collection):
Features are recorded as the product of their frequency of occurrence in a struc­
ture and the log of the inverse repository frequency.

where N  is the total frequency of all features in the repository and freqXl{ is 
the total frequency of feature i in the repository (collection)

Within the context of his study of molecular property prediction, Willett concluded 
that weighted features performed better than unweighted and frequency weighting 
alone was sufficient [Willett, 1987]. In order to counter the disproportionate effect 
on similarity due to larger, multiple-bond fragments, Hodes includes a scheme where 
weights are applied in inverse proportion to fragment size [Hodes, 1989]. A similar 
approach was considered here, based on the same reservations concerning the inherent

X iu  = U i  X freqXi

Xiu = u>i x freqXi
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multiplicity and overlap of the smaller sized structure paths associated with each of the 
larger structure paths, i.e., larger structure paths necessarily depend on the presence 
of more than one, possibly many, smaller paths, which in turn may contribute to many 
larger paths thereby amplifying their relative significance. However, in the absence of 
any firm guidelines and evidence to the contrary, our straightforward feature vector of 
structure path counts was used unmodified, i.e., the very intuitive notion of weighting 
based on counts of occurrence was adopted. (An inverse-weighting scheme based on 
structure path length is held in reserve as a means of countering any observed feature 

size bias.)

3.4.3 Similarity coefficients

Having defined a feature vector, it only remains to select a similarity coefficient that 
can adequately derive the degree of similarity between two structure graphs, each 
represenetd by an instantiation of this feature vector. The main objective here is to 
find a combination of feature vector and coefficient that meet the sufficiency criteria 
previously mentioned in Section 3.2.4.

Considering the fundamental objective of finding common structure, we are in­
terested in establishing the degree of similarity between structure graphs, including 
the notion of containment. Two class structures may lie deemed similar based on an 
assessment that takes into account both commonality and difference: the degree of 
similarity is ultimately dependent on the amount of common structure being greater 
than the combined differences. However, this does not take account of the possibility 
that one of the structures may be substantially contained within the other, the com­
mon structure being significant in either size or frequency of recurrence. This type of 
structural commonality based on containment, or asymmetric overlap, should not be 

dismissed.

The advice offered in [Ellis et al, 1993] and echoed in [Willett, 1987], is that the 
choice of similarity coefficient is essentially a matter resolved through empirical analy­
sis. In the absence of any a priori evidence upon which to base a choice, the following 
coefficients were selected for implementation or illustration at various points through­
out the evaluation process:
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Complemented Bray/Curtis: similarity coefficient (non-metric)

S(Xk,X t) =  l - Ej=l I x jk  x j l  I
T . U  ( B j k + X f l )

Tanimoto: similarity coefficient (non-metric unless dichotomous)

S(Xk, X t) =
ELi XjkXjl

Complemented Soergel: similarity coefficient (metric)

E"=i \x j h  -  X j i\
S(Xk, X l) =  1 - ELi rnax(xjk,Xji)

which can be re-expressed as:

S(Xk,Xi) =
E"=i rnin{xjk,Xji)

ELi max(xjk,Xji)

Simpson: similarity coefficient (non-metric)
E"=i rnin(x;jk, xjt)

S(Xk, X t)
rnin('n= l xjkt' Z U xfl)

where
S(Xk,Xi) similarity coefficient applied over class structures X k and Xi
n number of attributes
x ,jk value of attribute Aj  for structure X k

The complemented Bray/Curtis coefficient was chosen as it is the closest coefficient 
listed in Ellis’s survey to that employed in the reference method used in the evaluation 
of Chapter 4. The Tanimoto (or Jacard) coefficient was selected as it is the coefficient 
of choice in many approaches to determining similarity in molecular chemistry. The 
complemented Soergcl similarity metric is referred to in Chapter 5 when discussing 
the local measurement of similarity based on graph matching. The Soergel metric is 
also of interest in that it is similar to that used by Hodes in his study of large-scale 
similarity and classification of molecular structures [Hodes, 1989]. His justification in 
this case for not using Tanimoto was based on his observation that Tanimoto “gave too 
much weight to already heavily weighted features”, thereby distorting the similarity 
calculation. We return to this topic in Chapter 5. Simpson’s (“overlap”) coefficient is 
included to as an illustration of how we can accommodate the issue of containment if 
required.
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3.5 Summary

In this chapter we set out to define a formal, generic, relational model of object-oriented 
code structure and similarity. Identifying the class as the fundamental unit of analysis, 
a model was developed centered on the extraction of an attributed, relational graph 
(ARC!) as a representation of class structure. This model draws on analogies from 
molecular chemistry and pattern matching in computer vision. Both these domains 
provide an existing template for analysing structure and structural similarity. This 
comes in the form of a set of techniques and algorithms which we have shown to 
be reasonably transferrable to the problem of structural similarity in object-oriented 
code, facilitated by a common basis in graph-theory.

We have shown that this ARC representation can in principle support both a global 
and local approach to determining similarity between classes. Global assessment of 
similarity has been defined within the framework of a vector-space model derived 
from the ARC. This involved selecting a set of features, feature weights and similarity 
coefficients. ARGs were described in terms of a feature vector of frequency-weighted 
Structure Paths, providing a global “fingerprint” for each ARG. Local similarity was 
introduced in terms of the graph-theoretic principle of structure preserving morphisms 
operating directly on the extracted ARGs.

The next two chapters examine the validity of the model when it is instantiated 
within the context of object oriented development using Sun’s Java language. Chap­
ter 4 deals with the vector-space model of global similarity. Chapter 5 goes on to look 
at the practical application of the model to determining local similarity.
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Chapter 4

M odel In te rp re ta tio n : Jav a  
classes and  by tecode  analysis

4.1 Introduction

In the last chapter a model of object-oriented class structure and structural similarity 
was defined. This model is based on proven approaches to structural similarity in 
the domains of molecular chemistry and pattern matching in computer vision. In 
building this model certain key assumptions were made. Firstly, that the analysis of 
structure and structural similarity in object-oriented code was sufficiently similar to 
these reference domains to enable a successful transfer of the underlying applied, graph- 
theoretic principles and techniques. Secondly, that the choice of features, weighting 
and similarity coefficient adequately parameterised the derived vector-space model of 
global structure and structural similarity.

This chapter seeks to test these assumptions by instantiating the model of Chap­
ter 3 within the context of object-oriented development using the Java language. More 
specifically, it concentrates on analysis of the intermediate results of compilation, the 
Java bytecode, rather than the original source code.

The chapter begins with a brief discussion of Java and Java bytecode. It continues 
with an introductory example of the analysis of two Java classes. The major part of
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the chapter is devoted to an experimental evaluation of global similarity based on a 
plagiarism detection reference model.

The prototypical class analysis framework developed as part, of this work is de­

scribed in Appendix B.

4.2 Java Classes and B ytecode

The work described here concentrates on the development of a Java bytecode analysis 
framework. Java was chosen as an example of a current object-oriented development 
system that is essentially platform independent and supports a distributed, class-based 

component model [SUN, 1999].

4.2.1 Java Bytecode

Java source code is compiled to an intermediate, executable, bytecode format, compat­
ible with the environment provided by the Java interpreter, the Java virtual machine 
(JVM) [Lindholm and Yellin, 1999]. The compiled bytecode for each class is stored 
in its own class file. These class files provides us with our unit of analysis. Byte­
code is used as the initial target of our analysis as it is more compact, structured and 
readily available than source code. The compilation of Java source code to bytecode 
retains virtually all of the information held in the original source. This is particularly 
significant as it enables an analysis to be carried out independent of source code avail­
ability. Such an approach would be problematic if a language like C ++ were used, 
due to factors such as preprocessed information related to macros, include files and 
templates being lost in the object files. Due to the design of the JVM, bytecode neces­
sarily contains a great deal of symbolic information which is lost through code inlining, 
macro expansion and code optimisation in the case of C++. Essentially, although the 
C++ object code could be disassembled, extracting the information required to build 
a structure graph would be more involved. In addition, there is no guarantee that a 
great deal of the original method and call-level code structure will not have been lost. 
Consequently, the assessment of structural similarity based on the developed model 
could be compromised. It must be stressed that our bytecode approach is more a
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convenience than an absolute requirement. The semantics captured within our generic 
model are instantiable in the cases of other languages, C++ for example, by means of 
direct source code analysis (Cf. Keller et al, 1999; Chen et al, 1998]).

An additional benefit of using Java stems from the Java environment supporting 
dynamic class loading and reflection: this provides a run-time mechanism enabling 
Java classes “to look inside themselves” [O’Reilly, 1997]. The analysis process is greatly 
enhanced by this ability to load a class from its bytecode file and obtain complete 
information about its fields, methods, constructors and exceptions. For example, a 
class can be loaded from its bytecode file, its methods listed, and the parameter types 
and return type of each method extracted.

4.2.2 Model instantiation

The formal model developed in Section 3.4 can be interpreted almost unchanged within 
the Java environment. All the named primitives correspond directly to similarly named 
structures defined in the Java language. The model relationships are also directly 
interpretable as a result. (At the level of primitive and relationship attributes, a minor 
change was made by which “non-comment lines of code” was equated to “number of 
bytecode instructions” being as the analysis is targeted at bytecode.)

One significant modification was made at this stage to the implementation of the 
group of relationships under the headings “Invocation” and “Field Manipulation”. It 
was realised that a distinction could be made between methods called, and fields oper­
ated on, that were owned by the class (internal members), and calls to methods, and 
operations on fields, not owned by the class (external members). In order to accommo­
date this distinction, the latter group of relationships are qualified as being “external”, 
this being reflected in the structure path features by the letter “E”, appended to the 
relationship type. For example, the relationship “INVOKES METHOD” (J?5) would 
be represented in the case of a call to a method internal to the class by the relation­
ship identifier “15”, while a call to a method of another class would be represented by 
“15E”.

Unique, integer-valued, structure type identifiers were initially assigned based on 
each unique class name (including names qualified by array dimensions). All primitive



type were also assigned unique structure types. (ARGs which on comparison resulted 
in a similarity of 1.0 were flagged for off-line comparison in order to determine if in 
fact they represented the same class or a renamed version of the class. Renamed, but 
identical classes were assigned the same structure type.)

4.3 B ytecode Analysis: structure graph and feature ex­
traction

Based on the published internal structure [Lindholm and Yellin, 1999], class files are 
analysed by means of a two-pass disassembly process. The result of this analysis 
is the construction of a structure graph as described above. This directed, cyclic 
graph is represented within the analysis framework by means of an adjacency list 
[Tamassia, 1998]. Features are extracted by analysing the extracted structure graph 
using a depth-first-search algorithm (DFS) [Alio, Hopcroft and Ullman, 1983] designed 
around the “visitor” design pattern [Gamma et al, 1995]. Appendix B describes the 
structure of the analysis framework in some more detail.

4.3.1 A simple illustrative example

Figures 4.1 and 4.2 show the source code of two simple Java classes. The classes 
were compiled to bytecode and each class file analysed, producing the corresponding 
structure graphs also shown in Figures 4.1 and 4.2.

The feature vectors extracted from the structure graphs are shown in Table 4.1, 
The maximum structure path length in this case was set at three. The vertices and 
edges of the graphs are labeled according to the assignment of numeric identifiers to 
the original primitive and relationship types, e.g., primitive f \  translates to vertex 
type 1, and relationship /ii translates to edge type 1. As discussed above, the “E” 
notation is used to indicate external method calls and field operations1.

‘(For the sake of clarity, this illustrative example does not include basic-block vertices and edges 
depicting method control flow. All methods in the two classes have a simple, single basic-bloc structure. 
The feature vector does however include these features identifiable by the “B” prefix.
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public class NonTaxedDiscItem extends Item { 

float percentDiscount;

public NonTaxedDiscItem(double bp. float pcd) { 
super(bp);
percentDiscount * pcd:

>
// implements abstract superclass 
public double discount(){ 

return (basicPrice * percentDiscount);

}
// overrides superclass 
public double tax(){ 

return 0;

>
}

Figure 4.1: Code Example (A) NonTaxedDiscItem

public class NonTaxedBulkDiscIten extends Bulkbuyltem {

public NonTaxedBulkDiscIte»(double bp) { 
super(bp);

}
// implements abstract superclass
public double discount(Custcier bulkBuyer){ 

return (basicPrice * bulkBuyer.bulkDiscount());
}
// overrides superclass
public double tax(){ 

return 0;
}

}

Figure 4.2: Code Example (B) NonTaxedBulkDiscItem

For example, in Figure 4.1 the class “NonTaxedDiscItem” is represented by the 
vertex of type “1” at the top of the graph, i.e., the “root” vertex. The adjacent edge 
of type “1” identifies the connected vertex as the class’ superclass “Item”. The edge 
type “1” indicates the “EXTENDS CLASS” relationship between them. The edges of 
type “3” and “27” identify overridden and implemented abstract methods of “Item” 
respectively. The edge type “15E” in the graph of “NonTaxedBulkDiscItem” (Fig. 4.2) 
identifies a method call to an external method, in this case to a method provided by 
the parameter object identified by “bulkBuyer”.
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Feature (A) (B) Feature (A) (B) Feature (A) (B) Feature (A) (B)
C:7:22:-ll: 1 0 22:-22:18: 2 0 -7:27: 1 1 -2:1: 1 1

C:7:15:-2: 1 1 22:-22:15: 1 0 -7:1: 1 1 -2:11: 1 0

C:4:-22:-27: 1 1 22:-22: 1 0 -7:11: 1 0 -27:7:22: 1 0
C:27:22:-ll: 1 0 22:41:7: 1 0 -4:7:22: 1 0 -27:7:18: 2 1

B30: 3 3 22:41:4: 2 0 -4:7:18: 2 1 -27:7:15: 1 1
7:22:-22: 1 0 22:41:3: 2 0 -4:7:15: 1 1 -27:3:20: 1 1

7:22: 1 0 22:41:2: 2 0 -4:3:20: 1 1 -27:1: 1 1

7:18: 2 1 22:41:27: 1 0 -4:3: 1 1 -27:11: 1 0
7:15: 1 1 22:41:1: 2 0 -4:2: 1 1 -22:22: 1 0

7: 1 1 22:41: 2 0 -4:27:22: 1 0 -22:20: 2 1
4:-22:22: 1 0 22: 3 1 -4:27:20: 1 1 -22:19: 0 1
4:-22:20: 1 1 20: 2 2 -4:27:19: 0 1 -22:18: 2 0

4:-22:19: 0 1 1: 1 1 -4:27:15E: 0 1 -22:15E: 0 1
4:-22:15E: 0 1 19: 0 1 -4:27: 1 1 -22:15: 1 0

4:-22: 1 1 18: 2 1 -4:1: 1 1 -22:-7:1 : 1 0
4: 1 1 15E: 0 1 -4:11: 1 0 -22:-27:l: 2 1

3:20: 1 1 15:-2:4: 1 1 -3:7:22: 1 0 -22:-27:ll: 1 0

3: 1 1 15:-2:3: 1 1 -3:7:18: 2 1 -20:19: 0 1
2:45:22: 1 0 15:-2:27: 1 1 -3:7:15: 1 1 -20:15E: 0 1

to I 5? 99 2 1 15:-2:1: 1 1 -3:2: 1 1 -20:-3:1 : 1 1
2:45: 1 1 15.-2:11: 1 0 -3:27:22: 2 1 -20:-3:11 : 1 0

2: 1 1 15: 1 1 -3:27:20: 1 1 -20:-27:1 : 1 1
27:22:-22: 1 0 ll:-22:22: 1 0 -3:27:19: 0 1 -20:-27:11 : 1 0

27:22: 2 l 11 :-22:20: 1 0 -3:27:15E: 0 1 -1:7:18: 2 1
27:20: 1 1 11:-22:18: 2 0 -3:27: 1 1 -1:7:15: i 1
27:19: 0 1 11 :-22:15: 1 0 -3:1: 1 1 -1:27:19: 0 1

27-.15E: 0 1 11: 1 0 -3:11: 1 0 -1:27:15E: 0 1
27: 1 1 -7:4: 1 1 -2:7:22: 1 0 -1:11: 1 0

22:-4:7: 1 1 -7:3:20: 1 1 -2:7:18: 2 1 -19:15E: 0 1
22:-4:3: 1 1 -7:3: 1 1 -2:3:20: 1 1 -18:18: 1 0
22:-4:2: 1 1 -7:2: 1 1 -2:27:22: 2 1 -18:15: 2 1
22:-4:l: 1 1 -7:27:22: 2 1 -2:27:20: 1 1 -18:-7:11 : 2 0

22;-4:11 : 1 0 -7:27:20: 1 1 -2:27:19: 0 1 -15:-7:11 : 1 0
22:-22:22: 1 0 -7:27:19: 0 1 -2:27:15E: 0 1

22:-22:20: 1 0 -7:27:15E: 0 1 -2:27: 1 1

Table 4.1: Feature vectors for classes (A) NonTaxedDiscItem and (B) NonTaxed- 
BulkDiscItem of Figs. 4.1 and 4.2
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The feature type “-22:20”, of which there are two occurrences in “NonTaxed- 
Discltem”, identifies three nodes linked by edge types 22 and 20, i.e., a method with a 
primitive return that also accesses a primitive field. (The negative signs are a conse­
quence of feature classification and canonical representation as discussed in Section 3.4. 
The features prefixed with a “C” are cycles.)

A similarity calculation based on the feature vector data taken from Table 4.1, 
using the Tanimoto and Simpson association coefficients is shown below (Raw feature 
counts were used, i.e., frequency weighting):

(Tanimoto)

—  85
~  1 7 2 + 9 4 - 8 5

=  0.470

(Simpson)

S ( X A , X B)
ZTi‘=i r n i n ( x j A , X j n )  

™n(£,”=i Zj-oEjT, xjb)

— 61 
—  84

=  0.726

The general structure of the graphs appear quite similar. However, when the 
primitives and relationships as represented by the vertices and edges are more closely 
inspected, the calculated similarity values can at this stage be reasonably accounted 
for. The two classes principally differ in the following respects. The class “NonTaxed- 
Discltem” has an additional primitive field “percentDiscount”, which is the focus of 
two field operation. It is written to by the class constructor and read by the method 
“discount”. The class “NonTaxedBulkDiscItem” has no such operations. The sig­
natures of the constructor and the method “discount” both differ from those of the 
corresponding methods in the class “NonTaxedBulkDiscItem”: in the first case there
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is an additional primitive parameter while in the second case there is an absence of 
a parameter. The method “discount” in the class “NonTaxedBulkDiscItem” issues 
a call to the parameter object “bulkBuyer”. “NonTaxedDiscItem” issues no method 
calls other than that to the superclass constructor, which occurs in both classes.

The similarity value generated by the Tanimoto coefficient does reflect these bi­
lateral differences, suggesting that their structures share less than 50% in common. 
Both classes have one identical method, “tax”, and although the remaining method 
signatures differ, they do have some parameter and return types in common. The 
differences are predominantly the result of additional feature within the “NonTaxed­
DiscItem” representing the field operations. The similarity value given by the Simpson 

coefficient tends to support this, suggesting that more than 70% of the structure of 
“NonTaxedBulkDiscItem” is contained within “NonTaxedDiscItem”.

Due to both the number of different features extracted and the increasing levels of 
context captured as the path length increases, the model is clearly able to distinguish 
between classes that are outwardly structurally similar. The combination of feature 
variety, and reasonable depth of local context, as provided by the number and varying 
length of structure paths associated with each vertex, are the key factors underlying 

the potential of this approach.

4.4 M odel Evaluation

4.4.1 Object-Oriented code reuse and plagiarism

The following experimental schedule describes the approach taken to validate the 
model of structure and structural similarity developed in Chapter 8. The biggest prob­
lem encountered at this stage was the lack of available reference data with associated 
“relevance” judgements, i.e., data sets of classes having been independently scruti­
nised and assigned a measure of pair-wise similarity. The only published approach 
to the direct comparison of .lava bytecode appears to be Bakers’s “dup” application 
[Baker and Manber, 1998]. Unfortunately, neither the application nor the experimental 
data were available in order to carry out a comparative study.
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As mentioned in the review of Chapter 2, there are several approaches to the de­
termination of software similarity. The majority are inappropriate comparisons in the 

current context due to differences in emphasis, including the interpretation of similar­
ity, e.g., functional as opposed to structural, or not being freely and openly availability 
as implemented applications. The exception in this case is the structural approach to 
plagiarism detection developed by Guido Malpohl and Lutz Prechelt at the University 
of Karlsruhe. Their “JPlag” engine is freely available to the academic community and
supports the detection of plagiarism within Java source code [Prechelt et al, 2000]. 
A similar system to JPlag is Alex Aiken’s “MOSS” (Measure of Software Similarity) 
developed at the University of California2. This system is also freely available to the 
academic community. Both systems have accrued a great deal of anecdotal evidence 
as to their individual merits, although a recent academic report has commented that 
“there does not appear to be a large degree of consensus between the two engines” 
[Culwin et al, 2001], The report concludes that of the two, JPlag, “produces more 
comprehensible results”. Working on the initial assumption that neither has been 
independently shown to outperform the other in terms of the determination of simi­
larity, JPlag was chosen on the strength of the published reports of its implementation 
and evaluation [Prechelt et al, 2000]. These include a comparison with MOSS which, 
based on the selected data sets, conclude that in terms of precision and recall, JPlag

performs generally as well as if not better than MOSS.'*

JPlag can handle several language types, including Java source code, but it can not 
process Java byte code. It can base the match process on individual files or groups of 
files. A JPlag analysis begins by converting the source code text into a string of tokens. 
Each token in the token set represents some aspect of the code structure. Whitespace, 
comments and the names of identifiers are ignored. 1 he tokens set is chosen so as 
to “characterise the essence of a programs structure and tiy and capture as much 
semantic information as possible in order to prevent spurious substring matches, e.g., 
“BEGINCLASS” (public class Class{), “APPLY” (System.out.println(“!!”);), “BE- 
GINMETHOD” (public void t.est(){), “VARDEF” (int i;), “ASSIGN” (i + =  2). The 
token strings from two programs - be they comprised of single oi multiple ( lasses

2http://www.c8.berkeley.edu/ aiken/moss.html
»In order to prevent undermining by the determined plagiarist, the implementation details of MOSS 

are not available. It is believed to be similar in principle to the tokenisation and string-matching 

approach of JPlag.
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are then compared using a variant of Wise’s “Greedy String Tiling” algorithm, which 
in turn is based on Karp-Rabin string matching [Wise, 1993]. This seeks to maximise 
the coverage of one string of tokens by disjoint substrings taken from the other. It 
is more versatile than longest common subsequence (LCS) in that it does not require 
preservation of token order thereby allowing transposition of substrings. This is a pow­
erful mechanism that tries to take account of any order independence found in source 
code which is often the focus of plagiarism attacks. Tokens are eventually mapped to 
form “tiles”, unique (one-to-one) associations between tokens in matching substrings. 
Larger tiles are preferred over smaller ones and a minimum tile size is specified to 
prevent spurious or trivial matching. (The “sensitivity” of the JPlag engine can be 
altered by setting a minimum tile length, i.e., tiles of size less than this value are
discarded, the larger the value, the coarser the match, and vice versa.) A similarity
value is calculated based on the degree of “coverage” achieved by the tiles:

2 x coverage{tiles) 
sim (A ,B) =  ------------------

where

coverage(tiles) =  ^  \tile\
j  S t i l e s

\A\ is the total number of tokens in file A
|£?| is the total number of tokens in file B

Two issues immediately stem from the use of a system such as JPlag as a means of 
validating our current model. Firstly, the basic intention behind JPlag is the detection 
of plagiarism, defined as the identification of programs that are “more or less” copies 
of programs written by different authors [Prechelt, 2001]. Secondly, JPlag is based on 
an analysis of source code, while our approach is byte code oriented.

4.4.2 Plagiarism and structural similarity

The model of object-oriented class structure developed here is primarily intended to 
identify relational, structural similarity at the granularity of the Java class and its 
member elements. In addition, as introduced in Chapter 1 and discussed further in
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Chapter 2, being able to identify similar structure in terms of cohesive, clearly de­
limited structures is highly desirable, i.e., classes and/or complete method and field 
groupings within classes. Although JPlag comparison is based on matching elements 
of code structure, it neither respects intra-class relationships nor method boundaries 
during the match process. For example, JPlag may map a pair of tokens representing 
separate assignments to the same variable of one class, to tokens representing assign­
ments to different variables in a second class. Operations and method calls linked by 
the same target field or object in one class may be mapped to independent targets 
when compared with a second. Also, if by mapping tokens in a single method of one 
class across several methods of a second class a better match is possible in terms of 
improved coverage, then JPlag will allow this. This also applies in the case of source 
files containing more than one class where cross-class match is possible. JPlag match­
ing can also lead to the creation of tiles that straddle method boundaries, by including 
the end of one and the beginning of the next. Baxter describes this type of match as 
“nonsensical” [Baxter, 1998]. Again, these are useful features in plagiarism detection, 
where class and method splitting are common occurrences but from our perspective it 
may also be interpreted as opportunistic, coincidental matching.

The fundamental difference between our model and JPlag is that while our model 
concentrates on the relational structure of a class, JPlag matches based on the equiv­
alence of contiguous groups of statements. Nevertheless, although there are obvious 
differences in emphasis, there appears to be no significant conflict when one considers 
the common goal of identifying structural similarity. Indeed, the association between 
plagiarism and structural similarity is well founded, the commonest current approaches 
to plagiarism detection, including JPlag (and MOSS), being based on structure met­
rics, i.e., string representations of program structure [Wise, 1996]. Hislop makes a very 
pertinent comment in describing the link between plagiarism and structural similarity 
in the context of code reuse,

“Plagiarism, after all, is simply a socially unacceptable form of reuse.”
[Hislop, 1998]

In the context of a comparative study of approaches to identifying code reuse by way of 
attribute-counting and structure metrics, Hislop concludes that structural approaches
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as exemplified by Whale’s “Plague” plagiarism detection engine [Whale, 1990] are 

significantly better.

4.4.3 Source code vs byte code analysis

In the absence of a reference model based on the analysis of Java bytecode, the choice 
of source code analysis is justifiable in this instance. The internal structure of a Java 
class file is obviously different from that of its corresponding source file. However, due 
to the level of information retained in the bytecode, the model we construct based on 
an analysis of the bytecode reflects very closely the class structure to be found in the 
source code. The primitives and relationships used to build the structure graphs repre­
sent a bijective mapping between bytecode and corresponding source, except possibly 
in the case of method control structure. The basic-blocks and branches generated from 
the bytecode may not directly match that of the source but the translation should be 
consistent at least within the same level of Java compiler, i.e., identical method bod­
ies will generate identical basic-block structure graphs. Inner classes and multi-class 
definition within the same source file are potentially problematic. The Java compiler 
generates a bytecode file for each class defined, whether it is defined in its own indi­
vidual file or occurs as part of, or in association with, other class definition in a source 
file. JPlag does not separate inner classes or multi-class, single file definitions, treating 
the source file as a single tokenisable unit. The data sets used for this initial analysis 
did contain cases of multi-class, single file definitions, but this did not present a major 
problem, as discussed below in Section 4.5.

The principle concern here revolves round the possibility of rejecting our original 
hypothesis, i.e., that an attributed, relational model of class structure is sufficiently 
able to determine similarity. This could be as a result of using a reference model that 
differs in the essential quantity being measured. JPlag is intended to detect plagiarism 
whereas our approacli is principally aimed at identifying similarity that preserves intra 
and inter class relational structure. An “apples and pears” comparison is problematic 
but provided we take account of the potential disparity as outlined above, and can 
account for the observed differences, this limitation in our approach is justifiable. In 
fact, if our hypothesis is to be proven, differences are inevitable.
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4.5 Some Proof of Concept Experim ents

4.5.1 Setup of the study

In the context of student coursework assessment, plagiarism detection provides a means 
of establishing the efficacy of our approach in determining structural similarity. Course 
work presents us with a sufficiently large, available collection of small to medium sized 
classes that are neither unmanageable in terms of their understanding nor the ease with 
which tutor-based judgements of similarity can be made. Student assignments are by 
their very nature not independent, i.e., they address the same requirements, are based 
on the same course presentation, and are supported by the same group of tutors. In 
this respect, course work can be interpreted as a somewhat artificial examples of the 
“identical task environments” [Berghel and Sallach, 1984], or product-line domains 
which are of interest to us as a target for the identification of reused and reusable 
components, i.e., we would expect to find incidences of similarity as a consequence of 
the development domain being constrained by the common assignment requirements. 
The potentially higher level of similarity also provides an opportunity to establish the 
degree to which recurring structure can be identified with sufficient discrimination 
to highlight potential cases of plagiarism. The results of this initial study were also 
intended to provide further insight into the problems that could be encountered on 
transferring and generalising the approach to a less constrained setting.

The aim here was to determine whether the current model could provide an effective 
first-pass screen able to limit the number of candidate pairs of classes, or groups of 
classes, subjected to a more detailed examination. This was to be based on feature 
vector extraction and establishing degrees of substructural and containment match.

4.5.2 Data Sets

Data in the form of Java source and corresponding bytecode files relating to two student 
coursework submissions were available for analysis. The first set of data, “Hangman” 
(Data set “H”), contained 100 coursework sets. The requirements and deliverables 
for this assessment were strictly laid out, specifying not just the precise functionality 
required but the number, names and behaviour of each of the classes to be designed
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and implemented. One class was supplied precompiled. Briefly, the requirement for 
this assignment was to implement the children’s game Hangman: one user is required 
to identify a word entered by a second user by guessing its constituent characters, being 
allowed at most five incorrect attempts. The application had to handle input from the 
guessing user and produce output to indicate the current state of play following each 
guess, where the nature of the input and output was precisely specified. (The supplied 
class was a utility class that provided methods to handle simple terminal input and 
output.)

The second set of data, “Snooker” (Data set “S”), contained 91 course-work sets. 
The requirements were again clearly specified but the deliverables for this assessment 
were not as rigid as in the case of “Hangman”. No additional constraints wore imposed: 
provided the functional requirements were met, the actual class design and implemen­
tation were left to the student’s discretion. This was to be a GUI-based application 
and as such it was anticipated that the submissions would be based on Java’s Abstract 
Window Toolkit (AWT). Briefly, the requirements in this case were to implement an 
interactive, event-driven, GUI-based scoreboard that would automate the scoring of a 
snooker game in response to potted balls, missed pots, or fouls committed by the two 
players.

In both cases, successful compilation of the submitted source code did not equate 
to uniform interpretation of the requirements or for that matter successful imple­
mentation of same. The majority of successful compilations did however interpret 
and implement t he requirements as stated. The following analysis only considered 
source code and associated byte code files resulting from a successful compilation. 
Non-compilable source was discarded.

4.5.3 Experiments

All the experiments detailed here were carried out using version 1.3 of the JDK and 
were run on a PC under Window NT 4.4 Experiments are described under the headings 
and subheadings listed below.

4Pentium III, 26GMH, 128MB
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1. Application Comparison

(a) General distribution of similarity values

(b) Matched pair comparison of similarity values

(c) Containment

2. Class Comparison

(a) General distribution of similarity values

(b) Matched pair comparison of similarity values

(c) Feature group separation

(d) Some Further Observations

1 - Application Comparison:

Before examining similarity at the level of individual classes, both JPlag (JP) and 
the structure path approach (SP) were applied to the comparison of complete course 
work submissions, treating the classes contained in each submission as a single appli­
cation. We are interested at this stage in seeing whether there is indeed any degree 
of correlation between the two approaches, as well as in whether there is any evi­
dence of “identical task environment” reuse. The respective analyses were carried out 
on the Java source code and bytedcode files generated from all successfully compiled 

submissions.

JPlag was presented with a set of submission directories containing the source code 
of the application classes. It treats the set of source code files in each submission as 
a single application and analyses accordingly. The initial sensitivity of JPlag was set 
at five, i.e., the minimum tile length had to be at least five tokens. This is less than 
the recommended default of nine, as we suspected the size of the classes in the course 
work submissions to be generally smaller than those used in the JPlag evaluation. 
JPlag’s method of determining similarity in the case of comparing sets of classes is not 
documented. From an examination of the similarity breakdown provided as part of 
the returned results, it appears that each group of files are formed into one string of
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tokens with a special token inserted between any two files to prevent a cross-boundary 
match. The similarity is calculated as before using the JPlag “coverage” measure.5

In the case of SP, the maximum length of structure paths was initially set at three. 
Three was chosen as it represented a reasonable balance between discrimination and 
computational overhead. Structure paths of length one effectively compare edge counts 
and would be a low precision approach. Structure paths of length two would increase 
precision but not sufficiently to meet our present needs. The level of context captured 
by path lengths of two is limited. Context here refers to the different relationships 
that a class element, represented by its vertex, is involved in. The larger the path 
length the more context is captured, and so the discriminating power is improved. 
Paths of length one describe the immediate context of each vertex, i.e., its immediate 
neighbours and relationships. As the path length is increased, so the context of the 
vertex is increased through the additional levels of relationship captured. For structure 
paths of one or two the diversity within the generated features and the level of context 
captured would be too limited. However, values of structure path length greater than 
three woidd incur both time and space penalties which were judged unnecessary at 
this stage.

For each pair of submissions, the feature vectors generated from the bytecode 
analysis were used to construct a full similarity matrix. The matrix entries were the 
values of pair-wise comparisons of each feature vector in one submission with all feature 
vectors of the second submission. In the case of data set “H” this generated 4950 
similarity values and for data set “S” 4095 values. The set of classes from each pair 
of submissions were taken as the disjoint sets of vertices forming a complete bipartite 
graph. The similarity values for each compared class pair was used to weight the graph 
edges. The generation of a similarity value for a match between the applications was 
based on establishing a maximum bipartite matching on this graph using Kuhn and 
Munkres’ interpretation of the Hungarian algorithm [Bondy and Murty, 1970]. In 
order to limit any bias introduced by differences in the means of calculating similarity 
between JP and SP, the complemented Bray/Curtis coefficient was used to calculate 
the similarity values during SP matrix construction. The complemented Bray/Curtis 
coefficient can be shown to be effectively the same as the “coverage” similarity measure 
used in the JPlag analysis, based on treating individual feature instances as “tokens’. 
Having established the maximal matching, application similarity was calculated in a

5This has since been confirmed by the JPlag author.
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manner similar to that used in .IPlag, using feature instances instead of tokens, i.e., 
feature frequency equates to the number of instances of that feature:

2 x coveraqe(maximalmatch)
sirn{Appk,Appi) = ---------TT^TTTl----i---------\Appk\ + \Appi\

where

cover age{maximalmatch) = ^  \matchedf eaturesm\
m & m a t c h e d p a i r

\matchedf eaturesm\ total number of matched feature 
instances for matched pair m

Appk the set of feature vectors for application k
\Appk\ total number of feature instances in application k

(a) General distribution of similarity values:

The frequency grouped distribution of pair-wise application similarity for data sets 
“H” and “S” are shown in Figure 4.3. Frequency grouped data plots are returned 
by JPlag as the default view of the analysed submissions, individual measures being 
supplied for only the thirty most similar pairs. The distributions are broadly similar 
but the summary statistics for the SP and JP plots in Table 4.2 show that although 
there is a high rank correlation between the two measures for data set “H” this is not 
the case for data set “S”. The lower correlation for data set “S” is due in large part to 
the greater numbers of application pairs classified by SP as having very low similarity 
and larger numbers showing higher values. (Spearman’s rank-correlation coefficient 
was used as we could not assume a parametric distribution of the similarity values.)

The distributions do show a tendency for SP to emphasis the higher levels of 
similarity while deemphasising cases that do not have a great deal in common. This 
is a very useful characteristic in terms of its potential as a first-cut, similarity filter 
- reject only that which is definitely not of interest. The level of similarity tends to 
be higher for SP, the median values being higher for both data sets. The spread of 
similarity values is similar for JP and SP for the “H” data set but SP shows a greater 
diversity within the “S” data set, as evidenced by the larger interquartile range.
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SP(3) vs JP (5) (Data set "H")

SP (3) vs JP (5) (Data set"S")

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

■ ■  SP (3) 
JP (5)

Similarity

Figure 4.3: Application similarity: grouped frequency distribution for data sets “H” 
and “S”. (SP (3): path length 3; JP (5): sensitivity 5)
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Data set “H” Mean Std.Dev. Median Q1 Q3 IQ Range
SP (3) 0.79 0.16 0.81 0.88 0.73 0.15
.IP (5) 0.68 0.12 0.64 0.71 0.56 0.15

Spearman rank-coefficient 0.944
Sig. (2-tailed) 0.000

Sig. at 0.01 level

Data set “S” Mean Std.Dev. Median Qi Q3 IQ Range
SP (3) 0.42 0.25 0.46 0.58 0.27 0.29
JP (5) 0.35 0.14 0.36 0.44 0.26 0.18

Spearman rank-coefficient 0.571
Sig. (2-tailed) 0.084

Table 4.2: Application similarity: summary statistics and rank correlations for plots 
of Fig 4.3

(b) Matched-pair comparison of similarity values:

Although the shape of the SP and ,JP distributions are broadly similar, we can not 
assume that the application pairs are monotonically matched, i.e., the ordering of SP 
similarity values for application pairs may not be matched by the same ordering of 
the associated ,1P values. Figure 4.4 and Table 4.3 show the results of a matched-pair 
comparison for a random sample taken from each of the two data sets. A random 
sample of thirty submission was taken, providing 435 matched pairs, effectively a 10% 
sample. For each application pair, the two similarity values from the SP and JP 
analyses are linked, the plot being ranked in descending order of the SP similarity 
values. Again, the rank correlation is significant.

Using JP as our reference, the sufficiency of the SP approach was investigated 
further as follows. Following an extensive evaluation of JPlag, Prechelt concluded that 
a simple, absolute similarity threshold of 0.5 generally provided the best plagiarism 
detection results, i.e., all similarity values above 0.5 were selected for further scrutiny 
[Prechelt et al, 2001]. The evaluation criterion in this case; was maximisation of the 
weighted index Precision+  (3 x Recall). Accept for the moment that positive evidence 
of plagiarism may be indicative of structural similarity and reuse, and that the JPlag
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Figure 4.4: Application similarity: matched-pair distribution for two random samples 
taken from data sets “H” and “S”, ranked in descending order of SP similarity values.
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Data set “H” Mean Std.Dev. Median Qi Q3 IQ Range | SP - JP |

SP (3) 0.81 0.08 0.80 0.89 0.75 0.14 Mean S.D. Max.
JP (5) 0.66 0.08 0.65 0.71 0.60 0.11 0.16 0.08 0.34

Spearman rank-coefficient 0.435
Sig. (2-tailed) 0.000

Sig. at 0.01 level

Data set “S” Mean Std.Dev. Median Ql Q3 IQ Range | S P  -  J P \

SP (3) 0.46 0.18 0.50 0.60 0.34 0.26 Mean S.D. Max.
JP (5) 0.38 0.12 0.37 0.44 0.31 0.13 0.13 0.09 0.54

Spearman rank-coefficient 0.606 
Sig. (2-tailed) 0.000 

Sig. at 0.01 level

Tahiti 4.3: Application similarity: summary statistics and correlations for plots in 

Fig 4.4

threshold of 0.5 is a useful classifier of pair-wise similarity. In order to establish 
whether the SP approach produced a similar classification of application pairs, the 
performance of SP as a classifier was assessed, based on the JP reference classification 
and similarity threshold, by plotting a receiver operator curve (ROC) as described 
next6.

Each JP similarity value is initially classified as on-or-above, or below the threshold. 
Values on-or-above threshold identify and are labeled as “positive” occurrences. These 
positive occurrences provide the reference statistic against which each corresponding 
SP value is judged. A ROC analysis begins by setting a second threshold, or cutoff 
value, to be applied in this case to the SP similarity values. If an SP value is equal 
to or above this cutoff, and the corresponding JP value is marked as positive, the SP 
value is counted as a true positive {TP).  If the SP value is equal to or above the cutoff, 
and the corresponding JP value is not marked as positive, this is counted as a “false” 
positive (F P ). In a similar vein, based on the SP value being below the cutoff, we 
can identify both true negatives (T N ) and false negatives (F N ). Each SP cutoff value

6Hanley J.A., McNeil B.J. (1982) The meaning and use of the area under a Receiver Operating 
Characteristic (ROC) curve. Radiology 143, 29-36. An ROC is basically equivalent to the cumulative 
recall curve as applied in the domain of Information Retrieval.
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selected generates a pair of measures termed the “True Positive Fraction” (T P F ) and 
“False Positive Fraction” (F PF ) as follows:

TPF  =
TP

T P  + FN
FPF =

FP
FP + TN

the SP cutoff value, from 0 to 1 in this case, and plotting 
a ROC curve is generated. Figure 4.5 shows the ROC

By continuously varying 
the resulting pair (FPF, TPF),  
curve for the data of Figure 4.4.

ROC Curve (Data set "H")

1 ■ Specificity

ROC Curve (Data set “S")

1 - Specificity

Figure 4.5: Application similarity: ROC analysis for sampled data sets “H” and “S” 
of Fig. 4.4.

The ROC curve is normally used to optimise the cutoff value depending on an 
acceptable trade-ofT between sensitivity (— TPF)  and specificity (= 1 — FPF).  In 
the current circumstances, varying the cutoff across samples is not appropriate as a 
single cutoff value is required to represent the effectiveness of SP as a classifier. The 
ROC analysis of data set “H” showed that an SP cutoff value of 0.5 would classify 
all cases as positives, giving a sensitivity of 1.00 and a specificity of 0.00. The very 
low specificity level is the result of all 10 .IP pairs out of a total of 435 sampled and 
below the set threshold were accepted. Restating this result using precision and recall 
gives values of 0.98 and 1.00 respectively, indicating that the SP approach, at least 
in this instance, is very effective. However, in this case the actual negatives were a
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small proportion of the total, which is generally not the case, as can he seen in the 
“S” sample. In the case of data set “S”, an SP cutoff value of 0.50 gives a sensitivity 
of 0.92 and a specificity of 0.54. A good level of recall (0.92) is however not matched 
by the same degree of precision (0.26) as for data set “H”: although 56 out of 61 true 
positives were identified, 160 false positives were also selected. (A reasonable balance 
of sensitivity and specificity is probably not possible: although an SP cutoff of 0.75 
leads to a sensitivity of 0.74, it gives rise to a specificity of only 0.40.)

The difference in distribution between data sets “H” and “S” is a consequence of 
the less constrained nature of the respective assignments. Data set “H” represents a 
more limited, constrained development brief, the large majority of solutions correctly 
implementing the requirements. On closer inspection, data set “S” demonstrated 
several “noise” inducing factors: the number of classes in each submission varied from 
one to nine; there were a greater number of incomplete or incorrect interpretations 
of the requirements; and some submissions included classes that were not part of the 
solution, e.g., test classes, old versions. As a consequence, data set “H” displays higher 
levels of similarity.

(c) Containment:

A different perspective is obtained by examining the calculation of similarity from the 
viewpoint of containment, i.e., the degree to which the smaller of two structures is 
contained within the other. We would naturally expect an overall increase in similar­
ity, as the element of difference represented by the unmatched portion of the larger 
structure is discarded. However, it is important to establish the degree of change. 
The plot in Figure 4.6 shows an analysis of the sampled data sets of Figure 4.4 in­
cluding Simpson’s “overlap” coefficient. Table 4.4 provides summary statistics for the 

respective samples.

Figure 4.6 and Table 4.4 show that the distribution of similarity values has changed 
when comparing the standard SP analysis against a containment analysis. In the case 
of the sample taken from data set “H”, the median SP similarity value has increased 
from 0.80 to 0.93 and the inter-quartile range has decreased from 0.14 to 0.08. For 
the sample from data set “S”, the median has increased from 0.50 to 0.65, while the
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Figure 4.6: Application similarity: an evaluation of containment based on Simpson’s 
“Overlap” coefficient for data sets “H” and “S” of Fig. 4.4.
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Data set “H” Mean Std.Dev. Median Q1 Q3 IQ Range
SP (3) 0.91 0.08 0.93 0.90 0.88 0.08

Data set “S” Mean Std.Dev. Median Q1 Q3 IQ Range
SP (3) 0.64 0.23 0.65 0.79 0.54 0.25

Table 4.4: Application similarity: summary statistics for containment assessment of 
sample data sets of Fig. 4.4

inter-quartile range has decreased slightly from 0.26 to 0.25.

2 - Class comparison:

Having generated a set of results based on application comparison, the next stage 
involves a more detailed comparison at the level of individual classes. The approach 
is essentially the same as the previous analysis but without the grouping of classes 
as applications, and the subsequent determination of similarity by way of maximal 
bipartite match. The following experiments are essentially a repetition of those above 
but in this case all classes are pair-wise compared.

The SP approach is based on bytecode analysis and is not affected by the presence 
of multi-class source files. However, for the sake of the current comparison, cases of 
multi-class source files that generate more than one corresponding bytecode file were 
potentially a problem if we were to maintain matched sets of data, i.e., for each source 
file there is a corresponding class file. In order to retain a balanced pairing of source 
and bytecode files, this was dealt with by removing the source code for the additional 
class to its own file and recompiling. This was considered a, reasonable, consistent 
approach that did not affect the analysis, while maintaining the balance of paired 
similarity values. Data set “H” has 394 matched source and bytecode files, which on 
pair-wise comparison generates 77421 similarity values. Data set “S” has 338 matched 
source and bytecode files, which on pair-wise comparison generates 56953 similarity 
values.
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(a) G eneral d istribution  o f sim ilarity  values:

Both the Tanimoto and complemented Bray/Curtis coefficients were used to calculate 
similarity. As in the case of application match, the discussion concentrates on the 
complemented Bray/Curtis coefficient due to its being equivalent to the “coverage” 
measure of the JP analysis. The Tanimoto measure is included to provide a further, 
different, but primarily visual confirmation of the presence of similarity. (The Tan­
imoto coefficient is non-linear, at it implicitly weights against structures that have 
little in common.) The results of application comparison suggested that SP similarity 
values were generally higher than those of JP. This may have been the result of setting 
the JP sensitivity too high for the given class sizes, i.e., the majority of classes in 
the data sets were small, de-commented source code files being less than 2K in size. 
Consequently, the current comparison also includes a similarity distribution generated 
using the lowest JP sensitivity of three. The frequency-grouped distribution of pair- 
wise class similarity for data sets “H” and “S” are shown in Figure 4.7. The associated 
summary statistics are provided in Table 4.5

Data set “H” Mean Std.Dev. Median Q1 Q3 IQ Range Correlation (SP vs JP)

SP (3) 0.34 0.37 0.23 0.48 0.13 0.35 Spearman rank-coefficient
.IP (5) 0.20 0.40 0.07 0.30 0.04 0.19 0.782 (0.008) Sig. at 0.01
JP (3) 0.31 0.46 0.21 0.42 0.14 0.28 0.855 (0.002) Sig. at. 0.01

Data set “S” Mean Std.Dev. Median Q1 r*
\ IQ Range Correlation (SP vs JP)

SP (3) 0.16 0.37 0.07 0.16 0.04 0.12 Spearman rank-coefficient
JP (5) 0.14 0.35 0.07 0.30 0.03 0.27 0.830 (0.003) Sig. at 0.01
JP (3) 0.21 0.41 0.06 0.38 0.00 0.38 0.794 (0.006) Sig. at 0.01

Table 4.5: Summary statistics and correlations for plots in Fig 4.7

The distributions for both data sets are highly skewed but again show a high rank 
correlation based on the grouped similarity values. The overall level of similarity 
is generally higher for data set “H”, the corresponding median values being higher. 
Increasing the JP sensitivity has made no apparent difference in the case of data set 
”S” but has increased the median value to match that of SP for data set ”H”. Again, 
the range of similarity values tends to be larger for data set ”S”.
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Figure 4.7: Class similarity: grouped frequency distribution for data sets “H” and 
“S”. (SP(3)(BC): Comp. Bray/Curtis; SP(3)(T): Tanimoto)

1 0 7



(b) M atched-pair com parison o f sim ilarity values:

Both monotonicity and sensitivity/specificity are again evaluated in order to assess 
the sufficiency of SP class-based comparison relative to the JP reference. Five random 
samples of thirty classes were extracted from each of the two data sets, samples “HI” 
to “H5” and “S i” to “S5”. (Sets of thirty classes would normally generate 435 pairs 
of similarity values. JPlag was parameterised to return a maximum of 500 results 
but it appears to operate a minimum similarity threshold below which results are 
not provided. SP results that did not have a corresponding JP result were therefore 

discarded.)

In terms of JP sensitivity, application similarity for data set “H” shows better 
agreement between SP and JP with a sensitivity of 3. Conversely, data set “S” shows 
an improved correlation with JP at a sensitivity of 5. To begin with, based on the 
better overall correlation, the JP sensitivity was set to three. Each sample was anal­
ysed, the resulting box-plots being shown in Figure 4.8. The matched-pair similarity 
distributions of two sets of four samples are displayed in outline in Figure 4.9. The 
remaining two samples, “HI” and “S2”, which displayed the largest mean difference 
between SP and JP similarity values, are plotted as paired-value comparisons in Fig­
ure 4.10. The associated summary statistics are given in Table 4.6. Again, the rank 
correlation is significant.

Using ,JP as our reference, the ability of the SP approach to classify class pairs was 
again examined using ROC plots of the sample data sets from Figure 4.10. The JP 
reference criterion used to determine a positive match was again set at a similarity of 
0.5, the ROC plots being shown in Figure 4.11. The analysis of the sample from data 
set “HI” shows that an SP cutoff value of 0.6 gives a sensitivity of 0.94 and a specificity 
of 0.97. In the case of the sample from data set “S2”, an SP cutoff value of 0.14 gives 
a sensitivity of 0.98 and a specificity is 0.90. In both cases, the sensitivity values show 
that we can identify a high proportion of valid pairs (good recall), while keeping the 
proportion of those that should have been rejected, but were in fact retained, low.
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Figure 4.8: Class similarity: box plots for five random samples taken from data sets 
“H” and “S”. The SP and .IP distributions for each sample are presented as paired, 
adjacent plots.
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Figure 4.9: Class similarity: matched-pair comparison of SP(3) and JP(3) for four of 
the five random samples drawn from data sets “H” (Right) and “S” (Left), ranked in 
descending order of SP similarity values.
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Sp (3) v s J P  (3) (Data set "H": S1)

-SP (3) 
-JP (3)

Sp (3) vs JP (3) (Data set "S": S2)

-SP (3) 

-JP (3)

Figure 4.10: Class similarity: matched-pair comparison for the fifth random sample 
drawn from data sets “H” and “S”, ranked in descending order of SP similarity values. 
Of the five samples drawn, these had the largest mean difference in similarity values 
between SP(3) and JP(3) (Samples “HI” and “S2”)
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Data set “HI” Mean Std.Dev. Median Qi Q3 IQ Range | S P  -  J P \

SP(3)
JP(3)

0.35
0.30

0.29
0.24

0.21
0.20

0.49
0.39

0.14
0.13

0.35
0.2G

Mean S.D. Max. 
0.13 0.11 0.47

Spearman rank-coefficient 0.50G 
Sig. (2-tailed) 0.000 

Sig. at 0.01 level

Data set “S2” Mean Std.Dev. Median Ql Q3 IQ Range | S P  -  .111
SP(3) 0.17 0.28 0.05 0.13 0.02 0.11 Mean S.D. Max.
JP(3) 0.24 0.26 0.14 0.24 0.07 0.17 0.09 0.09 0.52

Spearman rank-coefficient 0.722
Sig. (2-tailed) 0.000

Sig. at 0.01 level

Table 4.G: Class similarity: summary statistics and correlations for plots in Fig 4.10

ROC Curve (Data set "H ‘: S1)

1 - Specificity

ROC Curve (Data set "S": S2)

1 ■ Specificity

Figure 4.11: Class similarity: ROC analysis for the data sets of Fig. 4.10
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However, the variation in cutoff value again highlights the classification inconsis­
tency across data sets. By re-setting the JP threshold to 0.75 and retaining the SP 
cutoff value of 0.5 this gave a sensitivity of 1.00 and a specificity of 0.81 for data set 
“HI”, the corresponding figures for data set "S2” being 1.0 and 0.99. At this higher 
threshold, the classification power of SP is dramatically improved.

(c) Feature group separation:

The experiments carried out above highlight a general, rank correlation between the 
SP and JP approaches. However, at the level of individual application and class pairs, 
we have also identified the presence of significant differences between SP and JP during 
the assessment of similarity. This can be seen both in terms of the absolute differences 
between similarity values and in the cutoff threshold inconsistency of the ROC plots.

The SP approach can be seen as the combination of two disjoint sets of features. 
Firstly, those features that capture intra- and inter-class relationships above the level 
of detailed method structure, i.e., “class” features. Secondly, those features that cap­
ture the basic-block control structure of the methods declared within the class, i.e., 
“method” features. Previously, we have combined the features from both sets to de­
termine the overall level of similarity. No account was taken ol the possible difference 
in individual contribution. This experiment examines the contribution made by the 

two feature sets in isolation.

Each of the two sets of features were independently used to repeat the matched- 
pair class comparison experiment based on the “111” and “S2” sample data sets from 
Fig. 4.10. Figures 4.12 and 4.13 show the results of the analysis. Comparing the indi­
vidual SP feature sets against the JP reference, for both samples the rank correlation 
between “class” features and JP decreased (“HI”: 0.506 —> 0.479 , “S2” 0.722 —> 0.642) 
and for “method” features it increased (“HI”: 0.595 —> 0.506, “S2”: 0.739 —> 0.722). 
However, again in both cases, the mean and maximum absolute difference between 
SP and JP increased: this was most pronounced when comparing the SP “method” 
feature set against JP for the sample from data set “S2V (Mean 0.09 —> 0.16, max. 
0.52 -> 0.83).



Sp (3) vs JP  (3) (Data set "H": S1)

Figure 4.12: Class similarity: matched-pair distribution for data set “H” sample of Fig. 4.10 
showing separation of features, ranked in descending order of SP similarity values. The top 
plot shows the “class” feature analysis superimposed on the original SP and JP analysis. The 
bottom plot shows the “method” feature analysis similarly superimposed.
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Sp (3) vs JP (3) (Dataset "S": S2)
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Figure 4.13: Class similarity: matched-pair distribution for data set “S” sample of Fig. 4.10 
showing separation of features, ranked in descending order of SP similarity values. The top 
plot shows the “class” feature analysis superimposed on the original SP and JP analysis. The 
bottom plot shows the “method” feature analysis similarly superimposed.
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The results from Figs. 4.12 and 4.13 show that the overall similarity value assigned 
by SP to a class pair is heavily weighted in favour of the “class” features. The “method” 
features appear to have little effect on the overall similarity value. The disparity in the 
number and the frequency of occurrence of features in each set was the reason behind 
this. For example, using a path length of three, there were on average 54% more 
class features than “method” features for data set “II”. This is understandable, as 
the diversity in the intra-method, edge types is much less than that of the edge types 
representing the “class” relationships. The frequency of occurrence for individual 
“class” features was on average three times that of the “method” features but this 
could in part be attributed to the generally small method sizes.

Several approaches were considered as a means of further clarify the role of “class” 
and “method” features. Firstly, calculating two similarity values based on the two 
feature sets and combining them as an average or weighted sum. Secondly, combining 
the similarity values but initially establishing a maximal bipartite match between the 
feature sets of the methods, i.e., finding the best match between the two sets of method 
based on their individual features. Thirdly, reducing the number of “class” features 
extracted. This latter option could be achieved by reducing the maximum path length 
but at the expense of reducing the ability to differentiate sufficiently between structures 
as a result of loosing contextual information. A smaller path length captures less local 
context, as the possible extent of the relationships captured by individual features is 
reduced. Alternatively, this could be achieved using “rooted” class features. Rather 
than visiting all nodes in the structure graph and extracting all structure paths up to a 
given maximum length, “class” features would only be extracted for paths starting at 
the “root” vertex, i.e., that vertex representing the analysed class itself. Conceptually, 
this is reasonable, as the class structure is naturally hierarchic and rooted at the main 
class vertex. Practically, the loss of local contextual information resulting from the 
reduction in number of features might be problematic. However, from the perspective 
of “class” features, the path length being at least three, and the depth of the graph 
relative to the “root” vertex being only two, this should provide sufficient variation in 
the feature, while maintaining a reasonable level of context. The main loss of context 
would involve relationships between vertices at the lower level of the structure graph, 
i.e., parameter, return, external field and external method vertices. The rooted path 
approach has a major, additional benefit in that it can reduce the overall complexity
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of feature extraction. Combining these options was also considered but this could have 
lead to overcompensation. Re-weighting the “class” features was also considered, e.g., 
using relative as opposed to raw frequency. The reduction in computational overhead 
provided by “rooted” paths was initially preferred but we return to the issue of feature 
weighting in Chapter 5.

A further experiment was conducted based on “rooted” class features. The ex­
traction of method features remained unchanged: adopting a “rooted” approach here 
would not be practical, due to the potential depth of the basic-block method graph. 
In order to capture sufficient context, the path length would have to be increased to 
at least the depth of the largest method graph, well beyond acceptable computational 
limits. Figure 4.14 shows the result of introducing “rooted” features into the similarity 
calculation as applied to the data set of Fig. 4.12. The rank correlation has increased 
slightly from 0.506 to 0.578, but the difference between SP and JP values has been 
only slightly reduced from a mean of 0.13 (Std.Dev. 0.11), to a mean of 0.12 (Std.Dev. 
0. 10) .

Sp (3)(R) vs JP (3) (Data set "H": S1)
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£
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Figure 4.14: Class similarity: matched-pair distribution for data set “H” sample of Fig. 4.10 showing 
the effect of using rooted “class” features. The plot shows the “rooted” feature analysis superimposed 
on the original combined analysis of SP and JP. The ranking is in descending order of the original SP 
similarity values.
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A second experiment using bipartite matching of method features and an arith­
metic averaging of “class” and ” method” similarities produced the results shown in 
Figure 4.15. In this case the rank correlation decreased from 0.506 to 0.478, while the 
distribution of differences between SP and JP values has remained the same.

F igure 4.15: Class similarity: matched-pair distribution for data set “H” sample of Fig. 4.10 showing 
the effect of using an average of the “class” and maximally matched “method” features. The plot 
shows the averaged feature analysis superimposed on the original combined analysis of SP and JP. 
The ranking is in descending order of the original SP similarity values.

(d) Some further observations:

Some of the class pairs from the samples of Figures 4.12 and 4.13 were examined in 
more detail in order to gauge the general performance of the two approaches and in 
particular to try and identify factors responsible for the observed differences.

In general, those cases where there was a large difference in assigned similarity 
value can be placed in one of two main categories, “missed match” and “inappropriate 
match”. •

• High SP value, low JP value
In some cases, the similarity value assigned by SP was much higher than that
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of .IP . On closer examination, the classes did indeed have very similar rela­
tional structure, including method signatures, called methods, field operations 
and method control structure. The low value assigned by JP was due to the 
number and order of statements within the methods’ basic blocks being suffi­
ciently different to prevent, the formation of matching tiles. These differences 
represented either “missed match” where the corresponding code blocks were 
essentially equivalent and the SP value justified, or spurious, “inappropriate 
match” where the code block were indeed significantly different and the SP value 
unjustifiable. This type of spurious match, where the identification of similar re­
lational structure could not adequately reflect differences in the method detail, 
was identified several times in the SP analysis.

In some cases of “missed match”, the difference between SP and JP could be 
markedly reduced by reorganising the source code. By reordering the position 
of methods and statements, where statements and code blocks were order inde­
pendent, the similarity value returned by JP could be increased by as much as 

35% in selected cases.

• High JP value, low SP value
JP can assign a much larger similarity value than SP in cases where tiles are 
matched inappropriately. Tokens can be matched across methods: tokens from 
a single method of one class can be matched with tokens from more than one 

method in the compared class. This was more apparent following the reduction 
of the JP sensitivity from five to three. Indeed, Prechelt warns that a sensitivity 
of three can lead to potentially high levels of spurious match which may well 
be the case here [Prechelt et al, 2000;2001]. The converse was also observed 
in that cases of higher SP values on comparison with JP and a sensitivity of 
five were legitimately reduced on comparison at a sensitivity of three. This was 
more pronounced in the case of the “H” data set, which has smaller methods, 
the larger minimum tile size preventing the identification of small sections of 
matching code.

The current JP token set makes no distinction between reference and primitive, 
static and non-static fields, between different methods and method calls, e.g., con­
crete, abstract, static, or indeed between method signatures. As a result, fields, field
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operations, methods and method calls are represented by tokens that do not apply any 
form of subcategorisation. This can lead to an indiscriminate mapping of these tokens, 
irrespective of the actual subcategorisation found in the code. SP encodes this type of 
subcategorisation in its feature set and additionally encodes the relational structure 
existing between the various elements of the class. It also explicitly captures method 
signatures in a form that is order independent. This constrains the allowable match, 
principally at the “class” level rather than the internal “method” level, although the 
two are not independent. Due to the inappropriate matching of tiles by JP, and the 
additional relational constraints imposed by SP, this can account for some of the JP 
similarity values being higher than the corresponding SP values.

As mentioned above, SP can generate spurious matches based on essential differ­
ences at the level of method statements. This can be compounded by an “averaging 
effect” which in some ways is similar to the cross-method tile match that can occur in 
JP. Pairs of classes with differing method numbers and structures can be assigned high 
method-level similarity values. In these cases, the aggregated frequencies of “method” 
features for both classes are broadly similar. This is usually due to the presence of a 
large method supplying enough feature instances to counter, or average out, the differ­
ence in method number and structure. This “averaging” or diffuse match can give rise 
to an artificially high value of “method” similarity. The current SP “method” feature 
set has a limited effect on the overall calculation of similarity. Feature aggregation, in 
addition to the already limited “method” feature types, further undermines the sole 
use of method control structure as a means of qualifying the structural match, leading 
to the generation of inappropriate SP similarity values.

In the case of application match, the JPlag assessment of similarity does not prevent 
cross-class matching: although tiles can not be generated that cross class boundaries, 
tiles from a file in one set can be matched across more than one file in the second 
set. Again, useful in the context of plagiarism detection but here it distorts the 
comparison between SP and JP, as SP prevents cross-class match. This appears to 
be more prevalent at lower levels of similarity and probably accounts in part for the 
pattern seen in Figure 4.4, where at lower levels of similarity the SP values tend to be 
smaller than or closer to the corresponding JP values.
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4.6 Discussion

This discussion focusses primarily on the similarities and differences between the SP 
and JP results but begins by considering some general issues relating to reuse in the 
context of the coursework submissions.

Application comparison aimed at establishing whether the SP approach could pro­
vide any evidence to support the notion of “identical task environment” reuse. The 
levels of similarity found in both data sets can not be considered coincidental and does 
clearly identify the recurrence of similar structure, being more pronounced in the case 
of data set “H” (Figures 4.3 and 4.4. Tables 4.2 and4.3). Data set “If” represented 
a more constrained development exercise and this is reflected by the level of struc­
tural similarity being higher than for data set “S”. The similarity levels for “S” could 
have been higher were it not for the presence of “noise”, in the form of incomplete or 
incorrect submissions, or additional, unnecessary classes.

It was reasonable to expect an increase in similarity when investigating contain­
ment, as it expresses the degree of common structure relative to the smaller of the 
compared classes. However, what is interesting is the size of the change and how it can 
affect the process of identifying significant common structure (Figure 4.6, Table 4.4). 
Doth data sets show an increase in the level of similarity, particularly in the case of 
data set “S”: the shift in median value is such that more than 50% of the values are 
above a similarity threshold of 0.5. This represents a significant increase with respect 
to the original calculation of similarity, which placed less than 25% of cases above 
the same threshold. What this experiment does not take into account is the absolute 
size of the common structure identified. Small, potentially trivial structures that are 
largely or completely contained within larger structures, will generate high similarity 
values based on a containment measure. Two similar, small structures may generate 
ft high similarity value but be of little consequence due to their size. That said, any 
frequently recurring common structure, be it large or small, is potentially significant 
as a reuse marker. Alternatively, a small and a large structure, although generating 
a low similarity value, may represent a significant amount of common structure when 
stated in terms of the smaller of the two. Again, the frequency of recurrence is a 
key issue as is the absolute size of the common structures identified. This experiment 
highlights the need to carefully consider the choice of appropriate similarity thresholds
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- absolute and relative - when deciding what is potentially of interest.

Turning to the comparison between SP and JP, the two approaches differ in intent 
and this is indeed generally reflected in the presented results. However, they both 
approach similarity from the common standpoint of the analysis of code structure 
and this is also reflected to some degree in the results. In general, the levels and 
spread of similarity do not form a consistent pattern of difference between the SP 
and JP approaches. From the application-level analysis, the median similarity values 
and inter-quartile ranges show that although the SP values for data set “H” tend 
to be higher but similarly spread, those for data set “S” tend to be lower and more 
widely spread. As mentioned above, this is probably related to the level of “noise” in 
the “S” submissions. Class comparison is similar in that data set “H” shows higher 
levels of similarity than set “S” but in this case the spread of vales is less for “H” 
(Figures 4 .7 , 4.8 and 4 .1 0 ). Rank correlation is significant between the matched-pair 
results for both application and class comparison (Tables 4.3, 4.5 and 4.6). Irrespective 
of whether the measurement of structural similarity is carried out using SP or JP, the 
likelihood that two pairs of applications or classes are placed in the same order of 
similarity is significant. However, we can clearly see from the graphs that SP and JP 
are not strictly monotonic and indeed the measured differences can be quite large. 
The plots in Figures 4 .4 , 4 .!) and 4.10 clearly illustrate the disparity between the two 
approaches. On examining the absolute differences between matched similarity values 
ft'om the applications analysis, although the mean difference was less than 0.15, the 
maximum difference was greater than 0.3 for both data sets: data set “H” had a mean 
difference of 0.16 (Std. Dev. 0.08; Max. 0.38) while data set “S” had a mean difference 
°f 0.13 (Std. Dev. 0.09; Max. 0.54). The difference is not so great for individual chiss 
comparison but again the plots of Figure 4.10 and the associated summary statistics 
nr Table 4.6 show that although there is a deal of agreement between the analyses, the 

differences can not be ignored.

Applying a ROC analysis to the application similarity values, comparing SP against 
JP as our reference, showed that reasonable and consistent levels of sensitivity and 
specificity are not generally possible, i.e., a single, universal and effective cutoff value 
can not be set (Figure 4.5). While we can achieve both good sensitivity and specificity 
>n the case of data set “H”, good sensitivity for data set “S” comes at the expense of 
Poor specificity. At an SP cutoff level of 0.5, we can detect almost all positive cases but
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at the expense of accepting a very high proportion of those pairs that should have been 
rejected. In the case of class comparison (Fig. 4.11) we can again achieve very high 
levels of sensitivity and specificity but the variation in cutoff value required confirms 
the classification inconsistency that occurs across the data sets. By raising the JP 
threshold from 0.5 to 0.75 and repeating the ROC analysis for the class pairs, a cutoff 
value of 0.5 gave good sensitivity and specificity for both data sets. In general, SP 
similarity values are higher than those of JP, suggesting that SP may not discriminate 
between compared structures as well as JP. Rasing the JP threshold for ROC analysis 
suggests that SP is currently able to better identify instances of higher similarity. 
Of course, this conclusion assumes that JP provides a valid, useful classification in 
the first place. The JP approach is not without its limitations, leading on occasion 
to inappropriate or missed matchs. This must be born in mind when drawing any 

conclusions based on the comparison of SP with JP.

In addition to the observations relating to “missed match” and “inappropriate 
match” outlined above, the principle factors contributing to the observed differences 
between SP and JP are the “class” feature orientation of SP, and the limited ability 
of SP to capture and use method details as a means of qualifying the higher-level, 
“class” feature match. SP concentrates on matching relational structure representing 
the associations and interactions that occur between the elements of a class, above 
the level of detailed method structure, i.e., it takes account of the field operations and 
method calls occurring within a method but not the details relating to the number, 
type and ordering of individual statements. JP concentrates on matching tokenised 
blocks or tiles corresponding to one or more sequential statements thus capturing 
a more detailed picture of internal method structure. However, this can be at the 
expense of missed match or inappropriately matched t iles as discussed above. The SP 
feature set is also sufficiently rich to take account of a limited subcategorisation of 
fields, methods and method calls, which is not reflected in the current token set used 
by JP.

While JP concentrates on identifying a mapping between disjoint blocks of to­
kenised source code from two classes, the level of abstraction is such that semantics 
governing the relationships between methods and fields are not explicitly captured. 
I'he tokenisation process of JP captures a great deal of the structure of the source 
code in terms of statement-level, method structure, i.e., the control structures used,
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method calls and variable assignments made within a method. SP on the other hand 
concentrates on capturing the inter- and intra- class relationships, primarily in terms 
of the hierarchical structure of the elements forming a class, including its methods, 
fields, field operations and method calls. In particular, although SP captures the in­
teractions between a method and other internal and external fields and methods, the 
representation of the method itself is limited to its control structure. Whereas .IP 
relies on the tokenisation process operating at the statement level, SP does not. SP 
distinguishes between reference and primitive field types and the operations performed 
on them. The current .IP token set doesn’t make this distinction. However, both ap­
proaches do not force a consistent mapping of tokens or features, in that all operations 
on a given field, or all calls to a given method, are not necessarily mapped onto the 
same matched fields or methods in the two classes.

The JP approach relies on the minimum tile size to build context and so help 
disambiguate between various possible mappings within the code. The larger the 
tile size the greater the level of context captured and the less likely it is to generate 
inappropriate matches, e.g., cross-method matching. In the case of SP, context is 
provided by the set of features associated with each vertex and is again based on 
the relationships that exist between elements of the class as opposed to operating at 
the level of individual and groups of contiguous statements. These factors probably 
account for a proportion of the observed differences, a large part of the remainder 

being due to spurious match at the “method” level.

A limitation of the current SP model is its inability to adequately differentiate 
between structure at the method level. The model attempts to capture the method 
control structure in order to qualify the “class” level match. Unfortunately, as seen 
in Figures 4 .1 2  and 4 . PI the overall determination of similarity is heavily weighted to­
wards the “class” features. This was improved upon slightly by reducing the number 
of features and feature counts by introducing “rooted” paths when extracting “class” 
features. However, the resulting difference, in terms of rank correlation and the profile 
of absolute difference, was minimal (Fig. 4.14). The “averaging” effect of aggregated 
“method” features is also problematic. This does not respect method boundaries, fea­
tures being indiscriminately matched across methods ol the compared classes. Again,
this leads to a distortion of similarity values. The “class” match needs qualification: 
better than expected similarity values can be obtained due to the “class’ structure



being very similar but the methods being quite different. Different both in terms of 
control structure and the more detailed semantics of the types, temporal order and 
frequency of the relationships existing within the method, and between the method 
and other internal and external elements associated with the class. In these cases, 
the relational aspects of the modelled code do not compensate for the loss of method 

detail in determining similarity.

Further, due to the rich “class” feature set, and the number of feature associated 
with each ARG vertex, differences identified at the “class” level resulting from only one 
different method can have a disproportional effect on the calculated similarity, leading 
to an artificially low value. This appears to be due to the nature of the structure 
path features: larger features contain or are associated with many overlapping smaller 
features and consequently disparity in the numbers of larger features is seen to have a 
disproportionate effect on the calculated similarity value. As previously discussed in 
Chapter 3 , this could lie addressed by weighting features in inverse proportion to their 
size, smaller structure paths being more heavily weighted. However, as the similarity 
values of identified cases tended to correctly identify significant comparisons, this was 

set aside as further work.

Two problems remain to be addressed here. Firstly, we require a means of lim­
iting the “averaging” effect of cross-method feature matching, a means of localising 
the comparison. Secondly, in order to improve discrimination, we need to increase 
the amount of information captured for each method. This could possibly be dealt 
with by (a) increasing the context associated with vertices in the basic-block graph of 
each method, by adding edges between basic blocks and related fields or methods, or 
(b) incorporating edges that capture information relating to data dependency between 
basic blocks, or c) enhancing the internal control structure currently captured by cat­
egorising basic-blocks based on their individual properties, e.g., internal and external 
method calls.

Whether or not the structures identified as common do in fact, represent a poten­
tially useful classification of classes is not clear at this stage. We have shown that 
there is a link between the SP and JP approaches in terms of rank correlation and 
to a lesser degree classification. However, significant differences exist due to the pro­
cesses emphasising different aspects of the same structure. In its current form, the SP
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approach is limited due to its inability to adequately differentiate between methods 
thereby resulting in inappropriately high similarity values in some cases. In one re­
spect, this is beneficial, being as the tendency is to promote recall at the expense of 

precision.

4.7 Summary

This chapter took the formal model of object-oriented code developed in Chapter 3 
and gave it an instantiation in the context of the Java language and its executable class 
format, bytecode. An experimental assessment of the structure path (SP) approach as 
a means of determining structural similarity between classes and groups of classes was 
carried out. The JPlag (JP) plagiarism detection system was selected as a reference 

against which the structure path approach could be compared.

Although the SP approach is currently limited by its failure in some cases to 
adequately discriminate between individual method structure, the results of the eval­
uation are promising. At a level of structure represented by the relationships between 
constituent elements of a class, SP is capable of identifying the presence of common 
structure. This conclusion is based on the assumption that the reference JP method is 
itself capable of correctly classifying source code structure. 1 his assumption is reason­
able in the light of the original JP evaluation carried out in [Prechelt et al, 2000;2001]. 
Although the two approach emphasise different aspects of code structure in calculating 
similarity, and some limitations in the JP method have been identified, the classifi­
cation power of SP relative to JP is reasonable, particularly in cases demonstrating 
higher levels of similarity. It should be noted that in contrast to JP, SP emphasises 
the peculiarly object-oriented features of the class as an organising principle: classes, 
those entities comprising a class, and the intra and inter class relationships existing 
between them, are the significant factors upon which similarity is based. SP attempts 
to capitalises on the more discriminating features of its underlying model, e.g., the 
explicit relational structure and the order-independent capure of method signatures.

Given the nature of the selected data sets, and their interpretion as examples 
of particularly constrained “identical task environments”, confidence in the reported 
results and the predicitve power of SP, were it transferred to a less constrained, gen­
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eralised setting, is further enhanced. The a priori, higher probability of the presence 
of similarity did not undermine the degree to which recurring structure could be iden­
tified, the approach providing sufficient discrimination to highlight potential cases of 
significant similarity, while simultaneously rejecting dis-similar cases.

The main failing of SP is its global assessment of similarity, in particular its in­
ability on occasion to localise and accurately determine the degree of similarity at 
the individual method level. The next chapter examines an approach to the local 
measurement of similarity which aims at addressing these shortcomings.
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Chapter 5

S tru c tu re  G rap h  M atch ing

5.1 Introduction

Chapter 4 defined a formal, relational model of object-oriented code structure which 
provided the foundation for an approach to Java bytecode analysis and class compar­
ison. The derived vector-space representation of a Java class was used to quantify the 
(sub-)structural similarity between individual classes, thus providing a global measure 
of structural similarity. This provides a reasonably low-cost method that effectively 
attempts to approximate the potential similarity between two AEGs. However, this 
global measure is limited in two key respects: firstly, it is an approximation of overall 
class similarity and secondly, it doe not identify those AEG elements responsible for 
the measured similarity. In order to address these limitations we require a more de­
tailed, local examination of individual vertices and edges, and their respective syntactic 
(names) and semantic (attributes) labelling.

This chapter concentrates on developing a method of extracting common sub­
structure from pairs of Java classes as represented by their ARGs. This involves 
applying graph matching techniques to the Java byte-code graphs as explained in 
Chapter 3. An introduction to the general concept of graph matching is followed 
by a more detailed look at one particular approach based on clique detection [Ear- 
row and Burstall, 1970]. In order to support searching for common structure in Java 
class files, limitations imposed by this generic approach are addressed through modifi­
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cations that incorporate specific characteristics and constraints peculiar to the domain 
of class-file analysis. In addition, this chapter describes a novel combination of a de­
terministic clique detection algorithm and a heuristic approach based on an hybrid 
genetic algorithm, as a means of maximising the possibility of identifying common 
structure in larger classes.

A direct parallel is drawn between the proposed approach and that currently em­
ployed within similarity searching of molecular databases by implementing a two-phase 
analysis of structural similarity, i.e., feature-vector extraction and a global measure 
of similarity acting as a possible filter to the more demanding local assessment of 
common (sub-)structure. Searching a database of molecular structure first involves 
screening out unlikely candidate molecules using a low-complexity similarity measure 
based on feature vector representation. Those remaining candidates are subjected to 
a more detailed, but complex, local, atom-centered comparison in order to finally de­
cide if an appropriate match has been found [Downs and Willett, 1996]. Based on 
a set similarity threshold, feature-vector screening could provide a predictive ranking 
of paired classes, those above threshold being candidates for further local analysis. 
Essentially, this rationale aims at minimising the number of local comparisons, which 
are expensive in relation to the global measure of similarity.

5.2 Graph M atching

The concept of graph matching is applied across a wide variety of problems and dis­
ciplines. In particular, pattern matching and assessment of structural similarity by 
graph theoretic means are key techniques within the domains of computer vision [Bal­
lard and Brown, 1982] and molecular chemistry [Willett, 1999].

In describing and defining the concept of an ARC. in Chapter 3, the complementary 
notion of matching ARGs based on structure preserving mappings, i.e., morphisms, 
was briefly introduced. All structural similarities between ARGs can be formally 
represented as ARG morphisms. Their relevance within the current context relates to 
the identification of those structural elements responsible for any perceived similarity 
between two Java classes, as represented by their respective ARGs.
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Informally, a matching between two graphs identifies a set of vertices and edges 
in one graph that allow a consistent, one-to-one correspondence with a set of vertices 
and edges in a second graph. Consistency in this case refers to one of two basic 
structure-preserving constraints, giving rise to two distinct notions of match. A vertex- 
induced match requires that the number and types of connecting edges between pairs 
of matching vertices must be the same in each graph. An edge-induced match requires 
the correspondence of vertices that connect pairs of corresponding edge units, where 
an edge unit comprises an edge and its two incident vertices. In the case of directed 
graphs, edge orientation constitutes a further constraint on the match - in order for 
two edges to match, their adjacent vertices must match and in turn edge orientation 
must be consistent based on this vertex match.

5-2.1 Fundamental Graph Match

At, its most fundamental, graph match is formally characterised by the morphisms 
previously described. The various morphisms effectively represent an hierarchy of 
constraints that capture types and degrees of match. Graph isomorphism (GI), which 
requires a bijective mapping between vertices and edges of the matched pair of graphs, 
can be interpreted as structural equivalence. Subgraph isomorphism (SGI), which rep­
resents a bijective mapping between a graph and a proper, vertex-induced subgraph 
of its match partner, can be interpreted as containment - the degree of match between 
t he two graphs being quantified in terms of the order of the smaller relative to the 
order of the larger of the two graphs. Subgraph monomorphism (SGM) also repre­
sents containment but relaxes the SGI constraint requiring that vertex adjacency be 
preserved. In this case the subgraph is edge-induced as opposed to vertex-induced, 
t he degree of match being quantified in terms of the size of the smaller relative to the 
size of the larger of the two graphs. Finally, bi-directional subgraph isomorphism can 
be interpreted as structural overlap, an isomorphism existing between vertex-induced, 
proper subgraphs of the two graphs. Relaxing the SGI constraint in this case defines 
a bi-directional subgraph monomorphism. As a general measure of similarity and a 
means of identifying the structural basis of the similarity, bi-directional subgraph mor­
phisms are of particular interest. It is shown in [Bunke and Shearer, 1998] that the size 
°f a maximum, bi-directional subgraph isomorphism (Maximum Common Subgraph)
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can be incorporated into a valid similarity metric. Given two graphs G\ and f/2 i the 
similarity between them is given by:

s{Q i ,a 2)
\mc.s(Q\,Q2)\ 

max(\Gi\, l&l)

where |mcs(^1,^2)| is the order of the MCS between the two graphs and \Gi\ is the 
order of graph Gi- (Based on treating vertices as features, this similarity metric is 
basically equivalent to the complement of the Soergel metric described in Chapter 3.

Although graph isomorphism is in itself extremely useful as a means of identifying 
and expressing exact match, the practical application of graph matching is predomi­
nantly based on subgraph and bi-directional subgraph isomorphism. At the expense of 
being computationally more demanding, the graph-isomorphic constraint is relaxed to 
provide degrees of containment or overlap, up to and including structural equivalence.

It is important to draw a distinction between a relative measure of similarity as 
provided by the graph match process and the absolute size of identified common struc­
ture. Depending on the size of the compared ARGs, high levels of similarity can be 
represented by common structure of widely differing size, while low similarity may 
mask common structure which could in absolute terms be significant. In addition, 
significance or triviality may not be solely a function of size but of other factors, such 
as frequency of occurrence, or more abstract notions of validity based on the properties 
- good and bad - of known structural patterns. In this chapter our initial concern is 
with the identification of common structure between similar ARGs but we must not 
loose sight of the fact that in terms of absolute size, frequency of occurrence, or other 
factors, significant, common structure may lx; present in otherwise dissimilar ARGs.

The difference between monomorphic as opposed to isomorphic match can lx1 a sig­
nificant factor in defining the nature of structural similarity. [Barrow and Burstall, 1976] 
is an early example of a large body of work based on a vertex-induced model of graph 
match. In [McGregor, 1982], [Nicholson et al, 1987], and more recently [Chen and 
Yun, 1998], the choice of edge-induced subgraph monomorphism is argued as being 
less restrictive and more appropriate in terms of the particular domain semantics, 
and in addition more computationally manageable. The choice of morphism is obvi­
ously determined by those features of the domain semantics reflected by the edges of 
the model graphs: where consistency equates to the equivalence of the relations be­
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tween corresponding vertex pairs, a vertex-induced, isomorphic match is required. The 
proposed approach to class-based ARG comparison is based on an isomorphic, vertex- 
induced model of graph match. This is primarily based on the initial formulation of 
a domain-level constraint requiring matched pairs of vertices to be similarly related. 
A de cision was made at the outset requiring that ARG vertices representing matching 
elements of two class structures also maintain edge consistency, e.g., if a method-field 
pair in one ARG matched to a method-field in the second, any edges representing field 
operation in the first must be present in the second. At the expense of violating this 
requirement, the use of a monomorphic, edge-unit model of match could reduce the 
order of the correspondence graphs and so make larger classes amenable to analysis 
[Nicholson et al, 1987][Chen and Yun, 1998]. This issue is the subject of further work.

5.2.2 Labeled Graphs

The main problem associated with graph matching is its associated complexity. In 
general, graph matching belongs to the class of problems which in the worst case tend 
towards exponential time and space requirements as the order of the graphs increases. 
Subgraph isomorphism, and consequently the more demanding bi-directional subgraph 
isomorphism, is known to belong to the class of decision and enumeration problems 
which are NP-complete, i.e., no algorithm is currently known which guarantees to 
solve such problems in polynomial-time [Garey and Johnson, 1979]. Consideration of 
average-case rather than worst-case complexity may present approaches to manage­
able solutions in some circumstances. [Ullmann, 1976] states that graph isomorphism 
for randomly generated graphs can be achieved in time roughly proportional to the 
cube of the order of the smaller order graph. Some problems are tractable if they can 
be represented by certain restricted classes of graphs: domain-specific characteristics, 
reflected as topological constraints within the representative model graphs, may re­
sult in linear or polynomially-bounded approaches. For example, planar graphs have 
linear-time complexity for subgraph isomorphism [Eppstein, 1994]; subgraph isomor­
phism of trees, and almost-trees of bounded degree, is also possible in polynomial-time 
[Akutsu, 1993]. Where the use of such topological constraints is limited, incorpora­
tion of domain-specific knowledge associated with individual vertices and edges of the 
model may be the only means of limiting complexity. This is illustrated later in this
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chapter.

Fundamental graph match assigns no significance to graph elements other than 
their definition as either vertices or edges. Vertices are indistinguishable except possi­
bly by degree, while edges are distinguishable ordy by virtue of their incident vertices, 
and the ordering of these vertices in the case of directed graphs. In Chapter 3 this basic 
graph model was extended to incorporate syntactic and semantic domain knowledge. 
Vertices and edges were labeled as named and attributed primitives and relations. 
Labeling introduces an additional computational overhead in that vertex and edge 
comparison is more involved, and in order to assign names and attributes, elements in 
the problem domain corresponding to vertices and edges in the graph model require 
deeper analysis. Offset against this, the introduction of domain-specific knowledge 
into the matching process helps limit the number of potential matches, which in turn 
can substantially reduce the overall complexity.

5.2.3 Matching Labeled Graphs

Initial approaches to graph matching aimed at deterministic, optimal, exact solu­
tions [Corneil and Gotleib, 1970; Ullraann, 1976; Levi, 1972]. Their goal was to pro­
vide tractable solution to finding maximum matchings, where elements of the graphs 
matched exactly, i.e., no account was taken of possibly legitimate distortions in the 
compared graphs, which, given the domain semantics, would be otherwise considered 
equivalent. Labelling, if any, tended to be limited to symbolic or numeric naming 
of vertices and edges. It became apparent that in the absence of further domain 
knowledge able to limit the scope of the matching process, finding solution to such 
combinatorial problems was in general going to be extremely difficult. The exten­
sion to incorporate structured labeling, such as the names and attributes associated 
with the primitives and relations of our ARG model, was seen as a means of re­
ducing the search space for potential matches and allowing for the incorporation of 
inexact match [Tsai and Fu, 1979]. Recent algorithms which capitalise on the im­
proved knowledge content of such ARGs are Mesmer’s network-based approach to ex­
act, and inexact match [Messmer and Bunko, 1998] and Cordelia et alls “VF” algorithm 
[Cordelia et al, 1999]. Both these approaches are in essence based on backtracking tree 
search.
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Backtracking Search

Traditional backtracking tree search or state-space search [Nilsson, 1982] forms the 
basis of direct approaches to both exact [Ullmann, 1970] and error-correcting graph 
match [Tsai and Fu, 1979; Shapiro and Haralick, 1981; Tsai and Fu, 1983]. In the 
worst case, and where an uninformed, “brute-force” approach is taken, this is expo­
nential in the order of the graphs. However, improvements are realised in practice 
by introducing various admissible heuristics such as forward checking; discrete relax­
ation techniques such as lookahead [Ullmann, 1976; Shapiro and Haralick, 1983]; and 
future-error estimation [Messmer and Bunke, 1998].

Correspondence Graphs

An alternative, indirect, matching strategy is based on the analysis of a correspondence 
(association) graph derived from mutually compatible pairs of corresponding vertices, 
one taken from each of the two graphs being compared [Barrow and Burstall, 1976]. 
This clique detection approach to graph match is described in detail in Section 5.3. As 
in the case of backtracking tree search, worst case performance is exponential, the order 
and density of the derived graph being the determining factors1. Again, heuristics can 
be introduced in order to reduce the complexity in specific cases to within useable, 
useful limits. Consequently, this approach finds successful applications in areas such 
as molecular matching [Gardiner et al, 1997] and the matching of relational structures 
in computer vision [Ballard and Brown, 1982].

The approach benefits from its ability to deal with the previously identified range 
of match possibilities based on establishing various morphisms between two graphs, 
and in particular, bi-directional subgraph isomorphism [Barrow and Burstall, 1976]. 
When comparing similar domain-specific problems, it can have a significantly lower 
complexity than backtracking tree search [Chen and Yun, 1998]. The specific details 
captured by an ARG, and the criteria governing the process of mapping corresponding 
vertices and edges between matched ARGs are domain dependent. Graph match by 
clique detection enables a separation of the domain-specific details from the actual

1 Given a correspondence graph G c =  ( V C} E c ) ,  graph density is a measure of the likelihood that an 
edge exists between two vertices and is calculated from



process of identifying common subgraphs. This is particularly useful as the indepen­
dence of the graph-theoretic clique detection process from the domain-specific factors 
provides a greater degree of implementation stability, while enabling the introduction 
of a wealth of theoretical experience in the field of clique detection as summarised in 

[Boinze et al, 1999].

Graph match can be further classified depending on whether an exact or error- 
correcting match is required, and further still based on whether an optimal or approx­
imate solution is generated.

Inexact Match

The concept of inexact graph match was introduced in order to accommodate the pos­
sibility that differences between compared graphs could be due to legitimate variation 
in the modelled domain and /  or errors introduced as part of the modeling process. 
One approach to inexact graph match has been realised by way of calculating the 
edit-distance between two graphs: similarity is determined by calculating the cost of 
inducing a graph or subgraph isomorphism through the application of a series of “edit 
operations” to one of the graphs. Vertices and edges are substituted, deleted or in­
serted and a cost associated with each operation, the minimisation of the total edit 
cost providing a measure of similarity [Tsai and Fu, 1983; Bunke and Messmer, 1998],

Depending on the domain being modelled, inexact match by edit-distance may 
not be appropriate: edit operations may not translate into meaningful actions in the 
modelled domain giving rise to difficulties interpreting the measure of similarity. As a 
means of determining image similarity [Shearer et al, 1998] advocate an approach to in­
exact match based on the maximum bi-directional subgraph isomorphism rather than 
edit-distance. It is interesting to note that the effective equivalence of the two meth­
ods was demonstrated in [Bunke, 1997] where bi-directional subgraph isomorphism is 
shown to be a special cased of edit-distance under a particular cost function. While 
edit-distance emphasises the structural differences between two graphs, bi-directional 
subgraph isomorphism emphasises commonality in the compared structures. Conse­
quently, as a means of determining both exact and inexact graph match, in addition to 
identifying the contributing commonality, the use of bi-directional subgraph isomor-



pliism ¡h a significant element of our approach to the analysis of structural repetition 
in object-oriented code.

Approximate Approaches

The NP-complete nature of graph matching is ultimately inescapable: for problems 
where the order and density of input graphs is large, and neither heuristic nor domain 
knowledge can sufficiently limit the search space size, approaches based on optimal 
solutions to exact and inexact match become impractical. In such circumstances, 
polynomially-bounded, approximate approaches have been used at the expense of op­
timality. Approximations based on advanced search heuristics have shown varying 
degrees of success, both by way of direct graph comparison and clique detection. 
Techniques such as tabu search, simulated annealing and neural networks, as outlined 
in [Bomze et al, 1999]; optimisation using genetic algorithms [Marchiori, 1998]; and 
probabilistic relaxation [Wilson, 1990] have been applied to the graph match problem.

5.3 Labeled Graph M atching by Clique D etection

The vertex-induced subgraph defined by a bi-directional subgraph isomorphism is 
usually referred to as a common subgraph. A maximal common subgraph is one that is 
not properly included in any other common subgraph. A maximum common subgraph 
(MCS) represents the largest common subgraph of two graphs. A subgraph in which its 
vertices are pairwise adjacent is a complete, subgraph. A maximal complete subgraph, 
or clique, is one that is not properly included in any other complete subgraph.

As a measure of similarity, the intuitive appeal of the MCS has been the basis of 
many approaches to structural comparison. A more general, “best match” approach, it 
relaxes the strict requirements of graph isomorphism. Rather than looking for an exact, 
structurally equivalent match, MCS effectively represents structural commonality. As 
well as identifying the common structure, it also provides a measure of the degree 
of match and indeed its metric properties have been proven as previously mentioned 
[Bunke and Shearer, 1998].
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5.3.1 MCS by Clique Detection

In [Levi, 1970], an approach to the extraction of maximal common subgraphs is de­
fined based on the notion of “compatibility classes”, i.e., sets of vertex pairs that 
define isomorphic subgraphs. By representing sets of corresponding vertex pairs, one 
from each graph, and their mutual compatibilities as a graph, the identification of 
maximal “compatibility classes” - equivalent to the previously defined clique - within 
th is derived graph provides a means of enumerating all maximal common subgraphs. 
These principles of vertex correspondence, mutual compatibility and clique detection 
form the basis of an approach to generalised structural match, where the MCS prob­
lem is transformed to that of finding maximum cliques of a general, correspondence 
graph (CG). This was pioneered in the context of computer vision as described in 

[Ambler et al, 1975; Barrow and Burstall, 1976].

A Simple Example

For the sake of illustration but without loss of generality, the following example is 
limited to consideration of ARGs that only employ syntactic labeling, i.e., graph vertex 
and edge primitives are named/typed but not attributed. Attributes serve to limit the 
specificity of match but their absence does not alter the fundamental matching process. 
Where vertex and edge primitives are understood, and an incidence function ?/;r; is 
implicit in the edge definitions, an ARC. G =  {V, E, ip, P, R, v, e } can be represented 
as G = {V, E, v, £}. Given two graphs G\ =  {Vf, E\, u\, e i } and G2 =  {V2 , E?, v ,̂ £2 } 
as shown in Fig. 5.1, the process of graph match by clique detection proceeds as follows.

For each vertex u* G V\ that can map to a vertex Vj G V2 given the constraint 
i'\(vi) =  v2(V]), the pair [v{,Vj) is added as a vertex to a derived, unlabeled 
correspondence graph Gc{Vc,E c) (Fig. 5.2). Correspondence graph edges are then 
inserted depending on the local compatibility of its composite vertices: for any two 
correspondence graph vertices and V(rn,n) say, an edge is inserted between them 

if the following criteria are satisfied:

i) vk 7̂  I’m and vi ^ vn
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ii) if edge ex — (vk,vm) G Ex then edge e2 =  (vi,vn) G E2 and £i{ex) =  e2 (e2). 
(Edge sense preserved in the case of directed graphs.)

iii) if edge ex =  (vk,vm) Ex then edge e2 =  (v/,v„) £ E2

Vertex and edge labels :
-----------► HasMethod
-----------► Extends Class

( ^ )  Class 

{ ^ )  Method 

Field

-► HasField 
-► OperatesOnField 

InvokesMethod

Figure 5.1: Two syntactically labeled graphs, G\ and G2

Figure 5.2: Correspondence graph and cliques for G\ and G2 of Fig. 5.1
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The cliques of the unlabeled, undirected CG identify common subgraphs of the 
compared graphs. MCSs correspond to the highest order, maximum cliques. By 
definition, each clique discovered represents a maximal set of mutually compatible 
vertices, each vertex comprising a vertex from each of the matched graphs. Given a 
clique C, for each vertex npj) G C, Wj is a vertex in a subgraph .Si of Gi and Vj is a 
vertex in a subgraph S2 of G2, Si and S2 being isomorphic, common subgraphs.

In the given example, the correspondence graph of fig. 5.2 has eight cliques of 
which two are maximum cliques of order four. In the example, all cliques define a bi­
directional subgraph isomorphism between G\ and G2, cliques C\ and C2 additionally 
identifying MCSs of the two graphs. A maximum clique of order five is not possible due 
to the incompatibility of vertex pair (v2 ,i>i,) and («3 , vc): common subgraphs are vertex- 
induced, isomorphic graphs. [Levi, 1970] points out that although an MCS is defined 
by a maximum clique, a clique (maximal by definition) does not necessarily equate to 
a maximal common subgraph. The example illustrates this point in that the common 
subgraphs defined by cliques C4,C5, Cc„ C7 and C8 are all properly contained within at 
least one of the maximal common subgraphs defined by C\,C2 or C3 . Consequently, if 
we were to concentrate on locating any cliques, this leads to redundancy in the search 
for MCSs. Hence, we target maximum cliques, which always represent an MCS. As 
MCSs are not necessarily unique, neither are maximum cliques.

Clique D etection Algorithm s

The importance of clique detection is clearly reflected in the extensive literature de­
voted to the construction of efficient clique detection algorithms and their application 
across a wide variety of domains. A comprehensive survey of previous and ongo­
ing work related to clique detection can be found in [Bomze et al, 1999]. As in the 
case of direct graph match, clique detection algorithms fall into several broad cate­
gories according to whether they are optimal or approximate; enumerative, paitially- 
enumerative or maximum; weighted or unweighted; serial or parallel. Our initial in­
terest is confined to optimal, enumerative or maximal, unweighted algorithms, which 
are predominantly based on backtracking tree search. Beginning with single vertex 
seeds, these algorithms extend a fully connected subgraph until it becomes maximal,
i.e., a clique. The defining difference between these algorithms is the nature of the
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heuristics incorporated as a means of pruning the search space, e.g., vertex ordering 

and partitioning; upper and lower bounds on clique oidei .

At its most naive, clique detection by backtracking tree search inciementally gener­
ates a partial solution comprising a set of fully connected vertices Cd — {cq, c\ , <2 ,..., Q - i } 
where d > 1 and C0 =  0. At each level d of the tree search, the set of eligible extensions 
to the current partial solution is given by Sd =  {c G Sd-A(cd-i) = (cA‘d-\) 6 Ec}  where 
d > 1 and S0 =  Vc. Although this leads to an enumeration of all cliques, a clique of or­
der k will be generated A;! times, once for each ordering of its vertices. This repetition 
can be prevented by imposing an arbitrary total ordering on the vertices of the graph 
such that the extension set becomes Sd =  {c 6 Sd- i  ■ (ci cd-i) G Ec and c > cd_ x}. 
Further, by maintaining at each level a set Ad — Ad~ 1 C {c G Vc . (c,cd - l )  G Lr) 
where /1() =  Fc, of vertices adjacent to all vertices in the current partial solution, a 
clique is found when Ad =  0 and Sd =  0. Fig. 5.3 illustrates the application of this 
method to the example of Fig. 5.2. Despite its illustrative intent, the simplicity of this 
example is reflected in the basis of several useful clique detection algorithms. It forms 
the core of Bron and Kerbosch’s algorithm [Bron and Kerboseli, 1973] and a branch 
and bound modification provides an efficient, partially enumerative maximum clique 

algorithm described in [Carraghan and Pardalos, 1990].

As previously mentioned, one of the benefits of clique detection as an approach 
to graph match is its domain independence. However, characteristics such as the or­
der and density of correspondence graphs generated within a particular domain can 
have an important influence on the choice of clique detection algorithm. In [Myr- 
vold et al, 1998], a study of the performance of clique detection algorithms highlights 
the importance of graph order and density, in addition to vertex ordering and par­
titioning heuristics. They concluded that the characteristics of a specific graph may 
require different clique detection strategies, applied individually, or in combination 
as a dynamic process driven by the nature of its constituent subgraphs. Correspon­
dence graph order and density are clearly limiting factors in the application of clique 
detection in general, and heavily influence the performance characteristics of an im­

plemented algorithm.
T. ~~r ' TT IT- uo.iristira in the clique detection process, please refer toFor more information relating to heuristics 111 me t

[Bomze et al, 1999]
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T r e e  d e p th  
(d )

F u l ly
C o n n e c t e d  
S u b g r a p h  (C d)

A d ja c e n t  S e t 
(A«i)

C a n d i d a t e  S e t
(S d)

C a n d i d a te  
S e le c te d  (c„)

C l iq u e  *
M a x .  C l iq u e  **

0 j j ___ j j ___ 1 1.2,3,4,5,6,7,8,9} i
i i n 12,3.8.9} 12,3.8.9} 2
2 < 1-2} iXiT, |3 ,8 | 3
3 11.2.3) (81 18} 8
4 {1,2,3,8} J J ___ 11 **
2 1 1 i L-3.8L XXI________________ 8
3 ( 1.2.8 | 13} J J _________________ -
1 i n 12.3.8.9} 13.8.9) 3
2 11.31 [2,8.91 18.9)______________ 8
3 1 ' .3.8 | 12.9) (9)________________ 9
4 11,3.8.')) (1 J J ___
2 H .3 I 12.8 .9 | J 9 j ________________ 9
3 H .3.9) J K J (1 -
1 H I 12,3,8,9} X M J _____________ 8
2 J U J ___ 12.3,9} J 9 J _________ _ 9
3 H .8 .9 ) 13) J J _________________ •
1 H I 12,3.8.9} J 9 J ________________ 9
2 H .9 ) (3 .8 ) J J ___
0 11 II 12.3,4.5.6.7,8,9} 2
1 |2 | 11.3.8} 13.8)______________ 3
2 12.3) 11.8} J J U ________________ 8
3 12.3.81 H I J J _____
1 12 1 H .3.81 18) 8
2 |2 .8 | 1 1.3} 11 _ _  -
0 _Li___ J J ___ 13.4.5,6.7.8.9} 3
1 [31 11,2,4.5,8,9} 14.5.8,9} 4
2 (3 .4 ) X L j j - *
i 13) (1 .2.4.5.8.9) 15,8.9} 5
2 13.31 U ___ j j _____ - *
1 131 H .2.4.5.8.91 J M J ______________ 8
2 13.8} 11.2.9} 19) 9
3 13.8,9) X X L J J _________________
1 131 { 1,2,4.5.8.9} J 2 J ________________ 9
1 13.9} 1 1.8 1 (1 -
0 _ U ___ II 14.5.6.7.8.9} 4
1 141 13.7) 17) _______ 7
2 14.71 J J ___ J J  _____ . _
0 j j 11 15.6.7.8.9} 5
1 IS! (3,6} ( 6 | 6
2 [ s . d _u___ J J _________________ *
0 u J J ___ 16.7,8.9} 6
1 (6) 16.831)___ 18.9 | 8
2 16.8} 19) J 9 ) ________________ 9
3 16.8.9} II J J _________________ *
1 16) 16.8.9} 19) 9
2 16.9} 18} J J ______________ ___() J J ___ j j ___ 17.8.9)____________ 7
1 17} ( t i l 1 8 1 8
2 17.8 1 {} H *
0 n II 18.9) 8
1 18} 11,2.3.6.7.9} 19) . 9
2 18.9} 13.61 J J _________________ -
0 J J ___ 11 J 2 J ________________ 9
1 J 2 J ________________ 11.3.6.8} 1) -

Figure 5.3: Identifying Cliques in Gc of Fig. 5.2
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When selecting an appropriate algorithm for their work in 3D molecular matching, 
in [Gardiner et al, 1997; Brint and Willett, 1987] Willett and his colleagues demon­
strated the superior performance of the enumerative algorithm of Bron and Kerbosch 
(B&K) [Bron and Kerbosch, 1973] and the partially enumerative algorithm of Car- 
raghan and Pardalos (C&P) [Carraghan and Pardalos, 1990] over reportedly better 
algorithms such as those of Babel [Babel, 1991] '.

The characteristics of our domain in terms of order and density of graphs is still 
to be fully verified but initial analysis of the data sets from Chapter 4, alongside 
selected classes from the JDK, suggests an average ARC order of less than 100 - the 
maximium order being over 2000. At this stage, the expected order and density of 
correspondence graphs generated from the matching of class AR.Gs was also unknown. 
Willett’s studies dealt with molecular graphs of order < 40 and correspondence graph 
densities < 0.3. Although the potential size range was considerable larger the average 
graph size and notional similarity between the two domains in terms of structural 
representation, suggested our initial approach capitalise on the collective experience 
of Willett and others. The public availability and relative transparency of the B&K 
and C&P algorithms used by Willett were also a significant consideration. The C&P 
algorithm is partially enumerative, finding all maximal cliques. Of more immediate 
interest is the B&K algorithm, which generates all cliques. Willett’s study showed 
that the B&K algorithm appears to be more effective at higher CG densities. This 
was another reason behind its initial selection, being as the potential range of CG 
density was unknown. The original B&K algorithm is based on the tree-traversal 
approach to clique detection described above. The algorithm and some variants are 
described in detail in [Johnston, 1970], pseudocode for the basic algorithm is given in 

Figure 5.4.

Accom m odating Inexact Match

The correspondence criterion applied in the previous example was representative of 
exact match, based on equivalence of primitives, i.e., vertices mapped to vertices and 3

3For general, random graphs, Babel’s algorithm Is reportedly one of the fastest exact, maximum 
clique detection algorithms currently available. It, is based on a branch-and-bound tree search using 
Brelatz’s greedy approach to minimum colouring as an upper bound on clique size.
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i f  a vertex e x is ts  in usedVertices that is  connected to a l l  v ertices  in candidateVertices then 
stop {no new clique can be found} 

e lse
for each vertex V in  candidateVertices do 

remove V from candidateVertices 
add V to fullyConnectedSubgraph
create a copy of candidateVertices as newCandidates 
remove v er tices  in  newCandidates not connected to V 
create a copy of usedVertices as newUsed 
remove v ertices  in newUsed not connected to V 
i f  newCandidates and newUsed are both empty then

output fullyConnectedSubgraph { is  maximal so a clique}  
e lse

extendFullyConnectedSubgraph (fullyConectedSubgraph, newCandidates, newUsed) 
endif
remove V from fullyConnected Subgraph 
add V to usedVertices 

endfor 
endif 

endproc

proc extendFullyConnectedSubgraph (fullyConectedSubgraph, candidateVurtices, usedVertices)

Figure 5.4: Pseudocode for the basic B&K algorithm

edges to edges, provided their respective syntactic labels were the same. Inexact 
match can be accommodated within the clique detection approach by specialising the 
correspondence criteria to depend on both syntactic and semantic factors, i.e., the 
potential substitutability of vertices and edges based on the equivalence classes of 
their syntactic labels, or their similarity within t hreshold resulting from the semantics 
associated with matching their attributes.

For example, under a given partial ordering, a set P =  {p\,p>, of syntactic
labels categorising primitives (vertices and edges) may support direct syntactic substi­
tution, edge for edge, vertex for vertex, i.e., pn is substitutable by pn...\ if />n > pn_x. 
(liven that they match syntactically, attributed primitives may be judged substitutable 
if a measure of similarity over these attributes is within threshold. In this case, the 
vertices and edges correspond or not depending on the syntactic order or set thresh­
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old, the determination of similarity playing no further part in the subsequent clique 

detection process.

Although inexact match based on syntactic labelling provides a greater degree of 
flexibility within the graph match process as mentioned in Section 5.2.3, this must 
be offset against the potential increase in correspondence graph order and density, 
and the consequent adverse effect on algorithm performance. Primitives which would 
otherwise not correspond under exact match could now match within threshold. Also, 
from the perspective of “goodness” of match as measured by the order of the maximum 
clique, the effect of introducing inexact match criteria may be counterproductive unless 
carefully controlled and interpreted in context. On the one hand, a maximum clique 
derived from an inexact correspondence procedure may be accepted as “better” than 
a smaller but exact match clique, as it attempts to capture more of what is common 
across two structures. On the other hand, the smaller clique captures commonality that 
is strictly equivalent. Similarly, inexact match may generate cliques of the same order 
that are ostensibly of equal significance, but which actually represent an error range 
determined by the nature of the allowable substitutions. The induced correspondence 
could be subject to a penalty, or cost, dependent on the nature and semantics of 
the substitution: although clique detection based on weighted vertices and edges is 
possible, it represents a much harder problem computationally. For the moment, we 
limit our analysis to non-weighted clique detection.

Clique detection as a legitimate means of determining inexact MCS is in part jus­
tified by Tsai and Fu’s original paper on isomorphic, graph-preserved deformation 
and inexact match, and Shapiro and Haralick’s paper on inexact homomorphic match 
[Tsai and Fu, 1979; Shapiro and Haralick, 1981]. Both describe inexact match in terms 
ot degrees of similarity across the graph primitives. Matching is based on maximum 
likelihood determined by probabilities associated with the possible primitive mappings, 
or minimum distance based on a. measure of distance between primitives. In addition, 
as MCS extraction is based on subgraph match, the process effectively accommo­
dates missing graph elements, as catered for in Tsai and Fu’s extended treatment by 
incorporating an edit-distance associated with deletion (and insertion) of primitives 

[Tsai and Fu, 1983],

MCS by clique detection, and tree-search based on maximum likelihood or mini-



mum distance, differ fundamentally in that the inexact approach based on clique de­
tection as described above is dependent on a straightforward binary comparator. The 
search space of possible solutions is reduced when a decision is made as to whether 
any two primitives match prior to extracting cliques and determining the MCS, i.e., 
primitives do or do not correspond. Tsai and Pu’s approach, alongside others based 
on edit-distance and derivatives of the A* state-space search algorithm, execute the 
graph match based on the potential correspondence of all primitives, i.e., at any one 
time, all primitives correspond but to varying degrees. The aim is to find a match 
between primitives that maximises the likelihood or minimises the distance associated 
with the match, depending on the match criteria chosen. Although inexact match 
by clique detection may neither allow the degree of flexibility provided by other ap­
proaches such as edit-distance [Shapiro and Haralick, 1981; Tsai and Fu, 1983] and 
probabilistic relaxation [Wilson, 1996], nor directly quantify the degree of confidence 
in the generated match as per probabilistic methods, the priorities of the matching 
task at hand suggest that it could be efficient and effective. Here, the emphasis is not 
on comparison of a target with a library of known models, but on the initial identifi­
cation of common structure across an arbitrary collection of classes as represented by 

their ARGs.

Although inexact match may lead to an increase in CG order, the introduction of 
an attributed primitive model has the capacity to reduce the complexity of the match 
process by further classifying the higher level, more abstract, syntactic labeling. It may 
be appropriate in some circumstances to enforce exact match over these attributes but 
the restriction imposed by this constraint would in most part render such an approach 
of little practical use. For example, bearing in mind the variability inherent in software 
implementation, were we not to allow a certain degree of variation in the match process 
between classes, recurring structure and patterns of collaboration would be effectively 
restricted to exact match clone detection, at the expense of possibly overlooking more 

abstract yet informative structures and patterns.

An example of inexact match

By extending the previous example to introduce a limited attribute set, inexact match 
By clique detection can be illustrated as follows. The vertices syntactically labeled
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as “Method” in Fig. 5.1 have now been assigned two numeric attributes as shown in 
Fig. 5.5. Elements of the two graphs are initially matched based on exact, correspon­
dence of syntactic labels as per the original example. Within this, where elements aie 
attributed, a further match within threshold is applied. For the sake of illustration, 
similarity is measured using the frequency weighted Tanimoto coefficient introduced in 
Chapter 3 , with a similarity threshold of 0.75. dhe similarity values foi the matching 
attributed elements are also shown in Fig. 5.5. Based on the set threshold, the calcu­
lated similarity values lead to rejection of pairs (v\,Vb) and (w4,Ud) and acceptance of 
pairs (u2 ,Vb) and («2 , v<l)- The correspondence graph and extracted cliques are shown 
in Fig. 5.6. In this case, enforcing attribute match has resulted in the removal of 
vertex (rq, v^), which in turn has lead to a reduction in order and density of the corre­
spondence graph, and in the number of cliques generated. As the complexity of clique 
detection algorithms is exponential in the order and density ol the CG, any reduction 

in either is of major benefit.

Vertex and edge la b e ls:
( ^ )  Class ^

( ^ )  Method - - - - - - - - ►

Field

HasMethod
ExtendsClass
HasField
OperatesOnField
InvokesMethod

Method Calls (External), Field Ops (External)

Similarity Matrix (Attributed Match)
(Tanimoto Coefficient)

S j V4

v 2

v 4

1,0 1.0 

0 . 5  0 . 5

Figure 5.5: Two (partially) attributed graphs, G i and G2
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Cliques of Gc
r  5  W  c S  i-3-5 

a.b.e ^T ».c.e
f  23,5 

3 l_d,c,e C‘{H ’{ i

Figure 5.6: Correspondence graph and cliques for G\ and G2 of Fig. 5.5

5.4 Interpreting Graph M atch for Java Class Comparison

In the current context of object-oriented code analysis, structure matching represents 
a process of comparison whereby the structural similarity between two Java classes is 
both quantified and enumerated. At present, this is an implementation-level approach, 
emphasising the internal and external associations within and between classes but 
in the main abstracted above the structure of individual method statements. The 
problem was modelled in Chapter 4 by means of a translation from Java bytecode to 
its structural representation as an ARG. This translation provides the link between 
the domain to be analysed and the rich graph-theoretic toolset that enables such an 

objective analysis.

5.4.1 General Match

Initially, the identification and isolation of common structure between Java classes is 
treated as a general graph match problem, using correspondence graph construction 
and clique detection based on Bron and Kerbosch’s algorithm (B&K). I he reported 
success of this approach in other domains, alongside an optimal, fully enumerative 
clique extraction process, provides a basis for further assessment.
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public class ValidateableMyString extends MyString{public static final int UNSET " — 1;public static final int INVALID " 0;public static final int VALID “ 1;
private MyStringValidator validator;
ValidateableMyString(String m y S t r i n g )

s u p e r (m y S t r i n g );>
public int valid()

if(validator 1“ null)return (v a l i d a t o r .validate(this)?V A L I D :I N VALID); S y s t e m .e r r .println("Validator has not been sot!"); return UNSET;

public void setValidator(MyStringValidator validator)
I if(validator ■■ null)S y s t e m .e r r .p r i n t I n ( "Validator unset I " ) ; elset h i s .validator - validator;

Compiled from ValidateableMyString.java
public class chap4eg.ValidateableMyStr ing extends chap4eg.MyString { 

public static final int UNSET; 
public static final int INVALID; 
public static final int VALID; 
private chap4eg.MyStringValidator validator; 
chap4eg.ValidateableMy3tring(java,lang.String); 
public int valid();
public void setValidator(chap4eg.MyStringValidator);

Method chap4eg.ValidateableMyString(java.lang.String)
0 aload_0
1 aload_l
2 mvokespecial #1 «Method chap4eg.MyString(Java.lang.String)>
5 return

Method int valid()
0 aload_0
1 getfield #2 «Field chap4eg.MyStringValidator validator>
4 ifnull 26
7 aload_0
8 getfield #2 «Field chap4eg.MyStringValidator validator>
11 aload_0
12 invoke interface (args 2) #3 «InterfaceMethod boolean validate(chap4eg.MyString)> 
17 if eq 24
20 iconst_l
21 goto 25
24 iconst_0
25 ireturn
26 getstatic #4 «Field java.io.PrintStream err>
29 ldc ft5 «String "Validator has not been set ! w>
31 invokevirtual ft 6 «Method void prlntln (Java. lang. String) >
34 iconst_ml
35 ireturn

Method void setValidator(chap4eg.MyStringValidator)
0 aload__l
1 ifnonnull 15
4 getstatic #4 «Field java.io.PrintStream err>
7 Idc #7 «String "Validator unset! " >
9 invokevirtual #6 «Method void println(java.lang.String)>
12 goto 20
15 aload_0
16 aload_l
17 putfield #2 «Field chap4eg.MyStringValidator validator>
20 return

Figure 5.7: Java Source Code and Disassembled Bytecode
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A second, more extensive example is now introduced based on the source code of 
Fig. 5.7. The ARG derived from the bytecode is shown in Fig. 5.8, unattributed for 
the sake of clarity. This example represents comparison of relatively small graphs with 
almost trivial method structure but it serves to illustrate both the limitations of, and 
potential refinements that can be applied to, a general graph match approach based 

on clique detection.

Vertex and edge labels:
{ ^ )  Class 

( ^ }  Method o Abstract Method

Static Primitive Field —

O  Reference Field _

( ^ )  Reference Parameter 

(^) Primitive Return

>
>

!•

Source Code Ref:

HasMethod
Haslmtialiser
InvokesMethod
Invokes Abstract Method
ExtendsClass
Has StaticPrimitiveF i eld
HasReferenceField
OperatesOnReferenceField
InhentsMethod
HasReferenceParameter
HasPnmitiveR etum

1: ValidateableMyString • Class 
2: MyString -  Class [supercalss]
3: ValtdateableMyString -  Method [constructor]
4: valid -  Method [internal]
5: validator -  Field [internal, reference]
6: setValidator -  Method [internal]
7: UNSET -  Field [internal, static, primitive]
8. VALID -  Field [internal, static, primitive]
9 INVALID -  Field [internal, static, primitive]

10 MyString -  Method [superclass constructor]
11: java.tang.String -  Parameter [reference]
12 int -  Return [primitive]
13. validate -  Method [external, abstract]
14: validator -  Parameter [reference]
15: java.io.PrintStream -  Field [external, reference] 
16: pnntln -  Method [external]

Figure 5.8: Structure graph generated from code of I' ig. 5.7

Again, as in the previous example, the following discussion is in the first instance 
based on non-attributed graphs. This is not merely for expository purposes but in 
order to establish a basis from which a reasonable approach to the identification of 
common structure can be formulated. The overall intention is to iteratively explore 
various degrees of abstraction in the match process, ranging from syntactic match, 
through levels of attributed match, i.e., syntactic match qualified by the semantics of 
the attributes of the graph primitives and relationships.
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U nlabeled graph m atch

We actually begin by introducing no additional information, syntactic or otherwise, 
using only the fundamental topology of the graphs. In order to provide a reference 
point for comparison of the various approaches and incremental modifications applied 
to the graph match process, the ARG of Fig. 5.8 was first matched against itself without 
the use of any labeling information, i.e., vertices were considered indistinguishable 
from each other as were edges. (We will refer to this graph as (a) for the remainder of 
this series of analyses.) Self-comparison is useful in that a maximum clique is clearly 
identifiable and the presence of a large common structure serves to stress the clique 
detecting algorithm and execution environment.

In this case, the clique detection process was terminated having generated greater 
than / million cliques in 5.5 secs (Table 5.14). The process did however identify 4 
out of !l(j possible maximum cliques, the first clique being a maximum and identified 
in 0.21 secs. An important observation made at this stage was the high value of CG 
density (0.64), being more than twice the largest value encountered by Willett and his 
colleagues [Gardiner et al, 1997].

ARG
Vertices

ARG
Edges

CG
Vertices

CG
Edges

CG
Density Cliques

Max.
Cliques

CPU Time 
1st max.(s)

Total CPU 
Time (s)

(a) 16 20 256 21056 0.64 1000000* 4 (of 96) 0.12 
(c 1)

5.5

Table 5.1: Unlabeled match

Labeled graph match (Syntactic)

The comparison was repeated but this time employing syntactic labeling, i.e., ver­
tex  and edge types having to match. (Table 5.2) Although the CG density has in­
creased slightly to 0.69, the reduction in correspondence graph order, clique num­
bers and execution time is obvious and dramatic. However, in order to clarify con­
text, a further experiment was carried out based on an analysis of two medium sized 

1 All results in this chapter are averaged over 10 runs using a Pentium III, 266MHz, 384Mb
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ARG
Vertices

ARG
Edges

CG
Vertices

CG
Edges

CG
Density Cliques

Max.
Cliques

CPU Time 
1st max.(s)

Total CPU 
Time (s)

(a) 1G 20 48 77G 0.G9 GGG G (of G) 0.10 
(c 1)

0.11

Table 5.2: Syntactic label match (1)

classes drawn randomly from the Java Development Kit (JDK), one in the range 
2K  < bytecodeSize < 5K, the other in the range 5K  < bytecodeSize < 10A". 
The classes selected were WindowsComboBoxUI5 (2K) (e.g.(b)) and GridBagLayout6 
(9K)(e.g.(c)). The results below (Table 5.3) show that both analyses terminated hav­
ing generated 1 million cliques. Again, the B&K algorithm found a maximum clique in 
both cases, supporting Broil and Kerbosch’s original claim that large cliques tend to 
be discovered fairly early in the search process. In all these cases, a maximum clique 
was the first clique discovered but in general this is not the case as will be seen in later 
examples. Significantly, the CG order and density have once again increased. This has 
given rise to a comparatively much larger time to extraction for the first maximum 
clique in the case of ARG (c).

ARC
Vertices

ARC
Edges

CG
Vertices

CG
Edges

CG
Density Cliques

Max.
Cliques

CPU Time 
1st max.(s)

Total CPU 
Time (s)

0>) 50 GG 1042 4G7997 0.8G 1000000* 12 (of ?) 0.4G 
(c 1)

8.18

(c) 144 242 4GG8 10123588 0.93 1000000* 4 (of ?) 14.0G 

(c 1)
21.28

Table 5.3: Syntactic label match (2)

Problems with the general approach

Although the introduction of syntactically labeled vertices and edges has reduced the 
complexity of clique extraction for small ARGs and enabled an analysis of larger ARGs,

J ‘com. sim. java, swing, plaf. windows. WindowsComboBoxUI. class’
fi‘java.awt.GridBagLayout.class’
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hese experiments highlight several potentially limiting problems associated with such 
i general approach:

• Large number of cliques generated:

The number of cliques generated can be excessive, even in the case of a pair of 
comparatively small classes. In the case of small labeled graphs, the presence of 
large numbers of cliques in the generated correspondence graph is of itself not 
problematic when considered as an isolated comparison. Clique extraction is 
very quick and a full analysis can be completed in less than a second. However, 
using this approach in the context of greater numbers of pair-wise comparisons 
of larger classes, and taking into account further processing and analysis of the 
extracted cliques, clique numbers become potentially limiting.

• Redundancy in discovered common structure:

A contributing factor to the large number of cliques generated is the symmetry 
present in the compared graphs. Other than the trivial, identity mapping, each 
graph may be isomorphic with itself, i.e., automorphic. The presence of auto­
morphism groups, i.e., permutations of vertices within the graph that preserve 
structure, including any labeling, results in the same, isomorphic structures be­
ing repeatedly identified. From the example, on self comparison, the labeled 
graph of Fig. 5.8 generates fi maximum cliques, the common subgraphs being 
the same up to isomorphism, i.e., structurally identical. Vertices 7, 8 and 9 are 
identical and adjacent to vertex 1 via identical edges. Their permutation gener­
ates six vertex-pairs in the correspondence graph, which in turn generates the (i 
maximum cliques.

In general, symmetric properties of the compared graphs are reflected in the 
matching process by the generation of sets of cliques, which determine sets of 
subgraphs within each compared graph that are themselves pair-wise isomor­
phic, i.e., a clique by definition determines an isomorphism between common 
subgraphs but additionally in this case, multiple cliques determine sets of iso­
morphic subgraphs. Duplication results from the same, isomorphic structures 
being identified but contributed to by different vertices and edges, i.e., sets of 
common subgraphs are determined that are unique according to the identity of
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individual vortices and edges but are otherwise structurally isomorphic. Again, 
from the example, the two cliques

2 7 8 9 12 11 10 13 16
2 7 8 9 12 11 6 10 13

2 7 8 9 12 11 6 10 13
2 7 8 9 12 11 10 13 16

determine two sets of common subgraphs, which are pairwise isomorphic within 
and between the sets. The extraction of one of the cliques is redundant as no ad­
ditional, new structural commonality is identified, being as they are structurally 
identical at the current level of vertex and edge definition.

This example further illustrates redundancy in the match process in that cliques 
may determine common subgraphs which are not maximal. Levi [Levi, 1970] 
pointed out that although all maximal common subgraphs correspond to cliques, 
the reverse is not generally the case. Although maximum cliques do determine 
maximum common subgraphs, a non-maximum clique can determine a non- 
maximal common subgraph. Given that in the current example a maximum 
clique determines the entire graph as the contributing common subgraph, each 
subgraph of the common subgraph pair identified in either Crn or Cn above is 
itself subgraph isomorphic to the larger, maximum common subgraph. Similarly, 
Cm and C,i are “contained” by

which itself does not determine a pair of maximal common subgraphs being 
“contained” by any one of the maximum cliques. Again, the detection of Crn 
and Cn are redundant as the common structure is captured by C/, which is itself 
redundant being subsumed by the maximum clique.

It must be stressed that the discovery of isomorphic subgraphs represents equiv­
alent structure at a given level of analysis: based on syntactic match alone, what 
are seen as equivalent structures may not match on closer inspection by way of

Ci =
2 3 7 8 9 12 11 10 6 13
2 3 7 8 9 12 11 10 13 6



attribute comparison. A less constrained matching process will inevitably lead 
to the identification of greater numbers of more abstract common structures. 
Tightening the match criteria will lead to the identification of fewer, more con­
crete, common structures.

The main caveat at this stage relates to ensuring that any attempts at simplifying 
the match process that may lead to the removal of repeated structure must take 
account of the potential loss of information. The permuted elements of the 
compared graphs that give rise to the isomorphic common subgraphs may have 
associated information that is useful during further analysis, e.g., Cm and Cn 
determine isomorphic sets, the common structure being represented by either 
the vertices {2,6,7,8,9,10,11,12,13} or {2,7,8,9,10,11,12,13,16}. Although 
these sets determine the same structure at this level of analysis, the permuted 
vertices, 6 and 16 in this case, possibly identify different external associations. 
If an arbitrary choice of representative leads to the omission of vertex 16 say, 
information relating to any external association, which may be useful later in 
determining larger common structures linked via these associations, is lost.

• Lack of Specificity:

If we were to base the search for common structure purely on syntact ic labeling, 
it is likely that match quality will not significantly improve on that of the global 
SP approach of Chapter 4. The lack of discrimination across reference type 
fields, parameters and return values, and particularly in the case of methods, 
will lead to higher than acceptable levels of inappropriate/spurious match.

• Scaling to larger classes:

From the estimated maximum clique detection times for random graphs reported 
in Myrvold’s experiments, assuming a CG density 0.8, exhaustive analysis of CGs 
of the order encountered in the case of the two larger classes would be entirely 
impractical [Myrvold et al, 1998]. As the order of compared graphs increases, so 
the size of the correspondence graph increases, especially in cases where there is 
a significant and sizeable degree of common structure. Constraints imposed by 
available hardware, in terms of processor number, processing speed and memory, 
are such that the analysis of large, similar graphs presents significant practical 
limitations to such a general approach. The case of the JDK classes referred to
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above, which generate CGs having densities greater than 0.8 and order greater 
than 1 thousand, suggests that in addition to the lack of match specificity, this 
initial approach may not be applicable across a useful range of developed code. 
That said, it is worth noting that by using labeled ARGs we have managed to 
extract a large clique (maximal in this case) from a high density CG of order 
approaching 5 thousand. However, as the search was terminated, in general, we 
can not be sure that the solution is optimal or indeed near-optimal. In order 
to accommodate larger, high similarity ARGs, CG order must be still further 

reduced.

5.4.2 Incorporating Domain Specific Knowledge

Finding a practical, usable approach to graph matching is in general known to be a 
very difficult combinatorial problem. In the light of the problems identified above, 
suitable domain knowledge and heuristics able to limit the scope of the search are now 
introduced. The intention is to refine the problem by applying reasonable, domain- 
specific constraints to guide and limit the search process.

The formulation of the attributed graph model of bytecode, including both syntac­
tic and semantic labeling of vertices and edges, represents the incorporation of domain 
knowledge into the match process at its most fundamental. As was shown by the 
simple examples of Figs. 5.1 to 5.5 and the comparison of labeled against un-labeled 
match for the graph in Fig. 5.8, labeling can have a dramatic effect on the complexity 

of the clique detection process.

Before considering the inclusion of vertex and edge attributes within the match 
process, we introduce two further refinements to CG construction and the B&K clique 

extraction algorithm.

Partial order and hierarchy

The notion of an hierarchy of relational structures whose primitives may be atomic, 
terminal entities, or themselves hierarchical substructures, is described in the context
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of matching as part of computer vision [Haralick and Shapiro, 1993]. The character­
istics of, and relationships between, the structures and substructures represented by 
our modelled ARGs can also exploit the implicit hierarchy within the class model. 
Haralick and Shapiro show that “an hierarchical, relational structure can be thought 
of as an hierarchy of relational structures whose terminal entities are feature vectors”. 
This model essentially generates a tree structure with a designated root. Within any 
given level of the hierarchy, individual vertices can be treated as atomic and com­
pared based on their defining attributes. In addition, the comparison process can 
successively refine or disambiguate a potential match by iterating through the levels, 
expanding provisionally matched pairs of vertices at one level, based on their con­
stituent components at the next level. These components are in turn matched based 
on their associated relationship and attributes, the process recursing until a match is 
established or dismissed.

As it stands, the method of constructing our CG takes no account of the partial 
order imposed on the graph vertices, i.e., the inherent hierarchy is not respected. As 
mentioned in Section 15.3, based on the nature of the modeled code, we can capitalise 
on the fact that some vertices are the “parents” of others by virtue of composition, 
definition, and internal or external association, e.g., vertex 1 in Fig. 5.8 represents 
the class being modelled, which is effectively composed of and defined by its adjacent 
vertices {2,10,3,4,5, 6, 7, 8, 9} which in turn are composed of, defined by, or associated 
with the entities represented by vertices {11,12,13,15,10,14}. As such, vertex 1 may 
be designated the “root” of the hierarchy lying at level 0, those vertices adjacent to 
it lying at level 1, the remainder at level 2. Unfortunately, the hierarchy neither 
conforms to a pure tree structure, nor is it strictly moral in that vertices at level 
2 may lie “children” to related “parents”. Level 1 vertices may be directly related 
through internal method calls and field operations. (Currently, relationships between 
level 2 vertices, such as method and field ownership, are not recorded.) Assuming that 
the root vertices of two compared ARGs match, two additional constraints derived 
from this hierarchic approach can be introduced into the clique detection algorithm. 
Firstly, CG vertices can be generated based on within-level correspondence. Secondly, 
any extracted clique should contain the CG vertex representing the matched root pair.

Based on rooted ARGs, correspondence graph construction was modified to limit 
comparison to vertices within the same level. Vertices incompatible with the matched



root pair are also removed as they can not belong to a clique containing said root. The 
B&K algorithm was altered to ensure that the CG vertex representing the matched 
root pair is always present in the clique being extracted: the designated root vertex 
is always the initially selected seed and the algorithm is terminated when all cliques 
associated with t his seed have been identified. Incorporating these changes produced 
the results shown below for self comparison of the three classes previously analysed. 
(The times for (b) and (c) are again based on the process terminating having extracted 
1 million cliques.)

ARG
Vertices

ARG
Edges

CG
Vertices

CG
Edges

CG
Density Cliques

Max.
Cliques

CPU Time 
1st rnax.(s)

Total CPU 
Time (s)

(a) 1G 20 2G 287 0.88 30 G (of G) 0.09
( c l )

0.09

(b) 50 GG 33G 50660 0.90 1000000* 430 (of ?) 0.16 
(c 1)

13.05

(c) 144 242 2810 3784909 0.96 1000000* 4320 (of ?) 6.57 
(c 1)

22.G3

Table 5.4: Hierarchic match

The introduction of a partial order on the graph vertices; separating the vertices into 
mutually exclusive, comparison levels; requiring that the root vertex be present in all 
cliques and removing vertices incompatible with the root vertex; has further reduced 
CG order. In the case of the smallest CG, the total number of cliques extracted 
has been significantly reduced. The reduction in CG order has not been undermined 
by the increased density, so not increasing execution time. However, the density of 
the two larger CGs has increased and their order remains high. In the case of (b), 
the reduction in time to first maximum clique is probably due to reduced CG order, 
while the increase in overall time is a consequence of the increased density. For (e), 
although the CG order has been significantly reduced and the time to first maximum 
clique extraction almost halved, the combination of high order and increased density 
si ill levy a heavy penalty on the overall process. The numbers of maximum cliques 
extracted for (b) and (c) have both increased due to the search tree having been pruned 
via the reduction in CG order.
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E lim inating d isconnected  subgraphs

A large portion of the common subgraphs determined by the extracted cliques are 
disconnected, i.e., they are composed of multiple components. Taking account of the 
hierarchic nature of the graph models, and the incorporation of this hierarchy into 
the match process, it would appear reasonable to accept that isolated vertices and 
/  or components not connected to the “root” vertex are invalid. In the context of 
establishing common structure between classes, the match process effectively begins 
at the level of the root vertex. As a representative of this root vertex, the initial global 
measure of similarity introduced in Chapter 3 is based on a feature vector intended to 
characterise the entire graph. This matching process should naturally continue through 
the remaining levels of the graph. Consequently, as the root vertex is connected to all 
vertices at level 1, and vertices matching at level 2 must be connected to vertices that 
match at level 1, common subgraphs must contain the root vertex in addition to being 
connected. Connectivity could be established in polynomial time by means of a depth 
first search of each generated subgraph. However, a slight modification of the B&K 
algorithm can prevent generation of unconnected subgraphs as an integral part of the 
clique detection process. This approach is similar to that of Koch et al as applied to 
the matching of protein structure [Koch et al, 1996].

The modification of B&K essentially imposes the constraint that vertices can only 
be used to extend the current, fully connected subgraph if they are both compatible 
with all the current vertices in this subgraph and maintain the connectivity of the 
underlying common subgraphs in the ARGs. As discussed above, the pair of level 0 
ARC vertices, i.e., the “root” pair, always and exclusively correspond. This forms the 
seed vertex for clique detection. Fully connected subgraphs are grown based on the 
extension of this initial single-vertex set by adding CG vertices that are both eligible 
for inclusion in a CG clique, and for which their constituent ARG vertices preserve 
connectivity in the underlying common subgraphs.

Correspondence graph construction is altered such that edges between vertices 
are classified as being either “compatibility” edges or “connecting” edges: as before, 
two CG vertices are compatible if their constituent vertices (and associated edges) 
drawn from the compared ARGs match according to type, number and orientation. In 
addition, capitalising on the rooted, 3-level ARG hierarchy, if the underlying vertices
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arc taken from different levels of the compared ARGs, and the match is based on these 
vertices having at least one joining edge, the resulting edge between the two CG vertices 
is classified as “connecting”. Put simply, all CG vertices representing matching level 
1 ARG vertices are always joined by connecting edges with the root-pair CG vertex; 
all CG vertices representing matching level 2 ARC vertices are joined by a connecting 
edge to a level 1 CG vertex if the constituent ARC. vertices are adjacent.

Introducing these restriction, and repeating the syntactic, self-comparative analysis of 
the three graphs gave the results below. (The times for (b) and (c) are again based 
on the process being terminated, each having extracted 1 million cliques.)

ARG
Vertices

AIIG
Edges

CG
Vertices

CG
Edges

CG
Density Cliques

Max.
Cliques

CPU Time 
1st max.(s)

Total CPU 
Time (s)

(a) 16 20 26 287 0.88 12 6 (of 6) 0.11 
(c 1)

0.11

(b) 50 66 336 50660 0.90 1000000' 481601 (of ?) 

(order 46)

5.07
(c 518401) 
(0.17 (cl))

9.74

(c) 144 242 2810 3784909 0.96 1000000’ 414720 (of ?) 1.7 

(c 1)
23.73

Table 5.5: Hierarchic, connected match

Again, in the case of the smallest CG the number of cliques has been significantly 
reduced with no increase in execution time. In the case of the larger CGs, although 
the number of maximum cliques identified was increased considerably, again reflecting 
the pruning of the search tree, their order and density still remain significant factors 
limiting the clique extraction process. However, the additional overhead of checking 
for connected subgraphs appears to be offset by the reduction in CG order. The overall 
run time has been markedly reduced for (b) but has not significantly changed for (c). 
In the case of (c) the first maximum clique was clique number 1 and was found in a 
much reduced time. However, the first maximum clique for (b) was number 518401, 
and although the time taken is possibly within practical limits, it is much greater than 
in the previous analysis. In this case, a first clique of order 46 was found in 0.17 secs., 
which is still relatively large in comparison to the maximum. An analysis of a larger
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class, ‘java.lang.String’ (10K) was abandoned as it, could not be contained in a CG of 
order 8000.

The use of an hierarchic, connected approach to clique detection is able to further 
significantly reduce the number of cliques extracted, without compromising the rele­
vance and usability of the information generated. However, although the number of 
maximum cliques identified increased, the order and density of larger CGs severely 
limits the analysis. ARC pairs that generate large, dense CGs suffer a heavy time 
penalty, if they can in fact be accommodated within the analysis environment.

Reducing C G  order using automorphism groups

In order to try and further reduce CG order, construction was amended to take account 
of the presence of a certain type of automorphism in the analysed ARGs. It was noted 
that in many cases, large CGs were the result of automorphism in the compared ARGs 
resulting from the presence of identical, pendant vertices. For example, in Fig. 5.8, 
permuting the pendant, vertices 7, 8, and i) gives rise to the automorphism group that 
in t his case corresponds to the (i maximum cliques generated on self comparison. If we 
were to limit CG construction such that only 3 vertex pairs were created, corresponding 
to each of the vertices in the ARG mapping with one and only one vertex in the copy, 
only one maximum clique would result - being isomorphic to the 6 previously extracted. 
CG creation was further modified to enable this type of automorphic reduction.

In addition to the existing labeled, hierarchic and rooted matching constraints, the 
mapping of pendant vertices within each level of the ARGs was restricted as follows:

1. if a pendant vertex in the first graph maps to a pendant vertex in the second, 
neither is allowed to map with another pendant vertex having the same parent.

2. if a pendant vertex from the first graph maps to a non-pendant vertex in the 

second then

• the pendant vertex can not map to another non-pendant vertex having the 

same parent, and

• a second, same-parent pendant vertex from the first graph can not map to 
the non-pendant vertex mapped in the second.
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3. if a non-pendant vertex from the first graph maps to a pendant vertex in the 
second then

• the non-pendant vertex can not map to another pendant vertex having the 
same parent, and

• a second, same-parent, non-pendant vertex from the first graph can not 
map to the pendant vertex mapped in the second.

The results of applying this approach to the previous three example graphs, along with 
the larger ‘java.lang.String’ class (e.g. (d)), which could not be handled by the previous 
analysis, are shown in Table 5.6. We again observe a reduction in CG order in all cases, 
alongside a significant reduction in the numbers of maximum cliques extracted. The 
time to first maximum clique extraction has also been markedly reduced for both (b) 
and (c). The total run time for (b) has once more increased, which is surprising, as the 
CG order and density have decreased. Although a maximum clique was not extracted 
for (d), analysis of this larger ARC was manageable, once more producing a large 
clique early in the process.

arc;
Vertices

ARG
Edges

CG
Vertices

CG
Edges

CG
Density Cliques

Max.
Cliques

CPU Time 
1st max.(s)

Total CPU 
Time (s)

(a) Hi 20 18 143 0.93 2 1 (of 6) 0.10 0.10
(c 2)

(b) 50 GG 158 10669 0.8G 1000000* 4 (of ?) 0.13 21.42
(c 5)

(<•) 144 242 1514 1065989 0.93 1000000* 192 (of ?) 0.71 23.31
(c 1)

(6) 2G8 438 3G5G 6426368 0.96 1000000* 0 (of ?) - 95.16
(order 244) (G.87 (cl))

.____ (order 252) (80.43 (c5))

Table 5.6: Antomorphic reduction

In terms of identifying the common subgraphs between two compared ARGs, in­
troducing automorphism reduction will have no effect on the range of structures iden­
tified. The reduction can only filter out isomorphic subgraphs. This approach does
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have a limitation however. Although the resulting common subgraphs are represen­
tative up to isomorphism of all the possible mappings, the semantics of the match 
can vary depending on which of the possible vertices that define the automorphism 
group are actually mapped between the two graphs. For the sake of illustration, let 
us slightly alter the scenario by comparing ARG (a), modified by replacing one of the 
three static primitive vertex types by a reference type7, with a copy having two of 
the three replaced by reference types. The number of maximum common subgraphs 
is now reduced to four but if we introduce automorphism reduction, as applied in this 
case to pendant vertices, only one will be extracted. Of the four possible permutations 
that could give rise to the extracted subgraph, any one is potentially different from the 
other if we examine the detail of those vertices included and excluded. At the current 
level of abstraction, where we match using syntactic labels, the structures would be 
isomorphic but the underlying semantics could potentially differ. Although in this 
case it makes no difference as the original primitives are of the same type, in other 
circumstances the types of the vertices mapped could differ. This is particularly the 
case for level 2 reference types, where their inherent outgoing associations and depen­
dencies are not recorded in the model but could in fact differ. This will be addressed, 
at least in part, by the introduction of semantic attributes, thereby improving the level 
of detail, and so the specificity, in matching individual vertices and edges.

5.4.3 Refinement using attributed match

The simple example of Section 5.3.1 went some way to illustrating the efficacy of 
attributed match in improving the specificity (quality) of the mapping between the 
ARGs, while also reducing the order of the CG and the number of enumerated cliques. 
The introduction of attributes into the current match process should serve to reduce 
the overall complexity and improve the manageability of the matching process and its 
products. It will also lead to a shift in focus from the discovery of abstract structures 
to those that are more concrete, e.g., field types as opposed to just fields. The intro­
duction of attributed match carries with it the possibility of increased computational 
requirement, in terms of the actual comparison of graph elements. In practice, the

7Replace the static primitive with a class acting as a basic, reference type wrapper providing direct 
access to the stored primitive, i.e., no methods.
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additional overhead of attribute matching during CG construction is generally small 
in comparison to the time taken by the actual clique extraction process. CG construc­
tion for the large ARC (d) above took less than 2 seconds, that of the smaller ARC 
taking less than 0.1 second. Attributed match also introduces the thorny problems 
of weighting individual attributes, in addition to choosing an appropriate similarity 
coefficient and threshold.

General attributed match

Attributes are introduced into the matching process during CG construction. The 
attributes associated with both the vertices (primitives) and edges (relationships) de­
fined in the model of Chapter 3 are now used to qualify the match currently based on 
syntactic labels alone. Vertices and edges that provisionally match based on their syn­
tactic labeling are now additionally compared using their respective attribute sets. As 
in the SR approach of Chapter 4, each set of attributes associated with a vertex or edge 
of the ARC is treated as a vector, the two vectors being compared based on weighted 
elements, an appropriate similarity coefficient and the selection of a similarity t hresh­
old. Two attribute vectors that are similar above a given threshold identify a pair of 
matching ARC vertices or edges. Consistency in the match process is maintained by 
ensuring that attribute vectors are compared only if they are compatible. In this case, 
the prerequisite syntactic label match ensures that only compatible vertex and edge 
are subjected to attribute comparison. The use of a similarity threshold effectively 
determines a discrete approach to matching vertices and edges, i.e., they either match 
or do not match. We could in principle remove the threshold and generate CG vertices 
for all compatible ARG pairs, assigning weights to each CG vertex based on the cal­
culated similarity value. The weighted CG so formed could then be analysed using a 
weighted clique detection algorithm. The relative simplicity and lower computational 
overhead of the threshold-based discrete approach was the principle reason behind not 
attempting a continuous formulation at this stage.



W eighting and thresholding

In practice, one of the main problems associated with attributed, semantic match is 
that of determining appropriate weighting and thresholding. Attributed matching of 
graph elements needs a means of assigning appropriate weights to individual attributes 
within a vector, as well as setting a threshold on the validity of the match.

Attribute vectors differ from SI' feature vectors in being heterogeneous, i.e., some 
attributes are counts, and some identify categories. Initially, attributes represented 
by counts are weighted by their frequency of occurrence. Categorical attributes are 
effectively unweighted. We continue to apply the complemented Bray/Curtis simi­
larity coefficient but modified to take account of categorical attributes. Categorical 
attributes are effectively converted into binary counts prior to calculating the simi­
larity value between two vectors. If two compared categorical values are the same, 
each is replaced by a count of I. If the categories are deemed different, one value is 
replace by a count of 1 while the other is replaced by a count of 0 - the choice of which 
is arbitrary. For some of the primitives, e.g., any of the reference types, one of the 
attributes is a unique structural type identifier, i.e., elements of the same structural 
type are structurally identical. This allows us to apply an hierarchic matching policy. 
In such cases, if the structural type values are the same, an exact match is flagged and 
the remaining attributes can be ignored. If the two values are different, the remaining 
attributes are then used to determine the degree of similarity.

The similarity threshold was set at 0.5 to begin with, i.e., any pair of vectors with 
a similarity equal to or greater than 0.5 were considered to match. At this stage, 
and guided by the results of the SP analysis of Chapter 4, a threshold of 0.5 was 
considered reasonable in that values below this would be unlikely to represent com­
mon structure of any significant, practical value. In the case of vertices representing 
concrete methods, this match criterion is further qualified by using the basic-block 
“method” feature vector extracted during the SP analysis: if two concrete methods 
match within threshold based on attribute values alone, but their “method” feature 
vectors differ by more than 75%, the match is invalidated. This was an attempt to 
prevent methods matching that demonstrated superficial similarity based solely on 
their attributes but which were in fact significantly different. In determining method 
similarity, simple attribute counting metrics have been shown to be possibly inferior



to structural approaches [Wise, 1996]. The SP “method” feature vector captures a 
picture of a method’s control structure, and it seemed reasonable to suggest that 
if this picture differed significantly between two compared methods, they should be 
considered different.

The results of re-analysing the four ARGs (a to d) using self-comparison are shown 
in Table 5.7. Data is also included for examples (c) and (d) with the clique limit 
reduced to 10 thousand. Using vertex and edge attributes has again made a significant 
difference to the matching process. ARGs (a) and (b) can now be fully analysed in 
that the clique detection process runs to completion having searched the entire state 
space tree. The improvement for the two larger CGs is also impressive, particularly 
in the case of (d), where a maximum clique has now been identified. The time to 
first maximum has also been improved. In case (c), the CG order and size, plus the 
number of clique and associated times, have not improved as much as expected given 
the improvements for (d). On closer inspection, ARG (c) has a greater proportion 
of level 2 vertices, which include methods external to the class. Our current model 
is limited in its implementation in that level 2 methods do not record a full set of 
attributes. Vertices representing level I methods are fully attributed as the results of 
their analysis are immediately available during the class analysis. However, attributes, 
other than those relating to method signature, would have to be added retrospectively 
for these external methods. (This is planned for inclusion as part of further work.) 
Consequently, without a full attribute set, or rather the presence of zero-valued pairs 
of attributes, discrimination between level 2 method vertices is reduced. As there 
are proportionally more such vertices in (c) than (d), this accounts for the relatively 
smaller reduction in CG order for (c) when compared with (d).

A large class, ‘java.awt.Component’ (36K) (e.g.(e)) could also now be accommo­
dated within the analysis framework but the computational cost of clique extraction 
severely limited the search for a maximum clique, in this case the process was further 
compromised by the depth of the search tree and the recursive nature of the B&K 
algorithm exhausting available memory. Nevertheless, a clique of order 401 was dis­
covered in a CG of order 7453 and size 27313208 in 46.03 secs. (The original ARG had 
780 vertices and 1392 edges.) It is important to note that CG order has been reduced 
such that CGs derived from large ARGs can at least be accommodated, even though 
the clique extraction process is limited. We attempt to address this problem below in
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D e n s ity C liq u e s

M a x .

C liq u e s

C P U  T im e  

1 s t m a x .( s )

T o ta l  C P U  

T it t le  (s)

(a ) 16 20 16 120 1 .00 1 I (o f  6) 0 .0 9 0 .1 0

(c  1)

(b ) 50 66 08 21 7 8 0 .9 6 96 4 (o f  ?) 0.11 0 .1 2

( c l )

(c) 14'! 242 1030 5 0 0 8 3 6 0 .94 1000000* 192 ( o f  ?) 0 .4 5 18.14

(c  1)

10000* 96  (o f  ?) 0 .4 5 0 .6

(c  1)

(d ) 268 438 1106 5 9 2 5 2 2 0 .9 7 1000000* 1 (o f  ?) 0 .8 0 6 8 .6 4

(c  7 65 )

( o rd e r  264 ) (0 .7 7  ( c l ) )

10000* 1 (o f  ?) 0 .8 0 1.21

(c  7 65 )

Table 5.7: Attributed match

the section relating to an heuristic approach to clique detection.

The significance of using the basic-block “method” feature vector to qualify at­
tributed match in the case of concrete methods was at this stage inconclusive. The 
above analysis was repeated, first without the qualification, and then with a 50% 
as opposed to 75% threshold on the difference in “method” feature vector similarity: 
although there were minor changes in the CG order and size, larger without the qualifi­
cation, smaller with the reduced threshold, the results effectively remained unchanged 
in terms of CG density, clique numbers and times. The correlation between attributed 
match and “method” feature vector match may be such that at the set threshold lev­
els the qualification is redundant. Current confidence in the discriminating power of 
the “method” feature vector is such that reducing the threshold further may unduly 
compromise the attribute match. This is a topic intended for further investigation.

A further exploratory analysis

An exploratory, attributed, MGS analysis of one of the sampled data sets of Chapter 4 
- data set “S2” - was now carried out. Overall similarity between ARGs was calculated 
based on the metric described in Section 5.2.1, i.e.,

S(A H Ç U A'JIQ2) =
\mcs{Angu A n g 2)\

■max(\ARGi\,\Âng,\)



The results obtained were surprisingly poor: several cases from sample “S2” showed 
that the expected improvement in discrimination over both SP and JP was not im­
mediately forthcoming. On closer examination, it was found that the presence of a 
few high frequency, matching attributes were sufficient to overwhelm the contribution 
of several lower frequency unmatched attributes. This gave rise to an higher than 
expected similarity value. (Similarly, several low frequency, matching attributes could 
be overwhelmed by a single, high frequency, unmatched attribute in one of the vectors, 
giving rise to a lower than expected level of similarity.) Hodes demonstrated how the 
choice of weighting and coefficient could significantly affect the eventual assessment 
of similarity, particularly in situations where the choice of coefficient gave “too much 
weight to already highly weighted features” [Hodes 1988]. The coefficient eventually 
used by Hodes is very similar to the complemented Soergel metric as defined in Chap­
ter 3. Using the complemented Soergel metric as a replacement for the complemented 
Bray/Curtis coefficient did not however improve matters in this case. Standardisation 
or normalisation of the attribute values was considered but the difficulty here lay in 
determining appropriate, generally applicable values for the statistical parameters or 
ranges required, given the potentially dynamic nature of the class collections. The code 
samples at our disposal were limited, and certainly not representative of the overall 
population as a whole. Consequently, an alternative, more straightforward approach 
based on what one might term “relative normalisation” was tried.

5.4.4 A similarity coefficient based on “relative normalisation”

First, the relative similarity of each pair of corresponding attribute values is calculated 
by dividing the minimum of the two values by the maximum of the f.wo values, effec­
tively a local application of the complemented Soergel metric. The similarity value for 
the two vectors is then calculated by dividing the total of all the relative similarities 
by the number of non-zero attribute pairs. (Categorical attribute values are assigned 
a relative similarity of one or zero depending on whether they match or not.) This 
differs from Gower’s approach to attribute normalisation in that it does not depend on 
a static, collection-based value for the range of each attribute. Relative normalisation 
is dependent only on the values of the actual attributes being compared. However, it 
does require calculation of the minimum and maximum value of each pair of compared
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attribute values, so increasing the computational overhead. Repeating the exploratory 
analysis using this revised similarity calculation for attribute match suggested that the 
original source of bias had been largely eliminated, if not entirely removed.

5.4.5 Compromises and larger classes

It is clear from the above analysis that the complexity of the clique detection process 
is a significant limitation to our approach in general. We have managed to improve the 
MCS extraction process within the framework of the B&K algorithm by introducing 
various domain-specific approaches to pruning the potential search tree. However, 
the improvement is such that only small to medium sized classes can be adequately 
catered for. Adequacy in this case equates to the identification of a maximum clique in 
a CG, and the corresponding MCS in the compared ARGs, within a short extraction 
time. The given examples, and the use of self-comparison in order to generate large, 
common structures, are not typical of what we can expect in general. However, the 
range of ARG sizes and the possibility of encountering large common structures must 
be reasonably catered for.

As the order and density of CGs increases, so does the associated time and memory 
overhead. The MCS extraction process using B&K tends to generate large clique 
early in the process but for large CGs the analysis times can be prohibitive, if indeed 
available memory allows the heavily recursive process to run to completion. We have 

also seen that the number of cliques generated can be considerable and potentially 
problematic in terms of any further analysis.

Let us for the moment accept that a maximum clique is a sufficient expression 
of the common structure between two classes, at the possible expense of dismissing 
smaller but potentially significant structures. If we also accept that in practice, ARC 
comparison and maximum clique identification will reasonably require extraction times 
of the order of seconds, or fractions of a second, only the two smallest CGs examined 
above fall within this threshold. In the case of the larger CGs, the total run time is 
considerable greater, even accounting for termination at the 1 million clique point. As 
a consequence of stopping the analysis in order to limit output or prevent exhaustion 
of system resources, we can not be sure that the largest clique extracted is indeed a
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maximum, or good approximation to a maximum for that matter. The results obtained 
suggest that the time to first maximum clique is within our somewhat arbitrary time 
limit except in the case of the very large example (e). The point at which a maximum 
was extracted occurred well within the 10 thousand clique point in all the above cases. 
Repeating the analysis of the four examples (a to d) but limiting clique output to 10 
thousand resulted in the largest total run time being reduced to 1.21 secs. Based on 
these observations and assumptions, we propose the following strategy as a reasonable, 
general approach to clique extraction:

• Use the deterministic B&K algorithm but limit clique output to 10 thousand: 
this should provide a maximal clique in most cases where the order of the CG 
and common subgraph are not too large. In cases where a maximal clique is 
not identified, the largest clique found should be a good approximation to the 
maximum except in the most extreme cases.

• Use an heuristic approach to try and improve on the largest clique extracted: if 
the B&K search is terminated, in order to limit the chance of missing a maxi­
mum clique or a good approximation to same, we introduce a low complexity, 
approximate clique detection method to try and improve on the current largest 
clique. In such cases we can not infer that the largest current clique is a max­
imum, except where the order of the clique is the same as that of either of the 

two compared ARGs.

As we are now looking for maximum cliques as opposed to enumerating all cliques, 
the B&K algorithm could have been replaced by a partially enumerative, maximum 
clique algorithm such as the previously mentioned C&P or Babel algorithms. Rather 
than introduce such a significant change, the following factors suggested we retain the 
B&K algorithm. Although the largest CG density was much less than in the cases 
reported here, Willett and his colleagues showed that B&K is faster than the C&P 
algorithm for higher density CGs [Gardiner et al, 1997]. (Their results for Babel’s 
algorithm did not show a consistent pattern of improvement.) In any case, being as 
we currently limit the number of c l i q u e s  extracted, and the B&K extraction time per 
clique is generally very short (< lms), the benefit to be obtained from introducing 
an algorithm with a potentially better overall performance in such a clique-limited
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scenario is questionable. The most significant factor in this case relates to the limits 
imposed by the size and density of the larger CGs encountered. These would make 
a full search totally impractical irrespective of the choice of deterministic algorithm. 
Babel reports run times of the order of hours for graphs with order and density consid­
erably smaller than some of those encountered here [Babel 1991]. Similarly, Myrvold 
reports estimated times quoted in days for graphs of order -100 and density 0.7 [Myrvold 
et al, 1998].

Heuristic approaches

Heuristic approaches that produce approximate, non-optimal, but fast solutions to 
the maximum clique problem are available [Bomze et al, 1999]. These include simple 

“greedy” heuristics, “local search” approaches, and more advanced methods such as 
tabu search and simulated annealing.

A common problem with “greedy” heuristics is that they terminate on finding any 
clique, i.e., they return the first maximally connected subgraph which may not be a 
maximum or even a good approximation to the maximum in terms of its order. This 
is improved on by “local search” which tries to increase the order of the current clique 
through a series of modifications directed at the clique and its local neighbourhood. 
The main problem with “local search” is the classic trap of terminating at a local 
maximum, i.e., although a larger clique exists, the available operations can no longer 
“see” a local modification that allows an improvement in the order of the current clique. 
Simulated annealing addresses this deficiency by allowing the algorithm to escape from 
local maxima and so examine more of the search space. In [Homer and Pienado, 1996], 
the authors state that simulated annealing has been shown to outperform all other 
competing clique detection algorithms, particularly for very large, dense CGs, ranking 
among the best heuristic approaches to the solution of the DIMACS benchmark graphs.

The main criticism of simulated annealing is that it only deals with one candi­
date solution at a time. No information is retained across successive states in the 
search process and as such, the picture of the overall state space is always limited. 
In contrast, genetic algorithms (GAs) employ an highly parallel, exploratory and ex­
ploitative approach to the state space. Until recently, GAs have not performed well
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when applied to direct graph match or indirect match via clique detection. However, 
a recent contribution based on an hybrid, heuristic GA (HGA) that combines a simple 
“greedy” heuristic within a simple GA, has proven to be as effective, if not better than 
current clique detection algorithms, including simulated annealing [Marchiori, 1998]. 
The heuristic element of our overall strategy is based on the template provided by 
Marchiori’s HGA.

5.4.6 Heuristic match using an hybridised genetic algorithm

Genetic algorithms were introduced in 1997 by John Holland in an attempt to solve 
complex search and optimisation problems by analogy with the natural process of 
Darwinian evolution. A GA effectively mimics the process by which populations of 
organisms evolve, enhancing their survival potential by virtue of improving the level 
of fitness inherent in their genetic makeup. In passing from one generation to the 
next, recombination and modification of this genetic material can lead to the pro­
duction of individuals better fitted to their environment and consequently more likely 
to succeed/survive. A concise and readable introduction to GAs can be found in 
[Beasley et al, 1993], more detail being available in [Goldberg, 1989; Davis, 1991].

A G A evolves a population of individuals representing potential solutions to a given 
problem. A commonly adopted, simple template for a GA is provided below:

1. Randomly generate an initial population of individuals each representing a potential 
solution to the problem: individuals are often represented by strings of bits, T s and 
’0’s. This string representation is referred to as a chromosome, individual or grouped 
bit positions as genes, and the allowable values for the bits or groups of bits, alleles.

2. Assign a fitness value to each individual based on the quality of the problem solution 
they represent: a fitness value is generated by a problem specific function that directly 
relates this value to the problem’s objective function. The fitness value is subject to 
additional scaling or thresholding in some cases.

3. Select pairs of individuals (parents) based on their assigned fitness to produce the next 
generation of individuals: the probability of an individual being selected is usually pro­
portional to its fitness, the higher the fitness the greater the chance of selection (pro­
portionate selection).
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4. Apply the genetic operators “crossover” and “mutation” to each pair of parents to 
produce offspring (children):

• Crossover in its simplest form involves splitting both parent at some randomly 
chosen single point in their representation. This produces a “head” and “tail” 
section for each chromosome. By swapping the “tail” sections, offspring are pro­
duced having inherited genetic material from both parents. Crossover is generally 
only applied to a proportion of all pairs of parents selected, the proportion usually 
being > 0.7. Uniform crossover is a variant in which a crossover point is effec­
tively set between each adjacent bit-position, corresponding bits being swapped 
between parents according to a set probability independent of the overall crossover 
probability (typically 0.5). The broad intention behind crossover is to combine the 
best features or genes from both parents thereby giving rise to fitter offspring. It 
effectively allows the GA to rapidly explore a large search space.

• Mutation is a low probability, random event that alters the genes of the offspring, 
for example, by swapping a T  to a ‘0’ in a bit-string. The mutation probability is 
typically set such that at most one mutation occurs per selected individual. These 
infrequent, local changes to the genetic profile effectively ensure that the search 
space is not limited by those alleles in the current population. It improves the 
chances of all areas of the solution space being searched.

5. Use the offspring to form a new population: the next generation can be built simply by 
generating sufficient offspring, discarding the old population. In order not to discard 
good solution, it is common practice to retain a proportion of the best individuals from 
the parental population (Elitism).

G. Repeat the generation cycle until a termination condition is reached: termination con­
ditions can be fixed, dynamic or a combination of both. For example, a limit on the 
number of generations or a maximum run time can be established. Also, if the current 
best solution is above a known quality threshold, the GA can be stopped. The GA can 
also be stopped if the level of similarity within the population has converged to a set 
level: a gene or bit-position is said to have converged when 95% of the population share 
the same value, the population having converged if all genes have converged.

The GA proposed by Marchiori is built upon this basic pattern. Each individual 
consists of a string of bits of length equal to the number of CG vertices. An entry 
in the string is ‘1’ if the corresponding CG vertex is currently selected, ‘O’ otherwise. 
The population size is set at 50. The fitness of each individual depends on whether 
the selected vertices form a clique, in which case it is simply the number of T s  in
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the string, i.o., the size of the clique. The fitness is zero if the vertices do not form a 
clique. The mechanism used by Marehiori to select pairs of parents is not documented. 
Children are produced via crossover and mutation from pairs of parents: the quoted 
crossover rate is 0.8 and uniform crossover is applied; the mutation rate is 0.1 and swap 
mutation is used. The next generation is formed by selecting the best two individuals 
by fitness from the resulting group of four parents and children. Additionally, an elitist 
strategy is adopted whereby the two fittest individuals from the previous generation 
are also retained. Marchiori also employs a “diversification factor” in order presumably 
to allow the population to continue evolving in the face of premature convergence to 
a possibly sub-optimal solution: “depending on the total fitness of the population”, 
an individual is selected at random with a “very low probability”, replacing it with a 
randomised pattern of bits. The terminating condition was a 100 generation limit.

The significant element of Marehiori’s approach is the heuristic algorithm used to 
post-hybridise the GA. The GA as it stands is not very effective, “getting easily stuck 
on local sub-optimal solutions”. By applying a heuristic clique extraction algorithm 
to each new individual generated by the GA, Marchiori has shown that the result­
ing hybrid GA is very effective. The heuristic algorithm is reproduced below. The 
description assumes a CG representation based on N  sequentially arranged vertices 

(n i,..., n/v):

1. Relax: (Enlarge the subgraph)
Add a few vertices randomly chosen from the graph

2. Repair: (Extract a clique)
Choose randomly a position idx with 1 < idx < N:

(a) for i — idx to N: if n,- belongs to the subgraph then
-  either delete m or
-  for j  =  i  + 1  to N: delete i i j  if it belongs the subgraph and r ij  is not connected 

with rii;
for j  = 1 to i — 1: delete n } if it belongs to the subgraph and r i j  is not 
connected with m

(b) for i = idx -  1 downto 1: if n, belongs to the subgraph then
-  either delete n,: or
-  for j = i — 1 downto 1: delete nj if it belongs the subgraph and rij is not 

connected with m
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3. Extend: (Enlarge the clique)
Choose randomly a position i d x  with 1 < i d x  < N :

(a) for j  = i d x  to Ar: add rij if it connected with all the vertices of the subgraph 
(obtained so far)

(b) for j  = 1 to i d x  -  1: add i i j  if it connected with all the vertices of the subgraph 
(obtained so far)

In order to implement the HGA, Spears’s ‘C’-based simple GA (GAG), was mod­
ified to incorporate Marchiori’s heuristic. (GAG is a freely available implementation 
of a generational GA that uses fitness scaling and sampling based on Baker’s SUS8 
algorithm, giving rise to a form of proportionate selection. [Spears, 2000) The initial 
population of 50 individuals was created from randomly generated bit strings. Uniform 
crossover and swap mutation were used, the GAG crossover and mutation constants 
being set at 0.8 and 0.001 respectively, i.e., typical crossover but low mutation rate. 
Successive generations were created by replacing the parents with Marchiori’s ‘best- 
two- from-four’ approach. An elitist strategy was adopted by retaining the two best 
individuals from the previous generation. A diversification factor was also included by 
way of randomising a randomly selected individual (probability 0.1) if the population 
shows > 80% convergence. (The precise details of Marchiori’s “diversification factor” 
were unavailable.)

The heuristic algorithm was also modified to take account of the rooted, connected 
constraints imposed by our current approach to the MGS extraction process. As in 
the modified B&K algorithm, this was achieved by ensuring that the CG vertex repre­
senting the root pair of ARG vertices was always present in each individual. Vertices 
added to or removed from the current clique were checked to ensure they preserved 
connectivity in the underlying ARGs. Unfortunately, this latter requirement was seen 
as a potential cause of significant analysis overhead. Consequently, the termination 
condition was initially set at 10 generations rather than 100 as in the original HGA.

The three ARGs (c - e) were once again self-compared using HGA (Results aver­
ages over 10 runs) (Table 5.8). In comparison to the currently modified B&K based 
approach, using a 1 million clique limit, the HGA result for case (c) is comparable,

sSUS: Stochastic Uniform Sampling. Baker, J.E. Reducing bias and inefficiency in the selection 
algorithm”, Proc. ICGA 2, 14-21, Lawrence Erlbaum Associates, 1987.
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while that for (d) shows a greater than 50% improvement. Case (e) has shown a 
marked improvement in the order of the largest clique extracted but this is at the 
expense of a thirty-fold increase in the time required.

ARG ARG CG CG CG Largest Total CPU
Vertices Edges Vertices Edges Density Clique Time (s)

(c) 144 242 1030 500836 0.94 144 24.95

(d ) 2G8 438 1106 592522 0.97 268 41.86

(e) 780 1392 7453 27313208 0.98 743 1423.0

Table 5.8: Heuristic GA match

These comparisons are based on the total time taken to complete the respective 
analyses: the 1 million clique mark for B&K and the 10 generation mark for HGA. 
Comparison with times from the B&K analysis using a 10 thousand clique limit show 
that HGA can not generally compete: we see that B&K produces a maximum or 
good approximation to a maximum clique early in the extraction process, cases (a) to
(d) showing sub-second times to maximum clique detection. However, we can neither 
assume that this is generally the case nor that maximum cliques will always appear 
within the 10 thousand clique point as is the case for these examples. In addition, the 
result for example (e) shows that HGA can accommodate exploration of a solution 
space entirely outwith the computational constraints imposed by the deterministic 
B&K algorithm. As a result, in would appear reasonable to test the compromise 
inherent in our suggested combined approach, where we use B&K to begin the search 
for a maximum clique, applying HGA as a means of limiting the possibility of missing 

large cliques and their associated MCSs.

To begin with, we re-analysed these three examples using the proposed combined 
approach with an extraction limit of 10 thousand cliques. As expected, the results 
shown in Table 5.9 indicate that the solution quality is at least as good as if not better 
than HGA alone. The overall run times have been increased due to the introduction 
of the initial B&K analysis. Given the possibility that HGA can generate both inferior 
and superior solutions to the clique-limited B&K approach, in order to maximise the 
possibility of identifying maximum cliques the run time overhead of the combined 
approach may be justifiable in practice.

In the next section we take a further look at the performance HGA and B&K 4-
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ARG ARG CG CG CG Largest Total CPU

Vertices Edges Vertices Edges Density Clique Time (s)

(c) 144 242 1030 500836 0.94 144 31.89

(d) 268 438 1106 592522 0.97 268 46.66

(e) 780 1392 7453 27313208 0.98 766 1813.67

Table 5.9: Combined B&K+HGA match

HGA, relative to that of B&K alone, using the data sets of Chapter 4.

Comparison of B&K, HGA and HGA +  B&K

In order to evaluate our combined strategy, the two samples “111" and “S2” used in 
the matched-pair evaluation on page 108 were analysed using BfeK alone, IIGA alone, 
and the combined B&K/IJGA approach. In the combined B&K/HGA approach, the 
HGA was pre-hybridised by replacing two individuals in the randomly created initial 
population with two individuals representing the best clique identified by B&K. The 
HGA was further modified to terminate if a clique of order equal to that of one of the 

compared ARGs was found.

At this stage of the project, a data set used in the original JP evaluation was 
made available courtesy of Guido Malpohl, the designer of JPlag. This data set was 
from a graduate advanced programming course that introduced Java and the AWT 
to experienced students. The requirement here was to design and implement a simple 
graphical game where the player has to move the mouse into a square jumping around 
on the screen. The mouse must enter the square from a particular side indicated by 
an ever-changing color code. This was the largest program in the JPlag evaluation 
and was also a large program set (with 59 programs). The average class file size was 
7K, much larger than that of data sets “HI” and “S2”. The problem allowed for fairly 
large variation in some aspects of the program design. (The program set contains 4 
program pairs that are confirmed plagiarisms.)

The criterion used to gauge the success or otherwise of the various individual and 
combined approaches was that a maximum clique, or good approximations to a max­
imum, should be identified within an “acceptable” time. Acceptability at this stage 
was difficult to determine, performance of the order of seconds rather than minutes
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being a reasonable provisional limit. In particular, it is important that introduction of 
the HGA should not add significantly to the computational overhead in terms of time 
and space, unless it is able to identify large cliques, or for the combined approach, 
significantly larger cliques where they exist.

For the three data sets examined, the results obtained using the HGA and the 
combined B&K+HGA approaches were compared to those obtained using B&K (10 
thousand and 1 million clique limits) (Table 5.10). Where the comparison involved an 
HGA invocation, the table gives counts for clique order being equal to (=), greater 
than (+), or less than (-) B&K. Also included are a count of those instances where 
the clique size was increased such that the similarity value now met or exceeded the 
0.5 threshold (++), and a count where the threshold was no longer met when it was 
originally (- -). The times quoted are the minimum and maximum run times for all 
pair of ARGs compared. The last column gives the total number of ARG pairs with a 
similarity greater than or equal to the threshold of 0.5 for the combined B&K + HGA 
approach, i.e. significant matches.

Class files in the “III” data set (median 2K, range 2K (l-.'iK)) are on average 
smaller and have a smaller range than those in the “S2” data set (median 3K, range 9K 
(1-1 OK)), which in turn have an average size less than that of the “j5” set (median 7K, 
range 10K (1-1 IK)). It is clear from these results that as the average size of the ARGs 
increases the computational overhead increases irrespective of the approach adopted. 
In terms of CG order, in the case of data set “HI”, the HGA and combined B&K +  
HGA methods do not improve on B&K alone. For larger classes with potentially larger 
common subgraphs, as represented by data set “S2”, we see a small improvement in 
both the HGA and combined approaches. Instances of matches that would otherwise 
have been missed are identified.
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Data
Set

Clique
Cutoff

B & K CPU Time (s) H G A CPU Time (s) B & K  +  H G A CPU Time (s) Sim. 
> 0.5Min. Max. = + + + - Min. Max. = + + + - Min. Max.

“HI" 1E4 0.17 0.27 435 0 0 0 0 0.19 0.50 1 0 0 0 0 0.17 0.56 92
“HI" 1E6 0.18 0.43 435 0 0 0 0 0.19 0.50 0 0 0 0 0 0.16 0.46 92
“S2” 1E4 0.17 0.42 431 2 2 0 0 0.18 5.01 8 2 2 0 0 0.17 5.85 54
“S2” 1E6 0.18 7.33 431 2 2 0 0 0.18 5.01 6 2 2 0 0 0.17 9.59 54
“jo" 1E4 0.26 2.70 362 787 3 24 0 0.42 14.80 383 791 2 0 0 0.24 13.78 7
“jo" 1E6 0.26 247.89 518 576 3 79 0 0.42 14.80 588 586 2 0 0 0.24 253.39 7

Table 5.10: Comparison of BfeK. HGA and B&K+HGA



Still larger average class sizes as found in data set “j5” show that both the HGA 
and combined approaches improve the order of the largest clique in a large number of 
matches, the number of significant matches having also been increased by a factor of 
more than 25%. However, in this case, HGA has resulted in 24 matches being worse 
than for the original BfeK, although none represent the loss of a significant match. 
Using B&K with a 10 thousand clique limit, the HGA and combined approaches have 
little to choose between them in terms of analysis time. The time for the combined 
approach is significantly increased for the larger clique limit, with no perceptible im­
provement, in solution quality. It is also worth noting that the number of significant 
matches for all the data sets is at most 21% of the total number of ARG pairs tested. 
In particular, significant matches in the “j5” data set are less than 1% of the total.

At this stage, the general problem of identifying the largest clique in a CG remains 
simple to define but still extremely difficult to address with any confidence. By using 
the clique-limited deterministic B&K approach, and examining small to medium sized 
classes, we can find a large order clique in sub-second time. However, we can not 
be certain that this represents an optimal or near-optimal solution. By applying a 
combined deterministic plus heuristic approach we can improve on the quality of the 
solution, in some cases significantly. The degree of confidence in the quality of the 
solution is also higher than with HGA alone: HGA can sometimes produce a solution 
of smaller order than clique-limited BfcK, whereas the combined approach can only 
improve on the B&K result. Unfortunately, this confidence carries with it the overhead 
of increased analysis times for larger CGs. That said, at least in the 10 thousand clique 
limited approach, the worst case time remains within our initial objective of analysis 
in seconds rather than minutes. As seen in example (e) of the previous section, the 
real benefit to be gained from using the combined approach is its ability to identify 
large cliques in large CGs. In these cases, time to completion can be well outside our 
target of seconds as opposed to minutes. Very large cliques have so far proven to be the 
exception rather than the rule. In cases where the analysis framework encounters times 
over a set threshold (currently 60 secs.) it flags the pair of ARGs for off-peak analysis 
or manual assessment. Based on this analysis, the combined B&K+HGA approach 
using a clique limit of 10 thousand was selected as a basis for further investigation.
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5.5 R evisiting the Structure Path analysis: SP, JP  and 

MCS

We have shown that by a judicious selection of domain-specific heuristics and the intro­
duction of attributed match, a local measure of similarity based on the MCS between 
two ARGs is feasible in all but possibly the more extreme cases of very large, similar 
ARGs. In principle, we have developed a means of defining the degree and composi­
tion of a structural match between two ARGs. It now remains to establish whether 
our underlying model, including the selection and weighting of attributes; choice of 
similarity coefficient; and applied thresholds, are adequately justified in practice. As 
in the case of the SP analysis, the lack of appropriate independently assessed data sets 
presents the same difficulty in obtaining an objective assessment of the efficacy of out 
local similarity measure. Based on the same argument as presented in Chapter 4, for 
the moment we continue to use the JPlag plagiarism detector as our reference.

We also include results from the SP analysis here, for two reasons. Firstly, the ob­
servation relating to the calculation of similarity in the exploratory analysis of page 1(57 
raised similar concerns about the weighting of SP features and the calculation of sim­
ilarity. There is nothing to suggest that bias in the similarity calculation due to 
high frequency features overwhelming the effect of lower frequency features is not also 
present in the SP analysis. In addition, the SP features are obviously not independent, 
in that different feature occurrences may be contributed to by the same physical edge 
in an ARG. The denser the neighbourhood of an ARG vertex, the greater the chance 
that an adjacent edge will appear in multiple features. This in turn may also be re­
sponsible for introducing bias into the similarity calculation based on the number of 
permutations not being linear but a factorial function of the density. Originally, it was 
thought that the large number of different features present in an SP analysis would 
compensate for this. However, at this stage it merely added to concerns relating to 
feature weighting. Consequently, the “relative normalisation” introduced above was 
also applied here in the context of the SP analysis, possibly enabling an improvement 
in the results from Chapter 4. As described in Section 4.5.3, the SP analysis ap­
plied here also used separated “class” and “method” feature sets: “method” similarity 
is calculated by way of bipartite match, the final similarity value calculated from a 
weighted average of the two (70:30 in favour of the “class” similarity, reflecting current

180



confidence in the two feature sets as valid discriminators).

A second, fundamental reason for including SP here is based on one of the original 
motivations behind the SP approach. The intention is to develop a low complexity, 
global measure of structural similarity, which could possibly act as a filter to a more 
expensive local analysis as presented here. We examine the predictive quality of SP 
in relation to MCS as part of the following analysis and discussion. It is worh noting 
at this stage that in practice, an analysis based solely on SP may be sufficient to 
meet the needs of a given operational scenario. The values of recall and precision 
asociated with SP may be such that a more detailed, computationally demanding and 
time consuming MCS analysis could be dispensed with, i.e., a user may be prepared to 
accept the results generated by SP at the possible expense of some spurious or missed 
matches.

Figures 5.9, 5.10 and 5.11 show the results of analysing the data sets “HI” ,“S2” and 
“j5” using SP (path length 3), JP (sensitivity 5) and the combined B&k+HGA MCS 
(vertex/edge similarity threshold 0.5; B&K cutoff 10000). The larger class and method 
size found in the “j5” data set prompted the inclusion of a JP plot using a sensitivity 
of 5, JP (sensitivity 3) is included for comparison. Absolute difference and Spearman 
rank-correlation statistics for the three data sets are shown in Table 5.11. In general, 
all three approaches show a significant correlation. Inspecting the corresponding plots 
and statistics for “HI” and “S2” from Chapter 4 (Figure 4.10 and Table 4.6), the 
change in SP similarity calculation has improved the relationship between SP and JP 
to a certain degree. This is reflected in the lower absolute difference statistics, and 
the rank correlation remaining significant, although not showing a consistent, positive 
change. At the outset, the most striking observation to be made relates to the SP 
- MCS comparison: the mean absolute difference values are generally lower and the 
correlation between SP and MCS consistently high for all data sets.

Although SP correlates well with MCS it is clearly not a strict upper bound to 
the MCS measure: the similarity value provided by SP is often less than that based 
on MCS. This difference in not generally significant when considering SP as an MCS 
predictor, a point discussed later in this chapter. However, on closer analysis, the 
disparity can on occasion represent a large MCS /  small SP combination. This is 
principally due to a combination of a) the nature of their respective similarity measures

181



and b) the disproportionate influence of larger SP features.

Figure 5.9: Comparative analysis of data set “HI”: SP, JP and MCS (Sorted by SP 
value)

Figure 5.10: Comparative analysis of data set “S2”: SP, JP and MCS (Sorted by SP 
value)
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SP(3) vs JP (5) vs MCS(0.5) (Data s e t  MJ5")

1.2

□ 8

0.6 ---------
- S P (3 )  

-JP (5 )

- MCS(0.5) 
JP(3)

1 101 201 301 401 501 601 701 801 901 1001 1101

C la s s  P a i r

Figure 5.11: Comparative analysis of data set “j5”: SP, JP and MCS (Sorted by SP 
value)

The difference in emphasis between the edge-oriented, multi-featured SP measure, 
and the vertex oriented MCS measure, will inevitably be reflected in their individual 
inductive bias’. More significantly, two structure graphs may differ in only one or two 
edges but have a high MCS and a disproportionately lower SP similarity value. This is 
due to the amplification of differences in the frequency of occurrence of larger structure 
paths in the compared ARGs. In general, the effect is not marked, mostly affecting the 
comparison of smaller classes. As discussed in Chapter 3, and echoing similar concerns 
voiced in Chapter 4, weighting structure path features in inverse proportion to their 
size may be an appropriate consideration for future improvement.

Although the correlation between JP and MCS is significant, it is not generally as 
strong as that between SP and MCS. The weaker correlation between JP(5) and MCS 
is somewhat surprising, given the evidence of the plot, and the absolute difference 
statistics. (The generally higher JP(3) similarity values for data set “j5” reflects 
the presence of spurious matches due to the combination of small tile size and larger 
methods. The better performance of JP(3) over JP(5) in the experiments of Chapter 4 
was, significantly, for the ‘'H” data set, which has small methods. In that case, the 
larger tile size of JP(5) lead to missed matches.)
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Data
Set

Spearman Rank Corr. 
(* Sig. at 0.01)

Absolute difference
SP - MCS MCS - JP SP - JP

SP - MCS MCS - JP SP - JP Max. Mean Std.dev. Max. Mean Std.dev. Max. Mean Std.dev.
“HI” 0.861 * 0.579 * 0.525 * 0.73 0.05 0.06 0.56 0.09 0.09 0.48 0.09 0.08
“S2” 0.632 * 0.656 * 0.691 * 0.45 0.08 0.08 0.53 0.08 0.07 0.46 0.08 0.08

“j5” (5) 0.633 * 0.169 * 0.192 * 0.29 0.07 0.05 0.30 0.08 0.06 0.28 0.07 0.05
“J5” (3) 0.633 * 0.250 * 0.274 * 0.29 0.07 0.05 0.50 0.29 0.08 0.45 0.22 0.08

Table 5.11: Comparison of SP(revised), JP and MCS



A scatter plot of the JP(5) vs MCS data showed a dense, circular cluster of similar­
ity values of approximate radius 0.1 formed around the point (0.2,0.3). These points 
account in large part for the measured differences between the two approaches. Due to 
the threshold on attributed vertex and edge match being set at 0.5, at lower levels of 
similarity MCS is more aggressive than JP in discarding small, probably insignificant 
common structure. If we discard all pairs having an MCS similarity < 0.4, providing 
a 10% margin of error for our current MCS pairwise similarity threshold, the picture 
changes significantly. A higher level of correlation and lower absolute difference values 
are restored, as shown in Table 5.12.

On closer comparison of MCS and .IP(5), those cases where they markedly differ 
arc in the main due to missed or inappropriate match on the part of JP, or significantly, 
inappropriate method match on the part of MCS - as per the observations relating to 
the SP-JP comparison of Chapter 4. A further factor that can significantly alter the 
MCS similarity calculation relates to the hierarchic, connected constraints placed on 
the match. If a method vertex at level 1 of the ARG fails to match within threshold, all 
those level 2 pendant vertices adjacent to it are excluded from the common subgraph. 
This makes the MCS approach highly dependent on the quality of attributed match.

For example, data sets “HI” and “S2” have high values for the class pairs giving 
rise to the maximum absolute difference. In both cases the MCS similarity value was 
very low in comparison to JP. This was due to the failure of one level 1 vertex to match 
within threshold leading to the elimination of a large proportion of the level 2 vertices 

from further consideration in the case of MCS match. In contrast, JP matched code 
corresponding to these level 2 vertices as it is not. governed by having to respect either 
connectivity or relationships between the elements of the matched code.
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Data
Set

Spearman Rank Corr. 
(* Sig. at 0.01)

Absolute difference
SP - MCS MCS - JP SP - JP

SP - MCS MCS - JP SP - JP Max. Mean Std.dev. Max. Mean Std.dev. Max. Mean Std.dev.

“j5" (5) 0.740 * 0.797 * 0.891 * 0.14 0.05 0.04 0.19 0.07 0.05 0.18 0.06 0.05

Table 5.12: Comparison of SP(revised), JP and MCS for filtered “j5”



A detailed examination of the classes and their attribute sets showed that the 
degree of commonality was indeed higher than reported by MCS. The failure to match 
was due to mismatch in those attributes recording method calls and field operations: 
the current model records each explicit instance of a method call or field operation but 
it does not take account of multiple calls or operations implicit in looping constructs. 
Consequently, the methods vertices in question failed to match although they were 
essentially the same. This is a serious limitation and needs further investigation: one 
simple remedy might be to record calls to, or operations on, distinct methods and 
fields, only once.

In addition to MCS’s tendency to produce smaller similarity values than JP at 
the lower end of the comparison spectrum, it can also generate relatively higher cor­
responding values than JP at the top end. Taken together, these over and under 
estimates account for many of the observed differences. Most of these differences are 
not significant in that they are comparatively small and do not place the measure­
ments on opposite sides of the set threshold. They result from a combination of the 
granularity of the MCS similarity calculation and the use of thresholding in match­
ing vertices and edges. MCS is based on the mapping of discrete, complete vertices, 
which is dependent on the set threshold, i.e., vertices either match or do not match. 
JP on the other hand produces a similarity value based on the tile as the unit of 
match. Although dependent on the minimum tile length, JP in general generates a 
more continuous measure of similarity.

Superficially, it appears that MCS has not improved on SP in determining the 
degree of similarity. Neither the correlation with JP, nor mean and standard deviation 
of the absolute difference figures have shown an improvement over those of SP. This 
is somewhat misleading bearing in mind that the SP-.IP comparison is itself prone 
to misclassification as discussed in Chapter 4. As with the SP approach, the MCS 
calculation experiences problems in discriminating at the method level. Cases still 
occur where methods match based on their relational context and attributes but which 
do not actually represent a valid mapping. Although examination of the data sets has 
been necessarily limited due to the sheer number of comparisons involved, the majority 
of these cases fall below the current MCS threshold of 0.5 and none have been found 
with a similarity > 0.75. (In terms of plagiarism detection, three cases identified by 
the JPlag team and included in the sample analysed were the top three significant
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matches reported by MCS extraction.)

However, in many observed cases where the .JP similarity value is shown to be 
valid, in comparison to SP, the attributed, local determination of similarity provided 
by MCS does improve on the context and relational constraints captured within the 
base SP model by:

• localising the match process to deal with individual vertices and edges, and their 
immediate neighbourhoods

• providing better matching of reference types by improving discrimination based 
on their attribute profiles

• removing the “averaging” effect of aggregated method features and cross-method 

feature match by matching methods individually

What is not clear at this stage is how crucial the deficiency in method match is 
in practice. We are not looking to identify code clones, but higher level, abstract 
structural similarity, closer to the defined interfaces rather than the detailed imple­
mentation. The variability inherent in the development process is such that structure 
can differ dramatically between methods with similar functionality. Conversely, sim­
ilar structure may also not be indicative of similar function. This is pointed out in 
[Jilani et al,2001] where they attempt to match software specifications based on a 
formal approach employing partial orders on relations over sets of functional specifica­
tions. Although they highlight this variability in implementation as a reason behind 
not being able to derive a valid measure of similarity based on structure, their experi­
ence is such that functional and structural similarity are generally well correlated, i.e., 
similar structure being indicative of similar function9. This is echoed by Whitmire in 
the specific context of object-oriented design, and is of particular relevance given that 
our current approach is predicated on a relational model of class-based development. 
He states that on comparing two classes “1 have not seen a case in which two classes 
participate in a similar set of relationships where they did not also serve the same 
purpose and were not also internally structurally similar” [Whitmire, 1997, pp404].

9This has a parallel in the “similar property" principle of molecular chemistry, which states that, 
in general, similar molecular structures have similar chemical properties.
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The “cut and paste” and “idiomatic” development practices described by Baxter also 
support the argument that structural similarity can in fact serve to identify useful 
instances of reused or reusable code and associated specification [Baxter, 1998], By 
overly tightening matching constraints at the method level, we may be inadvertently 
removing the element of variability necessary to support the search for useful common 
structure. Admittedly, overly lax constraints can lead to the identification of spuri­
ous matches, thereby reducing the efficiency and ultimate effectiveness of the overall 
process. Our current model is designed to compensate for the lack of detailed method 
structure by concentrating on the relational aspects of class structure represented by 
the associations between the fields and methods, both internal and external. Although 
the analysis presented tends to supports this general hypothesis, it is also clear that de­
ficiencies in our current model give rise to exceptions that slightly weaken the validity 
of the claim.

5.5.1 Using SP as an MCS predictor

A significant observation to be made from the preceding analysis is that in all but 
the most trivial of cases, MCS identification is going to be time consuming. Given 
a sample of 50 ARGs drawn from data set “j5” and an average analysis time of 2.02 
secs, per pair-wise comparison, it would take over 41 minutes to perform a full MCS 
analysis. Scaling this to larger collections and class sizes could be difficult to justify: an 
analysis of 1000 such classes would take over 11 days. Irrespective of the potential gains 
to be made in aggressively attacking the design of the code, in terms of optimising 
the data structures and algorithmic fine detail, it is unlikely that we can achieve a 
significant, order of magnitude, improvement in performance. Running the analysis 
on more powerful hardware is an option but again the degree of improvement is not 
likely to be generally significant. It is also clear that in the vast majority of cases the 
results of MCS comparison are negative, in that no significant common structure is 
discovered. If a mechanism were available that limited the MCS analysis to cases that 
were potentially of interest, this could reduce the overall analysis time considerably.

Although the SP approach of Chapter 4 is flawed and subject to ongoing improve­
ment, it has nevertheless been shown to correlate well with an existing measure of 
structural similarity (JP), as well as to the current MCS definition of structural sim­
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ilarity. Calculating the time for an SP analysis of 50 ARGs based on an average 
pair-wise comparison time of 0.012 secs, takes 15 secs, and for 1000 ARGs just over 

1.5 hrs., a considerable reduction over MCS.

The three data sets “HI”, “S2” and “j5” were subjected to ROC analysis using 
MCS as the benchmark reference and SP as the classifier. ARG pairs were classified as 
similar if the MCS similarity measure was greater than or equal to a threshold of 0.5. 
The ROC plot statistics for the three data sets are given in Table 5.13. The sensitivity 
and specificity values are provided based on an SP cutoff of 0.5.

Data
Set

Sensitivity Specificity

“HI” 0.99 0.97
“S2” 0.76 0.95

“j5” 0.86 0.99

Table 5.13: SP as predictor of MCS: ROC analysis using MCS reference threshold 0.5, 
SP cutoff 0.5

We observe that as a classifier, based on the reference MCS similarity values, SP 
with a cutoff of 0.5 appears to perform well in all three cases. The sensitivity and 
specificity figures equate to good recall and precision. However, even given the high 
sensitivity value, our current context is such that any missed significant, pairs should 
not be ignored. Although a somewhat uncompromisingly stringent requirement in 
practice, let us consider the scenario where we attempt to enforce perfect sensitivity 
(recall) within set MCS threshold levels and SP cutoff values. Taking data set “j5” and 
enforcing perfect sensitivity would require the SP cutoff to be lowered to 0.45. This in 
itself is not a problem until we consider data set “S2”: in order to achieve a sensitivity 
of one, the SP cutoff would need to be reduced to 0.22, giving rise to a reduction in 
specificity to 0.71. Carrying this cutoff value back to the “j5” data set would indeed 
give a sensitivity of 1.0 but in this case a totally unacceptable specificity of 0.13. Again, 
as in the case of the ROC analysis of Chapter 4, finding a universally applicable cutoff 
value is problematic as a result of the current weaknesses in the SP approach. The
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improvements to SP suggested in Chapter 4 may provide a better SP cutoff value, 
one that provides universally perfect sensitivity while retaining a reasonable level of 
specificity. A further improvement in performance may be attainable by using the 
extracted class attributes to additionally qualify the SP match. For the moment, SP 
can only be regarded as a reasonable but imperfect filter to the MCS analysis.

5.6 Summary: problems and opportunities

We set out in this chapter to develop a means of improving the global measure of class 
similarity of Chapter 4 by tightening the bounds on the assessed degree of similarity 
and identifying the ARC elements contributing to that similarity. Our local approach, 
based on the identification of maximum common subgraphs, supported by clique de­
tection based on a novel combination of a deterministic and heuristic algorithm, does 
indeed identify the contributing substructure for a wide range of class sizes.

In order to limit the computational overhead associated with clique detection, 
a novel combination of techniques was introduced to reduce correspondence graph 
size. This principled, and not necessarily domain-specific, approach to correspondence 
graph size reduction was provided by i) adopting a hierarchic approach to vertex 
classification ii) requiring MCSs to be rooted and connected, and iii) using graph 
symmetry in the form of automorphism groups.

However, confidence in the general classification power of this MCS-based approach 
is again occasionally weakened by inadequacies in the matching of individual class 
methods. Despite this limitation, the evidence in support of our hypothesis that 
the lightweight, attributed, relational model of Chapter 3 is able to support a viable 
classification of structural similarity in object-oriented code is compelling, particularly 
when dealing with the more significant, upper quartile of similarity values. However, 
the limited availability of pre-judged data sets, and the sheer number of comparisons 
involved in the assessment of even small data sets, contribute to the difficulty in 
accurately assessing classifier performance.

The use of MCS as opposed to MOS10 may be overly restrictive. Insisting that the

10MOS: maximum overlapping set is defined as finding a common edge-induced subgraph of two
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relationships between matched vertices must match exactly could be relaxed such that 
unmatched edges are discarded [McGregor, 1988; Chen and Yun, 1998]. Adopting an 
approach based on MOS could also reduce the computational overhead by reducing 
correspondence graph size [Nicholson et al, 1987].

The next chapter introduces clustering as a means of limiting the overall computa­
tional overhead associated with the search for common structure within the context of 
classifying larger, dynamic collections of classes. In addition, by grouping the classes 
into small, manageable clusters, it affords an opportunity to take a closer look at the 
structure imposed on the collection by our approach to class comparison.

graphs with the maximum number of edges.
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Chapter 6

C lass C ollections: classifying 
re c u rrin g  s tru c tu re

6.1 Introduction

In Chapter 4, a model of object-oriented code structure was developed and a means 
of establishing a global measure of similarity between pairs of Java classes described. 
This approach was extended in Chapter 5 to include a higher precision, local mea­
sure of similarity based on graph morphisms, specifically maximum common subgraph 
(MCS). In both cases, quantification of similarity was limited to comparing pairs of 
classes over small data sets, with Chapter 5 highlighting the computational expense 
associated with structure graph matching and MCS analysis, in this chapter the 
emphasis changes from the quantification of similarity in small data sets to the re­
lated issues of minimising computational overhead and maximising the potential for 
identifying common and recurring structure in larger, possibly dynamic collections of 
classes.

As the foundation of our approach to the identification of recurring, common struc­
ture in class collections, we begin by exploring the principles and techniques behind 
the grouping, or clustering, of similar elements within a larger collection. The basic 
hypothesis being tested here is that an approach based on such a clustering is valid, 
in that clustered classes are similar by virtue of repeated occurrences of the same
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or very similar common structure. Taking a justifiably modified standard algorithm, 
the “Leader” algorithm, we use it as a reference for comparison with our novel, but 
more complex hybrid algorithm, Limited Hierarchy Bisecting K-medoids (LIIBKM). 
This chapter also introduces a naive but effective incremental clustering approach, 
Incremental Limited Hierarchy Bisecting K-medoids (ILHBKM).

G.2 H arvesting and searching for com m onality

6.2.1 Larger collections

Briefly restating one of the fundamental goals of this work, through the analysis and 
comparison of Java classes, via a representation based on a attributed, relational model 
of class structure, the intention is to investigate an approach to determining the pres­
ence of common, recurring structure within object-oriented code. The implied dis­
tinction between common structure and recurring common structure is intentional: 
although the capacity to identify similarity through common structure is fundamen­
tal, and of itself essential in establishing pair-wise match, the presence of recurring, 
common structure is of particular interest. Repetition lends weight to the significance 
of the repeated structures both as components in the development process and as 
patterns of and for reuse. As such, a means of efficiently and effectively analysing col­
lections of code in order to provide indicators to the possibility of repeated structure 
is required.

Determining the level of repetition within a given collection of classes would ideally 
require that each class be pair-wise compared with every other collection class, followed 
by a recursive, exhaustive comparison of the extracted common structure. Such an 
exhaustive approach is unlikely to be tractable except in the case of trivially small 
collections. In this chapter we investigate an approach to identifying common structure 
that is sub-optimal but useful, based on unsupervised classification.

As previously discussed in Chapter 5, SP feature-vector screening using ranking 
and thresholding is able to limit the number of detailed, MCS-based, local assessments 
of similarity. Consequently, one might expect such an approach to limit complexity 
within the bounds of practicality. However, for other than trivially small collections,
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consideration of the 0 (n * 2) complexity of pair-wise comparison might suggest other­
wise.

Given a set C of classes { 6 \ ,  6 b  . . .  C n } to be analysed for significant common struc­
ture, the minimum number of pair-wise comparisons generated during the construction 
of a full similarity matrix M , j  = f s { C i , C j )  is given by n(n — l)/2 . A relatively small 
data set containing 50 classes would give rise to 1225 initial feature-vector based pair­
wise comparisons, which if using SP and an average pair-wise analysis time of 0.012 
secs, would take less than 15 secs.1. Having to deal with a larger, yet reasonable, 
set of say 1,000 classes would require 499,500 comparisons and an SP analysis time 
of over 1.5hrs. A large collection of 10,000 classes increases the SP analysis time to 
nearly 7 days. (In the case of a new class being added to collections of size 50, 1000 
and 10,000, the SP analysis time required to update the similarity matrix would be 
approximately 0.6secs., 12secs, and 2mins, respectively.) Although exhaustive pair­
wise analysis, carried out “off-line” if necessary, provides a complete ranking suitable 
for determining candidate MCS calculations, it has some drawbacks when we consider 
the management and use of larger, dynamic collection of classes.

For the sake of discussion and in the context of locating common structure, let 
us concentrate on collections of between 1000 and 10,000 classes and consider what 
aspects of the collections might be of potential interest and how best to exploit them. 
Principally, we are interested in i) identifying groups of classes that are similar, this 
similarity being indicative of common structure, and ii) identifying collection classes 
that are similar to a “target”2 class, resulting matches again acting as pointers to 
common structure and potential reuse scenarios.

For any given class, a fundamental requirement would be the identification of those 
classes to which it is similar above a given threshold. Based on average SP compari­
son times, for collections of size 1000 such, “significant neighbour” lists can reasonably 
be generated either interactively, or as a natural consequence of an off-line, exhaus­
tive pair-wise comparison within a collection. The union of these lists can then be

'Times are averaged over several analyses and include database retrieval of feature vectors in 
addition to the time taken to execute a similarity calculation. These times do not include the formation 
of ARGs or extraction and storage of corresponding feature vectors.

2The use of “target” here refers to a class against which all collection classes are effectively being 
matched. A “target” would be termed a “query” in the context of document retrieval.
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used as input to an MCS analysis, the result of which would form the basis of an 
index of common structure. It is most likely in practice that an exhaustive search for 
common and repeated structure would occur within the context of an initial, but po­
tentially time-consuming, whole-collection analysis, followed by sporadic, reasonably 
quick incremental updates. However, in certain circumstances, the interactive, real- 
time derivation of a best-match list of significant neighbours for a newly introduced 
class will be of more immediate utility.

As shown above, for a collection of size 1000, an individual class’s significant neigh­
bours can be established in less than 15 secs. If the significant neighbour list were to 
contain 5 classes3 the associated MCS analysis would take less than 25secs, given an 
average time of 2.02secs. per MCS extraction, based on the data sets analysed in 
Chapter 5. Class collections of size 10,000 might be unusual in many contexts but 
it is worth remarking that the corresponding 42min. (SP 2mins. +  MCS 40mins.) 
overhead for significant-neighbour list creation and MCS extraction may no longer be 
seen as viable in the context of an interactive analysis. Although not a limiting fire- 
tor in the context of small to medium sized class collections, techniques are available 
that can in certain cases improve the efficiency of such best-match searches for large 
collections, e.g., the use of inverted files to limit the number of collection elements 
selected for comparison [Willett, 1983]. The use of inverted files is generally best ap­
plied in cases where feature vectors are sparsely populated and feature generality is low 
[Murtagh, 1982]. Although our current SP feature vectors are generally sparse, several 
features are present in a large proportion of the collection and as such undermine the 
use of an inverted file approach4.

In any case, and irrespective of the vast majority of SP-based comparisons being 
effectively redundant, i.e., not identifying significant pairs, the SP filter is very quick in 
comparison to the significant overhead associated with MCS extraction. As collection 
size increases, the waiting time between initiating a search and obtaining results could 
however becomes unacceptable. Were we able to limit the number of comparisons 
during SP filtering, tins could lead to a minor improvement in the overall analysis 
time. However, given that the performance of an interactive query is dominated by

-,A figure of < <  1% of the total is a somewhat arbitrary but reasonable estimate based on the 
sample data sets analysed.

4The features retain some degree of discrimination based on their relative frequencies.



the computation overhead of the MCS analysis, in order to provide an acceptable, 
usable system, we must necessarily compromise on the number of MCS analyses carried 
out. Consequently, a means of quickly identifying size-limited but typical groups of 
matching classes within a collection is required.

In order to address this more pressing limitation imposed by MCS extraction, clas­
sification of a collection into groups (clusters) of similar classes, and filtering based 
on the similarity between a target class and a smaller number of individual represen­
tatives of these groups is an option. Further, if we confine ourselves to best-match, 
ranked retrieval, we are dismissing the additional information relating to patterns of 
association provided as a consequence of classification, i.e., the identification of clus­
ters of similar structures where that similarity may be indicative of recurring, common 
structure.

As collections of classes grow, in addition to the increasing analysis times, the 
space overheads of exhaustive pair-wise comparison may in fact be seen as exces­
sive or indeed prohibitive: accommodating the in-memory structures associated with 
the input to and results of a full analysis, in addition to constraints placed on the 
performance of interactive matching, could likely invalidate or at least severely com­
promise the utility of such an approach. The issue of exhaustive pair-wise analysis 
is further compounded in the case of an approach based on classification: in gen­
eral, a dynamic collection of classes will require periodic re-organisation in order to 
optimise the classification. Incremental update can undermine the validity of a clas­
sification due to, for example, issues of order dependence associated with addition of 
new collection elements, and the gradual degeneration of a previously optimal struc­
ture [Can, 1993][Charikar et all, 1997]. If this classification process is itself based on 
an exhaustive pair-wise analysis, the time required to carry out such re-organisations 
could again be prohibitive.

6.2.2 The need for partitioning

In light of these concerns, the adoption of a best-match, ranked list approach and/or 
the derivation and maintenance of a complete matrix of pair-wise feature-vector sim­
ilarity measurements may be impractical, both as a means of supporting exhaustive,
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whole-collection analysis, and individual class-to-collection match. In order to address 
this, we reinforce the distinction between the long-term identification of repeated, com­
mon structure and the interactive, real-time search of a collection based on a given 

target class.

In the first case, rather than carry out an exhaustive MCS analysis based on a union 
of all significant-neighbours lists, we may in the first instance be able to compromise 
by limiting MCS extraction to selected, representative groups of similar collection 
elements. In the case of interactive match, it may be necessary to compromise on 
the production of an optimal ranked list of class pairs suitable for input to the MCS 
extraction process. We suggest that a sub-optimal but usable analysis - in terms of 
a practical balance between performance and coverage - may be achieved through 
a process of classification, via the induction of an appropriate partition on a static 
collection or dynamic stream of classes. Any instances of missed comparison could be 
dealt with by means of a more time consuming, exhaustive but off-line process, which 
would ultimately and effectively maintain the integrity of significant neighbour lists.

It must be stressed that the use of a partitional approach is being promoted prin­
cipally as a means of i) addressing the limitations imposed by the computational com­
plexity associated with MCS extraction, and ii) isolating significantly similar groups of 
classes. It is not intended as an alternative to threshold-based ranked retrieval in the 
context of the longer-term need to maintain a complete digest of common structure.

Given a set of classes, a reasonable initial goal would be to generate a partition such 
that the inter-clusterdntra-eluster similarity ratio is maximal. An optimal algorithm 
would involve generating all the possible partitions of the set, selecting the partition 
that maximises this ratio.

Given a set C of classes {C \ , C'2 . . .  Cn}, the number of ways it can be partitioned 
into disjoint, non-empty sets is given by the nth Bell number:

t  Sn iK)
K - 0

where Sn^  is the number of possible K  partitions of the set. Sn K̂  ̂ satisfies the
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recurrence relation

Sn - 1 (K 1 ̂  +  K S n _ i ■A J otherwise

The values of Sn ĥ  ̂ are know as Stirling numbers of the second kind and are expouen-

1 if K  =  1 or K  — n

tial in the size of S. For example, a set of 5 classes would give rise to 52 distinct parti­
tions, while a 15 member set would generate 1,382,958,545 partitions. Consequently, 
for other than trivially small collections, it is obvious that exhaustive enumeration of 
the possible subsets is impractical. By way of compromise, a sub-optimal partition at 
much lower computational cost is required.

We can approach this combinatorial problem from several directions including the 
use of faster hardware, more efficient algorithms, and the use of heuristics to remove 
unnecessary comparisons. Hardware and algorithmic considerations are possibly rather 
obvious but by no means trivial: the significance of heuristics and algorithmic efficiency 
has already been discussed in Chapter 5, while the potential utility of a distributed 
approach to computation in relation to repository matching has obvious benefits. The 
approach to be considered here is centered on the reduction of the number of pair-wise 
comparisons both at the SP feature-vector filtering stage and during MCS extraction. 
In principle, comparison of similar elements must be ensured while comparison of 
non-similar elements should be avoided or minimised.

So far we have considered the problem of establishing similarity between classes 
and ensuring significant, pair-wise common structure is identified within a collection of 
classes. This approach aims at providing an indirect means of supporting the isolation 
of recurring, pair-wise common structure via the creation of clusters of similar classes 
- the suggestion being that these classes are similar by virtue of repeated occurrences 
of the same or very similar common structure. In addition, by extending the analysis 
of a class collection to include a limited index of the results of MCS extraction, a 
means of directly identifying and recording a limited amount of recurring structure 
is introduced. We do not currently address the problem of the direct identifying of 
recurring structure where the individual structure spans multiple classes.

The combined approach proposed here involves the partitioning and indexing of 
a set of ARGs based on a combination of the global and local measures of similarity 
introduced in Chapters 4 and 5. Building on an initial collection partition using SP,
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allowing incremental growth, and including an MCS indexing phase, we investigate 
how effective it is as a means of supporting the search for shared structure.

6.3 Cluster Analysis

6.3.1 Unsupervised classification

The partitioning of a data set based on the structural properties of its individual 
elements is essentially an exercise in classification. In the case where prototypical pat­
terns already exist, supervised classification can proceed by assigning the elements of 
a collection to the partition class labeled by the best matching prototype. Generation 
of partitions or matchings based on the existence of such prototypes, alongside a pri­
ori information regarding the class distribution and conditional probabilities, can be 
used to develop classifiers based on Bayesian probabilistic models and the principle of 
minimum error (maximum likelihood) [Tou and Gonzales, 1974].

In the current case such an approach is limited if not impossible as a result of a) 
the absence of prototypical classes, b) the lack of labeled training examples from which 
to generate the necessary probabilistic model and c) the fact that each element of the 
collection can in principle be regarded as a potential prototype of a pattern class. 
Consequently, minimum distance, unsupervised clustering techniques, based solely on 
information contained within the data set remain the only viable option.

This automatic generation of data partitions comes under the general heading of 
cluster analysis which, as an exploratory form of data analysis, attempts to identify a 
“useful” classification within a given data set.

“Clustering is the unsupervised classification of patterns (observations, 
data items or feature vectors) into groups (clusters).”

[Jain, Murty and Flynn, 1999]

In essence, clustering can be used for i) classification where it attempts to organise 
the elements of collection into naturally cohesive groups [Duda and Hart, 1973]; ii)
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to improve the efficiency and effectiveness of query-based search where a given target 
structure is compared against a small number of representatives of the clusters, rather 
than an entire collection [van Rijsbergen, 1979]; and iii) it has been shown to provide 
a framework capable of facilitating within-collection browsing [Cutting et al, 1992].

G.3.2 Clustering methods

Data clustering, or cluster analysis, attempts to determine the structural character­
istics of a data set by means of its organisation into subgroups or clusters. There is 
an extensive body of literature relating to cluster analysis and its application across 
a wide variety of domains, including molecular similarity [Willett, 1987], information 
retrieval [van Rijsbergen, 1979], image processing [Sonka et al, 1993], pattern recogni­
tion [Webb, 1999], and many others including Medicine, Social Science, Education and 
Archaeology [Everitt, 1993]. This represents a rich and growing variety of approaches 
to clustering, which is somewhat undermined by the comparative absence of a theo­
retical basis upon which to base an appropriate choice. Consequently, in the context 
of a particular clustering problem, we are inevitably driven towards a somewhat sub­
jective, empirical decision as to which method to adopt. Naturally, a choice may be 
guided by the particular problem constraints and any parallels with existing solutions.

A reference model for clustering is provided by Firs four step generalised algorithm 
as described in [Looney, 1997]. This is based on the availability of a similarity measure 
between collection elements, a measure of partition quality in terms of cluster distinct­
ness, a repartitioning method used to improve the quality of a generated partition, 
and a rule determining when the process should terminate.

The general steps are:

1 Partition a collection of elements C = { C \ , C2 ... Cn } represented by n feature 
vectors into K  trial subsets according to some measure of association.

2 Test the quality of the partition formed in step 1 for sufficient intra-cluster 
similarity and inter-cluster dissimilarity.

3 Stop if the test in step 2 satisfies a given criterion function or stopping condition.
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4 Repartition C by merging or splitting clusters based on threshold levels of asso­
ciation, or by reallocation of elements between clusters, then go back to stop 2.

Taking account of relevance within the current context, a working categorisation 
of the major approaches to intrinsic or unsupervised clustering methods is provided 
below. As a sufficient basis for class collection clustering, the emphasis here is on 
introducing hierarchical and partitional approaches to clustering, density, grid and 
model-based methods are not discussed. A recent review of data clustering is provided 
in [Jain, Murty and Flynn, 1999] while algorithms used in clustering are discussed in 
[Jain and Dubes, 1988] and [Kaufman and Rousseeuw, 1990].

• Hierarchical methods: based on the generation of a proximity matrix rep­
resenting the degree of association between all individual collection elements, 
this method forms a tree, the nodes of which are clusters or individual ele­
ments. The root node is a cluster containing the entire collection of elements, 
the children of each node representing a binary partition of the parent that 
maximises intra-cluster and minimises inter-cluster similarity. A natural conse­
quence of this organisation is the discovery of taxonomies of structure within the 
collection, the nested hierarchy additionally providing a convenient navigational 
framework in support of searching and browsing. A major reported benefit, of 
an hierarchic clustering is the performance improvement over full-search ranked 
retrieval: matching (querying, searching) target structures against such hierar­
chies is founded on the cluster itself being the unit of retrieval, i.e., cluster-based 
retrieval [van Rijsbergen, 1979]. A retrieved cluster may be a single document 
but where it contains multiple elements, these are again hierarchically organised, 
providing the same navigational framework.

Creation of an hierarchic clustering can proceed agglomeratively from an initial 
consideration of the individual elements towards the single root cluster - step 1 
in Fu’s model would involve assigning each individual element to its own cluster. 
Alternatively, a divisive clustering can be obtained by proceeding from the root 
to the individual elements - step 1 in Fu’s model would initially involve assigning 
all element to the one root cluster.

The more popular agglomerative approach proceeds by selecting the two “clos­
est” elements represented in the proximity matrix, combining them into a new
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cluster, and recalculating the proximity values dependent on this combination. 
This combination and recalculation continues until only one cluster remains. 
Specific algorithms differ in the definition of similarity underlying the choice of 
elements for combination, cluster representation, and the method subsequently 
used to update the proximity matrix [Willett, 1987], Both agglomerative and 
divisive approaches are usually complete in that a full hierarchy is generated. 
However, construction of an agglomerative hierarchy may be stopped, as per st ep 
3 of Fu’s model, when a threshold level of within-cluster similarity is reached. It 
has been shown that typically only the bottom-level clusters in the hierarchy are 
useful due to the undifferentiated, diffusely represented clusters found at higher 
levels [El-Hamdouchie and Willett, 1989]. Both approaches have been criticised 
in that once two element have been either assigned to a given cluster (agglomera­
tive) or separated into disjoint clusters (divisive), they will respectively never be 
separated or regrouped. Irrespective of the dynamics of the clustering process, 
where individual cluster evolution may be such that separation, regrouping or 
relocation could improve an existing classification structure, neither hierarchic 
approach can accommodate this.

• Non-liierarchical (partitional) methods: non-hierarchic or partitional clus­
tering methods produce a flat, single-level partition of collection elements into 
clusters or subsets. Unlike the hierarchical model, which requires a global, si­
multaneous measure of similarity in the form of a proximity matrix, partitional 
methods proceed directly from the local properties of collection elements, clus­
ter assignment being based on comparison with existing cluster representatives, 
variously referred to as “prototypes”, “centroids”, “medoids” or “centrotypes” 
depending on context. This difference is significant, as it is the principal factor 
in the reduction of algorithmic complexity over hierarchical clustering.

Depending on the algorithm, a partition is generated based on a user-defined, 
static number of clusters or on a dynamically changing cluster population, where 
clusters are created, aggregated, divided or deleted under a combination of user 
parameterisation and/or algorithmic control.

A typical algorithm results in the creation of K  clusters based on an initial se­
lection of K  cluster representatives. Elements are assigned to these provisionally 
represented clusters such that a criterion function defined over individual cluster
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elements (local) or the partition as a whole (global) is optimised. This initial 
partition can be subjected to a process of refinement by optionally iterating over 
the reselection of cluster representatives and reallocation of elements to existing 
or new clusters, until such time as a stopping condition is met, e.g., on conver­
gence of the criterion function, or where this is not guaranteed, based on minimal 
change, or following a set number of iterations.

Each cluster is characterised by means of a typical, representative element - con­
crete or abstract - which can be interpreted as its “center”. These centrotypes5 
vary depending on the nature of the feature space and the similarity measure: 
“medoids” are centrotypes whose average dis-similarity with all other cluster (de­
ments is minimal, while the “centroid” minimises the overall Euclidean squared- 
error between itself and the remaining elements. They differ in that the former 
represents an actual cluster element while the latter is potentially abstract, not 
necessarily corresponding to a concrete cluster element.

Global criterion functions are often based on minimising the sum of Euclidean 
squared-error or within-cluster variation [Jain, Murty and Flynn, 1999]. The 
Euclidean sum of squared-error sse{C, V} for a I\ -partition, V, of a collection C 
is given by

K  a ,

sse{C, V} =  I*ij -  Cj|“
l *=l

where Xjj is a feature-vector representation of the ith element in the j th cluster, 
Cj is the centroid of the j th cluster given by

n T >
•i i=i

and 7ij is the number of elements in the j th cluster.

However, in many situations, the use of a centroid as cluster representative is 
inappropriate. An alternative approach focusses on minimising the error or dis­
tance between a defined, concrete cluster center and the remaining cluster ele­
ments, e.g., the PAM clustering approach uses a representative medoid, which is 
the most centrally located element in a cluster [Kaufman and Rousseeuw, 1990].

5Centrotype: a generic term drawn from numerical taxonomy where it is defined as that operational 
taxonomic unit closest to or at the geometrical center of its cluster.
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The quantity to be optimised is given by a generalisation of the centroid-based, 
sum of squared error shown above, expressed here as a maximisation of a sum 
of similarities (ss) rather than a minimisation of distances:

K  nj

ss{C ,V \ = ^ 2 Y t S(xi j ,r j )
j - 1 i ~  1

where r, is the feature-vector of the j th cluster’s representative, and S  a similarity 
coefficient.

An example of a local criterion function is cluster assignment based on an el­
ement’s nearest neighbours: once each element’s nearest neighbours are estab­
lished, an element is assigned to the cluster containing the greatest number 
of its nearest neighbours. Approaches based on nearest-neighbour partitioning 
are described by [Jarvis and Patrick, 1973], [Gowda and Krishna, 1978] and 
[Guha et al, 2000].

• Hybrid methods: hybrid clustering methods represent an amalgamation of 
hierarchical and partitional approaches, in order to ameliorate the drawback 
of computational complexity associated with hierarchical clustering applied to 
large data sets. An hierarchical approach can address the difficulty associated 
with the determination of initial clusters or cluster representatives: a partitional 
algorithm is seeded with the result of generating an hierarchic clustering of a 
typical, representative subset, or random sample, of the main collection [Cut­
ter et al, 1992]. For example, by judicious selection of a stopping rule, i.e., 
a threshold level of similarity, the construction of an agglomerative hierarchy 
continues until such time as a cluster combination exceeds this value, a union 
of the elements in the hierarchies of connected clusters giving rise to a parti­
tion. (The significance of Fu’s stopping condition in an hierarchic clustering 
context rests on applying such a stopping rule during the generation of a suit­
able partition.) The generated partition can then be used as either an initial 
set of clusters to which remaining collection elements can be assigned according 
to a partitional algorithm, or representative labels can be extracted and used 
as initial seeds, e.g., cluster centroids. Apart from the potential drawback of 
temporal and spatial computational overhead, the importance of hierarchy rests 
on improved search effectiveness and the navigational structure afforded by the 
layered, linked structure.
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In contrast to hierarchical clustering as a means of generating a partition, the 
disjoint groups resulting from an initial partitional approach - from hereon in re­
ferred to as top-level clusters - can be individually subjected to an hierarchic clus­
tering, the intention being to capitalise on the lower complexity of the partitional 
algorithm, while retaining the reportedly better cluster quality and navigability 
of an hierarchical clustering. Received opinion states that in general, high-level 
clusters within an hierarchic structure are of little use during target-collection 
matching /  searching due to the rather diffuse nature of their representatives. 
Indeed, several studies have demonstrated the utility of restricting the process 
to lower-level clusters [Croft, 1980; El-Hamdouchi and Willett, 1989].

• Overlapping clusters: standard hierarchical clustering methods are typically 
“crisp” in that clusters are disjoint subsets of the main collection. In contrast, 
partitional clustering can be “fuzzy”, clusters no longer being necessarily disjoint 
in that they are allowed to overlap. A strict interpretation of a fuzzy clustering 
depends on collection elements being associated with clusters based on degrees of 
membership, total membership across all clusters for any given element summing 
to one [Klir and Yuan, 1995]. This effectively establishes a clustering but not a 
partition: in order to generate a partition, elements must be assigned to concrete 
clusters by means of membership thresholding. This assignment generates a 
“fuzzy” (or “soft”) partition, where collection elements may be simultaneously 
assigned to more than one cluster.

• Increm ental update: incremental methods are a response to the potential 
overhead of reclustering as a result of the addition or removal of collection ele­
ments, particularly when dealing with large data collections. Incremental meth­
ods aim at maximising “stability under growth”, one of the theoretical clustering 
adequacy criteria: cluster structure should not change drastically as a result of 
dynamic collection activity [Jardine and Sibson, 1971]. In the current context of 
generating and maintaining a repository of classes and their common structure, 
repository searching and browsing should preferably be consistent under update 
- principally addition - while in no way limiting recovery of commonality in code.

In general, although hierarchical clustering is a well represented and favoured ap­
proach, for large collections it has been shown to be relatively expensive in both
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time and space complexity. A general hierarchical agglomerative algorithm, based on 
the determination of all inter-element similarities, can have 0 (n A) time and 0 (n 2) 
space complexities. This is markedly improved upon by approaches based on nearest- 
neighbour and, in particular, recipricol nearest neighbour determination, giving rise 
to O (ir)  and in some instances 0{n logn) performance [Murtagh, 1983]. However, 
even given the improvements available through increasing processing power, storage 
capacity, algorithmic efficiency and parallelisation, potentially sub-optimal partitional 
or hybrid approaches may generally be better suited to the clustering of large data 
sets due to their rectangular 0 (k  n) time and 0(n) space complexity.

Consideration of time and space constraints are implicit in the proposed methodol­
ogy. Reasonable time complexity is a subjective expression of domain specific demands. 
In the current context, analysis of class-file collections for common structure is seen as 
a predominantly offline procedure taking place during periods of inactivity or planned 
maintenance. Repository construction, including collection partitioning and update, 
MCS extraction and storage, can reasonably be accommodated as off-line processes. 
In contrast, matching (searching) against, and browsing within, the repository would 
be an essentially user-centric, interactive task. Space constraints are dictated less 
by the characteristics of the specific domain and more by the nature of the generic 
algorithms and data structures employed: in combination with the fixed constraints 
imposed by the available hardware, operational margins are more stringent, particu­
larly those associated with the in-memory structures such as collection data, proximity 
matrices, and search trees described in this chapter. A little more memory is often 
not as immediately available as a little more time.

6.3.3 Clustering tendency

It should be noted that having argued the need to partition larger collections or dy­
namic streams of classes, an untested assumption is being made in relation to the 
inherent clustering tendency of such a collection. The premise implicit in the discus­
sion thus far is that sets of classes exhibit a natural tendency to form clusters based 
on common structure, i.e., that class collections have a strong cluster structure.

[Jain and Dubes, 1988] emphasises the need to
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.. guard against the embarrassment of applying elaborate clustering tech­
niques and cluster validity methodology to data in which the clusters can 
only be artifacts of the clustering algorithm.”

This cautionary comment is particularly relevant when generating a classification 
where the intrinsic structure of a collection element is the fundamental basis for clas­
sification and the identifying characteristics of the clusters are at a higher level of 
abstraction than the elemental representation employed, as in the case of biological 
taxonomy and speciation; molecular similarity and structure-activity relationships; 
and information retrieval and document semantics. This additional level of abstrac­
tion is not an immediate issue in the current model of class structure: inferring a 
higher-level classification of a collection of classes based on the represented underlying 
structure is subordinate to the need to induce a good quality partition in terms of 
the balance between localisation of common structure and computational overhead. 
Remembering that the current study looks to recover instances of common structure, 
even in the extremely unlikely worst case where there is little evidence of strong cluster 
structure, with collection elements randomly distributed throughout the feature space, 
forcing a partition still remains valid. The principal objective here is to try and rea­
sonably reduce the computational overhead of exhaustive comparison in determining, 
for a given target class, whether significant degrees of (sub-) structural commonality 
actually exist across a collection. Reasonable in this context relates to real-time per­
formance in identifying a significant proportion, or at the very least, a typical sample, 
of any common structure present.

6.4 Partitioning Collections of Classes

6.4.1 Problems, compromises and consequences

In order to make an appropriate choice of partitioning technique, this section discuses 
several potential logical and implementational problems, alongside their immediate 
consequences and any implied compromises.
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Hierarchical or non-hierarchical

The choice of clustering method is necessarily problem specific as no formal selection 
framework is known to exist. The debate as to whether, for example, an hierarchical 
as opposed to partitional approach is best, or for that matter whether a particular 
method within either of these categories is a better choice, is somewhat academic. As 
reported in [Jain and Dubes, 1988], “...the comparative analysis of clustering methods 
presents a continuing problem for research”. This is arguably still the case. The 
inevitable consequence is a reliance on pragmatic issues as expressed by the analytic 
efficiency of cluster extraction, and the resulting efficacy of the classification produced, 
in terms of its “usefulness” [Barnard and Downs, 1992]. Usefulness here equates to 
obtaining a good quality partition of a class collection: a good quality partition can 
be simply defined as one that is quick and easy to generate, and which promotes but 
doesn’t limit the timely identification and search for common structure between the 
constituent collection elements, i.e., it doesn’t prevent detailed comparison of elements 
that exhibit significant structural commonality but limits comparison of those that do 
not.

As previously mentioned both time and space complexity are crucial factors: irre­
spective of the nature of the generated partition, there is no point in applying a method 
that doesn’t scale given the temporal and physical constraints associated with avail­
able resources. Where there is no immediate need for a complete hierarchic clustering, 
and/or potential collection size mitigates against the generation of a full similarity 
matrix and hierarchical algorithm, a lower complexity partitional approach is justi­
fied. In addition, it has been argued that in many situations the benefits of building 
a full hierarchical structure are questionable: in practice only the lower levels of the 
hierarchy are useful due to the amount of information reduction at higher levels [Ru­
ral et al, 1999]. Within the context of molecular property prediction, the performance 
of non-hierarchic relocation methods have been shown to be comparable with those 
given by hierarchic, agglomerative methods [Willett, Winterman and Bawden, 198(1; 
Willett, 1987]. A recent approach applied to document clustering also suggests that 
a refined partitional approach can outperform hierarchical agglomerative clustering, 
from the perspective of both efficacy and complexity [Steinbach, Karypis and Kumar, 
2000].
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“Single-pass” or centrotype-based ( “K-means typ e” ) relocational cluster­
ing

Partitional clustering algorithms range from simple, single-pass, algorithms such as 
Hartigan’s “leader” and Bow’s “thresholding” algorithms [Looney, 1997], through 
squared-error minimising, iterative, relocational techniques such as K-means and its 
more sophisticated, heuristic “ISODATA” derivative as described in [Ton and Gonza­
les, 1974]. Partitioning Around Medoids (PAM) [Kaufman and Rousseeuw, 1990] and 
its scalable derivatives, CLARA [Kaufman and Rousseeuw, 1990] and “CLARAN S” 
[Ng and Han, 1994] relax the K-means dependency on a metric similarity measure 
and an abstract, representative centroid, relying solely on the selected measure of 
inter-element similarity to determine a concrete cluster centrotype, or medoid.

The single-pass algorithms are simple, efficient and self-organising in that they au­
tomatically determine both the number of clusters and their membership: employing 
a threshold-based, minimum-distance, sequential assignment of elements to clusters - 
the minimised quantity is usually the Euclidean distance between an element’s feature- 
vector and that of each cluster centroid. The initial centroid is provided by the first 
collection element, creation of new clusters occurring if a stipulated similarity thresh­
old is not met on comparing remaining collection elements with existing centroids. 
Unfortunately, the performance of these algorithms is highly dependent on the order 
in which the collection elements are processed and on the specified similarity threshold 
[Willett, Winterman and Bawden, 1986].

The iterative, relocational nature of the centrotype-based group of algorithms such 
as K-means improves on the simple single-pass approach and to a degree limits the 
problem of order dependence: by attempting to minimise the overall squared-error, an 
initial partition is iteratively refined by relocation of cluster elements to their closest 
cluster center followed by recalculation of these centers. The process is repeated until 
no further relocations occur or a set number of iterations has been completed. Using- 
traditional K-means, if cluster centroids are recalculated at the end of an iteration 
pass, as per the “Forgy” method, the process is independent under a reordering of 
the collection of elements. However, recalculating centroids immediately on relocating 
of an element between clusters, as in the “MacQueen” approach, has been shown to 
improve the speed of convergence, in addition to producing superior classification, at
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the expense of order dependence [Pena et al, 1999]. PAM adopts an iterative approach 
to determining cluster representatives (medoids) by attempting to minimise the overall 
average dissimilarity between collection elements and their closest medoid.

The main problems presented by algorithms such as K-means relate to determining 
K , the number of clusters; the initial assignment of cluster representatives; the disrupt­
ing influence of outliers; and the lack of support for overlapping clusters. Selecting 
the number of clusters and initial cluster representatives have been shown to crit­
ically influence the performance effectiveness, robustness and efficiency of K-means 
[Pena et al, 1999]. In practice, K-means algorithms have been shown to converge 
rapidly, though not necessarily to a global minimum. Several variants of the K-means 
approach take other factors into account, such as limiting cluster size, escaping local 
minima, dealing with outliers, catering for categorical data, and using multiple cluster 
representatives to overcome linear separability (see below). Irrespective of the specific 
algorithm, the principle, overriding performance factor is the selection of and assign­
ment to initial cluster representatives. Although computationally more demanding, 
approaches such as PAM are more resistant to the effects of outliers and noisy data, are 
order independent, and effectively independent of the means by which inter-element 
similarities are established. However, as discussed below, current modifications to the 
basic PAM method have beexr shown to handle very large data sets quite efficiently.

The majority of partitional algorithms based on minimal distance (maximum simi­
larity) assignment, including those mentioned above, are theoretically limited by being 
linearly separating: clusters produced by these approaches are distinguished by being 

hyperspherical or hyperelipsoid, separable by linear hyperplains. Although this can 
prevent the location of long, narrow or curving clusters, as in the discussion relating to 
clustering tendency and forced induction of a collection partition, this is not an issue 
in the current context. Here, we effectively attempt to reasonably limit the extent of 
an exhaustive pair-wise, ranked similarity of a collection. Discovery of an underlying, 
natural classification, although of interest, is at this stage subordinate to the efficient 
and effective identification of significant samples of any common structure that may 
be present.
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O verlapping clusters

Partitioning based on the principle of minimum-distance assignment leads to the gen­
eration of disjoint clusters, membership of an element being restricted to oidy one 
cluster, even though it may show a significant degree of similarity to elements in 
other clusters. This introduces a limit on the extraction of structural commonality 
in the proposed approach, as only pairs of classes within selected clusters arc directly 
subjected to the more complex MCS analysis. By allowing overlapping clusters, the 
chance of finding common structure could be improved. Algorithms have been devel­
oped that directly support overlapping of clusters [Cole and Wishart, 1970], while the 
membership function of a fuzzy K-means algorithm can be used to indirectly induce 
an overlapping partition as mentioned above. Such approaches are generally more 
involved in terms of their implementation, as well as exhibiting greater time and space 
complexity. The initial approach adopted here is based on an initial, straightforward 
“crisp” partition, being followed by a simple, single-pass overlap phase, in the hope 
that these additional overheads can be minimised without unduly compromising the 
utility of the approach.

Increm ental update

Software development is an inherently dynamic activity and inevitably the repository 
of classes will change through time, raising the issue of dynamic update of a previ­
ously generated partition. On the one hand, the addition or deletion of elements from 
a collection may induce a full reclustering to ensure continuing, effective performance 
of the cluster structure. Alternatively, the robustness of a clustering approaches may 
be such that limited additions and deletions do not significantly affect the existing 
clusters, thereby minimising the frequency and inconvenience of full reclustering. The 
Incremental Cover-Coefficient Clustering Method (IC'*M)of [Can, 1993] is an exam­
ple from the domain of document clustering of a dynamic approach capable of dealing 
effectively with large collection expansion and contraction. The “leader”, “thresh­
olding”, and “K-means-type” relocational algorithms such as classical K-means and 
PAM, show a certain degree of robustness to the addition of limited numbers of new 
elements. Incremental update is discussed further in Section 6.8.1.
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C luster size

Echoing the findings of Chapter 5, MCS extraction is a time consuming process. In 
order to establish a balance between computational efficiency, the identification of co­
hesive groups of similar classes, and class-collection match effectiveness, the point at 
which a full MCS-based similarity assessment is instigated must be carefully consid­
ered. Consequently, practical constraints on individual, bottom-level cluster size are 
such that a means of controlling the size of matched /  returned clusters must be pro­
vided. In the current context, we define a bottom-level cluster as any cluster having 
a size equal to or below a set threshold. (This differs from the generally accepted 
definition given in the document clustering literature where it refers to that smallest 
cluster that contains any individual document as opposed to just sub-clusters.)

6.5 An hybrid algorithm  for clustering class collections

6.5.1 Requirements

To summarise the previous discussion, a partitioning method is required that provides 
or addresses some or all of the following:

• Good quality: generates high quality partitions in terms of i) co-locating similar classes 
ii) optimising the number of induced SP and MCS comparisons during class-to-collection 
matching.

•  Low computational complexity: scales to handle large collections (1000’s).

• Cluster size control: allows the size of a matched /  returned cluster to be controlled such 
that they are within the practical limits imposed by exhaustive pair-wise MCS analysis. 
(MCS analysis is only to be applied to bottom-level clusters.)

• Robustness under dynamic update: allows a degree of addition of cluster elements with­

out the need to frequently regenerate an entire existing partition. •

• Support for searching/browsing: provides a framework for navigating through a collec­
tion.
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6.5.2 The generic algorithm

Taking account of their relative performance factors and drawing on the rationale 
behind both partitional and hierarchic clustering, the basis of the presented hybrid 
approach is to use a low-complexity algorithm based on SP similarity to generate an 
initial “crisp” partition of a collection, followed where necessary by a set of refinement 
procedures. Refinement is primarily employed to improve the quality and practical 
usability of the initially generated partition. This involves a combination of limiting 
cluster size, “K-means-type” relocation of cluster elements, a degree of overlap, and 
a final within-cluster hierarchical clustering. An high-level description of the generic 
algorithm is given in Figure 6.1.

A major difficulty associated with the proposed algorithm relates to its parameter- 
isation: base parameters include top-level and bottom-level cluster size thresholds; 
element-to-representative and representative-to-representative similarity thresholds; 
and a cluster quality threshold. All of these will ultimately determine effectiveness6. 
In addition, implemented solutions may vary across several steps, e.g., the method 
of initial partition creation and representation, the cluster splitting method, and the 
point at which representatives are recalculated during refinement. These issues are ad­
dressed by way of a combination of the results obtained in Chapter 5 and the predictive 
experiment described in Section 6.7.

The dangers associated with allowing overlapping clusters are violation of the pre­
viously imposed size limitation and a possible reduction in location effectiveness: if 
overlapping is controlled merely by a similarity threshold applied between element 
and centroid, clusters which are very similar could effectively assimilate each other, 
leading to redundant MCS comparison and probable violation of the size constraint. 
For example, this could arise as a result of splitting a large, highly cohesive cluster. 
This is addressed in practice by preventing overlap in situations where the clusters 
involved are similar in the sense of their respective representatives are similar within 
a given threshold.

In situations where multi-cluster membership of an element is prohibited, otherwise
flThe use of GA in determining parameterisation might be worth considering based on a fitness 

function such as the “F” measure defined in section 6.7.1 but the time overhead of non-trivial partition 
generation and evaluation is possibly prohibitive.
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1 GENERATE (an initial partition)

1.1 Process the entire collection to produce an initial, “crisp” partition using a low-complexity 
algorithm. (Input: collection of SP feature vectors. Output: partitioned collection of 
disjoint subsets, the t o p - l e v e l  clusters)

2 REFINE (improve the structure to generate a set of u s a b l e  top-level clusters)

2.1 WHILE there are large clusters DO

2.1.2 SPLIT (control cluster size)

if a cluster is large, i.e., above a set threshold, then split it into two or more 
sub-clusters. This limits cluster size and indirectly limits the resulting depth of 
hierarchy.

2.1.3 RELOCATE

2.1.3.1 recalculate cluster representatives

2.1.3.2 subject the generated partition to a “K-ineans-type” relocational refinement, 
where each element is assigned to its closest cluster representative.

3 OVERLAP (improve “co-location” of significant pairs)

3.1 As a final pass, compare each element with the recalculated top-level cluster representa­
tives and c o p y  the element into clusters where a) the level of similarity between element 
and cluster representative is above a similarity threshold and b) the clusters involved are 
sufficiently well separated in terms of the similarity of their respective representatives.

4 CREATE INTRA-CLUSTER HIERARCHY

4.1 Within each top-level cluster, generate an hierarchical structure in order to provide a 
means of selectively limiting the size, and overall similarity, of a returned bottom-level 
cluster with respect to a supplied target. This limited hierarchy also provides a framework 
for navigation within the partitioned collection, by way of correlation and expansion.

Figure 6.1: Generic Partitioning algorithm
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similar elements may not be “co-located”. This is not necessarily problematic in terms 
of missed commonality. In such situations, the level of commonality between the 
clusters containing the similar elements is likely to be significant: if a representative 
of the common structures discovered in the first cluster is recorded, followed by the 
discovery and recording of a very similar representative of common structure in the 
second cluster, indexing the results of comparing representatives could be used to 
create an implicit link between elements across cluster boundaries. (This is the subject 
of further work).

The induced hierarchy need not be complete in that clusters at the lowest level of 
the hierarchy need only be of size less than or equal to a maximum returned cluster 
size: in response to a search of the collection based on a target class, the maximum 
size of returned cluster is controlled by a set threshold, determined by the overhead 
associated with pair-wise MCS analysis of the returned cluster elements. It is therefore 
unnecessary to develop the hierarchy as far as single element clusters.

0.5.3 Similarity measurement: coefficients, representatives and con­
tainment

Similarity coefficients and cluster representatives

The similarity coefficient based on the process of relative normalisation introduced 
in Section 5.4.4 has proven useful. As an integral part of the SP model of deter­
mining similarity between ARGs, it would be reasonable to retain it as the means of 
determining similarity between cluster elements, and element-representative similarity 
when relocating elements between clusters based on assignment to the nearest cluster 
representative or center. However, this presents a problem when selecting an appro­
priate cluster representative and effectively limits any implementation to that which 
does not dependent on the metric properties of its similarity coefficient or the use of 
an Euclidean centroid as previously defined '. 7

7K-means partitioning requires that the measure of dis-similarity obeys the triangle inequality. 
The coefficient based on “relative normalisation” is possibly metric, as it is derived from the Soergel 
coefficient which is itself metric, but this has not been formally demonstrated.
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The classical implementation of a partitioning algorithm such as K-means com­
monly relies on the optimisation of the within-cluster, Euclidean, sum of squared 
error, with each element in a cluster being compared to the cluster centroid as being 
representative - defined above as the mean values of the individual descriptive features 
of the cluster elements. In our current context, we are effectively attempting to min­
imise the non-Euclidean sum of errors criterion function, the error being defined as the 
complement of the current relative normalisation similarity coefficient, as opposed to 
the Euclidean distance. In selecting an appropriate cluster representative in this case, 
the classical cluster centroid is not suitable - if we require the center of a cluster to 
represent the point that minimises the sum of squared error for that cluster. A simple 
example in a integer-valued, two-dimensional Euclidean space illustrates the problem:

S S E  (E u c .)
C e n tro id  
A lt .  R ep .

(10 , 10) 
(9, 9)

1 0 0 .0 0 0  
1 0 4 .0 0 0

S S E  (Rel. N o rm .)
0 .694
0 .669

Figure 6.2: Centroid-based representation and relative normalisation

Figure 6.2 shows two data points (5,5) and (15,15). Their true centroid, which 
minimises the sum of squared error based on the Euclidean distance (SSE-Eucl.), is 
the point (10,10). If we replace the euclidean measure with the complemented relative 
normalisation coefficient, the calculated sum of squared error (SSE-Rel.Norm.) can 
be show to be non-optimal. This is evidenced by the alternative representative data
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point (9,9) having a lower value for SSE-Rel.Norm., whereas SSE-Eucl. has increased 
as expected. Determining the medoid of a cluster as its most central element is oidy 
dependent on calculating the similarity values between pairs of elements. It is neither 
dependent on the metric properties of the similarity coefficient nor an averaging of 
the combined, global properties of all the cluster elements. Consequently, a cluster 
representative such as the medoid would be more appropriate if we wish to continue 
using similarity measurements based on relative normalisation.

Containment similarity

The issue of containment raised in Chapter 4, and illustrated by the use of Simpson’s 
overlap coefficient, is not taken account of as part of the initial partitioning process. 
However, it is discussed as part of the MCS indexing process described later in this 
chapter.

6.5.4 Reference Partitioning Algorithms

The tested implementation of the generic algorithm relies on a combination of features 
drawn from two existing partitional approaches, i) a K-means derivative, Bisecting 
K-means (BK-means) and ii) Partitioning Around Medoids (PAM) and a scalable 
derivative, CLARANS.

The K-means and Bisecting K-means Partitioning Algorithms

The K-means algorithm is a squared-error minimising approach to partitional cluster­
ing. An high level description of the algorithm based on the “Forgy” model, where 
centroids are calculated following the relocation pass, is given below, a detailed de­
scription and discussion appearing in [Ton and Gonzales, 1974]:

1 Select K  initial centroids

2 Assign all elements to their closest centroid

3 Recompute centroids
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4 Repeat steps 2 and 3 until centroids are stable (or for a set number of iterations)

Bisecting K-means is essentially an hybrid clustering method that generates a 
partition by way of a hierarchical, polythetic, divisive clustering. It is optionally 
refined by application of the standard K-means algorithm. An high level description 
of the algorithm is given below, a detailed description appearing in [Steinbach, Karypis 
and Kumar, 2000]:

1 Select a cluster to split, based on size, similarity or both, e.g., the largest or the one with 
the highest variance with respect to its centroid (initial cluster is the entire collection)

2 Bisect: find two subclusters using steps 1 and 2 of the K-means algorithm (An iteration 
of steps 3 and 4 of K-means over the entire partition may or may not be included, 
corresponding to “refined” and “unrefined” Bisecting K-means)

3 Repeat step 2 for a given number of iterations taking the split that has the highest 
overall similarity, i.e., minimises the summed squared-error.

4 Repeat steps 1,2 and 3 until a given number of clusters is obtained or some other stopping 
condition is reached, e.g., all clusters within a given size or variance threshold .

The hierarchy implicit within the BK-means algorithm may be made explicit at 
any stage during the iterative division, by way of retaining the links between the split 
clusters and their children. At the point where the hierarchy is retained, the following 
iterations are unrefined, i.e., no relocation occurs across the entire partition.

The fact that both K-means and Bisecting K-means have proven efficient and effec­
tive approaches to partitioning prompted initial interest in these algorithms. However, 
due to the nature of the relative normalisation similarity coefficient employed here, as 
previously discussed, the constraints inherent in the application of K-means could not 
be met. K-means relies on the definition of a centroid, as above, and additionally re­
quires that the applied distance metric be just that, a metric. In addition, the original 
Bisecting K-means approach uses the cosine coefficient to determine similarity, as it 
has certain computational benefits. For our immediate purposes, it is inappropriate 
due to its inability to differentiate between elements in the feature space which lie 
along the same line through the origin, i.e., the dot product is such that elements
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which are scaled copies of each other are considered identical. Although this scaling 
is acceptable in the context of document clustering, when comparing class structure, 
such a differences in scale can not be ignored.

The reported performance and basic principles underlying the use of BK-means 
are appealing. This lead to the notion of adapting the BK-means algorithm, replacing 
a centroid with a medoid and creating the Limited Hierarchy Bisecting K-medoids 
algorithm introduced below.

Partitioning Around Medoids (PAM), CLARA and CLARANS

As in the case of K-rneans, Partitioning Around Medoids (PAM) is a partitional al­
gorithm, developed by Kaufmann and Rouseeuw to find k clusters in a collection of 
elements. The principle difference lies in how clusters are represented and generated. 
The PAM algorithm is described in outline below, a detailed account appearing in 
[Kaufman and Rouseeuw, 1990].

PAM relies on determining a representative element for each cluster drawn from 
the elements of in the cluster. The chosen centrotype, termed a “medoid”, is meant to 
be the most centrally located cluster element. Cluster formation is based on nearest 
neighbour assignment of non-medoid elements to their nearest medoid. The essence 
of PAM is its approach to medoid determination. It starts from an initial arbitrarily 
selected set of K  medoids and iteratively replaces one of the medoids by one of the non- 
medoids if it reduces the total medoid-element distance within the resulting cluster 
structure. The cost of replacing each medoid by each non-medoid is calculated. The 
medoid-element pairing that produces the lowest negative cost induces a swap, whereby 
the element becomes the medoid, and the medoid is returned to the pool of unselected 
collection elements. The criterion function being optimised (minimised) is the sum of 
element-medoid dis-similarities.

PAM:

1 Arbitrarily select K elements to act as initial medoids

2 For each pair of non-selected element h and selected element i, calculate the total swap-
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ping cost TCi'h.:
TCi,h = }^ C htJl 

j
where Cj<i%h is the cost associated with each non-selected element j  if the currently 
selected medoid i were replaced by h. The cost Cjj j t is derived as follows:

d{j, n) -  d{j, i) 

d(j, h) -  d{j, i ) 

0

d(j, h) -  d(j, n)

if j  is currently in the cluster represented by medoid i 
and element j  is more similar to n, the second 
most similar medoid to j

if j  is currently in the cluster represented by medoid i 
and element j  is less similar to n, the second 
most similar medoid to j
if j  is not currently in the cluster represented by medoid i 
and element j  is more similar to its current 
closest medoid than to h
if j  is not currently in the cluster represented by medoid i 
and element j  is less similar to its 
current closest medoid than to h

where d( j, n) is a distance coefficient returning the distance between j  and n. (Obviously, 
the cost function may be expressed in terms of a complemented similarity measure if 
required.)

3 For each pair of i and h:

— If TCi'h < 0, replace i with h
-  Assign each non-selected element to the cluster represented by its most similar 

medoid

4 Repeat steps 2 and 3 until there is no change

As in the case of K-means, a limitation of the PAM approach is the need to specify 
the number of clusters at the outset. Determining the number of natural clusters 
in a collection is in fact one of the most difficult problems in cluster analysis, one 
which we essentially manage to avoid. As described below under the heading “The 
Generic Algorithm Implemented”, our clustering algorithm is divisive and controlled 
by cluster size thresholds. These features act together to automatically impose a 
cluster structure, including the number of top-level and bottom-level clusters. (This 
reflects our previous comments regarding the imposition of structure as a means of 
limiting the computation overhead of MCS-based analysis.)
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E xtendin g PA M

Although PAM is suitable for partitioning small collections of elements (100 elements 
over 5 clusters) its computational complexity (0(k[n — k)2) for one iteration) is such 
that it doesn’t scale to larger collections. However, the basic PAM algorithm has 
been adapted to handle larger collections, firstly by the original authors in the form of 
CLARA (Clustering LARge Applications) [Kaufmann and Rouseeuw, 1990], and more 
recently by Ng and Han who developed CLARANS (Clustering Large Applications 
based on RANdomised Search) as an improvement on CLARA [Ng and Han, 1994]. 
Ng and Han’s experiments using CLARANS have shown that a K-medoids approach 
can scale well to handle large collections (e.g., 3000 elements over 20 clusters). A 
basic outline of CLAR.ANS is supplied below, a detailed description appearing in the 
author’s technical report [Ng and Han, 1994b].

In an attempt to address the computational overhead imposed by the basic PAM 
algorithm, Kaufmann and Rouseeuw developed CLARA: by drawing multiple samples 
from the collection to be clustered and applying PAM to each sample, the sample 
medoids are used to cluster the entire collection, the best quality clustering being 
output. Five iterations using a sample size of 40 was shown to be effective in clustering 
1000 elements into 10 clusters. Although CLARA deals with larger collections than 
PAM, reducing the complexity to C9(A:3(n — k), its efficiency depends on the sample 
size. Unfortunately, a good clustering based on samples will not necessarily represent 
a good clustering of the whole data set if the sample are not sufficiently representative.

CLAR.ANS: Clustering Large Applications based on RANdomised Search
Ng and Han extend the CLARA model basing their CLARANS algorithm on a ran­
domised, dynamic sampling process as opposed to the static sampling of CLARA. 
They have shown CLARANS to be as effective as PAM, reporting almost O(n) perfor­
mance, thereby allowing it to handle large collections. CLAR ANS essentially operates 
a randomised search process based on gradient ascent using a PAM template driven by 
two parameters, maxneighbours and numlocal. The first parameter, maxneighbours, 
controls the number of total cost calculations carried out at step ‘2’ of the PAM al­
gorithm: rather than carry out an exhaustive examination of all possible selected and 
unselected elements as in PAM, CLARANS constructs an abstract graph, the nodes 
of which represent all possible medoid sets, the edges linking neighbours that differ in
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only one medoid. Prom a randomly selected start node, CLARANS randomly selects 
one of its neighbours and calculates the cost difference between the two nodes using 
PAM’s total cost function TClgl, where in this case i and h are the medoids that dif­
fer between the node and its neighbour. If the selected neighbour represents a better 
partition by virtue of a descent in cost, it becomes the selected node. The process con­
tinues until such time as all of a selected node’s neighbours have been examined or the 
number exceeds maxneighbours. Being a limited, random search process, CLARANS 
can inevitably get trapped in a local minimum and as such the process iterates for as 
many as numlocal times in order to try and escape local minima and improve overall 
cluster quality. In their report, Ng and Han recommended values for maxneighbours 
and numlocal of 250 and 2 respectively. As the value of maxneighbours increases, 
CLARANS increasingly tends towards PAM, in the limit being equivalent.

CLARANS:

1 Set parameters maxneighbours and numlocal. Initialise localCount. to 1 and set minCost 
to a large number

2 Set current to an arbitrary medoid set

3 Set neighbourCount to 1

4 Randomly select a medoid set neighbour, a neighbour of current

5 Calculate the cost differential between neighbour and current using PAM’s total cost 
function T„,c where n and c are the medoids that differ between neighbour and current

6 If neighbour has a lower cost, set current to neighbour and go to step [3]

7 Increment neighbourCount by 1 and if less than maxneighbours go to step [4]

8 If the cost of current is less than minCost, set minCost to the cost of current and 
bestMedoidSet to current (The cost of a medoid set is the total dissimilarity between 
every collection element and its cluster medoid.)

9 Increment localCount by 1 and if greater than numlocal, otherwise go to step [2]

11 Assign each elements to the cluster represented by its most similar medoid taken from 
the medoid set identified by bestMedoidSet
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6.6 The Generic A lgorithm  Im plem ented

In order to establish the validity of the generic approach to limited-hierarchy partition 
generation, given the identified requirements and constraints, the hybrid approach - 
“Limited Hierarchy Bisecting K-medoids” - was implemented and tested.

6.6.1 Limited Hierarchy Bisecting K-medoids (LHBKM)

LHBKM is essentially a polythetic, divisive, hierarchic clustering algorithm that re­
tains only the lower hierarchical levels. This approach uses Ng and Han’s CLARANS 
algorithm to combine and implement the initial “GENERATE” and “SPLIT” stages 
of the generic algorithm of Figure 6.1. A collection is divided up into top-level clus­
ters by successively employing CLARANS to split any cluster that exceeds the set 
threshold for top-level cluster size, the initial cluster being the whole collection. The 
process of division is such that a proportion of otherwise similar elements may be 
separated at higher levels of the implicit hierarchy, due to the more diffuse cluster 
definition and questionable quality of cluster representation. In order to address this, 
following the generation of any new clusters, the resulting partition is further refined 
by implementing the “RELOCATE” stage of the generic algorithm. Each collection 
element is relocated to that cluster represented by its most similar medoid. If an 
element relocates to a different cluster, the medoids of both affected clusters are re­
calculated - this was preferred to recalculation of medoids following the completion of 
the entire relocation process as it generally produced better quality clusters in terms 
of the “LE” and “F” measures. The current LHBKM algorithm only carries out one 
relocation pass per cluster division in order to minimise the computational overhead. 
This refined, iterative, bisecting, “2-medoid”, cluster division produces an initial, size 
limited, “crisp” partition of the collection.

In order to improve co-location of significant neighbours, LHBKM incorporates 
an implementation of the generic “OVERLAP” step. This allows any element to be 
copied into another cluster, provided it meets the criteria outline above relating to 
element-medoid similarity and the medoid-medoid threshold for cluster separation. 
At this point, the top-level clusters have been finally defined, the next step being the 
creation of the explicit hierarchy and bottom-level clusters.
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The iterative, bisecting, “2-medoid”, process of cluster division described above is 
now applied to each top-level cluster, thereby implementing the “CREATE INTRA­
CLUSTER, HIERARCHY” stage of the generic algorithm. This stage differs from that 
described above in that i) the size threshold is now that for bottom-level clusters, ii) 
the generated hierarchy is retained and iii) neither relocation nor overlap are allowed8.

As a natural consequence of the non-ideal mechanics of clustering, elements may 
be separated during the bisection process but which are in fact similar. Steinbach et 
al showed that even in the case of an unrefined partition, i.e., no relocation, the results 
of the bisection process were as good as, if not better than, those corresponding to 
an agglomerative hierarchic clustering [Steinbach, Karypis and Kumar, 2000]. For the 
moment, we rely on the relocation process in the non-hierarchical, top-level partition 
to limit the problem.

At any point in the above process, the splitting of highly cohesive cluster is pre­
vented: very high quality clusters, as determined by the average element-medoid sim­
ilarity being greater that a set threshold, are retained intact being as they probably 
represent instances of the same or very similar common structure.

LHBKM:

1 Set LHBKM parameters maxTopLevelClusterSize, rnaxBottomLevelCiusterSize, maxS- 
plitQuality, m in El e m e n t. Med o i dSi in and maxMedoidMedoidSim.

2 Set CLARANS parameters maxneighbours and imrnlocal.

3 Set the entire collection as the first top-level cluster

4 If there are top-level clusters of size greater than maxTopLevelClusterSize

4.1 Select the largest not previously selected

4.2 If its quality is less than maxSplitQuality use CLARANS to split it in two (Bisec­
tion) otherwise go to step [4]

^Relocation across a given cluster level is impractical as the possible movement of elements be­
tween clusters not on the same hierarchic path would invalidate higher level clusters. Overlap proved 
problematic as it lead to the creation of many duplicate or near-duplicate bottom-level clusters with 
no discernable improvement in performance.
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4.3 For all collection elements, relocate each element to the cluster represented by its 
most similar medoid and if a relocation takes place re-calculate the medoids of the 
source and destination clusters

4.4 Go to step [4]

5 For all collection elements, copy each element j  of cluster i into any cluster t where i) 
the similarity between j  and the medoid of t is greater than minElementMedoidSim and 
the similarity between the medoids of i and t are less than maxMedoidMedoidSim

6 Set all the top-level clusters as the first set of bottom-level clusters

7 If there are bottom-level clusters of size greater than maxBottomLevelClusterSize then

7.1 Select the largest bottom-level cluster bp

7.2 If the quality of bp is less than maxSplitQuality use CLARANS to split it in two 
to produce clusters bci and bc2

7.3 Retain the cluster hierarchy by i) setting bc\ and f>c2 as the children of bp and 
ii) unsetting bp as a bottom-level cluster and setting bci and bc2 as bottom-level 
clusters (Limited Hierarchy)

7.4 Go to step [7]

8 Stop

The computational complexity of the LHBKM algorithm is effectively the same as 
that of the underlying CLARANS algorithm: for small collections it tends to that of 
PAM but as collection size increases it is tends to 0(n).  The additional relocation 
and overlap stages are linear in the number of collection elements.

6.6.2 Implementing SPLIT and OVERLAP

The implementation of the generic stages SPLIT and OVERLAP is necessarily heuris­
tic, reflected in the parameterisation of the implemented LIIBKM algorithm. •

• SPLIT

During the SPLIT phase, cluster division occurs if a given size threshold is ex­
ceeded. The determination of a size threshold in this case is driven both by the 
limitations imposed by the final “CREATE INTRA-CLUSTER HIERARCHY”
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step of the generic algorithm, and the potential depth of hierarchy generated 
above the bottom-level clusters. The computational overhead in terms of space 
and time, associated with the creation of a limited hierarchy beneath each top- 
level cluster should preferably be such that a) the associated data structures for 
all clusters should if possible be held in memory, b) the time taken to recluster a 
top-level cluster as elements are added should preferably be such that it can be 
completed quickly. The utility of browsing /  navigating a full collection hierarchy 
must be balanced against the time taken to traverse the hierarchy and the ques­
tionable validity of higher-level clusters. Initially, we limit the depth of hierarchy 
such that on average it leads to the creation of less than 10 levels. (Given an 
average comparison time of 0.012 secs for SP comparison, matching/searching 
a target element to the best bottom-level cluster by traversal from a selected 
top-level cluster in a 10-level hierarchy would take 2 * 0.012 * 10 = 0.24.secs.)

• OVERLAP

Where OVERLAP is implemented, the criterion that determines whether an el­
ement can be placed in multiple clusters is based on first comparing source and 
destination cluster medoids. If the inter-medoid similarity is too high (above 
a set medoid-medoid similarity threshold) and the element is within a second 
threshold of the destination medoid, it is copied from the source into the des­
tination cluster. (This simple, straightforward approach to determining cluster 
similarity is similar to that adopted by the “ISODATA” algorithm in decid­
ing whether two clusters are sufficiently similar to warrant “lumping” into one 
[Ton and Gonzales, 1974].)

Parameterisation and selected values for the various thresholds employed are discussed
further in Section 0.7.3.

6.7 Predictive experim ents

In order to assess the effectiveness of the proposed algorithm, a set of experiment was 
carried out based on the LIIBKM implementation given above, alongside a medoid- 
based “Leader” algorithm acting as a known low-complexity reference. The standard
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“Leader” algorithm, as used for example by Hodes as a means of clustering large 
collections of chemical molecular structures [Hodes, 1988], was adapted to use a medoid 
as cluster representative as opposed to a centroid:

M edoid-based “Leader”

1 Set the element-element similarity threshold s im T h re sh o ld

2 If there are collection elements left to cluster then

2.1 Get the next element

2.2 Find its most similar medoid

2.3 If the similarity is above s im T h resh o ld , assign the element to the represented clus­
ter, recompute the cluster medoid and return to step [2]

2.4 Create a new cluster with the current element as its medoid and return to step [2]

3 Stop

The initial test data were the sets of classes “H”, “S” and “j5” used in the experi­
ments of Chapter 5. A further, larger test set was generated based on the combination 
of these three. These data sets are small enough to be manageable in terms of the 
overhead of test repetition, while being large enough to predict the utility of the ap­
proach when applied to larger collections. The data sets also show varying degrees 
of common and repeated structure. Initially, each data set was analysed as a static 
collection. An approach to clustering a dynamic stream of classes is presented later in 

this chapter.

6.7.1 Partition evaluation

Following on from the comments made above in relation to clustering tendency, the 
validity of any generated partition is interpreted here in terms of “usefulness”, rather 
than the theoretical notion of “uniqueness” as a departure from a randomly generated 
partitional structure [Jain and Dubes, 1988]. Rather than merely trying to uncover 
a natural classification inherent in the structure of a class collection, we are more 
concerned in this case with the amelioration of the computational overhead associ­
ated with the search for common structure, if necessary imposing a structure on the
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collection. The intention is to provide both a means of identifying occurrences of re­
peated, common structure within a collection, and a classification able to support the 
search for matches between individual target classes and the collection classes. The 
essential characteristic in the first case is the co-location within a cluster of elements 
that exhibit significant structural commonality. The proposed approach to discovery 
of common structure involves exhaustive MCS extraction within all bottom-level clus­
ters: in order to avoid unnecessary comparison during MCS extraction, bottom-level 
cluster elements must demonstrate a significant level of pair-wise similarity and pairs 
of elements exhibiting significant similarity must be contained in the same cluster. In 
order to evaluate the results of partitioning a static collection of classes, in terms of 
locating common structure, we first of all derive a measure of quality to be applied 
to the bottom-level, size limited clusters of a collection9. The quality of a partition 
is effectively its index of validity. The intention here is to establish how effective the 
partitioning process is in identifying significant pairs of classes, assuming that MCS 
analysis and the extraction of common structure is only applied at a given cluster 
level.

Knowing the number of significant pairs in a test collection, we define a quality 
measure based on a combined index of the number of missed significant-pairs, and the 
number of unnecessary comparisons, resulting from a full, exhaustive analysis of all 
clusters at a given hierarchic level, in this case all the bottom-level clusters. This is 
defined below as “Location Effectiveness” (LE).

Given a collection C — {ci,C2 . . . c n} of n elements or feature vectors, partitioned 
into K  clusters {C\, C2 ■ . ■ Ck }, where \Ĉ \ is the number of elements in cluster k:

Location Effectiveness

Location Efectiveness is intended to measure the quality of the generated clustering 
structure in support of whole-collection analysis of common structure.

Based on a full ranking of pair-wise similarity, a collection can be divided according 
to whether class pairs are above or below a similarity threshold. Those pairs above the 
threshold are deemed relevant or “significant”, the remaining pairs being irrelevant. If

9 A size-limited duster is used as the unit of MCS analysis.
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each of the classes belonging to a significant pair occur in the same cluster the pair is 
said to be “co-located”. Given that a pair-wise comparison of all the constituent ele­
ments of all bottom-level clusters is to be carried out during MCS extraction, partition 
quality can be quantified as follows.

Knowing the number of significant pairs in a test collection, we define a quality 
measure based on a combined index of the number of missed significant-pairs, and 
the number of unnecessary comparisons, resulting from a full, exhaustive analysis 
of all clusters at a given hierarchic level. This is defined below as the “Location 
Effectiveness” (LE).

Given a collection C =  {ci,C2 .. . cn} of n elements or feature vectors, partitioned 
into k clusters {C\, C2 ■.. C/v}, where \Ck\ is the number of elements in cluster k. SP  
is the set of all significant pairs, \SP\ its cardinality, and SVco~iocated the current set of 
identified, co-located pairs. The number of significant pairs in cluster k not previously 
located in other clusters (as can happen when cluster overlap is enabled) is given by:

\Ck\
sr*= £ 1 if (Cj, C j ) E S P  A (Cj, C j)  (f: S P co -located  i 7̂  j  

0  i f  ( C i , C j ) < £ S P

The number of actual intra-cluster, pair-wise comparisons that would be carried 
out during a full cluster analysis is given by:

pc=T.
k=l 2

The location effectiveness ratio is defined in terms of “Missed Comparison” (MG) 
and “Unnecessary Comparison” (UC) as follows:10

\SP\ -  E L i SPkM C  —
\SP\

UC =  max{ 0,
PC -  |S'P| 

PC

The Location Effectiveness is then given by:

L E - !  (**MCf) +  UC 
6

10The m a x  function is applied in the calculation of U C: defining it as TfirLiZ1 can give negative 
values in some cases due to \S P \ being greater than P C  when not all relevant element pairs are located 
and cluster sizes are small, e.g., when fairly cohesive clusters are forcibly split.

230



where the relative importance of M C  over UC is reflected in the higher penalty applied 
to MC,  i.e., we value the co-location of instances of common structure over that of 
limiting unnecessary comparison, although in practice the latter is a more significant 
computational limitation. The lower the values of both MC  and UC the higher the 
value of LE,  i.e., the better the location effectiveness, or more useful the partition.

F measure of partition quality

In order to assess performance in deriving the significant neighbour list for a given 
target class - relative to a collection - an interpretation of the “F” measure (F — 1 — E 
[van Rijsbergen, 1977]) of cluster quality is also included. This give us a means of 
assessing the match /  search effectiveness in relation to the generated cluster structure.

Treating each class (cj) in a collection as a potential target to be matched against 
the collection, for each matched /  returned cluster we can establish the total number of 
induced pair-wise MCS comparisons (mcsj), and within these the number of significant 
pairs (spi) previously identified for the target class. Using the size of the actual 
significant neighbours list for each target class (|a»t|) extracted by way of an exhaustive 
analysis, we can then calculate a quality value for each cluster - the “F” measure - 
based on the harmonic mean of precision and recall:

n sPirecalli — ----- -
\ s r i i  I

. . spi
p r e c i s i o n i  = --------

mesi

_  2 x recalli x precisioni 
recalli +  precisioni

This can be averaged to give a global index

l 11
F = - f l Fin i- 1

Better quality partitions have higher values of F.
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6.7.2 Static collection analysis

Each collection (data sot) was partitioned using the two implemented algorithms. 
Applying the location effectiveness measure provides a means of gauging the degree of 
structural commonality identified as a consequence of the partitioning, relative to an 
exhaustive analysis. (For the moment we accept the validity of both the SP and MCS 
similarity measures.) Each collection element was matched against both the top-level 
and bottom-level clusters of the resulting cluster structure. In each case, the best top- 
level and bottom-level clusters, in terms of element-centroid similarity, were returned. 
Determining the element-centroid similarity was based on the SP similarity model. The 
“F” measure was applied to each returned cluster in order to provides a measure of 
the structured collection’s capacity to respond to “queries” of this type. At this stage, 
in applying the “F” measure, the significant neighbour list for each target (“query”) 
class was based on the SP feature-vector model of similarity. (Initially, and guided 
by the results of Chapter 5, the threshold for significant neighbour list membership 
was chosen such that it was sufficiently discriminating to limit false positives but not 
too high such that it lead to the rejection of true positives as determined by MCS 
analysis.)

6.7.3 Parameterisation

Based on a combination of trial-and-error, and the findings of Chapters 4 and 5, the 
two algorithms were parameterised as shown below. It is important to accept that the 
clustering process described in this chapter relies on the predictive power of SP as an 
indication of MCS-based similarity. To that end, and based on the results of Chapter 5, 
parameterisation is predicated on the belief that, in general, an SP similarity value of 
0.5 provides adequate predictive strength.

• Limited Hierarchy Bisecting K-medoids (LHBKM):

-  Top-level cluster size threshold: SIZEtlc — 100
This value limits the eventual height of the hierarchy generated above the bottom- 
level clusters. In practice, the deepest hierarchy had 11 levels which provided 
ample scope for browsing by hierarchic navigation within the more representat ive
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lower-levels (of a complete hierarchy) while limiting the time take to carry out a 
top-down search.

-  Bottom-level cluster size threshold: SIZEhlc — 10
A value of 10 here is dictated by the limitations imposed by MCS comparison. An 
exhaustive pair-wise analysis of 10 class ARGs (45 comparisons) would on average 
take less than 2mins.

-  Quality threshold: Q = 0.95
Based on the experience of analysing the test sets in Chapters 4 and 5, classes that 
show similarity above 0.95 are invariable almost identical. Splitting highly cohesive 
clusters is sees as unnecessary and in fact counterproductive. This threshold is 
applied to both top-level and hierarchic clusters.

-  Overlap similarity threshold element-medoid: SIMe:m — 0.5
This is based on the simple notion that if two classes show a similarity greater 
than 0.5, the current quality of SP-MCS prediction implies that they will probably 
demonstrate significant MCS-based similarity.

-  Overlap similarity threshold medoid-medoid : SIMm:rn = 0.75
It is likely that clusters having medoid similarities above 0.75 are the result of a 
cohesive parent cluster being forcibly split. Allowing overlap in such cases would 
probably lead to multiple reconstitution of the parent in the form of its substan­
tially overlapping children.

• Medoid-based “Leader” (ML):

-  Similarity threshold: SIMieader — 0.5

6.7.4 Results: evaluating LHBLM

The experimental results shown in Table 6.1 are illustrative, the values reported11, 
being averages across a series of 10 runs. In each case, the order in which the classes

11NE - no. of collection classes; SI’ - no. of significant pairs; LE - Location Effectiveness; MC - 
Missed Comparisons; UC - Unnecessary comparisons; F - avg. “F” ; R - avg. recall; P - avg. precision; 
TLC - number of top-level dusters (initial partition); > D L T  - number of top-level clusters exceeding 
bottom-level cluster size threshold; BLC - number of bottom-level clusters; ACQ - average cluster 
quality; SC - number of singleton clusters; OT - overall clustering time; O T t l c  - O T  for top-level 
cluster formation; ST - avg. match time for target vs all bottom-level clusters (top-level for “Leader”); 
MDH - max. depth of hierarchy. Subscripts indicate top-level or bottom-level where a distinction is 
appropriate, e.g., Fb l  - avg. “F” for bottom-level clusters.
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were presented to the algorithms was randomised.

Algorithm LHBKM ML LHBKM ML LHBKM ML LHBKM ML
Data set H H S S J'5 j5 COMB COMB

N E 394 394 338 338 76 76 808 808
S P 12972 12972 2696 2696 9 9 16624 16624
TLC 4 25 5 70 1 56 12 148

(.A C Q t l c ) 0.714 0.662 0.494 0.613 0.252 0.535 0.536 0.605
(> B L T ) 4 4 5 9 1 0 12 13

(S C t l c ) 0 13 0 33 0 47 0 91

L E t l c 0.946 0.963 0.869 0.894 0.834 0.769 0.835 0.946

( M  C t l c ) 0.000 0.007 0.003 0.082 0.000 0.111 0.091 0.027
(U C t l c ) 0.325 0.187 0.771 0.226 0.997 0.830 0.532 0.188

F t l c 0.756 0.857 0.329 0.713 0.032 0.834 0.496 0.791

(R t l c ) 1.000 0.971 0.989 0.868 1.000 0.960 0.937 0.918

{P t l c ) 0.676 0.811 0.252 0.666 0.016 0.795 0.447 0.748

BLC 67 51 14 143

(.A C Q k l c ) 0.793 0.666 0.353 0.691

(S C b l c ) 14 4 1 27

L E b l c 0.525 0.821 0.840 0.593
( M C b l c ) 0.570 0.215 0.000 0.488

( U C b l c ) 0.000 0.000 0.958 0.000

F b l c 0.426 0.620 0.318 0.487
( R b l c ) 0.388 0.726 0.882 0.554
( P b l c ) 0.923 0.675 0.208 0.749
ST(sec) 0.020 (0.009) 0.014 (0.020) 0.028 (0.095) 0.049 (0.083)
OT(sec ) 326 10 190 5 87 4 1023 39
(O T t l c ) 247 119 10 794
M D H 9 7 5 10

Table 6.1: LHBKM and medoid-based “Leader” algorithm applied to data sets “H’\  
“S”, “j5” and their combination set “COMB”

Table 6.2 shows the relative values for data set “COMB” when the CLARANS 
parameter maxneighbours was reduced from Ng and Ban’s recommended value of 250. 
This was intended to establish whether LHBKM run-times could be improved without 
significantly altering the quality of the clustering produced. The effect of leaving out 
the relocation and overlap steps in generating the top-level clusters is also included.
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Algorithm 
Data set 
maxneighbours

LHBKM
J5
250

LHBKM
J5
10

LHBKM
COMB
250

LHBKM
COMB
100

LHBKM
COMB
50

LHBKM
COMB
10

LHBKM
COMB
10

LHBKM
COMB

250
(relocation off) 
(overlap off)

N E 76 76 808 808 808 808 808 808
S P 9 9 16624 16624 16624 16624 16624 16624
T L C 1 1 12 13 13 13 16 15
(A C Q t l c ) 0.252 0.252 0.536 0.503 0.560 0.519 0.529 0.567
(> B L T ) 1 1 12 13 13 13 14 11
(S C t l c ) 0 0 0 0 0 0 0 0
L E t l c 0.834 0.834 0.835 0.833 0.840 0.892 0.796 0.742
(M C t l c ) 0.000 0.000 0.091 0.092 0.090 0.014 0.167 0.230
(U C t l c ) 0.997 0.997 0.532 0.538 0.497 0.577 0.397 0.398
F t l c 0.032 0.032 0.496 0.494 0.514 0.524 0.477 0.454
(rtrrc) 1.000 1.000 0.937 0.935 0.931 0.968 0.770 0.730
(Pt l c ) 0.016 0.016 0.447 0.443 0.471 0.456 0.445 0.443
B L C 14 13 143 140 148 147 127 135
(A C Q m c ) 0.353 0.360 0.691 0.697 0.681 0.697 0.661 0.671
(S C b l c ) 1 1 27 24 32 23 16 27
L E b l c 0.840 0.655 0.593 0.592 0.593 0.602 0.586 0.589
(M C b l c ) 0.000 0.222 0.488 0.490 0.488 0.478 0.496 0.494
(U C b l c ) 0.958 0.962 0.000 0.000 0.000 0.000 0.000 0.000
F b l c 0.318 0.281 0.487 0.478 0.482 0.479 0.475 0.477
(R-b l c ) 0.882 0.849 0.554 0.541 0.541 0.546 0.539 0.529
(P b l c ) 0.208 0.184 0.749 0.735 0.745 0.728 0.725 0.734
S T (sec) 0.028 0.025 0.049 0.052 0.059 0.049 0.064 0.046
OT(sec) 87 38 1023 873 638 192 153 1132
(<OTt l c ) 10 10 794 582 344 116 85 945
M D H 5 5 10 11 11 10 8 10

Table 6.2: Effect of reducing the CLARANS parameter maxneighbours during an LH- 
BKM analysis of data sets “J5” and “COMB”. The right-hand column also illustrates 
the effect of omitting relocation and overlap during the analysis of “COMB”.

6.7.5 Discussion

If we begin by examining the top-level clusters produces by LHBKM and ML, location 
effectiveness is high in both cases - few significant pairs are being missed, particularly 
by LHBKM. ML gives rise to proportionally fewer unnecessary pair-wise comparisons, 
principally due to the high number of singleton clusters it produces. However, the 
presence of such a high number of singletons can lead to a three-fold increase in target-
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collection search times in comparison to LHBKM. ML gives consistently good “F” 
scores, based on both high recall and high precision. In contrast, LHBKM produces 
“F” scores that vary widely being consistently worse than those of ML. Significantly, 
LHBKM recall is consistently very high. The most startling difference between the 
two approaches is the overall analysis time: the time taken by ML to create top-level 
clusters can be 25 times faster than LHBKM. At this stage, the overall performance 
of ML suggest that it would be a better choice of partitioning algorithm, were it not 
for several inherent limitations:

• ML demonstrates a sensitivity to the order in which collection elements are 
presented to it whereas LHBKM is almost invariant to element order.

• ML has no control over cluster size, producing many singletons and being unable 
to break up large clusters.

• Although ML achieves good location effectiveness, the level of unnecessary com­
parisons can be prohibitive, e.g., the figure of 0.188 for data set “COMB” rep­
resents over 3000 additional pair-wise MCS analyses, which in turn equates to 
nearly 2hrs. processing time.

When we consider the creation of a limited hierarchy and the bottom-level clus­
ters, the limitations of LHBKM are to an extent ameliorated by improvements in the 
utility of the resulting cluster structure. In the case of data set “J5” the location 
effectiveness has increased, despite the very high level of unnecessary comparisons: 
significant pairs missed is zero and although “LE” is very high, the actual number of 
unnecessary comparisons is small as a consequence of the limited cluster size. For the 
remaining three data sets, location effectiveness has decreased due to the number of 
missed pairs having increased. This results from the increased cluster numbers and 
decreased cluster size. In these three cases, the number of significant pairs in each 
collection is large and as an inevitable consequence of the divisive nature of LHBKM 
in generating the bottom-level cluster hierarchy, some significant pairs are going to be 
separated. However, in each case, the number of unnecessary comparisons have been 
eliminated, which would have a significant, beneficial effect on MCS extraction times. 
The number of clusters has increased, as has the overall quality of these clusters. Add 
to this the fact that levels of precision associated with search (match) effectiveness
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have also improved and it, is apparent that the bottom-level clusters are highly cohe­
sive and individually highly representative of the common structures present in the 
collection as a whole. This was borne out by “backtracking” up the cluster hierarchy 
during cluster-based retrieval: when a target class was compared against a retrieved 
cluster, and precision was high by virtue of the number of contained classes being 
above threshold similarity (0.5) when compared with the target, moving back up a 
level in the hierarchy generally improved recall without unduly compromising preci­
sion, or the number of unnecessary comparison12. Although significant pairs are indeed 
missed, the cluster structure provided by LHBKM provides good quality samples of 
the contained similarity, while minimising the overhead associated with unnecessary 
MCS extraction.

An analysis of the “COMB” clustering showed that in terms of separating elements 
from the three constituent data sets (“HI”, “S2” and “j5”), on average, the bottom- 
level clusters were 97% pure, i.e., clusters are predominantly made up of elements from 
the same subset.

The results of Table 6.2 suggest that the time taken to generate a cluster structure 
could be markedly reduced, without unduly compromising the resulting quality, by 
reducing the maxneighbours parameter of the CLARANS algorithm. The degree to 
which the value of maxneighbours could be reduced was surprising - even a value of 10 
produced adequate results. The nature of data sets “H” and “S” is such that they both 
exhibited high levels of significant pairs. This was due to the presence of i) repeated 
instances of the same class(s) and ii) instances of a slightly modified class. (This was 
clearly identified by LHBKM as large, maximally or near maximally cohesive top-level 
clusters.) As the value of maxneighbours is reduced, the search for a local maximum 
is limited but at the top-level this is countered by the process of relocation (and to a 
lesser degree overlap): as the value of maxneighbours is decreased, so the relocation 
frequency increases by as much as 10%. The quality of the generated top-level clusters 
is such that the limited search is sufficient to produce a reasonable cluster structure. 
The precise relevance of this result is still unclear, requiring further analysis based on 
a wider portfolio of data sets in order to determine whether the changes are in fact 
statistically significant and indeed not an artefact of the data sets. It is worth noting

12 This feature is currently not automated, requiring a manual analysis
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that the random search approach underlying CLARANS was surprisingly stable, there 
being little variation in either “LE” or “F” resulting from the analysis of bottom-level 
clusters, e.g., data set “S” had a mean “LE” of 0.821 with a corresponding Std.Dev. 
of 0.004, a mean “F” of 0.623 with a corresponding Std.Dev. of 0.007)

The last two columns of Table 6.2 show that the omission of relocation and over­
lapping lead to a reduction in location effectiveness as a result of an increased number 
of significant pairs being missed. A reduction in the “F” measure is also present due 
to both recall and precision having been reduced. The increase in overall analysis 
time and the reduction in quality support the inclusion of relocation and overlapping. 
Top-level relocation and overlap could in principle lead to violation of the size thresh­
old but in practice this did not happen. Relocation and overlapping are not currently 
applied within the explicit, lower-level hierarchy but as MCS extraction is currently 
only applied to bottom-level clusters, and target-collection search is principally based 
on nearest-neighbour bottom-level cluster retrieval, it may prove beneficial to relocate 
across bottom level clusters.

In terms of meeting the dual objectives of i) co-locating typical samples of similar 
classes and ii) providing an effective and efficient matching structure, the LHBKM 
algorithm has proven extremely useful. It is however undermined by its poor run-time 
performance, which may be amenable to improvement through further code and/or 
data structure optimisation of the current beta version of the analysis framework. A 
significant proportion of the time taken to form the cluster structure is taken up by 
that of establishing the top-level clusters - over 70% in some cases. We are currently 
investigating a combination of ML and LHBKM as a means of reducing the overall 
time while maintaining the utility of the LHBKM algorithm: by quickly generating 
an initial top-level structure using ML, re-assigning singletons to their nearest non­
singleton cluster, relocating across clusters, and applying LHBKM to the resulting 
top-level clusters, we hope to be able to address, at least in part, the time factor 
undermining LHBKM. The issue of analysis times must however be placed in context: 
although currently LHBKM takes approximately 17mins, to cluster 808 classes based 
on feature vector representation, by extrapolation based on a linear trend between 
the available collection sizes and times, a collection of 5000 classes would take less 
than 1.5hrs. to cluster. In the unlikely worst case, an order-2 polynomial trend would 
suggest a 9hr. processing time. In practical terms, this is not prohibitive given that
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off-line, overnight cluster generation is an option.

The main bargaining point underlying LHBKM is its ability to produce a reason­
able clustering that limits bottom-level cluster size to within practical MCS analysis 
times. Limiting top-level cluster size is simply a means of introducing some degree 
of hierarchy above the bottom-level clusters, providing scope for “backtracking” and 
browsing. As it stands, LHBKM provides a balance of utility against tractability in 
providing a framework for extracting good samples of common structure, alongside 
support for class-to-collection searching and browsing. However, a more extensive in­
vestigation into the performance of LHBKM is required, particularly in relation to its 
parameterisation.

6.8 Further refinement

6.8.1 Incremental update

The generic algorithm above assumes the presence of a static collection of classes. 
However, in practice, we may be faced with incremental update of an empty or very 
small collection. In order to accommodate dynamic collections, we require a means of 
dealing with both the extreme case of an initially empty collection, and update of an 
existing, clustered collection. Accepting that periodic re-partitioning of a collection 
will be necessary, the following naive approach to incremental update is intended to 
minimise the disruptive effect of these changes, while maintaining a reasonable degree 
of effectiveness in the face of such changes. •

• Initially empty collection:

Classes are added to a first cluster until the threshold governing the maximum 
size of a bottom-level cluster is reached, at which point the “CREATE INTRA- 
CLIJSTER HIERARCHY” stage of the generic algorithm is applied. Further 
additions are treated as updates to an existing collection.

• Updating an existing collection:

A new class is added to the bottom-level cluster identified as a result of matching 
said class against the representatives of all bottom-level clusters in the existing
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collection structure. The class is also added to each parent cluster up through 
the hierarchy. If an updated top-level cluster exceeds its size threshold, the 
“CREATE INTRA-CLUSTER HIERARCHY” stage of the generic algorithm is 
applied to it, the existing hierarchy associated with it being replaced. Alterna­
tively, if only the updated bottom-level cluster exceeds its size threshold, the 
“CREATE INTRA-CLUSTER HIERARCHY” stage of the generic algorithm is 
applied locally to it. (Periodic re-partitioning /  clustering of the entire collection 
will be necessary, based in general on criteria such as the number of updates since 
a previous re-organisation and other issues such as the availability of resources. 
Reorganisation criteria remain an open question in the current context and is a 
consideration for further work).

An implementation of this generic, incremental clustering approach is presented in 
the following section, based on the previously implemented LIIBKM algorithm.

G.8.2 Incremental Limited Hierarchy Bisecting K-medoids (ILHBKM)

The above strategy was applied to the four data sets used in the experimental evalu­
ation of the LHBKM algorithm. Clusters are SPLIT using step ‘7’ of the previously 
described Limited Hierarchy Bisecting K-medoids algorithm giving rise to Incremen­
tal Limited Hierarchy Bisecting K-medoids (ILHBKM). (This algorithm employs no 
relocation or overlap.)

6.8.3 Results: evaluation of ILHBKM

Table (i.3 shows the results of an initial experiment based on an incremental clustering 
of a randomised stream of elements taken from each of the previous four data sets. 
A complete incremental clustering (without re-organisation or overlap), was carried 
out using ILHBKM, the results being compared with those previously obtained using 
LHBKM and ML (Table (i.l). A further experiment was carried out using the smaller, 
“j5” data set, in order to evaluate the cluster structure as it evolved through increments
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Algorithm LHBKM ILHBKM LHBKM ILHBKM LHBKM ILHBKM LHBKM ILHBKM

Data set H H S S j5 j5 COMB COMB

N E 394 394 338 338 76 76 808 808

S P 12972 12972 2696 2696 9 9 16624 16624

TLC 4 5 5 5 1 1 12 12

(A C Q t l c ) 0.714 0.717 0.494 0.496 0.254 0.254 0.536 0.576

(>  D L T ) 4 5 5 5 1 1 12 12

(S C t l c ) 0 0 0 0 0 0 0 0

L E t l c 0.946 0.921 0.869 0.865 0.834 0.834 0.835 0.735

(M C t l c ) 0.000 0.038 0.003 0.007 0.000 0.000 0.091 0.231

(U C t l c ) 0.325 0.287 0.771 0.777 0.997 0.997 0.532 0.432

F t l c 0.756 0.726 0.329 0.322 0.032 0.032 0.496 0.437

(R t l c ) 1.000 0.915 0.989 0.909 1.000 1.000 0.937 0.746

(P t l c ) 0.676 0.687 0.252 0.249 0.016 0.016 0.447 0.421

BLC 67 64 51 54 14 13 143 128

(.A C Q b l c ) 0.793 0.761 0.666 0.643 0.353 0.345 0.691 0.664

(SC 'b l c ) 14 10 4 9 1 1 27 23

L E b l c 0.525 0.523 0.821 0.810 0.840 0.655 0.593 0.588

(M C b l c ) 0.570 0.572 0.215 0.228 0.000 0.222 0.488 0.494

(U C b l c ) 0.000 0.000 0.000 0.000 0.958 0.960 0.000 0.000

F b l c 0.426 0.413 0.620 0.599 0.318 0.249 0.487 0.485

(R i n e ) 0.388 0.377 0.726 0.678 0.882 0.753 0.554 0.542

(P lìL C ) 0.923 0.897 0.675 0.659 0.208 0.162 0.749 0.731
ST (sec) 0.020 0.020 0.014 0.022 0.028 0.031 0.049 0.054
O T ( s e c ) 326 103 190 127 87 18 1023 453
M D H 9 14 7 9 5 7 10 9

Table 6.3: Comparison of LHBKM and Incremental LHBKM when applied to data 
sets “H”, “S”, “j5” and a combined set “COMB” comprising “H”, “S” and “j5”

of 5 additional classes. The graph in Fig. 6.3 shows values of location effectiveness, 
its components, significant, pairs missed and unnecessary comparisons, in addition to 
values for average recall and average, precision. These measures are plotted against 
the size of the growing collection, alongside the cumulative fraction of final significant 
pairs.
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Figure 6.3: Incremental LHBKM applied to the data set “j5”, dynamically profiling 
the quality measures as classes are added to the collection in batches of 5.

6.8.4 Discussion

The single most important observation to be made here concerns the analysis times 
and the relative quality of ILHBKM as compared to LHBKM. The time taken to clus­
ter each data set has been markedly reduced while the quality of the resulting cluster 
structure, although reduced, remains reasonable in terms of both “LE” and “F”. Im­
proved times are principally the result of not having to deal with the re-structuring 
of large individual clusters, as is the case at the top levels of an LHBKN based clus­
tering. Although ILHBKM potentially requires more applications of CLARANS, as 
these are confined to relatively small clusters at the lower levels of a full hierarchy, 
the net effect is one of a reduction in processing time. (Applying a two-sample t test 
to both the “LE” and “F” measures in order to establish whether the difference in 
quality between LHBKM and ILHBKM were not merely attributable to chance was 
inconclusive. At a significance level of 0.05 data set “H”, “S” and “COMB” showed 
no significant difference while data set “j5” did.) This result was unexpected and as 
in the case of the effect of the maxneighbours parameter requires further investigation
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based on a wider portfolio of data sets, in order to determine whether the reduction 
in quality can in fact be offset against the reduced time.

As can be seen from the graph of Figure 6.3, the dynamic cluster structure appears 
to behave well in terms of the key indices, significant pairs missed and recall. As in 
the case of the LHBKM static analysis, precision is low in the case of data set “j5”. 
This is due to a combination of there being few significant pairs, and the size-limited 
bottom-level clusters, i.e., cluster splitting stops when a cluster is below a threshold 
size. However, this is offset, by the high recall and the manageable analysis overhead 
associated with the maximum bottom-level cluster size. The performance of ILHBKM 
in providing a relatively effective and robust means of dealing with the clustering of 
dynamic collections of classes is encouraging and we feel worthy of further investigation 

and testing.

6.8.5 MCS indexing and sub-structure matching

The clustering of a class collection, followed by the analysis of all bottom-level clusters 
leads to the generation of MCSs that represent examples of common structure. How­
ever, this provides only a limited insight into the presence of recurring structure, i.e., 
common structure occurring in more than just one pair of classes. MCS extraction may 
occur directly via an exhaustive bottom-level cluster analysis, or as a consequence of 
target-based search, and retrieval of a matching cluster(s). VVe have previously shown 
that exhaustive, within-cluster MCS analysis is both time consuming and at best in­
complete, in terms of identifying all potential matches or significantly similar class 
pairs. In order to reduce the associated overheads and attempt to capitalise on prior 
extraction, the results of within-cluster MCS analyses were used to provide matchable 
indices for each bottom-level cluster. Initially, the largest and smallest order MCSs 

(if distinct) were retained as representative of common structure to be found in each 
cluster. Indexing is contingent on the similarity between compared classes being above 
threshold (0.75 initially) in order to ensure stored structures represented significant 
commonality. These indices are a direct indication of shared structure, and given rea­
sonably cohesive clusters, are typical of the common structure found in the cluster as 
a whole, irrespective of their being derived from only two pairs of classes.
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As a means of supporting bottom-up searching for instances of recurring, common 
structure, the overhead of linear comparison of a target class against all bottom-level 
MCS indices still remains prohibitive. However, MCS indexing has proven useful, 
particularly in the case of target-collection search: if the cluster returned from an 
initial SP-based nearest-neighbour, bottom-level search of all clusters contains more 
than three classes, where a cluster has been previously indexed, containment matching 
against the MCS index provides a good indication of potential similarity, without the 
need for exhaustive pair-wise comparison. Containment matching, in the form of 
index-to-target graph-subgraph isomorphism is attempted, i.e., we look for a copy 
of the graph representing the index, within the graph of the target. A similarity 
measure equivalent in principle to Simpsons’s overlap coefficient (As defined in Ch. 3), 
but based on the proportion of matched nodes in the index relative to its order is 
used. High values indicate the presence of significant common structure between the 
target and at least one pair of cluster elements. This is a limited form of a linear- 
progressive approach to identifying recurring structure across collections of elements, 
as described in the context of protein analysis and multiple structure comparison by 
Eidhammer [Eidhammer et al, 1997]. Start with one element and successively compare 
the remaining elements with the result. Here, we limit ourselves to an index based on 
the comparison of two elements, but the effect of extending the order of the linear- 
progressive match is to be investigated.

The full significance of MCS indexing has still to be explored and a further dimen­
sion may be provided by the work of Messmer and Bunke [Messmer and Bunke, 1996]. 
They build highly efficient, searchable networks of stored graphs. If such an approach 
was found justifiable, search /  match efficiency could additionally benefit from the 
grid-based distribution of such networks of common structure and the parallelism such 
an approach could afford [Foster et al, 2002].

6.9 Late life-cycle activated reuse

The principle of late life-cycle activated reuse was briefly introduced in Chapter 1 as a 
possible means of preempting informal /  unregistered reuse, superimposed on the code- 
test-code development cycle. In order to establish whether the current approach to



the identification of similarity could support this idea, a simple development scenario 

was simulated13.

A required class14 was selected from the specification of the student assignment 
associated with data set “H” - the “hangman” exercise. The class was written in­
crementally (Stage 1 : attribute definition; Stage 2: method signatures; Stage 3: 
individual method bodies (5)) and the various compiled versions of the code matched 
against the clustered “COMB” data set ("H" + "S' +  “j5”). Although this was a 
somewhat constrained experiment, in that the individual stages were logically ordered 
and individually complete, the results were promising. Using a containment similarity 
threshold of 0.75 - target against cluster medoid - Stage 2 of the class construction 
returned a cluster containing classes that satisfied the original specification, i.e., in 
this case, class attributes and method signatures were sufficient to identify a case of 
unregistered reuse. Obviously, a more rigorous, less constrained evaluation is necessary 
in order to prove the validity of the approach.

6.10 Summary

This chapter set out to establish a means of reducing the computational overhead 
of identifying and extracting common and recurring structure within a collection of 
classes. We have shown how a process of unsupervised classification can provide a 
structure, though not ideal, capable of meeting our needs. This is achieved by way 
of cluster formation based on a combination of partitioning and limited hierarchy. 
The cluster structure provides both a means of grouping together significantly similar 
classes that are representative of common, recurring structure, alongside a framework 
for target-to-collection matching and hierarchic browsing.

The Limited Hierarchy Bisecting K-medoids (LHBKM) approach introduced here 
is able to produce size-limited, bottom-level clusters that collectively provide a reason­
able sample of the common structure present. By controlling top-level cluster size, it 
effectively removes the undifferentiated clusters that would normally occupy the upper 
levels of a full hierarchy. The issue of identifying recurring structure is addressed in

13 Due to time constraints, a full evaluation was not possible. This is the subject, of continuing work
14 The “wordplay” class.
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part by a process of cluster indexing, which records the smallest and largest order 
MCS for each bottom-level cluster. In addition to straightforward target-to-collection 
match, these indices provide the basis of a searchable repository of existing common 

structure.

In order to cater for dynamic collections of classes, an incremental clustering ap­
proach was also introduced. Incremental Limited Hierarchy Bisecting K-medoids (IL- 
HBKM) was shown to produce a cluster structure of reduced quality in comparison to 
that produced by LIIBKM. However, the difference in quality was not marked and the 
accompanying improved analysis times suggest that in practice IHBKM may actually 
be preferred to LHBKM. This is the subject of further investigation.

The principle of late life-cycle activated reuse was briefly demonstrated and al­
though it shows promise, given the limited coverage of the single simulation, no sig­
nificant conclusions can be drawn.

The main limitation underlying the experimental results and conclusions of this 
chapter relates to the somewhat unrepresentative data sets employed. More testing is 
required, based on a larger and wider portfolio of data sets, in order to confirm the 
general utility of the developed approach. This is particularly true of assessing the 
potential benefits of late life-cycle activated reuse.



Chapter 7

C onclusions an d  F u r th e r  W ork

This chapter summarise the research presented in this thesis, draws conclusions within 
the context of the original objectives, constraints and hypotheses, and describes op­
portunities for further work.

7.1 Research sum m ary

7.1.1 Contributions

The main contributions of this thesis stem from the definition and instantiation of 
an attributed, relational, graph-theoretic (ARG) model of class-based object-oriented 
code structure and structural comparison. This ARG representation of a class was 
introduced as part of an analysis framework aimed at supporting software reuse “in the 
small”. Our approach demonstrates the potential of this formal model in the context 
of identifying common structure within an existing code-base consisting of collections 
of Java byteocde. Based on code-level analysis, it makes no assumptions about the 
nature of documentation or identifier naming, as it is solely reliant on the structural 
characteristics of the code. It emphasises the peculiarly object-oriented features of 
the class as an organising principle: classes, those entities comprising a class, and the 
intra and inter class relationships that exist between them, are the significant factors 
in defining a two-phase similarity measure as a basis for the comparison process.
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This thesis also illustrates a successful transfer of techniques from the domains of 
molecular chemistry and computer vision, as applied here to the problem of identi­
fying class-based similarity within an object-oriented code-base. Both these domains 
provide an existing template for analysing structures as graphs, and determining struc­
tural similarity based on the comparison or matching of graphs. The inspiration for 
representing classes as attributed relational graphs, and the application of graph- 
theoretic techniques and algorithms to their comparison, arose out of an intuition that 
a common basis in graph-theory was sufficient to warrant further investigation. The 
results presented in this thesis demonstrate that this intuition was well founded, the 
analogy being reasonably transferrable to the problem of determining similarity in 
object-oriented code.

In addition to demonstrating the general premise relating to the utility of the 

ARG model, several techniques developed as part of the analysis framework make 
contributions in their own right. The global, vector-space measure of class-based 
similarity using feature vectors of characterising structure paths, the SP approach 
applied here in the context of code-comparison, is novel. In determining local similarity 
between ARGs, in terms of maximum common subgraph extraction based on clique 
detection, the combination of correspondence graph size reduction and an hybrid clique 
detection approach is also novel. A principled, and not necessarily domain-specific, 
approach to correspondence graph size reduction was provided through l) adopting 
a hierarchic approach to vertex classification ii) requiring MCSs to be rooted and 
connected, and iii) using graph symmetry in the form of automorphism groups. An 
hybrid approach to clique detection enables a wide range of correspondence graphs to 
be accommodated by using a modified version of Bron and Kerbosch’s clique detection 
algorithm in isolation, and as a means of pre-hybridising Marehiori’s Heuristic Genetic 
Algorithm.

In order to accommodate the identification of recurring instances of similarity 
within an object-oriented code-base, techniques were borrowed from data clustering 
and information retrieval to develop two new hybrid partitioning/clustering algorithms 
introduced in this thesis. The Limited Hierarchy Bisecting K-medoids (LHBKM) and 
Incremental Limited Hierarchy Bisecting K-medoids (ILHBKM) algorithms are de­
signed to provide a means of quickly identifying recurring structure in either static 
or dynamic collections of classes. The partitioned/clustered collections produced by
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these algorithms provides a framework, which in the first instance supports the iden­
tification of recurring similarity, or at least a reasonable sample of that present in a 
collection, and additionally enables target-to collection matching and within collection 

browsing.

The concept of late life-cycle activated reuse was introduced and a very limited 
evaluation performed. Although the available evidence is currently insufficient to 
adequately comment on the efficacy of this concept, the tools and techniques required 
to support a fuller investigation have now been established in the main body of the 

thesis.

The practical application of the work presented here relates to the identification 
and indexing of instances of recurring, class-based, common structure present in estab­
lished and evolving collections of object-oriented code. A classification so generated 
additionally provides a framework for class-based matching over an existing code-base, 
both from the perspective of newly introduced classes, and search “templates” pro­
vided by those incomplete, iteratively constructed and refined classes associated with 
current and on-going development. The tools and techniques developed here provide 
support for enabling and improving shared awareness of reuse opportunity, based on 
analysing structural similarity in past and ongoing development, tools and techniques 
that can in turn be seen as part of a process of domain analysis capable of stimulating 
the evolution of a systematic reuse ethic.

7.1.2 Realised Objectives

In terms of the original objectives and associated constraints as stated in Chapter 1 
and revisited in Chapter 2, the tools and method developed in this thesis clearly satisfy 
these by providing a means of automatically identifying similar and recurring code in 
an existing object-oriented code-base. The approach makes no assumptions about the 
m aturity of the development process or the quality of code documentation, and is not 
dependent on any additional expertise or information sources. It clearly addresses the 
question as to what is currently being reused and in that respect satisfies the original 
objectives.

Restating the original hypotheses,
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• An attributed, relational model of object-oriented class structure is sufficiently 
discriminating to enable the determination of useful degrees of similarity between 

classes.

• A two-phase, graph-theoretic approach based on an attributed, relational model 
of object-oriented class structure can effectively and efficiently identify recurring 
similarity in an existing object-oriented code-base.

the work presented in this thesis provides ample supporting evidence as to their 
validity.

7.1.3 Limitations

The main limitations of the current approach are

• the level of false positives is still higher than desired, although well within ac­
ceptable levels. This is due to the level of captured method detail, on occasion, 
being insufficiently discriminating.

• the ARG-based match process is possibly overconstrained, e.g.,

-  the class model does not explicitly include inherited methods and fields, 
which can lead to missed matches between a class and a class-subclass 
combination, thereby loosing a refactoring opportunity.

-  the class model does not take account of possible equivalence based on tran­
sitive relationships, e.g., “setter” and “getter” methods being equivalent to 
direct field access.

-  local matching of AIlGs is based on subgraph isomorphic rather than monomor- 
pliic match

• level 2 methods in the class model do not record a full set of attributes.

• the approach only identifies single-class similarity and recurrence, it can not 
automatically identify multi-class similarity and recurrence

• the approach currently operates only with Java bytecode
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the computational overheads associated with code analysis and cluster formation 
are high in comparison with other approaches, although well within acceptable 
operational levels

7.2 Further work

This work has plenty of scope for improvement and extension. Two main avenues of 
further research and development are currently being planned. Firstly, current limi­
tations are being addressed. Secondly, a larger, user-centric study is being considered 
as a means of validating the tools and techniques presented here in the context of late 
life-cycle activated reuse.

7.2.1 Improving the current approach

Attention is currently being focussed on improving precision in the match process. 
Some key changes are being investigated:

• assessing and extending the characterising metrics associated with defining both 
methods and the class as a whole. (This includes an analysis of individual metric 
significance, possibly by way of principal component analysis.) The current 
model does not capture sufficient internal method detail to consistently prevent 
false positives. A different metric set, such as those used by Maynard et al 
[Maynard et al, 199G] or a reasonable, low-complexity graph-based approach 
such as Krinke’s [Krinke, 2000] may help deal with this. •

• attributing basic blocks and additionally relating them individually to the class 
attributes. Including the relations between a method’s basic blocks and the 
class attributes might provide the necessary discriminating power but the effect 
on graph size could be problematic in terms of computational overhead.

• level 2 methods in the class model will record a full set of attributes.

• introducing a further SP feature weighting in inverse proportion to SP feature 
size
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• improving parameterisation, particularly in relation to thresholds, which are 
currently selected based on intuition and limited empirical evidence (A larger 

study should help.)

The limitations relating to the ARC model and comparison of classes being over­
constrained can be addressed in part by

• including two representations of each class, a second representation being based 
on “flattening” the hierarchy, i.e., including all inherited methods and fields in 
the class’s ARG. If initial similarity includes a measure of containment, a high 
value could be used to suggest comparison with the “flattened” representation 
of the contained class.

• introducing “normalising ” transformations to convert transitive relationships 
into the lowest common form, e.g., a simple “getter” method being transformed 
into a direct field access operation.

The issue of com putational overhead can be addressed in at least four ways

• there is scope for code optimisation as the current framework is an experimental 
prototype.

• the current structure profile feature vector has not been subjected to any form of 
feature selection, i.e., there may be features that are highly correlated and so ren­
dering some redundant. Consequently, this could help minimise the comparison 

overhead.

• the approach to local match could be changed from a vertex-induced, bi-directional 
subgraph isomorphism analysis (MCS) to an edge-induced, bi-directional sub­
graph monoomorphism analysis (MOS)1. The latter has been shown to reduce 
the computational overhead by reducing the size of the correspondence graph 
[Chen and Yun, 1998] but in this case it would be at the expense of relaxing 
the constraints on the semantics of the match - momomorphic, as opposed to 
isomorphic, match does not require that all pairs of matched vertices have the 
same number of matching relationships between them.

1 MOS - maximum overlapping set,.
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• the possibility of fast, direct ARG comparison is suggested by recent develop­
ments in attributed graph matching, e.g., Cordeliaet al’s VF1 algorithm [Cordeliaet al, 1999].

The clustering algorithms, LHBKM and ILHBKM, require further analysis in 
order to establish whether the difference in performance as indicated by the applied 
quality measures is indeed significant. If the difference is not significant, the lower 
computational complexity of ILHBKM would render LHBKM redundant.

7.2.2 Extending and enhancing the approach

The developed framework is currently unwieldy to use as it is not supported by a 
graphical user interface. Prior to further evaluation, an integrated interface capable 
of graphically visualising the results of class match in addition to supporting collection 

browsing is to be developed.

Other ares of future work include the accommodation of more object-oriented 
languages such as C ++ via source code analysis using existing parser technology, 
e.g., Devanbu’s GEN++ as used by Keller et al [Devanbu, 1992; Keller et al, 1997].
(Adaption to design-level, description languages such as UML may be difficult due 
to its being heavily orientated towards interface specification, and inter-class, rather 
than intra-class, relationships.)

Extending the method to accommodate the identification of m ulti-class similarity 
and recurrence is also being considered. Michail’s approach to the identification of 
patterns of library reuse by data-mining associations between classes is one possible 
approach [Michail and Notkin, 1999].

The m etric properties of the structure profile have not been fully investigated. It 
is possible that there may be correlations between the structure profile feature vector 
and properties of the class such as quality and maintainability.

Having earlier rejected the use of a probabilistic approach to the classification 
of class structure it should not be dismissed altogether: its the repository of classes 
grows, the analysis could gives rise to a probabilistic model of common structure, 
i.e., automated categorisation giving rise to probabilistic classification. There would
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appear to be scope for building probabilistic models as the cluster structure becomes 
established and the level of commonality recovered stabilises.

The most interesting avenue for continuing work is validation of the third hypoth­
esis relating to late life-cycle activated reuse. As part of the larger evaluation of 
the developed method in the context of an “eXtreme programming” environment that 
emphasises the code-compile-test cycle of development [Beck, 1999; Jeffries et al, 2000], 
it is intended to examine users reaction to the provision of a real-time, class matching 
and prompting environment based on monitoring and feedback during the class build 
process. A further interface, similar to that of Ye and Fischer [Ye and Fischer, 2001], 
is also being developed to support this.
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A ppendix A

F o u n d a tio n  G ra p h  T h eo ry

A .l Introduction

The work described in this thesis is based on the representation of object-oriented 
classes as graphs, where a graph in this context is the algebraic structure rather than 
the more familiar cartesian data plot of analytic geometry. The study of graphs, 
“graph theory”, has a long history beginning in the 1700’s with the work of Leonhard 
Euler. It is now extensively applied across a wide range of disciplines, e.g., switching 
and coding theory, electrical network analysis, computer program analysis, molecular 

chemistry and operational research.

This appendix serves as a concise introduction to those elements of graph theory 
essential to an understanding of the presented material, particularly that of Chapters 
3, 4 and 5. It provides sufficient background information for the reader unfamiliar with 
the terminology of graph theory to be able to interpret the main text. For a more 

detailed account of graph theory, its applications, and graph theoretic algorithms, the 
reader is referred to [Bondy and Murty 1976], [Deo 1974] and [Skiena, 1997]. The 
section on graph morphisms is derived from [Messmer and Bunke, 1993] and the note 
on invariants, certificates and automorphism groups is taken from [Rosen, 1999].
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A .2 Graphs as algebraic structures

A graph Q is an algebraic structure composed of a set of elements V(C?) known as 
vertices, and a (possibly empty) set of elements £(G), disjoint from V(G), known as 
edges. An incidence function ipg associates each edge in £(G) with a pair of (not 
necessarily distinct) vertices from V(£7), each vertex being an end of the edge. A 
graph can thus be represented by the 3-tuple:

G =  {V (G ),£ (G )A q}

A Directed graph

0 —<D 0-<D

0 d r
Edge-induced {a,b} Maximally connected, node-
subgraph of A induced {1,2,3} subgraph of

A, i.e.,a clique

B Undirected graph

4 }  Level2

Figure A.l: Some example graphs and subgraphs

A finite graph has a finite number of vertices and edges. The number of vertices 
{yg) in a graph is the order of the graph and the number of edges (eg) is its size. 

Edges are incident with their associated vertices and vice versa. An edge joins its two 
vertices, the two vertices being adjacent. A simple graph has at most one edge joining 
any two vertices, and each edge has distinct vertices. A loop is an edge with identical 
ends. A general graph allows both loops and multiple edges between any two vertices.
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A graph can be visualised as points and lines, the points representing its vertices 
and the lines its edges (Fig. A.l). If an order is imposed on the pair of vertices associ­
ated with each edge, the graph is directed, otherwise it is undirected. A directed edge 
is called an arc and is usually distinguished by the presence of an arrow at one end of 
its line, indicating the order imposed on the incident vertices. The number of edges 
incident to a vertex v is its degree (dg(v)). In the case of a directed graph, degree can 
be subdivided into in-degree and out-degree according to the order imposed on the 
adjacent vertices. A vertex with degree zero is an isolated vertex, while a vertex with 
degree one is a pendant vertex.

We can extend the definition of a graph to include a finite set of symbolic labels 
C(G), a function /¿(V) that maps labels to vertices, and a function <f>{£) that maps 
labels to edges. Such a labelled graph can be represented by the 6-tuple:

G =  {V(G),£(G)^g,C(G),p(V),4>(S)}

A graph V. is a subgraph of G if V(£H) C V(£), £(%) C £{Q) and V’w is the restric­
tion of ij)g to £(7i). A vertex-induced subgraph of G has a vertex set V'(Q) that is a 
subset of V(G) and an edge set comprising those edges of V{G) having both ends in 
V'(G)- An edge-induced subgraph of G has an edge set £'(G) that is a subset of £(G) 

and a vertex set comprising those vertices of V(G) that are ends of £'(G)-

Starting from any vertex in a graph, the finite sequence of vertices and edges 
vi, ei, V2 , e2 , ..., en, vn (n >  1) traced out by moving along a series of edges between 
successively adjacent vertices is called a walk. If we constrain the walk such that its 

edges are distinct it forms a trail, while limiting the walk to distinct vertices induces 
a path. A walk for which rq and vn are the same vertex is closed. A closed trail that 
additionally has distinct internal vertices is called a cycle. If a graph has a single 
distinguished vertex - the root vertex - it is a rooted graph. The vertices of a rooted 
graph can be assigned levels depending on their minimum distance from the root 
vertex. The minimum distance is the number of edges in a path from the root vertex 
to the vertex in question.

If a path exists between two vertices u and v  the vertices are said to be connected.
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Wo can partition the vertices of any graph into nonempty, disjoint subsets such that a 
pair of vertices u and v are connected iff they belong to the same subset. These subsets 

are the connected components of the graph. If a graph lias only one component, the 
graph is connected, otherwise it is disconnected.

In a fully connected graph, each vertex is connected to all other vertices. A clique 
is a subgraph that is fully connected (and maximal, i.e., not a subgraph of a fully 
connected subgraph). The largest order clique of a graph is a maximum clique. A 
maximum clique is not necessarily unique. A bipartite graph is a graph that contains 
no odd length cycle, i.e., the set of vertices of V(Q) form two disjoint sets such that 
no two vertices within the same set are adjacent.

A .3 Graph m atching and morphisms

A .3.1 Matching

Graphs are often used to represent and compare relational structures and concepts. 
This process of comparison is generally termed graph matching. Graphs are matched 
against each other in order to determine the degree of similarity between the entities 
they represent. The degree of similarity ranges from exact match, through various 
levels of approximate and partial match depending on the application. Based on 

the previous definitions of a labelled graph Q and a vertex induced subgraph, the 
comparison of structures represented by graphs can be formulated in terms of structure 
preserving mappings or graph morphisms (Fig. A.2).

A .3.2 Graph morphisrns

Given a pair of graphs Q and Q', each morphism is defined in terms of (a) a function 
/  : V((y) V(G') which maps each vertex v £ V(G) onto a vertex v' £ V(G') and (b)
a set of constraints governing the mapped vertices and the relationships modelled by 
the corresponding adjacent edges.
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A
i }

monomoiplusm 
Bto A

subgi aph isomoiplnsm isomoiplnsm
C to A D to A

Figure A.2: Graph morphisms

• monomorphism
The function /  is a graph monomorphism if

A*(v) =  # * ( / ( « ) )  Vu G V{G)

and

<j)(e) =  4>(e') \/e =  (vi,Vj) € £(Q) and Ve'G ( f {v i ) , f {v j ) )e£{G' )

• subgraph isomorphism
The function /  is a subgraph isomorphism if it is a graph monomorphism and it 
also satisfies

Ve' =  K ,u ') G £{G') n /(V (0 ))  X  f(V(Q))

3e =  ( / - 1( « i ) , / - 1 ( « $ ) )  G £{Q) where p{e') =  //(e)

• isomorphism
The function /  is a graph isomorphism if it is bijective and a subgraph isomor­
phism.
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• bi-directional subgraph isomorphism
If two graphs Q\ and Q-> have respective subgraphs Q[ and Q'̂  any isomorphism 

between these subgraphs is a, bi-directional subgraph isomorphism. A subgraph 
induced by a bi-directional subgraph isomorphism is often referred to as a com­

mon subgraph, or maximum common subgraph if it is the largest order common 
subgraph.

Exact graph match is usually defined in graph-theoretic terms as establishing an 
isomorphism or subgraph isomorphism between the two compared graphs. Alterna­
tively, degrees of graph match can be expressed in terms of bi-directional subgraph 
isomorphism (or maximum common subgraph), the larger the common subgraph the 
greater the similarity. In some contexts, the semantics of subgraph isomorphism are 
made more explicit in that the term “graph-subgraph” isomorphism is employed, em­
phasising the fact the first graph is entirely contained within the second.

A relaxation of the bijective mapping inherent in subgraph-isomorphism, by which 
the mapping of vertices need not be one-to-one, and relationships can be n-ary rather 
than binary, i.e., involve more than one edge, is known as relational-homomorphism. 
This is useful in the field of computer vision where the match process may be more 
relaxed [Haralick and Shapiro, 199.'], pp382]

A .3.3 Invariants, certificates and automorphism groups

Invariants and certificates

Isomorphism can be determined by means of establishing invariants called certificates 
on families of graphs. An invariant is a function over a graph such that families of 
isomorphic graphs generate the same value of the function. However, graphs that 
generate the same invariant value are not necessarily isomorphic. A certificate is an 
invariant that requires the function to be both necessary and sufficient.
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G raph sym m etry: autom orphism  groups

Identifying symmetries within a graph can be usefully applied when trying to limit the 
size of the search space during graph matching. A permutation of the vertex set V(G) 
of a graph Q is a bijective mapping from V(Q) to V(G)- If (u,v) is an edge of Q and 
a  is a permutation of V(G) then define a((u, v)) =  (a(u),a(v)).  An automorphism of 
the graph Q  is a permutation a  such that a ( ( u ,v ) )  E £(G) (u, u) E £(G)- An
automorphism group of a graph Q is the set of all permutations of its vertex set V(G) 
that are automorphisms of G, i.e., the set
£(G) of G.

Automorphism group of B 
Aut(B) = {I. (1)(2,3)(4). (1)(2.4)(3).
(1)(2)(3.4).(1)(2.3.4).(1)(2.4.3)}

Where I is the identity permutation 
(1 - 1 . 2 - 2 .  3 - 3 . 4 - 4 ) .  the 
remainder being cyclic 
representations of the graph 
automorphisms, e g . (1)(2,4.3) 
represents the permutation ( 1 - 1 . 2  
- 4 .  4 - 3 .  3 - 2 )

of permutations of V(G) that fix the edges

These two maximum common 
subgraphs between graphs B and A are 
isomorphic The existence of 
automorphism (1 )(2.4.3) points to a 
redundant match in this case

Figure A.3: Graph Automorphisms and Automorphism Groups

Automorphism groups identify potential re-labellings of a graph that are indis­
tinguishable from each other, i.e., the graphs are isomorphic but for the labelling. 
Figure A.3 illustrates how knowledge of the automorphism group of a graph could 
inform the match process by limiting redundant comparisons: the two example MCSs
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are isomorphic but were it possible to restrict the mapping of nodes to exclude con­
sideration of automorphic mappings such redundant comparisons could be avoided. 
Brendan McKay’s “Nauty” program, which is based on the extraction of automor­
phism groups, is currently recognised as the most efficient, graph isomorphism detector 
available [McKay, 1990].
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A ppendix B

C lass A nalysis F ram ew ork

Figure B.l shows the architecture of the class analysis and classification framework 
developed as part of this thesis. It identifies the main components and subcomponents 
of the framework implemented to date. A brief description of each component is pro­
vided below. The framework has been developed in Java using SUN’s JDK1 except 
for the clique detector module which is written in C2. All the code is bespoke, inde­
pendently developed as part of the current work, except for the heuristic element of 
the clique detection module, which was adapted from a C-based simple GA template 
developed by William Spears [Spears 2000],

[1] The Class Analyser

The class analyser is responsible for extracting the information necessary to construct 
an ARC from a Java class file. It is made up of three components, the bytecode 

analyser, the ARG builder, and the SP feature vector builder. The bytecode analyser 
comprises a parser and disassembler, and collaborates directly with the ARG builder 
in order to produce an attributed, relational representation of a class.

• The bytecode parser:
The parser analyses a class file according to its internal format as described in

‘ J D K  v l .3 .
2G N U  C 2.95.2
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Static Collection SP

Dynamic Collection

Matcher SP

Class Analyser
Bytecode Analyser 

Parser

Disassembler

ARG Builder

SP feature vector builder

Similarity Calculator
MCS Extractor

CG Constructor

Clique Detector SP;

SP Comparator

Figure B.l: Class Analysis and Classification Framework

[Lyndholm and Yellin, 1999]. This process extracts information relating to the 
class, such as whether it is abstract or concrete, its visibility, name, superclass, 
and any interfaces it implements. Each analysed class is indexed by a combina­
tion of its physical location and its fully qualified class name. The ARG builder 
assigns a unique Structure Type identifier (STID) to a class, unless it already lias 
an index entry and is known to be unique. Each STID is in turn associated witli 
the set of attributes characterising its class, as and when these attributes are 
made available to the ARG builder. (Primitive types are also assigned unique 
structure type STIDs.)

The parser further identifies declared fields and methods, and their defining 
structures within the bytecode. Each field structure is parsed and passed to the 
ARG builder to create an attributed field vertex, these attributes including its 
name, its type !, and visibility. Information is passed to the ARG builder in 3

3A primitive type or a reference type as defined by an STID, including its dimensionality if an 
array
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order for method vertices to be created, partially attributed by name, signature 
and visibility4. Vertices representing method parameters and return types are 
also created and partially attributed. Edges that describe relationships between 
the class and its constituent fields and methods, its superclass and interfaces, 
are also created, again only partially attributed. At this stage, in many cases 
only partial attribution is possible until the methods have been examined in 
more detail and/or information relating to referenced classes is made available. 
In order to complete method analysis, including method attribution, and the 
creation and attribution of edges between a method, the fields it accesses, and the? 
methods it calls, each method’s code is extracted and passed to the disassembler 
for further analysis.

• The bytecode disassembler:
A first pass disassembly of a method’s code provides the information necessary 
to identify accessed fields and called methods, both internal and external to the 
class. At this point, partially attributed vertices can be created to represent 
these entities. A second pass disassembly is carried out to try and resolve the 
source of method calls and field accesses within the method, e.g., establishing 
whether a call was made via a class’s field or transitively by way of a field having 
been copied locally. This second pass also extracts the basic-block structure of 
the code, which is again passed to the ARG builder.

During the entire parse and disassembly process, any reference (“class”) types 
encountered are noted. In order to complete ARG construction, those reference 

types previously noted, but not already indexed, are themselves analysed, if the 
corresponding class file is available. This recursive process attempts to produce 
a complete class analysis but will proceed in the absence of any of the noted 

reference types. With all available reference type now indexed, the ARG builder 
can be instructed to complete attribution of the current ARG by referencing the 
class file index and extracting the required class attributes.

• The ARG builder:
The ARG builder coordinates the construction of an ARG based on the output 
from the bytecode analyser as described above. The results of the build process,

4The attributes associated with individual vertices and edges are as described in Chapter 3.
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a set of attributed vertices and edges, are stored in the code repository database 
(DB).

• The SP feature vector builder:
The SP feature vector builder takes a generated ARG and extracts the set of 
path-length-limited features as described in Chapter 3. The algorithm used here 
is a simple depth-first-search (DFS) [Aho Hopcroft and Ullman, 1983] designed 
around the “visitor” design pattern [Gamma et al, 1995]. Each vertex is visited 
in turn, and all structure paths beginning at a given vertex, up to a maximum 
length, are extracted by means of a backtracking “search”. At the outset, a 
unique integer identifier is assigned to each edge in the ARG and the sorted 
integer combinations of each structure path extracted is recorded. This enables 
a check to prevent recording of duplicate paths. SP feature vectors are also 
stored in the DB.

[2] The Sim ilarity Calculator

The similarity calculator provides a means of determining a global measure of similarity 
by comparing structure path feature vectors (SP), or a local determination of similarity 
based on the extraction of an MCS between two ARGs. The similarity calculator is 
made up of the MCS extractor and the SP comparator. The MCS extractor comprises 
the correspondence graph (CG) constructor and the clique detection modules.

• The SP comparator:
The SP comparator calculates the similarity between two SP feature vectors 
according to a supplied similarity measure. The module has a “specification 
point”, i.e., an abstract interface, that allows any similarity measure to be applied 

provided it is encapsulated in an object that meets the interface specification. 
This is based on the “strategy” design pattern [Gamma et al, 1995].

• The CG constructor:
The CG constructor build a correspondence graph from two ARGs representing 
the compared classes. The precise details are described in Chapter 5. The re­
sulting CG is then passed to the clique detector.
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• The clique detector:
The clique detector identifies maximum cliques in the CG using a combined 
deterministic/heuristic algorithm, as documented in Chapter 5. The clique de­
tection module allows any clique detection algorithm to be applied provided it 
satisfies this interface of the specification point.

[3] The Classifier

The classifier provides a means of clustering either a static or dynamic collection of 
classes as represenetd by their SP feature vectors. It is made up of two components, 
the cluster builder and the matcher. Although the cluster builder has been rep­
resented as comprising two components, they are essentially the same, differing only 

in the clustering algorithm specified. In the current framework, the two algorithms 
are LIIBKM and ILIIBKM, used for static and dynamic collections respectively. The 
details of these algorithms are given in Chapter 6.

The classifier can be triggered to carry out an MCS analysis of all, or a selected 
group of, bottom-level clusters, which additionally leads to the creation of an MCS 
index for each cluster, i.e., the analysed clusters are indexed according to their smallest 
and largest MCS.

The classifier also supports target-collection matching by way of the matcher, where 

a target ARG can be matched against the current cluster structure. A search based 
on an SP feature vector representation of the target, and its matching against all 
bottom-level cluster representatives, returns the best matching cluster. This can in 
turn be processed by the MCS extractor or the SP comparator to produce a ranked 
list of similar classes. The MCS index can be used at this point to limit the search if 
necessary. Again the specific details are given in Chapter 6.

[4] The code repository

The code repository is made up of the existing code-base, in situ, i.e., the analysed 
code does not have to reside in a specific location. The analysis and classification
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framework only needs to point to the directories containing code to be included in the 
analysis.

Those parts of the repository shown in Fig. B.l within the dotted border are 
referred to as “the database”, or DB. This database holds information relating to 
the ARGs, the SP feature vectors and the cluster structure. Part of the database is 
currently implemented as flat files, e.g., the SP feature vectors and ARG descriptions, 
part as memory-resident structures loaded from file prior to a new analysis, e.g., SP 
feature types and cached STIDs.

This framework is an experimental prototype, which has ample scope for improve­
ment. Some of the tasks referred to above are currently reliant on the creation of 
temporary files and/or manual intervention, e.g., the interface between the matcher 

and the MCS extractor is based on a list of ARGs being generated by the matcher, 
which are manually fed to the MCS extractor. Issues relating to integration, fuller 
automation, and particularly visualisation, are the subject of continuing work.
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