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Abstract—For hyperspectral images (HSI) change detection
(CD), multi-scale features are usually used to construct the
detection models. However, the existing studies only consider
the multi-scale features containing changed and unchanged
components, which is difficult to represent the subtle changes
between bi-temporal HSIs in each scale. To address this
problem, we propose a multi-scale diff-changed feature fusion
network (MSDFFN) for HSI CD, which improves the ability of
feature representation by learning the refined change components
between bi-temporal HSIs under different scales. In this
network, a temporal feature encoder-decoder sub-network, which
combines a reduced inception module and a cross-layer attention
module to highlight the significant features, is designed to extract
the temporal features of HSIs. A bidirectional diff-changed
feature representation module is proposed to learn the fine
changed features of bi-temporal HSIs at various scales to enhance
the discriminative performance of the subtle change. A multi-
scale attention fusion module is developed to adaptively fuse the
changed features of various scales. The proposed method can
not only discover the subtle change of bi-temporal HSIs but also
improve the discriminating power for HSI CD. Experimental
results on three HSI datasets show that MSDFFN outperforms
a few state-of-the-art methods.

Index Terms—Hyperspectral image, change detection, convo-
lutional encoder-decoder network, multi-scale features, attention
fusion.

I. INTRODUCTION

CHANGE detection (CD) based on remote sensing data
is an important technology to detect the changes of the

earth’s surface and has a wide range of applications in urban
planning, environmental monitoring, agriculture investigation,
disaster assessment, and map revision [1, 2]. Remote sensing
CD is to detect the land-cover changes of images at the
same area under two different time periods. It is the response
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of pixel-wise characteristic change to land-cover changes.
With the advancement of imaging spectroscopy, bi-temporal
hyperspectral images (HSIs) have been widely used for CD
[3]. HSI data have the advantage of providing continuous
and detailed spectral features in a large spectral range, with
the characteristics of “image-spectrum merging” [4]. This
characteristic is beneficial to discriminate the changed regions
between two images [5]. Recently, researchers have come up
with many methods to extract useful features for HSI CD [6].

In early research, the CD methods can be categorized
as algebra-based methods, transformation-based methods and
classification-based methods. Algebra-based methods mainly
include image difference, image ratio, image regression,
absolute distance (AD), and change vector analysis (CVA)
[7, 8], etc. The most representative CVA is the subtraction
of two temporal images to get spectral change vectors, where
the magnitude and direction of change vectors show the
degree of variation, and then the change vectors can be
classified by a threshold. CVA ignores the similarity between
adjacent pixels, after that, Thonfeld et al. [9] proposed robust
change vector analysis (RCVA) which considers the influence
of neighborhood pixels. The accuracy of the radiation and
geometric correction has an important impact on the results of
algebra-based methods. Transformation-based methods project
HSIs into another feature space to represent the changed pixels
or regions. Among them, principal component analysis (PCA)
[10] is the most widely used data dimensionality reduction
algorithm which maps data to the direction with the largest
variance [11]. PCAKM [12] uses PCA to generate low-
dimensional features and perform k-means clustering on the
reduced features to obtain change results. Multivariate change
detection (MAD) [13] utilizes canonical correlation analysis
(CCA) [14] to maximize the correlation between the features
of multi-temporal images. Nielsen et al. [15] proposed an
iteratively reweighted MAD (IRMAD) method which conducts
the weighted iteration according to chi-square distance. Slow
feature analysis (SFA) [16] extracts the most temporally
invariant component from the bi-temporal images to transform
the data into a new feature space. In the classification-
based methods, the post classification method first learns
and classifies the bi-temporary images respectively, and then
compares and analyzes the changes. The direct classification
method is to combine the bi-temporal images together, and
then a classifier is used to find the changing categories.
The typical classifiers are K-nearest neighbors (KNN) [17],
support vector machine (SVM) [18], etc. Conventional CD
methods are often based on the spectral difference between
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corresponding bands to measure the degree of change. They
do not take into account the correlation between bands, and
can not fully exploit the intrinsic characteristics of complex
HSIs.

Recently years, convolutional neural network (CNN) has
become a research focus in CD [19] because of its stronger
adaptive feature extraction ability. For example, Saha et al.
[20] proposed a context-based deep CVA (DCVA), it performs
semantic segmentation on a single image with the same pre-
trained CNN to obtain a coherent depth feature supervector.
Du et al. [21] uses SFA to learn slowly changing features
and enhances the discrimination of changed pixels. These
methods utilize CNN to automatically extract abstract features,
and then process features by traditional methods. There are
also many methods that use CNN directly to find change
pixels [22]. Considering the characteristics of HSIs, Wang et
al. [23] proposed a general end-to-end 2D CNN (GETNET),
which performs spectral unmixing on the input HSIs to
obtain a mixed affinity matrix, then uses CNN to mine the
feature information. Lin et al. [24] proposed a bilinear CNN
(BCNN), and it finds the relationship between bi-temporal
feature maps by designing a combined bilinear feature. Mou
et al. [25] and Chen et al. [26] proposed two networks named
ReCNN and SiamCRNN, they use recurrent neural network
(RNN) and long-short term memory (LSTM) [27] to find the
spatio-temporal relationship of bi-temporal HSIs, respectively.
Among them, RNN is able to extract temporal features based
on the cyclic hidden state of the previous time. And LSTM,
as a special RNN structure, can effectively overcome the
problem of gradient disappearance and gradient explosion
during training. The accuracy of these networks has improved
compared to traditional methods, but they still lack sufficient
consideration of rich spectral data and attention to important
information.

Attention mechanism is proposed to focus on key
information, and is widely used in the field of deep learning
[28]. It is essentially a mechanism which learns a set of
weighting coefficients by the network autonomously and
dynamically emphasizes the regions of interest [28]. The
features in the image include changing and unchanging, and
the changing components are of interest and concern to us,
which is just in line with the idea of attention mechanism.
In CD, several methods have explored attention mechanism to
improve detection performance. Marwa et al. [29] proposed
a attention residual recurrent U-Net (Att R2U-Net), which
combines the classical U-Net with the attention mechanism,
and shows excellent performance in binary and multi-class CD
of HSI. Chen et al. [30] added spatial channel double attention
mechanism in their network to capture long-range correlations.
Jiang et al. [31] proposed a pyramid feature-based attention-
guided Siamese network (PGA-SiamNet). It improves the
long-range dependencies of the features by utilizing various
attention mechanisms. Qu et al. [32] proposed a multi-
level encoder-decoder attention network (MLEDAN), which
introduces multi-scale connection and attention mechanism to
extract more effective spatial-spectral features. Then, LSTM
is also used to analyze temporal dependence between multi-
temporal images. Gong et al. [33] proposed a spectral

and spatial attention network (S2AN), which uses multiple
repetitive spatial attention modules with adaptive Gaussian
distributions to gradually enhance CD-related features. In
summary, the attention mechanisms can help to notice the
changing regions of the spatial-spectral information.

From the above research work, we found that there is a great
potential about how to better extract information from the input
HSIs and how to more fully integrate the features of different
phases for HSI CD. Firstly, shallow network structures often
have difficult to extract the effective features, while complex
network structures will lead to computational redundancy and
may learn the irrelevant features for CD. Secondly, some
current deep learning methods fuse the bi-temporal features of
two HSIs by RNN or LSTM, which simultaneously combines
the changed components and unchanged components. For CD
task, it should significantly focus on the change components.
Therefore, these methods do not separate changed and
unchanged components to implement the CD tasks, which is
very difficult to learn the subtle changed features of the bi-
temporal HSIs. And the feature fusion does not consider the
importance of different features. We will pay more attention
to the change components of features, so that we can more
carefully explore the details of changes. In addition, the multi-
scale features is conducive to learning fine changes, so our
research is based on multi-scale change features.

Based on this, we propose a multi-scale diff-changed feature
fusion network (MSDFFN) as shown in Fig. 1, it can learn
fine and representative change features from bi-temporal HSIs.
MSDFFN is composed of a temporal feature encoder-decoder
(TFED) sub-network, a bidirectional diff-changed feature
representation (BDFR) module and a multi-scale attention
fusion (MSAF) module. The TFED sub-network with reduced
inception and skip layer attention is designed to extract
multi-scale features from the input HSI patches. the BDFR
module is proposed to specifically learn and enhance the
discriminating features of change components obtained by the
TFED sub-network and the differential operation. Then, the
MSAF module is used to fuse the multi-scale features and
obtain the final features with discriminatory power. The main
contributions of this paper are highlighted as follows.

1) We design a temporal feature encoder-decoder sub-
network to extract the features of multi-temporal
HSIs, where a reduced inception module is embedded
to enrich the perceptual field, and skip connections
containing channel-space co-attention are added to fuse
the contextual information.

2) The proposed bidirectional diff-changed feature repre-
sentation module learns and fuses the refined change
features, which pays special attention to the changed
components in the entire features. With bidirectional
representation, the subtle changes can be enhanced to
improve the detection performance.

3) The multi-scale attention fusion module, focusing on
the fusion of key information, is proposed to mine
the intrinsic information of different feature maps
and generate a discriminative spatial-spectral-temporal
change features.

4) By combining the above three thoughts, we propose
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Fig. 1. Overview of the proposed MSDFFN.

the end-to-end multi-scale diff-changed feature fusion
network, called MSDFFN, for HSI CD, which fuses
the multi-scale information to extract features with
strong representational power. The experimental results
on three HSI datasets show that MSDFFN outperforms
the several state-of-the-art methods for HSI CD.

The rest of the paper is organized as follows. Section
II introduces the details of the proposed MSDFFN. Section
III presents three experimental datasets, experiment setting,
experimental results and ablation study. In the end, section
IV draws some conclusions of this paper and suggestions for
future work.

II. PROPOSED METHOD

In this section, we introduce the proposed MSDFFN for
HSI CD task in Fig. 1, which is composed of TFED sub-
network, BDFR module and MSAF module. The bi-temporal
HSIs are passed through the temporal feature extraction sub-
network, which combines the reduced inception (RI) module
and the skip layer attention (SLA) module to obtain multi-
scale features. And then, the diff-changed features with fine
representation power are acquired and learned by the BDFR
module from these multi-scale features. After that, the MSAF
module fuses the multi-scale diff-changed features adaptively
with residual attention. In the following, we will explain each
module of the network in detail.

A. Baseline

Before presenting the specific network details, we construct-
ed a basic CD network framework. The baseline model is
shown in Fig. 2. Encoder-decoder network [34] is widely
used in CD tasks because it can fuse image features well.
In CNN, low-level features often have higher resolution and
contain more details while lacking semantic information, and
high-level features often have stronger semantic information
while low resolution and poor perception of details [35].
The encoding and decoding network, which constructs skip
connections between downsampling and upsampling layers to
achieve the fusion of low-level and high-level features.

Fig. 2. Structure of the designed baseline.

As shown in Fig. 2, the patches of the bi-temporal HSIs are
passed through an encoder-decoder network to get the feature
maps, and then the diff-changed feature map is obtained by the
differential operation, which reflects the part of the changes
between the bi-temporal images. The diff-changed feature
map is used to get the final CD result by sigmoid function.
The network mainly includes three parts, i.e., bi-temporal
feature extraction, change feature extraction, and change
feature classification. Among them, for the change feature
extraction, some studies have used RNN or LSTM to find the
part of changes from temporal features, which simultaneously
includes changed components and unchanged components. In
this paper, we mainly consider the change components to
learn the subtle change features by the differential operation.
Therefore, we construct a BDFR module to learn the fine
features of change components in the sub-sequential section.

B. Temporal Feature Encoder-Decoder Subnetwork

1) Architecture: Although the baseline model can perform
basic CD, the extraction and learning of changing features are
not sufficient. It is difficult to extract discriminating features
from complex HSIs. In this paper, we propose a new temporal
feature encoder-decoder subnetwork with RI and SLA base
on the baseline network. The architecture of TFED network
is divided into encoder and decoder, including encoding
path, decoding path and three skip connection operations, as
shown in Fig. 3. The encoder extracts features with a series
of downsampling based on convolution operations. The RI
module is added before downsampling to enrich receptive field
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and extract features at different scales. The decoder recovers
resolution by continuously upsampling based on deconvolution
operations. To better deliver the low-level features at the
decoding stage, the SLA module is integrated into the skip
connections to highlight the shallow features.

Fig. 3. Structure of the TFED subnetwork.

Given the initial feature map E0∈ RC×H×W as the input
patch, the encoder stage of the TFED sub-network can be
summarized as follows.

Ei+1
T = ReLU(fConv

3×3[RI(Ei
T )])), i = 1, 2, 3 (1)

where Ei
T represents the feature map generated by the i-th

convolutional layer and E1
T = fConv

3×3(E0), RI(·) represents
the reduced inception operation on the feature map, fConv

3×3

represent a convolution operation with the filter size of 3× 3.
All convolution layers are followed by a batch normalization
layer and a rectified linear unit (ReLU) layer. ReLU(·) denotes
the ReLU active function which can be described as

ReLU(x) = max(0, x) (2)

where x represents the value of feature map.
In the encoding path, the previous feature map is passed

through an RI module, a convolution operation without
padding, and a ReLU function to obtain the output feature
map. The RI structure is able to extract the refined features of
different shapes with several different convolutional kernels,
which helps to extract more effective features. The ReLU
function makes the output of some neurons to be zero, which
causes the sparsity of the network, reduces the interdependence
of parameters, and alleviates the over-fitting. With successive
downsampling operations, more abstract features can be
learned from the input HSI patch step by step.

The decoder stage of the TFED sub-network can be also
summarized as follows.

Di
T =

{
ReLU(fConv

3×3[fDConv
3×3(Di+1

T );Sb(E
i
T )])),i=1,2

ReLU(fConv
3×3[fDConv

3×3(Ei+1
T );Sa(E

i
T ])),i=3

(3)
where Di

T represents the output feature map after the i-th de-
convolution operation, fDConv

3×3 represents a deconvolution
operation with the filter size of 3×3, Sa(·) and Sb(·) represents
the skip layer attention embedded into skip connections.

In the decoding path, the attention-enhanced feature maps
from the encoder and the same-scale upsampled feature maps
from the deconvolution are stacked in the channel dimension,
which can achieve the fusion of high-level features and low-
level features. With such a fusion of across-layer features, a
better balance between fine-grained and semantic information
can be achieved. The skip connections with attention enable
early encoder layers to preserve the positional relation of pixel,
which can better recover the detailed structure of the input.

2) Reduced Inception Module: The Inception module was
first proposed in GoogleNet [36]. It uses convolutional kernels
of different sizes to obtain features from different receptive
fields. The specific convolution kernel size is selected by
the network itself by adjusting parameters in the process of
training, so the architecture is highly tunable [37]. We can
appropriately choose the number of filters and kernel size to
maximize the retention of features that are beneficial for CD.

Fig. 4. Structure of the RI module.

In the TFED sub-network, we propose a reduced inception
module to improve the ability of feature extraction, as
shown in Fig. 4. To reduce the calculation amount caused
by multiple convolution layers, a 1 × 1 convolution is
added before each convolutional layers to reduce the channel
dimension. Considering the input size of the patch, we use the
convolutional layers with the kernel size of 1× 3, 3× 1, 3× 3
to construct the RI module. After that, we concatenate these
convolutional features to obtain the feature maps with the same
size as the input of RI.

The specific process can be summarized as follows. Given
an intermediate feature map X∈ RC×H×W as input, the RI
can be represented as

RI(X) =[fConv
1×3(fConv

1×1(X));

fConv
3×1(fConv

1×1(X));

fConv
3×3(fConv

1×1(X));

fConv
1×1(X)]

(4)

where RI(X)∈ RC×H×W is the final output and fConv
N×M

represents the convolution operation with the filter size of
N×M . The asymmetric convolutional blocks formed by three
different convolutional kernels can capture different shapes
including square, horizontal and vertical features from the
input feature maps, which can improve the discriminative
power of the features. Embedding the above RI module into
the TFED network can extend the receptive field and improve
the scale adaptability.

3) Skip Layer Attention Module: Attention mechanism
has become one of the most widely used in deep learning
[38]. When dealing with information, human beings often
pay attention to the more important characteristics of input.
Attention mechanism simulates the mechanism of human
processing information. The essence function of attention
mechanism is to apply the learned weights to the original
features. Different parts of the input data or feature maps have
different degrees of focus, and attention mechanism ignores
irrelevant noise information and focuses on key information.
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Fig. 5. Structure of the skip layer attention (SLA) module. (a) SLAa. (b)
SLAb.

We design a spatial-spectral attention based on CBAM
[39, 40] to learn the refined features of CD tasks adaptively.
The attention module is embedded into the skip connections
to highlight the feature maps from the encoder, which can
enhance the regions of interest for the CD task. As shown in
Fig. 5, to accommodate the input feature maps of different
scales, we design two attention models that are SLAa and
SLAb based on channel attention and spatial attention. We
use the one containing only channel attention as SLAa, and the
one cascading channel attention and spatial attention as SLAb.
By multiplying the input features with the attention weights,
we can obtain the enhanced feature maps on channels and
spatially, respectively. The channel attention module refines
the weight of each feature map to emphasize the meaningful
channels and suppress the useless ones. The spatial attention
module refines the weight of each spatial position to highlight
informative regions and compress useless ones.

Firstly, we generate two different spatial context descriptors,
i.e., average-pooled descriptor Fc

avg and max-pooled descriptor
Fc
max, by max-pooling and average-pooling operations.

The spatial context descriptors can aggregate the spatial
information of feature maps. After that, we input the two
descriptors into the multi-layer perception (MLP) with one
hidden layer to compress and extract the features. To reduce
the number of parameters, the size of the hidden layer is set
as C/r to reduce the number of channels, where r is the
reduction ratio. Then, we merge the output features of two
descriptors using element-wise summation and activate the
fused features with sigmoid function. Given an intermediate
feature map X ∈ RC×H×W as input, the channel attention
maps are computed by

Mc(X)=σ(MLP (AvgPool(X))+MLP (MaxPool(X))

= σ(W1(W0(F
c
avg))+W1(W0(F

c
max)))

(5)

where Mc(X) ∈ RC×1×1 infers the channel attention maps,
the MLP weights W0 ∈ RC/r×C and W1 ∈ RC×C/r are
shared for inputs. σ(·) denotes the sigmoid function which
can be described as

σ(x) =
1

1 + e−x
(6)

where x represents a value of feature map. The attention added
to the channels can adaptively adjust the feature response

values of each channel to highlight the useful information.
Secondly, we generate two different channel context

descriptors, including average-pooled descriptor Fs
avg ∈

R1×H×W and max-pooled descriptor Fs
max ∈ R1×H×W ,

by max-pooling and average-pooling operations along the
channels. The operations can aggregate the average pool
features and the maximum pool features for the entire
channels. Then, the two descriptors are stacked and passed
through the standard convolution layer to generate the spatial
attention maps. The spatial attention can be produced by

Ms(X) = σ(fConv
3×3([AvgPool(X);MaxPool(X)]))

= σ(fConv
3×3([Fs

avg; F
s
max]))

(7)

where MS(X) ∈ R1×H×W infers the spatial attention maps.
The operation of SLA module is summarized as follows.

SA(X) =MC(X)⊗X (8)

SB(X) =MS(SA(X))⊗ SA(X) (9)

where ⊗ denotes element-wise product. During the multipli-
cation, the attention values are broadcasted accordingly.

In the specific TFED sub-network, SLAa is used for the
deep-level features whose size of the feature maps is relatively
small, and SLAb is used for the shallow-level features whose
size of the feature maps is relatively large. The reason is
that the smaller feature maps, such as 3 × 3, contains less
spatial information. To simplify the network and reduce the
computational cost, we do not focus on their spatial features.

C. Bidirectional Diff-changed Feature Representation Module

After the input patches of bi-temporal HSIs pass through
the front TFED sub-network, we can obtain feature maps
with the three scale of 9, 7, 5 for each temporal features.
The feature maps often contain the changed components and
the unchanged components, where the changed can better
find out the changes in details. Our purpose is to discover
the changed pixels in the bi-temporal images, however, most
of the previous studies do not focus on the learning of the
changed components that can be represented by the diff-
changed features. Therefore, we propose a BDFR module to
learn the subtle difference features. This module makes use
of the information of multi-level feature maps from the TFED
sub-network. The structure is shown in Fig. 6.

Fig. 6. Structure of the BDFR module.

Differential operation can highlight difference information.
To make the model more adaptive to bi-temporal HSIs,
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the multi-scale feature maps obtained from the TFED sub-
network are subtracted at the corresponding scales. The diff-
changed feature maps are used as the input of the subsequent
processing, and the operation can be summarized as

Bi
IN =fConv

1×1([E
i
T=2; D

i
T=2]−

[E
i
T=1; D

i
T=1]), i = 1, 2, 3

(10)

where Bi
IN is a diff-changed feature map as the input feature

map of the BDFR module.
To better enhance the discriminative performance of

diff-changed features, the BDFR module is composed of
upsampling and downsampling paths. In the process of
downsampling, the information from the high-level feature
maps is brought to the smaller scale feature maps, and the
operation can be described as

D1 = fConv
3×3(B1

IN) (11)

D2 = fConv
3×3(D1+B2

IN) (12)

where D1, D2 represent the output feature maps after the
convolution operation.

Meanwhile, with upsampling operation, the deep features
are also transferred to a large scale. The operation of
upsmapling can be described as

U1 = fDConv
3×3(B3

IN) (13)

U2 = fDConv
3×3(B2

IN +U1) (14)

where U1, U2 represent the output feature map after the
deconvolution operation.

Now, we fuse the feature map of the middle scale by stack
operation, and can get three output feature maps with different
scales.

B1
OUT = U2,B

2
OUT = [U1; D1],B

3
OUT = D2 (15)

where Bi
OUT represents the output feature maps of the BDFR

module. BDFR module recombines and learns the feature
maps of different scales, which maximizes the utilization of
feature information and improves the discrimination of diff-
changed features.

D. Multi-Scale Attention Fusion Module

After BDFR, we obtain three feature maps with different
scales. Like the proposed baseline, we can unify the scale of
feature maps and directly learn through the fully connection
layers, and then achieve the classification results by the
sigmoid function. However, the features obtained in this way
may lack attention to the key change information which is not
conducive to the final detection accuracy.

As mentioned earlier, attention mechanisms focus on
more important information, there are more applications in
the field of CD gradually [41]. For example, the classic
channel attention squeeze-excitation attention [42] generates
the channel weights by global average pooling from the
channel-wise level, which allows the adaptive adjustment of
the feature response values for each channel. Another classic
attention, i.e., CBAM, introduces two different descriptors to

aggregate the features with average-pooling and max-pooling.
In this section, we propose an MSAF module to adaptively
focus on the areas of CD, as well as fusing the feature maps
of three scales. The specific structure is shown in Fig. 7.

Fig. 7. Structure of the MSAF module.

Firstly, to facilitate follow-up processing, the feature maps
of the three scales are normalized to a unified scale by
convolution and deconvolution operations.

Fadd=fConv
3×3(B

1
OUT)+B2

OUT+fDConv
3×3(B3

OUT)

=F1+F2+F3

(16)

where Fi represents the output feature maps with the same
size, Fadd represents the fused feature map by element-wise
summation. To compute the channel attention efficiently, we
squeeze the spatial dimension of the input feature map by
global average pooling. A channel-wise convolutional layer
with the size of 1×1 is utilized to achieve the compact
features and a ReLU activation is used to control the attention
coefficient. Then, we generate an initial fusion channel
attention feature as

M0
m(Fadd

)=ReLU(fConv
1×1(GlobalAvgPool(Fadd)) (17)

where M0
m(Fadd

) represents the initial fusion feature.

Mi
m(Fadd

) = σ(fci(M
0
m(Fadd

)), i = 1, 2, 3 (18)

where fci is a fully connection operation and has the same
structure without parameter share.

To retain the original information, we add residual operation
to build a connection between the original features and the
attention features. The final output can be described as

Mout(X) =[M1
m(Fadd

)⊗ F1 + F1;

M2
m(Fadd

)⊗ F2 + F2;

M3
m(Fadd

)⊗ F3 + F3]

(19)

By multiplying the input feature maps with the shared
channel attention weights, the obtained feature maps highlight
the useful regions and suppresses the useless regions. The
MSAF module adaptively selects the effective information in
the multilayer features for fusion, so that the fused features
achieve the complementarity of the multilayer information.

After the learning of previous several modules, a feature
map, which contains rich changed details, is obtained. The
probability estimate obtained from the fully connected layers
can be used to predict the final labels of the input patches.
Consistent with the processing in baseline, the final CD results
can be described as

yp = σ(fc(fConv
3×3(Mout(X)))) (20)
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where yp is the predicted probability result, Mout(X) is
the output of the MSAF module. The fc denotes the fully
connected layers to extract the features and reduce dimension.

E. Loss Function

An appropriate loss function can optimize the designed
network in model training to extract more effective features.
CD task considered as a classification task, each pixel of bi-
temporal HSIs is divided into two categories, i.e., changed
and unchanged. Therefore, the cross-entropy loss function is
a popular and effective solution to optimize the network. The
loss function is calculated as follows.

Loss = − 1

n

n∑
i=1

(yi log yp + (1− yi) log(1− yp)) (21)

where n denotes the number of samples and yi is the ground
truth label of the given sample.

III. EXPERIMENT RESULTS AND ANALYSIS

In this section, we first introduce the HSI CD datasets
and the evaluation measures are used to evaluate the effect
of the proposed MSDFFN method. Then, we give a brief
description of the comparison algorithms and introduce the
relevant experimental details. At the same time, a series of
ablation experiments are provided to verify the effectiveness
of the proposed modules. Finally, we compare the impact of
the training samples size on the network.

A. Datasets and Evaluation Measures

1) Datasets: The first dataset, named “Farmland”, belongs
to a farmland near the city of Yancheng, Jiangsu province
in China, which was acquired by Earth Observing-1 (EO-
1) Hyperion sensor on May 3, 2006, and April 23, 2007,
respectively. The dataset has 242 bands in the range of 0.4
to 2.5 m with spatial resolution of 30 m as shown in Fig. 8.
After removing noise and water absorption bands, it contains
155 spectral bands for experiments and its spatial size of each
image is 450×140 pixels. The main change areas are farmland.

(a) (b) (c)

Fig. 8. Farmland dataset. (a) Image acquired on May 3, 2006. (b) Image
acquired on April 23, 2007. (c) Ground truth.

The second dataset, named “River”, covers a river area from
Jiangsu Province in China, as shown in Fig. 9, which was
acquired on May 3, 2013 and December 31, 2013, respectively.
They are also observed by the sensor EO-1. This dataset has a
spatial size of 463×241 pixels with 198 bands available after

(a) (b) (c)
Fig. 9. River dataset. (a) Image acquired on May 3, 2013. (b) Image acquired
December 31, 2013. (c) Ground truth.

noisy band removal. The main type of change on this dataset
is the reduction of river course.

The third dataset, named “Hermiston”, as shown in Fig. 10,
belongs to an irrigated farmland from Hermiston City area
(Oregon) in USA, which was acquired in 2013 and 2014. This
dataset was obtained by the Hyperion sensor mounted on EO-
1 satellite. The spatial size of each image is 307×241 pixels
including 154 spectral bands after eliminating noise. The main
change is farmland cover.

(a) (b) (c)

Fig. 10. Hermiston dataset. (a) Image acquired on 2013. (b) Image acquired
on 2014. (c) Ground truth.

2) Evaluation Measures: To better quantify the perfor-
mance of the proposed method, we mainly used the Overall
Accuracy (OA) and Kappa Coefficient (KC) [43] as metrics,
Precision (Pr), Recall (Re), and F1-score (F1) were introduced
as an auxiliary evaluation.

The metrics are defined as follows.

OA =
TP + TN

TP + TN + FN + FP
(22)

Precision =
TP

TP + FP
(23)

Recall =
TP

TP + FN
(24)

F1 =
2PR

P +R
(25)

Kappa =
OA−pe
1− pe

(26)

pe=
(TP×FN)+(TP×FP )+(TN×FN)+(TN×FP )

N2

(27)
where true positive (TP) indicates the number of pixels
correctly classified as changed region, true negative (TN)
denotes the number of pixels correctly classified as unchanged
regions, false positive (FP) represents the number of pixels
misclassified as changed regions, and false negative (FN) is
the number of pixels misclassified as unchanged regions. TP,
TN, FP, FN pixels are shown with white, black, green, red
in visualization results. The larger value of these evaluation
metrics indicates better detection performance.
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B. Compared Methods and Experimental Details

To evaluate the performance of the proposed architecture,
we further compared our method with other CD methods.
Some classic CD algorithms were implemented for compari-
son, including CVA [8], PCAKM [12], IRMAD [15], KNN
[17]. CVA is a most commonly used method, which can
provide change intensity and change direction. PCAKM uses
the PCA method to project the original data into a new
lower dimensional feature space, and the CD is achieved
by partitioning the feature vector space into two clusters
using k-means. IRMAD is a CD algorithm based on CCA
that aims to maximize the variance of projection feature
difference. KNN uses proximity to classify or predict the
classification of data points. Some deep architecture algorithms
were also implemented for comparison, including ReCNN
[25], BCNN [24], SiamCRNN [26] and ML-EDAN [32].
ReCNN and SiamCRNN use LSTM units to find the change
information extracted by CNN. BCNN finds the relationship
between bi-temporal feature maps by combining bilinear
feature. ML-EDAN learns the discriminating features by
introducing multi-scale features. All the codes of the above
comparison algorithms were reproduced in this paper. The
mean and variance obtained from ten repeated experiments
were used as the experimental results, which intuitively reflects
the performance and robustness of the methods.

In our network, comprehensively considering the complex-
ity of calculation and spatial-spectral information, we chose
the input patch size as 9×9. In experiments, we selected
20% from the datasets as the training samples and the rest
as the testing samples. Our network was trained and tested
on a NVIDIA GTX A6000 GPU with 48G memory using the
PyTorch [44] framework. In the stage of training, we used
the SGD optimizer [45] with weight decay 5e-3. The initial
learning rate was designed to be 5e-3 and decayed by a factor
of 0.1 at every 35 epoch. The number of total epochs was
100, the batch size was set to 32. To avoid biased estimation,
we conducted 10 repeated experiments and took their average
values with standard deviation as the final results.

According to the original paper, for BCNNs, we chose the
input patch size as 11×11 and used the SGD optimizer with
weight decay 5e-3. We trained the network for 100 epochs
and the initial learning rate was designed to be 1e-4 with 0.1
times decay at every 35 epochs. For ReCNN and SiamCRNN,
we used the patch size of 5, and used the SGD optimizer in
training. The initial learning rate was designed to be 2e-4 with
a decay of 0.1 times for every 35 epochs. The total number
of epochs is 150, and the batch size was set to 64 and 32,
respectively. ML-EDAN method also used the patch size of 5,
and we used the Adam optimizer to train. The initial learning
rate was set to 1e-4, decaying by a factor of 10 at 100 and
150 epochs. The total number of epochs is 200 and the batch
size is set to 16.

C. Experimental Results

1) Experimental Results on the Farmland Dataset: Table I
and Fig. 11 show the results of each model on the Farmland
dataset. Compared with the traditional CVA, PCAKM method,

the supervised learning methods present a better precision,
and have a great improvement in term of KCs. It indicates
that the CVA and PCAKM algorithms misjudge a large
number of invariant regions into changing regions, thus having
a high Re but a low KC. Deep learning-based methods
are generally more satisfactory compared to CVA, PCAKM,
IRMAD, because these methods can learn more deep features
through convolutional layers. After introducing the multi-scale
features, ML-EDAN and the proposed MSDFFN have better
performance than other deep learning methods which only
consider the single scale features. This indicates that the multi-
scale features are conducive to the network to learn more
precise features for matching different shapes of land-covers.
Compared with ML-EDAN, the accuracy of our MSDFFN
network is further improved due to only considering the
changed components to learn the subtle changing features.
Compared with all the methods, the proposed MSDFFN model
has the best performance in OA, KC, F1 Score, Re, Pr metrics.

TABLE I
COMPARISONS BETWEEN MSDFFN AND VARIOUS METHODS ON THE

FARMLAND DATASET

Method OA% KC(×100) F1% Pr% Re%

CVA 95.25 88.6 91.97 90.33 93.66
PCAKM 95.14 88.37 91.82 89.78 93.96
IRMAD 95.57 90.13 93.14 91.46 94.89

KNN 97.89 94.85 96.33 96.97 95.70
ReCNN 97.30±0.05 93.46±0.12 95.36±0.08 95.02±0.17 95.72±0.19

SiamCRNN 97.15±0.12 93.08±0.30 95.09±0.22 94.78±0.46 95.41±0.53
BCNN 97.95±0.04 95.02±0.12 96.47±0.08 96.42±0.25 96.51±0.28

ML-EDAN 98.62±0.07 96.66±0.16 97.63±0.12 97.52±0.31 97.74±0.30
ours 98.71±0.03 96.88±0.08 97.78±0.06 97.79±0.17 97.77±0.10

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 11. Visualized results of different methods on the Farmland dataset. (a)
CVA, (b) PCAKM, (c) IRMAD, (d) KNN, (e) ReCNN, (f) SiamCRNN, (g)
BCNN, (h) ML-EDAN, (i) our MSDFFN, and (j) Ground truth.

From the visual observations, our proposed MSDFFN
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presents the fewest false positive pixels, thus achieving the
best visual performance. From Fig. 11(a)-(c), the traditional
CVA, PCAKM methods exhibit more misclassified pixels, with
significant “salt and pepper” noise in the unchanged areas
(black regions), and a large number of misclassification pixels
around the edges of the changed areas and small targets.
IRMAD and KNN have less pixels of misclassification than
CVA, but still have some pixels of false positive in the
upper right part of the image obviously. The deep learning
algorithms, such as ReCNN, BCNN and SiamCRNN have
better performance in distinguishing the unchanged pixels,
however the areas between the rice fields, as shown in the
edges of the block areas of the image, still appear some pixels
of false negative. MSDFFN has fewer misclassification points
and better CD details than ML-EDAN, mainly shown in the
middle right small target areas of the image.

2) Experimental Results on the River Dataset: Detection
results of various algorithms on the River dataset are displayed
in Table II. Firstly, the unsupervised methods such as CVA
and PCAKM have relatively low accuracy compared to the
other methods, because it is more difficult to distinguish
the changes when some features are very close to the
invariant pixels without any labeled samples. For KNN, it
is one of classical supervised machine learning methods,
and it achieves better results compared to the unsupervised
algorithms. The accuracies of ML-EDAN and MSDFFN are
higher than the single scale methods, which also proves the
effectiveness of multi-scale features. Compared with ML-
EDAN, the accuracies of the MSDFFN network are improved
which shows that the different multi-scale fusion strategy has
played a role.

TABLE II
COMPARISONS BETWEEN MSDFFN AND VARIOUS METHODS ON THE

RIVER DATASET

Method OA% KC(×100) F1% Pr% Re%

CVA 92.81 66.18 69.92 54.93 96.17
PCAKM 92.72 65.91 69.69 54.60 96.29
IRMAD 94.07 62.96 66.21 65.60 66.83

KNN 94.36 61.74 64.78 70.85 59.67
ReCNN 95.96±0.23 70.56±2.19 72.66±2.09 88.17±0.57 61.86±3.12

SiamCRNN 96.50±0.14 75.59±0.89 77.45±0.83 88.14±1.96 69.12±1.51
BCNN 95.74±0.08 68.82±0.80 71.04±0.79 86.78±1.76 60.18±1.71

ML-EDAN 97.74±0.04 85.33±0.29 86.57±0.27 89.57±0.56 83.75±0.66
ours 98.12±0.04 87.98±0.12 89.01±0.10 90.52±0.32 87.58±0.31

For the River dataset, as presented in Fig. 12, CVA and
PCAKM have amount of pixels of false positive (green
regions), which means they can not distinguish positive and
negative samples well. KNN has a lot of false pixels, because
it just uses the shallow features with limited discriminating
performance to detect the change pixels. Meanwhile, the deep
learning algorithms such as ReCNN, BCNN and SiamCRNN
have many false negative pixels (red regions), which means
they identify many changing places as unchanging areas.
Compared with ML-EDAN that also uses the multi-scale
strategies, the proposed MSDFFN has an advantage in
distinguishing the small details.

3) Experimental Results on the Hermiston Dataset: The
detection results on the Hermiston dataset are displayed in

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 12. Visualized results of different methods on the River dataset. (a) CVA,
(b) PCAKM, (c) IRMAD, (d) KNN, (e) ReCNN, (f) SiamCRNN, (g) BCNN,
(h) ML-EDAN, (i) our MSDFFN, and (j) Ground truth.

Table III. CVA and PCAKM have a bit better performance
than IRMAD and KNN. This performance is inconsistent with
these methods on the other two datasets. For the Hermiston
dataset, the change areas, like some disks which overlap at
a small part of the edge, are relatively scattered, and there
is no large connected areas. The characteristics may lead to
some misclassification, so the detection capability of simpler
CNN structures may be marginally weaker than CVA. BCNN
has higher accurate compared with ReCNN and SiamCRNN,
because the combined linear features constructed by BCNN
can better capture and fuse the features of the two phases
than RNN and LSTM. In this scene, MSDFFN also achieves
the best results than the other methods.

TABLE III
COMPARISONS BETWEEN MSDFFN AND VARIOUS METHODS ON THE

HERMISTON DATASET

Method OA% KC(×100) F1% Pr% Re%

CVA 92.02 74.16 78.85 97.90 66.01
PCAKM 92.01 74.13 78.83 97.90 65.98
IRMAD 86.75 57.86 65.80 78.69 56.54

KNN 88.36 59.63 65.77 97.47 49.63
ReCNN 89.74±0.96 66.64±5.06 72.56±4.89 90.97±5.81 61.65±10.43

SiamCRNN 87.35±1.69 56.15±8.51 62.67±7.68 92.66±7.68 49.28±13.47
BCNN 96.75±0.11 90.56±0.34 92.65±0.27 94.46±0.80 90.92±0.99

ML-EDAN 97.19±0.11 91.87±0.35 93.68±0.28 94.88±0.86 92.53±1.15
ours 97.59±0.04 93.06±0.12 94.61±0.10 95.55±0.32 93.69±0.31

For the Hermiston dataset, the visual observations are
presented in Fig. 13. For the detection results of CVA and
PCAKM, a lap of unchanged pixels around the circular change
areas are misclassified into the changes, and the classification
results do not show enough details. ReCNN and SiamCRNN
show a lot of false negative pixels. Some large circular regions
are lost in their CD results. Consistent with the performance on
the above two datasets, compared with ML-EDAN, MSDFFN
has fewer pixels of false negative and false positive and shows
better CD details. MSDFFN detects some scattered target
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 13. Visualized results of different methods on the Hermiston dataset. (a)
CVA, (b) PCAKM, (c) IRMAD, (d) KNN, (e) ReCNN, (f) SiamCRNN, (g)
BCNN, (h) ML-EDAN, (i) our MSDFFN, and (j) Ground truth.

changed regions which ML-EDAN can not detect.

D. Ablation Study

To more clearly show the effectiveness of each proposed
module, we conducted the ablation experiments for each
module, including RI, SLA, BDFR and MSAF on the three
datasets. Specifically, we added modules step by step and
designed seven experiments. Noteworthy, the first experiment
is the baseline, whose structure is shown in Fig. 2. The fourth
experiment is considered to only use the TFED module for CD.
In the fifth experiment, the concatenated multi-scale (CMS)
operation was directly used to fuse the multi-scale features
from TFED.

It can be seen from the experimental results shown as Table
IV, with the gradual addition of the proposed modules, the
accuracies have been improved compared with the previous
model in general, and the complete model has the highest
accuracies. This proves the effectiveness of each module. For
the Farmland dataset, the complete model presents optimal
values in OA, Kappa, F1 Score, Re and Pr, respectively. For the
River dataset and Hermiston dataset, the optimal values of Pr
appears in “baseline+SLA” and “baseline+RI+SLA+CMS”,
respectively. The Pr is related to the proportion of correctly
predicted samples to positive predictions. Since the proportion
of positive and negative samples is not completely uniform,
this may cause a high Pr. The model can not be evaluated as
good or bad by Pr alone. At this time, generally, the F1-score
is more appropriate to evaluate the model, and the F1-score
of our proposed complete MSDFFN is still optimal. For the
River dataset, noteworthy, when only adding RI, the accuracy
is slightly lower than that of baseline. The inception module
enriches the receptive field, while it may also introduce some
data redundancy which causes some detection results with a
slight decrease. For the Hermiston dataset, the complete model
has the highest accuracies. To add RI module and SLA module
separately can improve the accuracy, but when adding RI and
SLA at the same time, there is a decline of accuracies. This
may generate over learning when adding RI and SLA at the
same time on the complex Hermiston dataset. In summary,
although the proposed modules show side effect in a few

cases for some datasets, they generally have advantage to
improve the performance of CD under most conditions for
all the experimental datasets.

E. Discussion

1) Discuss of the Feature Fusion Scale: In the proposed
MSDFFN framework, the feature fusion scale is an inevitable
parameter in our MSAF module, which is related to how to set
a proper scale for feature fusion. In this paper, we normalize
the feature maps to the middle scale of 7, which indicates that
the multi-scale features are fused at the scale of 7×7. To verify
the effectiveness of fusion at the middle scale, we tried to fuse
the multi-scale features at the scales of 9 and 5. To ensure the
fairness of the comparison, we used the same settings in all
experiments. The results are shown in Table V.

TABLE V
RESULTS OF DIFFERENT FEATURE FUSION SCALES ON THREE DATASETS

Scale 5 7 9

Farmland

OA 98.65±0.04 98.71±0.03 98.62±0.06
KC(×100) 96.73±0.09 96.88±0.08 96.66±0.14

F1 97.68±0.07 97.78±0.06 97.63±0.10
Pr 97.52±0.25 97.79±0.17 97.61±0.15
Re 97.86±0.28 97.77±0.10 97.65±0.24

River

OA 98.03±0.04 98.12±0.04 98.08±0.03
KC(×100) 87.45±0.19 87.98±0.12 87.73±0.16

F1 88.52±0.18 89.01±0.10 88.77±0.15
Pr 89.77±1.44 90.52±0.32 90.63±0.72
Re 87.37±1.53 87.58±?.31 87.00±0.59

Hermiston

OA 97.49±0.07 97.59±0.04 97.44±0.08
KC(×100) 92.76±0.21 93.06±0.12 92.60±0.22

F1 94.37±0.17 94.61±0.10 94.26±0.17
Pr 95.50±0.51 95.55±0.32 95.56±0.44
Re 93.27±0.49 93.69±0.31 92.99±0.36

According to Table V, we can see that the best accuracy
can be obtained at the scale of 7. When the scale is
9, it contains more features. This may introduce many
additional information causing feature redundancy, which is
not conducive to the subsequent detection. When the scale is
5, the window is smaller and the less information is obtained.
In this case, the features may be insufficient to discriminate
the change areas, and some important details may be lost to
reduce the detection accuracies. Based on the experimental
results and comprehensive analysis, a suitable scale, with a
larger or smaller scale both generating disadvantage for CD,
is very important for the MSAF module, where we set the
fusion scale as 7.

2) Application of the MSAF Module: In recent years, a lot
of attention mechanisms have been used in computer vision,
each with its own advantages and focus. For example, ECA
[46] introduced the adaptive one-dimensional convolution
to replace the full connection layer, which simplifies the
calculation. CBAM [39], cascading channel attention and
spatial attention, using max pooling and average pooling
operations to aggregate spatial and channel information. To
validate the effectiveness of the attention fusion, we compared
the proposed MSAF module with the other classic attention,
i.e., ECA and CBAM. The results are shown in Table VI.
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TABLE IV
COMPARISONS ABLATION OF EACH MODULE ON THREE DATASETS

Dataset

Model (1) (2) (3) (4) (5) (6) (7)

RI × X × X X X X
SLA × × X X X X X
CMS × × × × X X X
BDFR × × × × × X X
MSAF × × × × × × X

Farmland

OA 98.28±0.08 98.44±0.05 98.42±0.09 98.51±0.08 98.59±0.04 98.64±0.04 98.71±0.03
KC(×100) 95.82±0.22 96.22±0.13 96.16±0.22 96.38±0.19 96.59±0.09 96.70±0.11 96.88±0.08

F1 97.04±0.15 97.32±0.10 97.27±0.17 97.43±0.14 97.58±0.06 97.65±0.08 97.78±0.06
Pr 96.59±0.35 96.99±0.27 97.07±0.21 97.34±0.30 97.69±0.19 97.67±0.23 97.79±0.17
Re 97.50±0.17 97.66±0.43 97.48±0.30 97.50±0.26 97.47±0.15 97.63±0.25 97.77±0.10

River

OA 97.89±0.05 97.87±0.03 97.92±0.06 97.96±0.05 98.02±0.10 98.07±0.04 98.12±0.04
KC(×100) 86.19±0.31 86.24±0.38 86.25±0.54 86.81±0.36 87.33±0.73 87.59±0.37 87.98±0.12

F1 87.69±0.28 87.39±0.37 87.48±0.52 87.92±0.34 88.41±0.68 88.64±0.36 89.01±0.10
Pr 88.82±0.81 90.13±1.53 91.93±1.78 90.70±1.12 90.11±1.19 90.99±1.19 90.52±0.32
Re 86.61±0.74 84.87±1.96 83.52±2.20 85.34±1.32 86.81±1.70 86.46±1.71 87.58±0.31

Hermiston

OA 97.00±0.10 97.16±0.07 97.24±0.01 97.16±0.07 97.27±0.04 97.39±0.06 97.59±0.04
KC(×100) 91.00±0.33 91.74±0.22 92.01±0.21 91.80±0.21 92.06±0.14 92.44±0.20 93.06±0.12

F1 93.20±0.27 93.56±0.17 93.78±0.17 93.63±0.17 93.80±0.11 94.12±0.16 94.61±0.10
Pr 95.23±0.86 95.70±0.68 95.16±0.38 94.55±0.49 95.82±0.35 95.62±0.30 95.55±0.32
Re 91.27±1.11 91.52±0.60 92.45±0.50 92.74±0.60 91.89±0.44 92.67±0.42 93.69±0.31

TABLE VI
RESULTS OF THE MSAF MODULE WITH DIFFERENT ATTENTIONS ON

THREE DATASETS

Attention ECA CBAM ours

Farmland

OA 98.54±0.07 98.66±0.04 98.71±0.03
KC(×100) 96.46±0.16 96.75±0.09 96.88±0.08

F1 97.48±0.11 97.69±0.07 97.78±0.06
Pr 97.49±0.24 97.82±0.16 97.79±0.17
Re 97.48±0.23 97.57±0.15 97.77±0.10

River

OA 98.01±0.06 98.06±0.04 98.12±0.04
KC(×100) 87.10±0.32 87.57±0.34 87.98±0.12

F1 88.18±0.30 88.63±0.32 89.01±0.10
Pr 90.90±1.46 90.30±0.87 90.52±0.32
Re 85.67±1.42 87.05±1.19 87.58±0.31

Hermiston

OA 97.48±0.08 97.53±0.07 97.59±0.04
KC(×100) 92.71±0.22 92.85±0.21 93.06±0.12

F1 94.33±0.17 94.44±0.17 94.61±0.10
Pr 95.65±0.44 95.88±0.51 95.55±0.32
Re 93.04±0.36 93.05±0.49 93.69±0.31

From the results, we can see that the proposed MSAF
module can yield the best accuracies, and is more suitable for
the CD task based on the multi-scale features. The attention
mechanisms, like ECA and CBAM which focuses on the
information of channels and spaces, are directly applied to the
fused feature maps. While the proposed MSAF module aims at
multi-scale feature fusion, considering the information sharing
between different feature maps. The MSAF module shares the
attention score into the three input feature maps, and uses the
residual connection to retain the original information. After
stacking, the three feature maps will be better integrated and
get more discriminating features.

3) Discuss of the Computational Cost: We tested the
computational cost of deep learning-based methods. The
computational cost of different methods on the Farmland
dataset is shown in Table VII. The proposed method has
fewer parameters than ML-EDAN and the most test time

than the other methods. While MSDFFN achieves the best
detection performance compared with all the compared
algorithms. In further research, we will consider developing
some more innovative model compression methods to reduce
the computational cost and shorten the required time with
guaranteed accuracy.

TABLE VII
COMPUTATIONAL COST OF DIFFERENT METHODS ON THE FARMLAND

DATASET

Methods ReCNN SiamCRNN BCNNs ML-EDAN MSDFFN

#Params (K) 545.4 310.7 4542.8 93528.0 39452.4
Testing Times 2.15s 2.95s 3.21s 5.27s 8.97s

4) Discuss of the Training Sample Size: To comprehensive-
ly investigate the influence of the training sample size to the
detection results, we tested the detection results under different
training samples on the Farmland dataset with some deep
learning methods. The methods included ReCNN, BCNN,
MSDFFN, and the selected training sample size was 5%,
10%, 15%, 20%. We presented the experimental results in a
histogram. The OAs and KCs are shown in Fig. 14.

(a) (b)

Fig. 14. CD results with different training sample sizes on the Farmland
dataset. (a) OA, (b) KC.

With the reduced sample size, both the OAs and KCs show a
downward trend in the several algorithms. This results indicate
that the increased number of training samples will improve the
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detection results. Because more information can be utilized for
training with the increasing of training samples. Furthermore,
as the training sample size decreases, the accuracies of the
models with multi-scale features are still higher than the
models with single scale, this shows that the multi-scale
learning can enhance the robustness of the features. The reason
is that the multi-scale learning has advantage to adaptively
match the land-covers with different shapes and extract purer
features of different land-covers. The proposed method still
achieves the highest accuracies than the other three algorithms
under different numbers of training samples, because MDFFN
can learn the subtle change features and adaptively fuse the
discriminative information of different scales.

IV. CONCLUSION

In this paper, an end-to-end framework named MSDFFN,
including TFED, BDFR, and MSAF modules, was proposed
to detect the changed reigions of bi-temporal HSIs. The
proposed TFED, which combines reduced inception and skip
layer attention, can extract rich multi-scale features from
the input patch pairs. The BDFR module with bidirectional
representation can improve the discrimination performance of
subtle changes, whilst MSAF adaptively fuses the features
from different scales with attention mechanism. Our proposed
method can better obtain and analyze the changed components,
and has advantages over the others in detecting small changes.
Experimental results on three HSI datasets show that the
proposed method can produce more accurate CD results than
the other compared methods. There are also some limitations
of our proposed method, which is a supervised algorithm and
can not utilize unlabeled samples. In the future work, a semi-
supervised algorithm [47] can be developed to utilize both
labeled and unlabeled samples for further improved HSI CD.
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