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The Controller Area Network (CAN) is the most widely used in-vehicle communication protocol, which still

lacks the implementation of suitable security mechanisms such as message authentication and encryption.

This makes the CAN bus vulnerable to numerous cyber attacks. Various Intrusion Detection Systems (IDSs)

have been developed to detect these attacks. However, the high generalization capabilities of Artificial Intel-

ligence (AI) make AI-based IDS an excellent countermeasure against automotive cyber attacks. This article

surveys AI-based in-vehicle IDS from 2016 to 2022 (August) with a novel taxonomy. It reviews the detection

techniques, attack types, features, and benchmark datasets. Furthermore, the article discusses the security of

AI models, necessary steps to develop AI-based IDSs in the CAN bus, identifies the limitations of existing

proposals, and gives recommendations for future research directions.
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1 INTRODUCTION

Modern automobiles are becoming intelligent, complex, and highly connected. In 1980, a vehicle
had just 1% of electronic equipment in comparison to its mechanical counterparts. However, to-
day, electronic components have increased up to 50% [148]. This will continue to increase with
the advent of autonomous cars, which will rely on powerful computer systems, a range of sensors,
networking, and satellite navigation, all of which require electronics. Furthermore, modern vehi-
cles embody software that exceeds 100 million lines of code, and it is expected to grow beyond
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300 million lines of code in the near future [24]. Software on modern automobiles run on 70 to
100 microprocessor-based Electronic Control Units (ECUs) that are networked throughout the
vehicle [24]. More than 125 million cars with embedded connectivity will be shipped worldwide be-
tween 2018 and 2022 [125]. This connectivity to the outside world makes modern automobiles part
of the Internet of Things (IoT) [148]. In addition to a large number of ECUs, modern vehicles are
equipped with multiple sensors, actuators, cameras, radars, and communication devices, among
others [2, 22]. These systems are intended to improve performance, efficiency, intelligent services,
and safety for automobile users by collecting and interpreting different data [22]. However, at the
same time, these systems make modern automobiles significantly more complex.

Vehicle networks facilitate communication between these systems, which can be classified into
two categories: external and internal networks. The internal network is also known as the in-
vehicle or intra-vehicle network. Based on the communication type, the external network can be
categorized as V2V (Vehicle to Vehicle) and V2I (Vehicle to Infrastructure), in which both are also
called Vehicular Ad Hoc Networks (VANETs). V2X (Vehicle to Everything) is sometimes used
to represent both V2V and V2I [148]. In addition to their designated functions, ECUs communi-
cate with other ECUs. This communication occurs through various standard automobile in-vehicle
communication protocols, such as Controller Area Network (CAN), FlexRay, LIN (Local Inter-
connect Network), and Media Oriented System Transport (MOST) [85]. Among these proto-
cols, CAN is considered to be the de facto protocol for in-vehicle communication [2]. In contrast,
VANET is an ad hoc network that facilitates direct communication between vehicles without hav-
ing a fixed infrastructure [22].

Increased connectivity and complexity of modern automobiles have created more attack sur-
faces to security threats. Examples of such attack surfaces are V2X communication, telematics ser-
vice, Bluetooth connection, and the On-Board Diagnostic (OBD) port [148]. Although vehicle
networks provide various benefits such as efficiency, low cost, and safety, most of these networks
are vulnerable to cyber attacks, especially the CAN bus, which is used by the majority of vehicles
for in-vehicle communication. A few CAN bus vulnerabilities are absence of authentication, broad-
cast transmission, lack of encryption, an ID-based priority scheme, and available interfaces [98].
Researchers performed various experimental attacks to exploit vehicular network vulnerabilities.
Hoppe et al. [59] performed frame sniffing and replay attacks in a simulated environment to gain
control over window lift, warning light, and airbag systems. Further, Koscher et al. [82] performed
different attacks on a real car, and they were able to control different modules like body control
module, radio, and engine.

Due to various vulnerabilities and potential cyber attacks, considerable efforts had been made
to protect vehicles from security threats. Both detection and prevention mechanisms can be used
to identify or prevent cybercrimes. However, detection strategies are more realistic in terms of the
operational and economical realities [120]. Hence, as a reactive security mechanism, current liter-
ature has focused on developing Intrusion Detection Systems (IDSs) for In-Vehicle Networks

(IVNs). Based on the detection strategy, IDS can be categorized as signature-based detection and
anomaly-based detection [115]. Because of certain limitations in signature-based IDS, such as the
inability to detect novel attacks, and the requirement for frequently updating the known-attack
database, anomaly-based detection approaches captured the attention of previous researchers due
to advantages like the capability of detecting novel attacks [116]. Current literature has classified
IDS into more sub-sections, such as fingerprint based, parameter monitoring based, information
theory based, and Machine Learning (ML) based [175]. Moreover, the majority of IDSs are de-
signed to detect anomalies in the CAN bus as opposed to other vehicle network protocols.

This work focuses on the application of Artificial Intelligence (AI) techniques on IDSs of IVNs.
The term AI represents both traditional ML and Deep Learning (DL) techniques in this work. This
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survey article reviews state-of-the-art works published between 2016 and 2022 (August), focusing
on detection methods, evaluation/benchmark datasets, attack types, and performance evaluation.
The contributions of this article can be summarized as follows:

(1) We review and classify state-of-the-art AI-based in-vehicle IDSs considering their detection
algorithms, features, datasets, targeted attack types, and performance evaluation along with
comprehensive summary tables (see Tables 3–7).

(2) A novel AI-based IDS taxonomy is introduced that focuses on attack types, CAN bus data
frame features, and AI algorithms for IVNs (CAN bus) to categorize reviewed works based
on their detection features and algorithms.

(3) A review of benchmark datasets available to train and evaluate algorithms and the steps to
follow in developing an AI-based attack detection in the CAN bus are provided.

(4) Based on reviewed works, we identify and discuss limitations of current approaches for
securing IVNs (CAN bus).

(5) A set of possible future research directions is discussed.

The rest of the article is organized as follows. In Section 2, the existing surveys on the subject
are discussed. Section 3 explains the methodology used for this study. In Section 4, an overview of
common attacks on IVNs is provided. Section 5 introduces AI-based IDS taxonomy for IVNs and
reviews existing works based on detection features and algorithms. Section 6 discusses the security
of AI models. Section 7 presents the findings, AI-based attack detection steps, and potential future
research directions. Finally, Section 8 concludes the article.

2 RELATED WORK

Surveys that focus on AI-based IDSs in mainstream IT networks are not relevant to our work,
because the behavior of the CAN network is quite different from traditional IT networks and
the message specifications are confidential for car manufacturers. Therefore, solutions proposed
for those networks knowing all specifications might not be suitable for IVNs. Several surveys
of IDSs for vehicle networks are available in the literature. Rajbahadur et al. [135] produced
a taxonomy with three categories, nine sub-categories, and 38 dimensions to review anomaly
detection techniques of connected vehicles. Even though this study provided a comprehensive
categorization of IDSs, individual paper summaries and implementation techniques are not
discussed. Al-Jarrah et al. [2] mainly focused on in-vehicle IDSs by referring to 44 prior works.
In this work, IDSs are categorized into three categories as flow based, payload based, and hybrid.
Finally, they discussed some of the research challenges and gaps in in-vehicle IDSs. Loukas
et al. [104] provided a comprehensive taxonomy focusing on different types of vehicles (aircraft,
land vehicles, and watercraft). Statistical, ML, and rule-based IDSs were discussed under the
audit technique. This paper reviewed only 13 ML-based IDSs for CAN bus that were published
between 2011 and 2017. Lokman et al. [101] discussed the vulnerabilities of the CAN network
and potential attacks. IDSs found in the literature were discussed based on detection approaches,
deployment strategy, attacking techniques, and technical challenges. However, this work cannot
be considered as a comprehensive survey compared to ours, as only five works were discussed
under the ML-based approach. Dupont et al. [37] categorized a few existing CAN IDSs based on
three dimensions. These include the number of frames, data used for the detection, and detection
mechanism. A recent survey [175] classified 20 in-vehicle IDSs into four areas such as fingerprint
based, parameter monitoring based, information theory based, and ML based. The authors briefly
discussed datasets used in previous works. However, this study discussed only 9 ML-based IDSs
published between 2012 and 2018. In both [160, 179], the authors categorized intrusion detection
in CAN network into signature-based and anomaly-based methods. Current cryptographic and
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Table 1. Comparison of Surveys for In-Vehicle IDSs

Survey Time
Range

AI-Based
Works

AI-Based
Taxonomy

Review of
Benchmark
Datasets

Feature
Selection

Evaluation
Data

Evaluation
Results

[179] 2016 2 X X
[101] 2016 5 X X X
[104] 2011–2017 13 X X X
[135] 2015–2017 9 X X
[175] 2012–2018 9 X X X
[2] 2015–2018 23 X X X
[37] 2016–2018 7 X X
[160] 2016–2018 12 X X X
[7] 2014–2020 14 X X X
[74] 2020–2022 33 X
This survey 2016–2022 102 X X X X X

IDS approaches were discussed and compared in the work of Aliwa et al. [7]. Similar to Young
et al. [179], the authors classified in-vehicle IDSs into signature based and anomaly based. IDSs
based on anomaly detection were further classified as statistical, ML, rule-based, and physical fin-
gerprinting methods. This work briefly discussed 14 ML-based IDSs published between 2014 and
2020. However, most of these works belong to 2018 or earlier (12 out of 14), and the latest works
were not included. Karopoulos et al. [74] provided a unified taxonomy for IVN IDS. They identified
33 ML-based IDSs designed for IVNs. Individual paper summaries were not included in this work.

Several limitations can be identified in existing reviews and surveys for IVNs. These include a
limited focus on the adopted AI techniques and a lack of discussion of recent state-of-the-art works.
Lack of in-depth analysis of AI-based detection techniques, review of benchmark datasets, result
evaluation, feature importance to detect different attacks, and threats to AI-based models also can
be identified as significant limitations of existing literature. To the best of the authors’ knowledge,
there are no surveys available that focus on AI-based IDS for IVNs. This survey is the first to
review AI-based IDSs for IVNs (particularly the CAN bus) with a novel AI-based IDS taxonomy.
The aforementioned shortcomings are addressed in this survey, and therefore this work is unique.
Table 1 provides a comparison between this survey and other available surveys for in-vehicle IDSs,
highlighting the contributions of this work.

3 METHODOLOGY

This section discusses the scope and survey method used in this work. To ensure scope focus,
this survey does not discuss other related areas such as VANETs, IoT networks, Mobile Ad hoc
Networks (MANETs), and cryptography solutions (CAN frame authentication and encryption).

3.1 Survey Method

3.1.1 Protocol. The papers reviewed in this study were selected using PRISMA (Preferred Re-
porting Items for Systematic reviews and Meta-Analyses) [93] protocol. Figure 1 illustrates the
PRISMA selection process.

3.1.2 Eligibility Criteria.

• Paperspublished between 2016 and 2022 (August) were selected based on the scope of this
survey. Papers should make use of AI algorithms to detect attacks/anomalies in IVNs.
• Google Scholar was used for the keyword search. The keywords used were “in-vehicle intru-

sion detection machine learning,”, “in-vehicle attack detection machine learning,” “in-vehicle
intrusion detection,” “in-vehicle machine learning attack,” “in-vehicle cybersecurity survey,”
“controller area network IDS,” “controller area network attack detection,” “controller area
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Fig. 1. PRISMA protocol used for sampling.

network machine learning,” and “in-vehicle network anomaly detection.” These keywords
were selected considering the focus of this paper.
• Backward and forward snowballing [172] and recommendations given by Mendeley Refer-

ence Manager were also used to collect all relevant references.
• Papers were included or excluded by reading the abstract and introduction considering the

scope of this review. The final set of papers was selected so that each category listed in the
taxonomy had at least one and preferably a few representative papers.

3.1.3 Risk of Bias. Google Scholar is considered a good starting point, as it helps avoid bias for
any specific publisher [172]. This study selected Google Scholar as the search engine. Although
this is a comprehensive review, there will still be good papers not selected, as they are out of
defined eligibility criteria. Only the papers written in the English language were considered. Due
to these limitations, this work may have overlooked some important works.

4 BACKGROUND

This section provides a brief introduction to IVN protocols along with their vulnerabilities to cyber
attacks. Common attack types and characteristics of CAN bus data frames are also discussed in
this section.

4.1 In-Vehicle Networks

IVNs facilitate communication within the vehicle. Among different network protocols, CAN is the
most common network protocol used for in-vehicle communication due to several benefits, such as
low cost, speed, light weight, robustness [14], and simplified installation [7]. Different ECUs com-
municate with each other through the CAN network, and it is considered as a messaged-based
protocol [101]. High-speed CAN bus and low-speed CAN bus are defined based on data rates. The
bit rate of high-speed CAN bus ranges from 125 Kbps to 1 Mbps, whereas the low-speed CAN bus
ranges from 5 to 125 Kbps. CAN bus supports a payload up to 8 bytes. Time-critical modules such
as engine control and transmission control are connected to a high-speed CAN bus, whereas less
time-critical modules such as door control and light control are connected to the low-speed CAN
bus. These two buses are connected through a gateway [98]. CAN Flexible Data (CAN-FD) supports
bit rate up to 8 Mbps with a maximum payload of 64 bytes [39]. Based on the functions and required
communication speed, the network in the vehicle can be divided into four domains [63, 122]: the
power train domain includes time-critical applications such as the engine controller and transmis-
sion; the chassis domain includes steering control, brake control, and suspension, which are also
time-critical applications; the body domain, which includes functions such as light control, win-
dows, and seats; and the infotainment domain controls communication and multimedia functions
such as audio/video, navigation, and display.

Despite the benefits offered by the CAN bus, it is vulnerable to cyber attacks due to various
vulnerabilities [98], such as the following:

ACM Computing Surveys, Vol. 55, No. 11, Article 237. Publication date: February 2023.



237:6 S. Rajapaksha et al.

Fig. 2. CAN bus data frame.

• No authentication: Since the CAN bus has no authentication, any ECU could transmit a frame
with a CAN ID that belongs to another ECU.
• Broadcast domain: The CAN bus is a broadcast domain. All nodes receive CAN frames trans-

mitted through the network. A compromised node can listen to all messages broadcast in
the CAN network.
• No encryption: CAN messages are not encrypted considering the time constraints. Cyber

attackers can collect and analyze these messages easily (sniffing attack).
• ID-based priority: The CAN network uses an ID-based priority to handle multiple concur-

rent messages. The lower the ID, the higher the priority. Malicious nodes can continuously
transmit frames with lower IDs, thus creating a Denial-of-Service (DoS) attack.

FlexRay is a time-triggered in-vehicle communication protocol introduced in 2000 by the
FlexRay consortium. It has higher bandwidth and more fault tolerance capabilities with a maxi-
mum baud rate of 10 Mbps and a payload length of 254 bytes. FlexRay is more expensive compared
to the CAN network. However, it is more vulnerable to DoS and spoofing attacks [79].

MOST is an IVN that transmits multimedia data. MOST uses bandwidths of 25, 50, and 150 Mbps.
The use of higher bandwidth ranges makes it more suitable for multimedia. LIN is an inexpensive
IVN protocol used in less critical applications such as seat belts, door locks, mirrors, batteries, and
temperature monitoring.

4.2 CAN Bus Data Frame

A CAN frame has a specific message structure defined in a database-like file known as the Data-

Base CAN (DBC) file. This is confidential proprietary of the vehicle manufacture and contains all
necessary information of a specific vehicle related to ECUs, CAN messages, signals, message IDs,
message frequency, and payload of the CAN frame [13]. Further, the DBC file specifies whether the
CAN ID is periodic or event driven [107]. There are four CAN frame types that can be identified:
data frame, remote frame, overload frame, and error frame [14]. This article focuses on the CAN
data frame, as all works discussed here used only the data frame in their IDSs to derive features.
The CAN data frame consists of seven fields that support data transmission from the transmitter
to the receiver (ECUs). Figure 2 illustrates the fields of a CAN data frame with respective sizes.
Seven fields of the CAN data frame are described next:

• Start of frame (SOF): Start of frame specifies the beginning of a CAN frame. It uses the dom-
inant bit (logical 0) to inform the beginning of CAN frame transmission to other nodes.
• Arbitration field (CAN-ID): Arbitration field (arbitration ID or simply ID) is used to prioritize

the message when multiple ECUs concurrently transfer messages. For instance, two nodes
with CAN IDs 0x0D0 (000011010000 in binary) and 0x2E1 (001011100001 in binary) try to
transmit messages simultaneously. Node with ID 0x0D0 will gain the bus access to transit the
frame due to the lowest value (higher priority). Usually, CAN ID is 11 bits and the extended
format has 29 bits. Remote Transmission Request (RTR) distinguishes the data frame and
remote frame. Generally, each node (ECU) is assigned one or more IDs. However, the same
ID cannot be used by two nodes (ID is unique for one node).
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Fig. 3. Common attacks on IVNs.

• Control field (DLC): Control field is a 6-bit field including data length code (4 bits) that is
used to identify the length of the payload and two additional bits reserved for future use.
• Data field: Data field contains the actual information that needs to transmit on the CAN bus.

This is also known as the payload of the CAN frame. This ranges from 0 to 8 bytes. Payload
values contain sensor data, category data, constant data, or cyclical counter data [108].
• CRC field: CRC (cyclic redundancy code) is also known as the safety field. This is a 15-bit

field followed by 1-bit CRC delimiter. This is used to check the frame validity.
• Acknowledge field (ACK): This is known as the confirmation field consisting of 1-bit acknowl-

edge and 1-bit delimiter fields. The ACK field is used to ensure that the receiver nodes receive
the CAN frames.
• End of frame (EOF): This specifies the end of the CAN frame.

4.3 Attacks on IVNs

IVNs are vulnerable to different cyber attack types. Attackers can access IVNs through physical
access points (OBD-II port, USB, CD player, etc.), short-range wireless technologies (Bluetooth,
RFID, etc.), and long-range wireless technologies (Wi-Fi, LTE, etc.). Some of the common attack
types include the following:

• DoS attack: DoS attacks try to make communication services unavailable by sending a large
number of frames. In the CAN bus, attackers can continuously send frames with low CAN
IDs (highest-priority IDs) that disable communication between nodes. Koscher et al. [82]
disabled the communication of individual components of the CAN bus using a DoS attack.
Figure 3(a) shows the DoS attack in the CAN bus. Due to the high-priority CAN ID 0x0000,
CAN ID 0x2365, which transmits by ECU B, will be delayed. This attack might increase or
decrease the message frequency of the CAN bus.
• Fuzzing attack: In a fuzzing attack, the malicious node sends a large number of messages into

the network using randomly generated ID, DLC, and CAN payloads that act as legitimate
messages [62]. Chockalingam et al. [30] used hex-swapping and added Gaussian noise to
the UNIX timestamps to create a fuzzy attack in CAN data. Fuzzing attack in the CAN bus
is illustrated in Figure 3(b) (e.g., randomly generated CAN IDs 0x0581 and 0x2146 transmit
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Table 2. Experimental Attacks on IVNs

Reference Attack Type Attack Vector Violated
Security
Property

Affected
Asset

Consequence

[111] 2015 Spoofing, CAN message
injection

ECU Authentication Safety Engine control, break control,
steering wheel control

[112] 2016 Spoofing, CAN message
injection

OBD Authentication Safety Steering activation

[81] 2016 Information disclosure OBD Confidentiality Safety and
reliability

Driver distraction, turn on/off
engine

[123] 2017 CAN message injection ECU Integrity Safety Damage integrated circuit and
gateways

[38] 2018 Spoofing, brute force ECU and OBD Authentication Safety Airbag detonation
[23] 2019 CAN message injection OBD and USB Authentication Safety Control the vehicle remotely

by the attacker ECU A). Attackers can use the prior knowledge of CAN frames (CAN bus
sniffing is used to read and analyse the data) or use this attack without having prior knowl-
edge of CAN frames (as a black-box attack). A fuzzing attack will also increase the message
frequency or change the ID sequences of the CAN bus.
• Replay attack: In replay attacks, attackers store and send valid messages at different times.

For example, previous valid RPM values can be transmitted at a later stage. Even though
this is an easy attack to launch, it can create serious safety risks for vehicles and passengers.
Koscher et al. [82] used replay attacks to control the radio and number of body control
module functions in the CAN bus. Figure 3(c) depicts the replay attack in which attacker
ECU A transmits CAN IDs of ECU B and ECU C. Replay attack might cause to change the
ID or payload sequences (or both).
• Spoofing attack: In a spoofing attack, the attacker targets specific CAN IDs to inject malicious

messages. In some works [38, 64, 111, 112, 130], the authors used spoofing attacks in their
experimental attacks on vehicle networks. Figure 3(d) illustrates the spoofing attack where
attacker ECU A targets CAN ID 0x0571 of ECU B. This attack might change the frequency
of targeted ID and ID sequences.
• Masquerade attack: This is also known as an impersonation attack whereby a compromised

node impersonates another node. For example, the attacker can monitor and learn about
message IDs and their frequencies of weak attacker node B (ID 0x0571). The attacker can
then stop node B message transmission, paving the way for node A to transmit a fabricated
message that represents node B [28]. In this case, the frequency of node B messages remains
the same as before. However, node A will be the transmitter as shown in Figure 3(e). Woo
et al. [173] performed an experimental masquerade attack using an Android smartphone on
a mid-size car. This attack will not change the message frequency. However, the context of
CAN IDs (sequence) or payload might change as a result of this attack.

Figure 3 only illustrates the change of CAN IDs. However, these attacks (fuzzing, reply, spoof-
ing, and masquerade attacks) might change the CAN ID, CAN payload, or both at the same time.
These aspects will be considered in the proposed taxonomy of this survey. Table 2 presents some
of the experimental attacks that were carried out on IVNs. These threats not only pose informa-
tion security or privacy issues but also directly affect the safety of drivers, passengers, and the
surrounding environment. The rest of the article will discuss AI-based proposals to enhance the
security of IVNs (particularly CAN bus).

5 AI-BASED IDSS FOR THE CAN BUS

IDSs can be categorized into two categories as signature-based detection and anomaly-based de-
tection based on the detection technique. Signature-based detection has a low false-positive rate,
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Fig. 4. AI-based IDS taxonomy for the CAN bus. The numbers indicate the sections that cover each topic of

the taxonomy.

as it can be identified previously known attacks accurately. However, signature-based techniques
fail to identify novel or previously unseen attacks. Anomaly-based detection techniques are capa-
ble of identifying novel attacks. AI-based techniques have been successfully used by researchers
to identify cyber attacks in automobiles [71, 107, 168].

The classification of the papers reviewed in this survey is shown in Figure 4. CAN bus is vul-
nerable to cyber attacks such as DoS, fuzzing, reply, spoofing, and masquerade attacks. In the
literature, authors experimented with other attack scenarios, such as USB firmware update, Over-
the-Air (OTA) malicious update, chip tuning, anomalous speed, and RPM changes. Based on the
objectives of the attacker, these attacks target CAN packet frequency or CAN payload or both
fields. IDSs in the literature are designed to capture these changes in the CAN bus traffic. Hence,
these properties were considered in the proposed taxonomy to classify the existing works. These
IDSs developed based on features including CAN ID (ID), CAN Payload (Payload), CAN frame, and
Physical characteristics. CAN frame represents feature combinations of ID, Payload, DLC, and time.
Physical characteristics represent physical layer features such as voltage. IDSs focus on this work,
and exploit AI algorithms such as traditional ML models, DL models, sequence learning models,
and hybrid models. Various ML algorithms such as Decision Tree (DT), Random Forest (RF),
Support Vector Machine (SVM), Logistic Regression, Naive Bayes (NB), and clustering have
been studied for several decades and are known as shallow models or traditional ML models [97].
If an Artificial Neural Network (ANN) model is associated with one or two hidden layers, then
it is considered as a shallow learning method [46]. DL-based models are highly effective for identi-
fying complex patterns. Recently, automotive cyber security researchers have used DL-based mod-
els such as Deep Neural Network (DNN), Recurrent Neural Network (RNN) including Long

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), Convolutional Neural Net-

work (CNN), Deep Belief Network, Autoencoders, and Generative Adversarial Nets (GAN) to
identify intrusions in vehicle networks. Sequence learning is a technique that is highly used in
Natural Language Processing applications. For IVNs, CAN data can also be considered as sequen-
tial data or multivariate time series data. Most of the CAN IDs are transmitted based on defined
time intervals or as a sequence of events. This property can be used to identify the anomalies in
such sequences. N-gram and Hidden Markov Model (HMM)-based techniques have been used
in the recent literature to identify anomalies in the CAN bus. The fourth category, hybrid models,
which used AI-based and rule-based (specification-based) approaches, have their own strengths
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Table 3. Summary of ID-Based Attack Detection in a CAN Bus Using Unsupervised

and Supervised Learning

Reference Model Algorithm Dataset Attack Strengths Weaknesses

[134] 2022 Hybrid GRU Public real data
(HCRL CH, HCRL
SA, ROAD)

16 attacks including
injection and
masquerade attacks

High detection rate for a
wide variety of attacks,
near real-time detection

Limited capability to
detect attacks on
high-frequent aperiodic
IDs

[58] 2022 Deep learning GAN,
Autoencoder

Public real data
(HCRL CH)

DoS, fuzzy, RPM
and gear spoofing

Near real-time detection Limited to message
injection attacks

[136] 2021 Traditional
ML
(Supervised)

SVM, KNN Public real data
(HCRL CH)

DoS, fuzzy, RPM
spoofing

Feature extraction using
benign data

Low detection rate for
spoofing attack

[32] 2022 Deep learning
(Supervised)

CNN Public real data
(HCRL CH)

DoS, fuzzy, RPM
spoofing

High detection rate for
injection attacks

High detection latency

The dataset description can be found in Section 5.5.1. The complete table is available in the supplementary material

associated with this article.

and limitations. Generally, rule-based detection techniques have a low false-positive rate and high
efficiency. AI-based techniques can identify unknown attacks better than rule-based techniques,
even though they require more computing resources.

Both supervised and unsupervised learning can be used to train these algorithms. In supervised
training, the algorithm learns based on the labeled data, whereas unsupervised training learns
by understanding the behavior, structure, and distribution of the data [69]. In IDSs, unsupervised
learning uses only benign data (also referred as one class) to train the algorithm and defined a
threshold to detect anomalies. For instance, the LSTM algorithm could be trained using only be-
nign data without using the labels as outputs [55]. Hence, in this work, algorithms that used only
benign data (one-class) during the training phase are categorized under unsupervised learning.
The following sections review the literature that belongs to each category discussed previously.
Comprehensive summary tables for each section are tabulated in Tables 3 through 8.

5.1 ID-Based Detection

Attacks such as DoS and spoofing are changing some properties of message ID sequences. These
attacks can be launched by inserting or deleting frames that change the frame frequency compared
to normal situations. Even if the attack (masquerade attack) does not change the frequency of
IDs, the context of the IDs might be changed due to the time synchronization mismatch with a
legitimate ECU [27]. These properties can be utilized to detect attacks on the CAN bus. In reviewed
literature, the authors used IDs as a feature of AI-based algorithms to develop IDSs. Timestamp
or time differences between consecutive IDs were used to calculate feature values related to IDs.
This section discusses such IDSs.

5.1.1 Unsupervised Learning. Seo et al. [140] proposed a novel IDS for IVNs based on GAN. The
GAN-Based Intrusion Detection System (GIDS) can learn to detect unknown attacks using
only benign data. Two models—a generative model to capture the data distribution and a discrim-
inate model to estimate the probability that a sample comes from the training data—were used in
GIDS. Two discriminators were combined to detect both known and unknown attacks. Hyundai’s
YF Sonata was used as a testing vehicle to generate the Hacking and Countermeasure Research

Labs Car Hacking (HCRL CH) dataset [51] and launched DoS, fuzzy, RPM, and gear spoofing
attacks. The first discriminator achieved 100% average accuracy, whereas the second discriminator
achieved 98% average accuracy. As per the authors, GIDS is difficult to manipulate by an attacker
due to the pre-trained DL method. Further, it can detect intrusions in real time. The same data
pre-processing technique used in the work of Seo et al. [140] was used for the GAN-based IDS
proposed by Chen et al. [25]. They replaced the GAN’s true false classifier with additional double
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Table 4. Summary of Payload-Based Attack Detection in a CAN Bus Using Unsupervised Learning

Reference Model Algorithm Dataset Attack Strengths Weaknesses

[15] 2021 Deep learning LSTM Public real data
(HCRL CH)

Flood, replay, drop,
spoof, fuzzy

Near real-time detection Only considered
continuous signal values,
ignore ID correlations

[151] 2021 Deep learning CNN-LSTM Public real data
(HCRL SET)

RPM and gear
spoofing

Used only benign data
for training

Low detection rate for
gear attacks

[158] 2022 Deep learning CNN Simulation data
(SynCAN)

Plateau, continuous
change, playback,
suppress

Used only benign data
for training, time and
memory efficient

Ignored the signal
dependencies

[171] 2022 Deep learning Autoencoder Public real data
(HCRL OTIDS)

Payload value
change

Near real-time detection Only tested for simple
dataset and attack

The dataset description can be found in Section 5.5.1. The complete table is available in the supplementary material

associated with this article.

classifiers. This model outperformed the model proposed by Seo et al. [140] for all attacks. The
HCRL CH dataset was used to evaluate the GAN and convolutional adversarial autoencoder-based
model [58]. This model was trained with unlabeled data to learn the normal patterns. Experimental
results showed that the proposed model outperforms baseline models for both detection rate and
latency. However, this work was only limited to message injection attack detection. Kavousi-Fard
et al. [75] also used a GAN-based model for IVN anomaly detection. Frequency for each CAN ID
was used as the feature, which limits the detection of attacks such as masquerade attacks.

Avatefipour et al. [13] proposed an Anomaly Detection Model (ADM) based on a modified
One-Class Support Vector Machine (OCSVM). The authors used a modified bat algorithm as
the parameter optimization algorithm. For the model evaluation, CAN bus data from an unmodified
vehicle and two other public CAN bus datasets [88] were used. Isolation Forest (IF) and classical
OCSVM were selected to benchmark the proposed model. The proposed model outperformed the
baseline models for DoS attacks. Furthermore, the computational time requirement was sufficient
to deploy the proposed solution in a real-world environment. Similarly, the OCSVM-based ADM
proposed by Al-Saud et al. [3] used ID frequencies as features. They used the social spider opti-
mization algorithm to find the best support vector regression parameters. A real vehicle dataset
with a DoS attack was used to evaluate the proposed model. Despite the promising results of both
models, the lack of testing against various real-life attack scenarios can be identified as a common
limitation. IDS, which used an adapted streaming data IF algorithm [143], showed that CAN traffic
demonstrates insignificant concept drift. Therefore, model retraining based on a sliding window
did not improve the model performance.

Kalutarage et al. [71] developed a context-aware anomaly detector for monitoring cyber attacks
on CAN bus using sequence modeling. N-gram distributions were used to build the sequence model.
The authors have estimated maximum likelihood estimators (MLEs) for each N-gram and devel-
oped an algorithm to calculate the anomaly certainty ratio using pre-build N-gram models, a prede-
fined threshold, and observation windows. The anomaly certainty score and predefined threshold
were used to classify the message as anomaly or benign. Experimental results that utilized the
HCRL CH dataset showed that the proposed model could identify RPM and gear spoofing attacks
with higher accuracy. This was tested against only two types of spoofing attacks, and the compu-
tational efficiency of the algorithm was not discussed. An ensemble model based on GRU and time-
based models was proposed by Rajapaksha et al. [134] to overcome the computational inefficiency
of N-gram-based models and to detect a wide variety of attacks. The GRU-based model predicts
the next CAN ID, whereas the time-based model monitors ID inter-arrival times. Three public
datasets and 16 attacks were used to evaluate the proposed model and achieved a greater than
99% F1-score for 13 attacks. This work showed ensemble models’ effectiveness in detecting a wide
variety of CAN bus attacks. Shi et al. [144] proposed a temporal convolutional network based IDS
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using word embedding of CAN IDs. Experimental results on the HCRL CH dataset showed good
detection for fuzzy and DoS attacks. Treating CAN ID sequences as word sentences, Nam et al.
[118] introduced a Generative Pretrained Transformer (GPT) model to learn the pattern of a
normal CAN ID sequence. Deviations from normal patterns were identified as attacks. They com-
bined two GPT networks in a bi-directional manner. This outperformed the single unidirectional
GPT model. The proposed model was designed only to detect injection attacks. A bag-of-words
approach was used in the work of Baldini [16] to detect intrusions in IVNs. They generated fre-
quency counts of the presence of words for each sliding window and used them as a feature for ML
models. Marchetti and Stabili [107] proposed an anomaly detection algorithm considering the re-
curring pattern of CAN IDs. They created a transition matrix with all possible transitions between
consecutive CAN IDs. This is equivalent to 2-grams in the N-gram based model used in the work
of Kalatarage et al. [71]. Instead of probabilities, the authors used true and false status to generate
the transition matrix. In the attack detection stage, a validated transition matrix was used to check
the availability of consecutive ID sequences and identified new IDs as normal or anomalies. A real
dataset with replay, bad injection, and mixed injection attacks was used for model evaluation. Ex-
perimental results showed a low detection rate of around 20% to 40% for replay attack. Compared
to Kalatarage et al. [71], this might produce a high false-positive rate, as this approach assigned
labels for each message, whereas Kalatarage et al. [71] classified messages based on a window.

Desta et al. [32] implemented an IDS using an LSTM model. Two approaches were used for the
performance evaluation. The first approach compared the predicted ID with the actual ID. This only
achieved 60% accuracy. The second approach used log loss and a predefined threshold to identify
anomalies and achieved reasonable accuracy. A real car dataset was used with attacks such as in-
sertion, drop, and illegal IDs. In another work [33], Desta et al. improved the previous IDS [32] by
training separate LSTM models for each ID and combining them to create a single anomaly sig-
nal. This achieved 100% detection for all attacks. Song and Kim [147] proposed a self-supervised
method for in-vehicle anomaly detection using noised pseudo-normal data. The proposed model
included two models: a generator and a predictor. The generator used an LSTM model similar
to Desta et al. [32] to predict the next CAN ID and the predictor used the Reduced Inception-
ResNet model proposed in the work of Song et al. [149] to detect anomalies. They used the noised
pseudo-normal data generated by the generator model to train the ADM. The HCRL CH dataset
was used for the performance comparison, and the proposed model outperformed the other algo-
rithms such as SVM, OCSVM, and CNN. Sharmin and Mansor [142] proposed IDS based on IF to de-
tect message injection attacks using CAN ID timing as features. The HCRL CH dataset was used to
evaluate the algorithm with gear and RPM spoofing attacks. This was trained using a one-class ap-
proach. Linear time complexity and low resource requirement were the advantages of the proposed
solution.

Kuwahara et al. [86] used two types of features including total counting and ID counting in
a CAN sequence window to detect malicious messages. Both supervised and unsupervised meth-
ods were used as the classification approach. Principal Component Analysis and k-d tree were
used to optimize the nearest neighbor discovery. Experimental results that used a real vehicle
dataset with simulated attacks showed that the supervised method outperformed the unsuper-
vised method. However, supervised methods require attack data during the training and fail to
identify unknown attacks. Han et al. [54] proposed an anomaly detection and attack identification
method for IVNs. They calculated statistical features for event-triggered intervals for each CAN
ID. Calculated feature values were used to train ML models such as DT, RF, and XGBoost to iden-
tify attacks. Experimental results that used two real datasets with realistic attacks showed high
anomaly and attack detection capability.
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5.1.2 Supervised Learning. The sequential behavior of CAN data can be used to detect anoma-
lous behavior. Using this property, Song et al. [149] proposed a Deep Convolutional Neural

Network (DCNN)-based IDS to protect the CAN bus from cyber attacks. During the injection
attack period, a sequential pattern of the ID changes due to frequent frame injection. The authors
capitalized on this change to detect message injection attacks. Inception-ResNet was used as the
DCNN model with 29 × 29 × 1 input and binary output. The HCRL CH dataset was used to evalu-
ate the proposed solution. The DCNN model outperformed the baseline models for all attack types.
Further, the proposed model required 5 ms to process one sample, which included 29 CAN mes-
sages under GPU acceleration. Desta et al. [34] also used a CNN-based IDS trained on recurrence
plots. Deployment on NVIDIA’s Jetson TX2 showed that higher detection latency of 117 ms. A
lightweight multi-attack quantized ML model deployed using Xilinx’s DL processing unit IP on
a Zynq Ultrascale+ (XCZU3EG) FPGA was proposed in the work of Shankar [141]. This system
used CNN as the detection algorithm and outperformed the baseline models. A blockchain-based
federated forest Software-Defined Networking (SDN)-enabled IDS was proposed by Aliyu et al. [8].
This system created a RF model to detect attacks. Fourier transformation was used to create fea-
tures from CAN IDs. The HCRL OTIDS [48] dataset was used for the performance evaluation. The
usage of blockchain reduces the risk of adversary poisoning, which potentially improves the se-
curity of the AI model. This model helps vehicle owners and manufacturers keep the underlying
data confidential.

Jedh et al. [67] used an LSTM model to detect malicious message injections in the CAN bus.
They used message sequence graphs of CAN IDs at successive time windows to calculate Pearson
and cosine similarities, which were then used as the features for the LSTM model. A real vehicle
dataset with fabricated RPM and speed messages was used to evaluate the model performance.
Experimental results showed that the detection capability of the algorithm depends on the selected
window size. Refat et al. [136] also used a similar graph-based model as a CAN IDS. They extracted
seven graph properties as features and used them to train SVM and KNN ML models. The proposed
model achieved a greater than 95% F1-score for DoS, fuzzy, and spoofing attacks in the HCRL CH
dataset.

One of the major drawbacks of ID-based IDSs is their limited ability to detect attacks that manip-
ulate the message payload without changing ID sequences or frequencies. However, even for an
attack that manipulates only the payload, CAN ID sequences might change due to event-triggered
messages in the CAN bus [122].

5.2 Payload-Based Detection

Attacks such as replay and spoofing not only change the CAN IDs but might also change the CAN
payload as well. This depends on the characteristics of the particular attack. Generally, there are
two ways to change the payload: either replay (previous payloads) or modify the payload values.
These changes will cause to change in the pattern of payload sequences. This section discusses the
IDSs that utilize this property to detect attacks.

5.2.1 Unsupervised Learning. Chockalingam et al. [30] tested LSTM and OCSVM to detect
anomalies in CAN frames. The authors used a real dataset and created fuzzing and misplaced
non-anomalous packets. Experimental results have shown that the OCSVM model produced a 7%
false-positive rate using the linear kernel. The non-linear kernel took much time to optimize. The
LSTM model outperformed OCSVM. However, this was tested with two attack types, and complete
evaluation results for individual attack types are unavailable. Tomlinson et al. [161] used a one-
class compound classifier to detect attacks in the IVN. Payload values of three separate CAN IDs
were considered for the analysis. The authors used fuzzing attacks to test the classifier. However,
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evaluation results were not promising and produced many false positives. They proposed ensem-
ble detection methods for CAN IDs to overcome problems that arise with one classifier. Tomlinson
et al. [162] used OCSVM, the compound classifier, and the Local Outlier Factor (LOF) to identify
attacks in CAN data values. Experiment results showed that OCSVM and LOF outperformed the
compound classifier. However, the results were not acceptable to use in real-world situations.

Narayanan et al. [120] built an anomaly detection system called OBD_SecureAlert. This concept
is based on formulating a sequence of CAN bus messages as a time series ML problem. The au-
thors considered the vehicle movement as a sequence of states dependent on its previous state.
All observations of a sliding window were used to determine the posterior probability of that se-
quence. The anomalous status was identified by considering the probability of such sequence and
a defined threshold. Evaluation results showed that OBD_SecureAlert works well with single and
multiple observations. However, this was tested against limited anomalous states, and identifying
specific sensor data in CAN messages is challenging. Levi et al. [90] proposed a HMM-based hybrid
anomaly detection algorithm using a new temporal detection technique. The authors used a rule-
based engine to monitor different interfaces and generated events using raw data. These events
from different interfaces were used to train a HMM model as a normal behavior. Experimental re-
sults showed that the proposed model achieves high AUC and F1 measures with low false-positive
and false-negative rates. They proposed a hybrid deployment approach that uses a rule-based
client to send data to the back-end and run the detection algorithm on the cloud. This cloud-based
platform facilitates monitoring car fleets in addition to individual cars. Despite these advantages,
the proposed method is based on events and relevant attributes. It is challenging to obtain the
complete list of events and attributes.

Taylor et al. [157] introduced an LSTM model for CAN bus anomaly detection. The underlying
concept of this approach is that the ML model can be trained to predict the next packet data
value, and its deviation from the actual value can be used to identify the anomalies. Nineteen
CAN IDs were selected, and they trained different LSTM models for each ID. The authors selected
a real dataset and created five types of attacks considering three basic cases: new packets are
added, expected packets are missing, and the payload of packets is unusual. Experimental results
have shown that different IDs achieve various ROC curve values ranging from 0.17 to 1 for five
attack types. For the practical use of the proposed model, the threshold needs to be selected with
more experiments. Further, since they considered separate models for IDs, it cannot utilize the
inter-dependencies between IDs for anomaly detection. Tanksale [154] proposed an LSTM-based
IDS using CAN measurements such as longitudinal acceleration, RPM, and brake position. This
model can predict the future values of selected CAN signals based on previous signal values. The
deviation between the predicted and actual values was used to identify the anomalous signals. A
dataset collected from 10 cars was used to train the algorithm, whereas a subset of the dataset
with injected anomalous frames was used for the performance evaluation. The proposed model
showed greater than 98% accuracy with a 1% to 2% false-positive rate. A similar LSTM-based model
with an embedding layer was proposed in the work of Balaji and Ghaderi [15] for CAN payload
values. The usage of payload values of other IDs as the context ensured the capturing of inter-ID
correlation. Experimental results on gear attacks of the HCRL CH dataset showed a relatively lower
detection rate. Hanselmann et al. [55] introduced CANet, an LSTM-based IDS to identify attacks
in the CAN bus. They used separate LSTM models for each CAN ID and concatenated the outputs
to a single latent vector. This was trained in an unsupervised manner, and the difference between
initial and reconstructed signal values was used to define the normal status. The authors used a
real vehicle dataset with 13 IDs and a synthetic dataset (SynCAN) with 10 IDs for the performance
evaluation. Six attacks and two baseline models were selected to evaluate the model performance.
Experimental results showed that the proposed model achieved a higher detection rate and low
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false-positive/negative rates for all attacks in both datasets. It outperformed the baseline models
for almost all attack types. However, their anomaly score is only feasible with a limited number of
signals and hence not suitable for real-world applications.

Novikova et al. [124] developed an autoencoder to detect anomalous payload in the CAN bus.
A large dataset from nine different vehicles was used to train the algorithm. They identified
81 signals common to all vehicles and grouped them into 32 subgroups of three signals based
on the signal relationships. Experimental results on modified payload values showed a higher
detection rate. The SynCAN dataset was used to evaluate the reproducibility of the proposed
model. Detection rates of plateau, continuous change, and playback attacks were 99%, 94%, and
95%, respectively. Subgroups require a separate autoencoder for each group, and deploying a large
number of DL models under a resource-constrained IVN is a challenging task. Kukkala et al. [83]
proposed a GRU-based recurrent autoencoder to detect anomalies in the CAN bus. The SynCAN
dataset was selected as the evaluation dataset, and separate autoencoder models were trained
for each ID. Signal-level intrusion scores between predicted and true signal values were used to
identify the anomalous signal values. The authors used accuracy as the evaluation metric without
considering the highly imbalanced status of the dataset. Longari et al. [103] also proposed a similar
LSTM autoencoder model. A real-world dataset from an Alfa Romeo Giulia Veloce with injected
anomalous frames was used for model training and evaluation. Kukkala et al. [84] improved the
GRU-based recurrent autoencoder [83] by replacing the GRU layer with an LSTM layer and intro-
ducing the self-attention mechanism. Instead of identifying the threshold value as the intrusion
score, the proposed model used OCSVM as the attack detector. Thiruloga et al. [158] introduced a
novel anomaly detection framework using a temporal CNN. The proposed model used a DT-based
classifier as the attack detector. This model achieved an improvement of 32.7% in false-negative
rate compared to the best-performing baseline model. All of these models [83, 84, 103, 158]
processed ID-wise data independently and trained separate models for each ID. This limits the
capability of detecting signal correlations to detect anomalies such as collective anomalies. The
deep contractive autoencoder-based ADM proposed by Lokman et al. [102] achieved 91% to 100%
detection rates for three attacks. Gherbi et al. [45] proposed a multivariate time series represen-
tation to represent CAN payload data and used autoencoder-based DL models such as the fully
connected network, CNN, LSTM, and temporal convolution network to detect intrusions in the
CAN bus. The proposed models achieved a higher F1-score for all attacks in the SynCAN dataset.
However, the proposed feature matrix might be inefficient for a real vehicle due to the many ECUs.

Narasimhan et al. [119] trained an autoencoder-based model and used a Gaussian mixture
model to identify intrusions in the CAN bus. All other autoencoder-based models discussed earlier
used the reconstructed signal for the anomaly detection, whereas this model used the latent space
as the input to the Gaussian mixture model. A real dataset of Mercedes ML350 with DoS and fuzzy
attacks was used for the performance evaluation. However, this dataset included only four CAN
IDs; therefore, results obtained through this model might hinder the practical performance of the
model. A multi-layer denoising autoencoder model was used by Wei et al. [171]. He et al. [57]
proposed the Hybrid Similar Neighborhood Robust Factorization Machine Model (HSNRFM).
They used data fields of similar neighbors to enhance the feature representation. The factorization
machine model used the second-order interaction features to predict the final probability of
anomalous outcomes. Both of these models [57, 171] used only two CAN IDs to train and evaluate
the proposed models. Tanaka et al. [153] employed a density ratio estimation method using a
Neural Network (NN) model. This approach is based on the change detection method to detect
packet frequency changes. However, this model also used only three CAN IDs for the model eval-
uation. CNN-LSTM with attention mechanism based IDS was proposed by Sun et al. [151]. This
model used one-dimensional convolution to extract the abstract features, whereas bi-directional
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LSTM was used to extract time dependence. They only considered the continuous physical values
extracted from the 64-bit payload. Bit flip rate was used to identify continuous fields. The CAN
Signal Extraction and Translation Dataset (HCRL-SET) provided by HCRL was used for the model
evaluation with simulated payload attacks. The proposed model outperformed the baseline mod-
els. They evaluated the model detection time under attack in a real vehicle. This showed that the
attacks could be detected within 5.7 ms in a real vehicle. However, the proposed model has a few
limitations, including selecting a subset of signal values and ignoring payload correlation between
different IDs.

5.2.2 Supervised Learning. Kang and Kang [73] proposed a DNN-based IDS for IVNs. CAN pay-
load was selected to generate the features, whereas mode and value information were used as the
dimensionality reduction technique. Initial weights for the DNN model were obtained using a sep-
arate Deep Belief Network. Finally, the authors used a template-matching technique to compare
the training sample and a new CAN packet to identify the attack scenarios. The authors used a
simulation dataset with packet injection attacks for the evaluation. Experimental results showed
that the DNN model outperformed baseline models. Zhou et al. [185] proposed a DNN and a triplet
loss network for CAN bus anomaly detection. The proposed model used the distance between an-
chor samples and the positive and negative examples to identify anomalies. Experimental results
showed the real-time detection capability of the algorithm. However, both Kang and Kang [73] and
Zhou et al. [185] relied on mode and value information of CAN data, and identifying these infor-
mation is quite challenging without having the DBC file. Zhang et al. [181] proposed DNN-based
IDS for the CAN bus. They have used Gradient Descent with Momentum and Gradient Descent
with Momentum and Adaptive Gain to improve efficiency and accuracy. Performance evaluation
was done using a real dataset collected from a car. Experimental results revealed that the proposed
model could detect replay attacks with a high detection rate. Further, it was noticed that the Gradi-
ent Descent with Momentum and Adaptive Gain algorithm achieved faster convergence compared
to the ADM algorithm. The authors had access to the sensor values and used those as separate fea-
tures. However, these values cannot be distinguished without having the DBC file or knowledge
about the CAN payload.

Fenzl et al. [40] introduced a continuous field classification algorithm to identify the payload
value alignments. Then, a DL-based approach was used to identify the anomalous fields. Datasets
from Renault Zoe electric car and manipulated signals were used to evaluate the model perfor-
mance. Interestingly, their continuous field classification approach showed slightly better detec-
tion capability than the field classification obtained by the DBC file. However, these attacks are
not realistic, as they were created during the post-processing. This approach does not reflect the
inter-dependencies among variables. Martinelli et al. [109] used four k-Nearest Neighbor (KNN)

classifiers to identify four types of attacks that target the CAN bus. These algorithms include two
types of fuzzy-roughKNNs the discernibility classifier and a fuzzy unordered rule induction algo-
rithm. Fenzl et al. [41] used DTs modeled through genetic programming to detect intrusions in
the CAN bus. Features and feature boundaries selection were based on the CAN DBC files. Three
datasets, including the HCRL CH dataset, were used to evaluate the performance of the algorithm.
Experimental results showed that the proposed algorithm achieved similar detection capability as
ANN algorithms with much-improved detection time.

Wang et al. [168] proposed an LSTM model with optimized parameters. They implemented an
LSTM model to evaluate the vulnerability of an ADM with a black-box attack. A dataset of the
velocity of a vehicle was collected from the CAN bus for evaluation purposes. The threshold to
identify anomalies can be defined considering the maximum MSE. Evaluation results for the ADM
under attack scenarios are not available, as the authors only focused on the evaluation results of
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Table 5. Summary of Payload-Based Attack Detection in a CAN Bus Using Supervised Learning

Reference Model Algorithm Dataset Attack Strengths Weaknesses

[181] 2019 Deep learning DNN Simulation data Packet injection Real-time detection Limited generalization
capability without a
CAN DBC file

[40] 2020 Deep learning DNN Collected real data
(Renault Zoe
electric car data)

Payload value
manipulation

High detection rate,
explainability of the
results

Only tested for simple
simulated attacks

[168] 2020 Deep learning LSTM Collected real data
(Toyota hybrid car
data of 120-second
drive)

DoS, fuzzing,
spoofing

Both point and
contextual anomalies
detection

Only tested for limited
attacks

[41] 2020 Traditional
ML

DT, genetic
programming

Public real data
(HCRL CH, Tesla
Model X data,
Renault Zoe
electric car data)

RPM and gear
spoofing

Near real-time detection,
memory efficient

Limited generalization
capability without a
CAN DBC file

A dataset description can be found in Section 5.5.1. The complete table is available in the supplementary material

associated with this article.

the victim model for attacks. Similarly, Li et al. [92] used an LSTM model to test an adversarial
attack defending system. To this end, they used the LSTM model proposed by Khan et al. [78]. This
model achieved a 98% accuracy for the used simple attack scenario.

5.3 CAN Frame-Based Detection

In addition to using only ID or payload as the feature, IDSs in the literature used a combination of
features to capture the pattern changes in CAN data sequences. This has the advantage of detecting
both ID changes and payload manipulation attacks. Other features combined with ID and payload
are DLC and time (time gap).

5.3.1 Unsupervised Learning. Berger et al. [20] tested NN, LSTM, SVM, and OCSVM algorithms
for IVN attack detection. Experimental results that used the HCRL CH dataset showed that NN
outperformed other models. A mobile edge-assisted LSTM-based anomaly detection approach was
proposed by Zhu et al. [187] to overcome the computational limitations of IVNs. A real-time per-
formance of 0.61 ms was observed in the proposed model with around 90% accuracy. Gao et al. [43]
introduced a new in-vehicle IDS based on DL and SOEKS (set of experience knowledge structures).
Experimental results that used a real vehicle dataset showed that usage of SOEKS and information
entropy improved attack detection. Barletta et al. [17] proposed an unsupervised Kohonen SOM
(self-organizing map)-based anomaly detector for the CAN bus. They integrated Kohonen SOM
with a k-means clustering algorithm using a distance-based approach. This model was tested with
DoS, fuzzy, gear, and RPM spoofing attacks. They compared this with the traditional approach
where the k-means algorithm processed a neuron’s codebook vectors. Experimental results have
shown that the proposed technique outperforms the traditional approach for all attack datasets.
Leslie [89] proposed an ensemble hierarchical agglomerative clustering-based model to detect ma-
licious traffic in heavy-duty ground vehicles. The author used a dataset related to the SAE J1939
protocol, which is based on the CAN bus. This was evaluated using spoofed engine speed messages
and showed a higher detection rate.

Lin et al. [96] proposed a deep denoising autoencoder-based model to detect injection attacks
on IVNs. They used an evolutionary-based optimization algorithm to overcome premature
convergence and find the optimum network structure. Experimental results that used the HCRL
OTIDS and two real datasets showed that the proposed model outperformed selected baseline
models. Nakamura et al. [117] proposed a hybrid model of a LightGBM-based supervised model
and an autoencoder-based unsupervised model. Time differences of consecutive CAN IDs, CAN
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Table 6. Summary of CAN Frame-Based Attack Detection in a CAN Bus Using Unsupervised Learning

Reference Model Algorithm Dataset Attack Strengths Weaknesses

[96] 2020 Deep learning Autoencoder Collected real data
and public real data
(HCRL OTIDS)

Flooding, fuzzy,
and malfunction

Found the optimum
network learning
structure for a higher
detection rate

Risk of finding a
complex model structure

[133] 2021 Deep learning LSTM Collected real data Random CAN
payload values

Used only benign data
for training

Limited generalization
capability to other
vehicles

[117] 2021 Hybrid LightGBM and
Autoencoder

Public real data
(HCRL SA)

Flooding, fuzzy,
and malfunction

Used only benign data
for autoencoder model
training

Limited performance
evaluation

[76] 2021 Deep learning LSTM Public real data
(HCRL CH)

DoS, fuzzy, RPM,
and gear spoofing

Near real-time detection Demanded a large
number of observations
to obtain high detection
accuracy

A dataset description can be found in Section 5.5.1. The complete table is available in the supplementary material

associated with this article.

ID, and payload values were used as the features. Experimental results that used the HCRL

Survival Analysis (HCRL SA) dataset showed that the hybrid model outperformed the pre-
trained LightGBM model. However, a comparison between the pre-trained and autoencoder
models is not available to make a fair comparison of the hybrid model performance. Qin et al.
[133] proposed an LSTM-based anomaly detection algorithm to detect the abnormal behavior of
the CAN bus. Experimental results have shown that the proposed model can detect anomalous
data with greater than 90% accuracy. Further, the authors tested this with two more vehicles, and
the performance was not good enough to generalize the model to other vehicles. An LSTM model
with an improved feature processing technique was used in the work of Khan et al. [76] for IVN
malicious activity detection. The HCRL CH dataset based experimental evaluation outperformed
the baseline models for both detection rate and latency. The LSTM autoencoder-based model
proposed by Ashraf et al. [12] also used the HCRL CH dataset. Packet count and bandwidth of
the outbound traffic of a fixed window were used as the features. These features are only suitable
for detecting injection attacks. Zhou et al. [186] proposed an autoencoder model with dedicated
models for each CAN ID. An improved IF method with data mass was used to detect tempering
attacks in the work of Duan et al. [36]. This was evaluated using a simulation environment and
outperformed the OCSVM and LOF algorithms.

5.3.2 Supervised Learning. Tian et al. [159] proposed an IDS based on the Gradient Boosting De-
cision Tree for the CAN bus. Nine features were used for the classification, including the payload
of CAN message and entropy-based feature. They changed the payload values of a real dataset to
create abnormal messages. Experimental results showed that the true-positive rate was 97.67% and
the false-positive rate was 1.2%. However, this was tested with a very basic attack scenario of CAN
payload values changing, and real-world attack detection will be much more complex. Wasicek
et al. [169] implemented a CAID (context-aware IDS) framework using ANN to identify manipu-
lations in IVNs. CAID is equipped with three modules: the monitor module reads and aggregates
information, the detectors module identifies anomalies, and the reporter module connects with the
user. Features used for ANN model include vehicle speed, engine RPM, fuel rate, and calculated
load. This model was evaluated using a real vehicle for chip tuning and power boxing manipula-
tions. Experimental results have shown that it could accurately recognize the manipulated attacks.
However, this experiment was done in a constrained environment, whereas the real-world envi-
ronment might be quite different. The ANN-based lightweight model proposed by Basavaraj and
Tayeb [19]. This model marginally outperformed the baseline models. Alshammari et al. [9] pro-
posed KNN and SVM algorithms to cluster and classify DoS and fuzzy attacks in the CAN bus. As

ACM Computing Surveys, Vol. 55, No. 11, Article 237. Publication date: February 2023.



AI-Based IDSs for In-Vehicle Networks 237:19

per the experimental results, KNN outperformed the SVM algorithm for both attacks of the HCRL
CH dataset. However, the DoS detection rate was comparatively low compared to the fuzzy attack.

Zhang et al. [184] proposed an IDS for the CAN bus considering the balance between the effi-
ciency of the rule-based approach and the high detection rate of the DNN-based approach. The
first stage, which is the rule-based approach, enables efficient anomaly detection. CAN frames,
which pass the rule-based detection model, send to the DNN-based detection model to further
identify undetected anomalies. Evaluation against five types of attacks using three real datasets
showed high detection rates and low false-positive rates for all datasets. However, evaluation re-
sults with regard to five attack types are not included in this work. Similarly, Zhang and Ma [183]
introduced a hybrid approach for in-vehicle intrusion detection. Datasets related to four real ve-
hicles were used for the performance evaluation. This approach was only applicable to periodic
messages. Weber et al. [170] proposed a hybrid IDS that is capable of identifying both point and
contextual anomalies. The authors used eight classes of sensor data defined by Müter et al. [116].
They used LODA (a lightweight online detector of anomalies) [131] as the classification algorithm.
Synthetic CAN data with an altered sequence was used to evaluate the proposed model. Despite
the promising results, this was tested with limited simplified anomaly scenarios. Rule-based and
RF-based hybrid IDS was proposed by Kang et al. [72]. Time interval, data field differences, and ID
lag values were used as the features. The RF model showed a poor detection capability than the
rule-based approach.

Kalkan and Sahingoz [70] used six different ML models—RF, bagging, ADA boosting, NB, Logis-
tic Regression, and NN—to compare their attack detection capability of a large CAN dataset. The
authors could achieve a promising detection rate using simple ML algorithms with default param-
eters. However, they did not discuss the dataset creation or features used to train the algorithms.
Similarly, Alfardus and Rawat [6] also used ML algorithms such as KNN, RF, SVM, and Multilayer

Perceptron (MLP) to detect CAN bus attacks. Moulahi et al. [114] used RF, DT, SVM, and MLP to
compare the detection capability. Features related to time, ID, DLC, and payload values were used.
Performance evaluation using the HCRL OTIDS dataset showed very low detection capability for
fuzzy attacks. Amato et al. [10] used NN and MLP-based models to detect attacks on the HCRL CH
dataset. Dong et al. [35] did a comparative study on supervised versus semi-supervised ML for IVNs
anomaly detection. Minawi et al. [113] used Random Tree, RF, Stochastic Gradient Descent with
hinge loss, and NB to detect gear and RPM spoofing, DoS, and fuzzy attacks in the HCRL CH dataset.
CAN ID and payload values were used as the features. Except for the fuzzy attack, all attacks were
detected with a 100% F1-score. Anjum et al. [11] also used the HCRL CH dataset to evaluate the
XGBoost-based CAN IDS. Park and Choi [129] used multi-labeled hierarchical classification as the
intrusion detection model. Experimental results that used the HCRL SA dataset showed that the
proposed model outperformed the selected baseline models. The same dataset was used in the NN-
based IDS proposed by Francia and El-Sheikh [42]. The main objective of the proposed approach
was to identify vehicle models and anomalies. All of these works [6, 10, 11, 35, 70, 113, 114, 129] can
be considered as basic ML and DL model comparisons for CAN attacks. None of these models has
the capability to detect unknown attacks. The XGBoost classifier outperformed the VGG16 model
for gear and RPM spoofing attacks in the work of Lin et al. [94]. Aksu and Aydin [1] proposed a
meta-heuristic algorithm called the modified genetic algorithm for the CAN feature selection. This
can be considered as a dimensionality reduction approach. They used ML models such as SVM and
DT to evaluate the effectiveness of the feature selection.

Suda et al. [150] proposed LSTM-based IDS, which utilized the time series features of the CAN
frame. These features include frame interval (derived from the time), ID, and payload values. Data
was collected from a real vehicle and used modified ID, data field, and flooding as attacks to evaluate
the system. Khan et al. [77] proposed an LSTM-based attack detection model for IVNs. They used
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two attack-free CAN bus datasets—HCRL CH and the AEGIS repository [68]—to create replay
and amplitude-shift attacks. Experiment results for replay and amplitude-shift attacks showed
that the LSTM model achieved the best accuracy for both datasets. Even though LSTM recorded
the best results comparatively, these figures are not promising, as accuracy and precision values
were around 80% to 90% and recall values were around 30% to 40%. Further, the DBC file and
processed data with features are hard to find. Xiao et al. [177] introduced a novel RNN-based IDS by
optimizing LSTM and GRU architectures and using a simplified attention model to make the model
lightweight. The RF algorithm was used as the classification algorithm using the features generated
by the RNN model. In contrast, CAN ID, DLC, and payload fields were used as the input features
for the RNN model. They validated their approach using the HCRL OTIDS dataset and compared
the performance with eight variants of the proposed model. However, the RF algorithm learns
only to detect attacks in the training dataset and may fail to detect new attacks. Ma et al. [106]
proposed a GRU-based lightweight IDS for CAN bus intrusion detection. They also used a low-
complexity feature extraction algorithm to extract features from CAN frames. The proposed model
showed near real-time performance and a higher detection rate than the baseline models. However,
the usage of the supervised learning approach limits novel attack detection. An attention-based
technique was used in the work of NasirEldin et al. [121]. An attention layer was used to capture the
most important part of the data, whereas a self-attention layer was used to identify the relationship
between each data element. They used positional encoding to capture the positional information.
Performance evaluations that used HCRL CH data showed that the proposed model marginally
outperformed baseline models, including an LSTM model.

Hossain et al. [62] proposed an IDS for the CAN bus based on LSTM. The authors used both
binary and multi-class classification to evaluate the IDS with vanilla LSTM and stacked LSTM
models. Experimental results that used the HCRL SA dataset showed that the proposed vanilla
LSTM model outperformed the compared survival analysis method. Since both CAN ID and
payload have been considered in the model, it can detect both point and contextual anomalies.
They used the same model in another work [61]. Hossain et al. [60] used a CNN model instead of
the LSTM model proposed in their other work [62]. They collected datasets from three cars and
injected anomalous frames to create attacks. The proposed model achieved a high attack detection
rate for all attacks. Due to the supervised learning approach used, both of these models [60, 62]
cannot detect unknown attacks. The CAN bus attack detection framework introduced by Tariq
et al. [155] utilized both rule-based and DL (LSTM) models. DoS, fuzzing, and replay attack were
used to evaluate the proposed model. The ensemble model achieved better accuracy than the
individual rule-based or LSTM model for all attacks. Detection time analysis showed that the
average detection time delay was 0.02 seconds. This was evaluated against three simple attacks
that changed the ID frequency significantly. They also introduced CANTransfer, a transfer
learning based IDS for CAN bus [156] using the same data, features, and attacks. The authors
trained a convolutional LSTM model (ConvLSTM) as a binary classification problem. One-shot
transfer learning was used to retrain the model to detect new attacks. DoS attack was used during
the training phase, and fuzzing and replay attacks were used with one-shot transfer learning.
They could achieve 26.60% performance gain compared to the best baseline model. A deep transfer
learning based P-LeNet method used in the work of Mehedi et al. [110] outperformed the baseline
models. Transfer learning will help reduce the need for collecting a large amount of data to detect
each new type of attack. LSTM-based simple IDS proposed by Kishore et al. [80] outperformed
the traditional ML models such as RF and XGBoost.

Rehman et al. [137] proposed CANintelliIDS, a novel approach to detect intrusions in the CAN
bus based on CNN and attention-based GRU models. Unlike other approaches that predicted
binary classes, this model predicted the attack type. The authors evaluated this algorithm with
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Table 7. Summary of CAN Frame-Based Attack Detection in a CAN Bus Using Supervised Learning

Reference Model Algorithm Dataset Attack Strengths Weaknesses

[114] 2021 Traditional
ML

DT, RF, SVM,
MLP

HCRL OTIDS DoS, fuzzy,
impersonation

High detection rate for
impersonation attack

Poor detection for fuzzy
attack

[114] 2021 Deep learning DBL Public real data
(HCRL CH)

DoS, RPM and gear
spoofing, fuzzy

Provided more
information about
predictions

Higher epistemic
uncertainty

[99] 2022 Deep learning CNN and
LSTM

Public real data
(HCRL CH)

DoS, RPM and gear
spoofing, fuzzy

High detection rate Computational
expensive model
architecture

[106] 2022 Deep learning GRU Public real data
(HCRL CH)

DoS, spoofing,
fuzzy

Lightweight model Limited types of attack
detection

A dataset description can be found in Section 5.5.1. The complete table is available in the supplementary material

associated with this article.

a single attack data sequence and mixed attack data sequence separately. Binary output was
compared with recent state-of-the-art baseline models (e.g., [149, 156]). It outperformed all models
with a maximum 5.32 F1-score gain. This work proved that DL-based ensemble models could be
successfully used to detect different attacks on vehicle networks. However, the computational
efficiency of the proposed approach has not been discussed. Lo et al. [100] used a hybrid model of
CNN and LSTM networks for in-vehicle attack detection. CNN was used to extract spatial features,
whereas LSTM was used to extract temporal features from CAN data frames. Experimental results
that used the HCRL CH dataset showed an approximately 100% detection rate. They used the
same model in the work of Aldhyani and Alkahtani [4].

Ale et al. [5] used a Deep Bayesian Learning (DBL) model to detect and analyze car hacking
behaviors. Experimental results that used the HCRL CH dataset showed a slightly lower accuracy
than a deterministic DL model. However, the DBL model is capable of providing more information
about its prediction, which can help further analysis of abnormal behaviors. Islam et al. [65] de-
veloped a hybrid quantum-classical NN to detect an amplitude shift cyber attack on the CAN bus.
The usage of the DBC file for feature creation reduces the generalization capability of the proposed
model. DNN and incremental learning based IDS was introduced by Lin et al. [95] to address the
driving environment and behavior changes. Predicted class labels of the DNN model were used as
the labels for online model updates. This approach has a risk of reducing the model performance
when the predictions of the original model are incorrect. Rumez et al. [138] employed a similar
approach like Kalutarage et al. [71] to develop a hybrid anomaly detection framework for diagnos-
tics communication. In addition to the sequence-based model that uses the n-gram distribution for
CAN IDs, the authors used the byte-based model to utilize the CAN messages payload for attack
detection. Real and synthetic datasets with three attack types were used for the model evaluation.
Their detection framework is only limited to automotive diagnostic communication.

5.4 Physical Characteristics-Based Detection

All of the IDSs discussed previously used the data in the CAN data frame. Loukas et al. [105] pro-
posed a cloud-based cyber-physical IDS for vehicles. To this end, they used both cyber and physi-
cal features. Both deep MLP and RNN architecture (LSTM) were used as the algorithms. However,
this was tested only on a robotic vehicle. Motivated by the works of Cho and Shin [29] and Choi
et al. [31], Xun et al. [178] proposed VehicleEIDS, a novel IDS based on the vehicle voltage signal.
This model utilized the unique voltage signals generated by ECUs. The authors extracted differen-
tial signals using 14 time-domain features from two vehicles. Finally, a deep support vector domain
description (deep SVDD) model was used to develop the VehicleEIDS. This model can distinguish
the voltage signal of ECUs with greater than 97% of accuracy. Among the discussed IDSs, this is
the only IDS that can be used to identify the attack source. Another advantage of the proposed
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model is that deployment can be done in the existing CAN bus without changing the protocol, as
this does not require the bandwidth or computing resources of the CAN bus. However, this was
tested only against simple attacks such as injection and replay.

5.5 Benchmark Datasets

Data is considered as the core of AI algorithms. The accuracy of AI models highly depends on
the availability and quality of the data. This is applicable for AI-based IDSs as well. This section
discusses the publicly available datasets that can be used to train and evaluate in-vehicle IDSs, and
Table 8 provides the comparison of model evaluation results for benchmark datasets:

• Car hacking dataset for intrusion detection (HCRL CH) [51]: This is the most widely
used dataset in the literature [9, 20, 71, 109, 140]. It was released by the Hacking and

Countermeasure Research Lab (HCRL) and publicly available for academic purposes.
The dataset was collected from a real vehicle while attacks were being performed. This
dataset includes 500 seconds of benign data (collected while driving the car) with four at-
tack types. The attacks are DoS, fuzzing, and two spoofing attacks (RPM and gear). Each of
these attack datasets are comprised of 300 intrusions of message injection that lasted for 3 to
5 seconds. Each attack dataset was captured for 30 to 40 minutes. The dataset attributes are
timestamp, CAN ID, DLC, payload, and label representing injected messages and normal mes-
sages. The dataset captured a fair amount of attack instances. All of these attacks changed
the ID frequency significantly. Therefore, frequency-based or sequence-based approaches
can easily detect them. Experimental results of the majority of reviewed works proved this
by achieving a greater than 99% F1-score for all attacks. Benign data collection was done
while driving the vehicle. However, signal decoding [166] showed that the car was not driven
while collecting attack data. Therefore, this dataset is unsuitable to evaluate an IDS.
• CAN dataset for intrusion detection (HCRL OTIDS) [48]: This dataset is also produced by

HCRL along with their remote frame-based CAN IDS [88]. A Kia Soul vehicle was used
to collect benign and DoS, fuzzy, and impersonation (masquerade) attack data. This is the
only publicly available CAN dataset with remote frames and responses. Dataset attributes
are timestamp, CAN ID, DLC, and payload. Unlike the car hacking dataset, labels (ground
truth) are not available as an attribute. Instead, attack injection intervals are available in the
documentation that seem incorrect [166] and cannot use to label fuzzy and impersonation
attacks due to insufficient details such as injected IDs.
• Survival analysis dataset for automobile IDS (HCRL SA) [52]: HCRL published this dataset

with their frequency-based CAN IDS [53]. This is the only publicly available CAN dataset
that contains real attacks on multiple vehicles. Used vehicles are the Hyundai YF Sonata, Kia
Soul, and Chevrolet Spark. On each car, they collected benign data and three attack types,
including flooding (DoS), fuzzing, and malfunction (spoofing) attacks. Attributes of this
dataset are timestamp, CAN ID, DLC, payload, and label representing injected and normal
messages. However, these attacks are basic and could be detected with frequency-based
or sequence-based IDS due to the change of frequency. Moreover, three benign datasets
relevant to each vehicle are not sufficiently large enough to train a good classifier.
• Car hacking attack and defense challenge [50]: HCRL collected this data using a Hyundai

Avante CN7 for a competition aimed to develop attack and detection techniques for the
CAN bus. Benign, flooding (DoS), spoofing, replay, and fuzzing attacks are included with
timestamp, ID, DLC, payload, label, and SubClass (attack type) as data attributes. In other
HCRL datasets, attack datasets were available in separate files. In contrast, for this dataset,
benign and four attacks are available in the same file. There are benign data available in
between attacks. However, the benign dataset is likely not sufficient for algorithm training.
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• CAN Signal Extraction and Translation Dataset (HCRL-SET) [49]: HCRL published this
dataset to support CAN analysis research such as signal extraction and translation. The
dataset includes 56 CAN traffic logs collected by periodically sending OBD queries while
driving in a controlled environment. This consists of 28 unique CAN IDs. This dataset does
not have attack data and information related to benign data.
• SynCAN dataset [56]: This simulated dataset was published with their CAN IDS CANet [55].

The purpose of this dataset is to train unsupervised CAN IDS. This is the most widely used
dataset in the literature to evaluate unsupervised payload-based IDSs [55, 83, 84, 124, 158].
Unlike other datasets discussed earlier, this contains signal values without providing the
raw CAN data. Hence, it is suitable to test signal-based IDSs. This dataset consists of
training data and six test datasets. Test datasets include one normal dataset and five attack
datasets. Five attacks are defined as plateau, continuous, playback, suppress, and flooding.
During the suppress attack, the attacker prevented an ECU from sending frames. For the
flooding attack, the attacker sent messages of selected ID with a higher frequency. Plateau,
continuous, and playback attacks changed the payload of the CAN frames. However, these
attacks are simulated attacks and their effect on a real vehicle cannot be verified.
• TU Eindhoven CAN bus intrusion dataset [165]: This dataset was published by the depart-

ment of mathematics and computer science at Eindhoven University of Technology. They
used two cars (Opel Astra and Renault Clio) and a CAN bus prototype to collect benign
data. Attacks are simulated and consist of diagnostic, fuzzing, replay, suspension, and DoS
attacks. However, changing the timestamp of CAN messages at the post-processing stage
made this dataset unrealistic to test AI-based CAN IDSs that use time as a feature.
• CrySyS Lab dataset and CAN log infector [126]: This is a benign dataset along with a Python

script to generate anomalous CAN logs. The dataset was published by the department of
networked systems and services at the Budapest University of Technology and Economics.
A set of benign data representing driving scenarios such as driving at a constant speed of
30 km per hour, driving at a speed of 40 km per hour and then lane change then stop, and
emergency braking from 60 km per hour to 0 are included in this dataset. Even though this
is a benign dataset, the authors provided a CAN log infector that can be used to simulate
a wide variety of masquerade attacks. However, adding the attacks during post-processing
makes this somewhat unrealistic.
• AEGIS big data project [68]: This was published as part of the “AEGIS-Advanced big data

value chain for public safety and personal security”big data project. This is a benign dataset
of 20 hours of driving that has signal data such as wheel speed, steering wheel angle, role,
pitch, and accelerometer values per direction. GPS data are also available. This dataset is
similar to that of Hanselmann et al. [56], as both datasets provided signal values. However,
the unavailability of attack data limits the usage of the dataset for IDS evaluation. This
dataset was used to evaluate the work of Khan et al. [77] with simulated attacks.
• Real ORNL Automotive Dynamometer CAN intrusion dataset [166]: The Real ORNL Auto-

motive Dynanometer (ROAD) dataset is a real dataset with an advanced set of attacks.
The authors reviewed the existing CAN datasets and produced this dataset to address their
limitations. This dataset consists of 33 attacks equivalent to 30 minutes of driving and
12 benign datasets that cover different driving scenarios (3 hours). One vehicle was used to
collect all data. When collecting the attack data, the vehicle was in a dynamometer (under
driving conditions). For benign data collection, they used both roads and a dynamometer and
performed a variety of normal and unusual benign driving behaviors. This dataset consists
of (i) fuzzing attack, which injected random IDs; (ii) targeted ID attacks, which have four
variations such as correlated signal (change the wheels’ speed), max speedometer (display
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Table 8. Comparison of Model Evaluation Results for Benchmark Datasets

Dataset Attack Reference Algorithm Experiment Platform F1-
Score

Accuracy Precision Recall Detection
Latency

HCRL
CH

DoS [109]
2017

KNN NA 81.4% NA 97.4% 70% NA

Fuzzy [107]
2017

KNN NA 85.5% NA 100% 74% NA

RPM spoofing [109]
2017

KNN NA 100% N/A 100% 100% NA

Gear spoofing [109]
2017

KNN NA 100% NA 100% 100% NA

HCRL
OTIDS

DoS [13] 2019 OCSVM CPU: Core i7 4 GHz; RAM:
4 GB

NA NA 93.55% 97.01% 1 ms

Fuzzy [96] 2020 Autoencoder NA 98.09% NA 99.95% 96.3% NA
Impersonation [96] 2020 Autoencoder NA 98.09% NA 99.95% 96.3% NA

NA, not available. Only includes references that presented numerical results with at least one common metric. The

complete table is available in the supplementary material associated with this article.

Fig. 5. CAN bus data frame structure (in raw format).

false speed), max engine coolant temperature (activate engine coolant warning light), and
reverse light (do not reflect the actual gear status); and (iii) accelerator attacks, which puts
the ECU into a compromised mode. For targeted ID attacks, they injected a message with
different payload values for selected signals immediately after seen the legitimate message.
For each type of targeted ID attack, they produced masquerade attack versions by removing
legitimate messages at the post-processing stage. Hence, frequency-based approaches
might fail to detect such attacks. Available attributes are timestamp, CAN channel (always
can0), ID, and data field (payload) in hexadecimals. Labels are not available as an attribute.
However, they provided attack ID and intervals that can help identify attack messages in
the data pre-processing stage. Even though the authors claimed that they injected messages
immediately after seeing the legitimate messages, it can be noticed that there are multiple
IDs between legitimate and injected messages, making it easy to detect with sequence-based
IDSs. However, this can be considered as the most comprehensive CAN dataset available to
evaluate and compare CAN IDSs for attacks that change any field of CAN frame.

5.6 Feature Selection and Data Pre-Processing

Data pre-processing and feature selection are also considered as critical steps in AI. In the litera-
ture, AI-based IDSs used ID, payload, DLC, and timestamp (time) as features to train AI models.
Usually, ID and payload values are in hexadecimal (hex) format. In addition to features in the CAN
data frame, one work [178] used voltage signals (physical characteristics) as a feature. Figure 5 de-
picts the standard format of publicly available CAN data [51]. Table 9 provides the comprehensive
summary of feature selection and data pre-processing.

5.6.1 ID-Based Features. In ID-based detection, Kalutarage et al. [71] used IDs in hexadecimal
format without using any data pre-processing. Limited or no data pre-processing helps reduce the
detection latency of the IDS. However, this limits the wide variety of attack detection capabilities,
as some attacks do not significantly change the raw data properties. Marchetti and Stabili [107]
also used the hexadecimal IDs and created a transition matrix to learn possible ID transitions. This
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approach is computationally more efficient than calculating 2-grams in the work of Kalutarage
et al. [71]. SVM-based models [3, 13] used ID frequency as the feature. The selection of this feature
as the only feature makes the model lightweight. However, it limits the attack detection capability
of infrequent IDs. Both Avatefipour et al. [13] and Marchetti and Stabili [107] assigned labels for
each message, whereas Kalutarage et al. [71] assigned labels for message windows. The window-
based approach helps reduce the false positives even though it requires a small additional time to
process all frames in the window. In addition, certain types of attacks might not create point anom-
alies. Instead, they might create contextual or collective anomalies. The window-based approach
is highly beneficial in identifying these types of contextual and collective anomalies. Han et al.
[54] and Kuwahara et al. [86] used observation windows to extract features. Kuwahara et al. [86]
used a fixed time window and selected total-counting feature and ID-counting feature. The total
counting feature counts the number of messages in a window. In contrast, the ID-counting fea-
ture is a vector, each of whose elements is the number of messages associated with each ID. Han
et al. [54] considered a window between consecutive CAN IDs and defined it as an event-triggered
interval. Mean, variance, first quartile, third quartile, interquartile range, skewness, and kurtosis
were calculated for each ID as the features. Sharmin and Mansor [142] calculate the time between
consecutive CAN IDs as the feature. All of these feature values [54, 86, 142] change as a result of in-
jection attacks. However, the amount of feature value change depends on the attack injection rate.
In addition, these features are insufficient to detect more sophisticated attacks such as masquerade
attacks. IDSs proposed by both Jedh et al. [67] and Refat et al. [136] used graph-based techniques
to extract features. Refat et al. [136] converted a window of CAN IDs into a graph and extracted
graph properties such as the number of nodes, number of edges, radius, diameter, density, reci-
procity, average clustering coefficient, and assortative coefficient to use as features for ML models.
Similarly, Jedh et al. [67] calculated cosine similarity and Pearson correlation between successive
time windows. However, graph-based feature selection might be computationally expensive when
a vehicle has a large number of ECUs.

An LSTM-based IDS [32] converted the hexadecimal IDs into integer values from 0 to the num-
ber of CAN IDs and then numbers were one hot encoded to consider each CAN ID as a class. Output
was the softmax probability for each class. Similarly, for the same task, Rajapaksha et al. [134] con-
verted the hexadecimal IDs into integer values. Instead of one-hot encoding, they created the word
vectors for each CAN ID. This helps learn the semantic relationship of CAN IDs better than the
one-hot encoding approach. However, the size of the word vectors needs to be selected carefully
to keep the model lightweight and efficient. In the work of Seo et al. [140], each digit of raw CAN
ID was converted to binary and then to one-hot encode vector (concatenation of three binary num-
bers of 16 digits), which was finally used as an image for the algorithm. The input size selected
was 64, and it assigned one label for an image. If the image included at least one attack packet, it
was considered an attack image. Song et al. [148] converted a 29-bit ID to binary and considered
29 consecutive IDs into one frame (making it 29 × 29 two-dimensional grid data frame). The same
logic used by Seo et al. [140] was used to define the class label. In the work of Berger et al. [32],
20 consecutive CAN IDs were selected and converted into one-hot encode vectors. This resulted in
a 20 × 42 (42 IDs) input frame to LSTM. Output was softmax probabilities relevant to 42 IDs. Both
of these approaches converted CAN ID sequences to two-dimensional grids. This data structure
makes it possible to use image processing algorithms such as CNN on CAN data.

5.6.2 Payload-Based Features. Autoencoder-based models used by some authors [83, 84, 103]
split the datasets into groups based on the CAN IDs, and each group was processed independently.
Even though this reduces the model complexity of each model, dependencies among CAN IDs
cannot be exploited to detect some attacks. Novikova et al. [124] grouped the data considering the
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Table 9. Summary of Feature Selection and Data Pre-Processing

Based on Reference Data Pre-Processing Features Strengths Weaknesses

CAN ID [71] N-gram calculation ID sequences Limited data
pre-processing

N-gram calculations are
computationally expensive
for large N

CAN Payload [120] Calculate posterior and
transition probabilities for a
sliding window

Posterior probability,
transition probability

Contextual anomaly
detection

Higher memory
requirement to store all
probabilities

CAN Frame [20, 106,
155]

Time difference calculation
for consecutive IDs, convert
hexadecimal ID and payload
to decimal

Time difference, ID,
payload

Limited data
pre-processing,
computationally efficient

Ineffective features
selection for unsupervised
learning

The complete table is available in the supplementary material associated with this article.

dependencies among payload signals. This overcomes the aforementioned issue. However, they
used a manual approach for the grouping. The SynCAN dataset used to evaluate autoencoder-
based models [55, 83, 84, 124] includes pre-processed signal values. This can be done by converting
an 8-byte hexadecimal payload into eight integer (or decimal) values and then scaling the integer
values to the 0-1 range. This helps avoid slow and unstable training due to the large range of
signal values. Instead of treating 8 bytes as eight features, Tomlinson et al. [162] combined these
bytes into several fields if they represent a single reading from a sensor. They used an algorithm to
concatenate these fields for each CAN ID. Similarly, Fenzl et al. [40] also used a field classification
approach to align 8 bytes into several fields. This [40, 162] payload value concatenation helps
dimensionality reduction. Concatenation algorithms need to be accurate and efficient to avoid
incorrect field classifications.

5.6.3 CAN Frame-Based Features. The majority of CAN frame-based IDSs [20, 106, 155] used
the timestamp (as a time interval for consecutive IDs), decimal ID, and payload fields as features.
In contrast, limited works [117, 133] used the binary ID and payload instead of decimal conversion.
This increases the dimensionality of the features. In the work of Tian et al. [159], in addition to
the payload values, the authors created entropy-based features using ID and time. The creation of
additional features such as entropy-based features helps detect a wide variety of injection attacks.
Zero padding was used by the authors [117, 133, 155, 156] to replace the missing values of the CAN
payload. This helps obtain a uniform data field to train AI algorithms. For the DNN-based IDS pro-
posed by Zhang et al. [184], they used the CAN ID, number of occurrences in the past second,
relative distance between IDs, and change in system entropy as the features. Zhang and Ma [183]
extracted additional features using the CAN payload field. The new features set includes the CAN
ID, Hamming distance between the data fields of two normal consecutive CAN ID, entropy of data
filed, and bytes of importance (most important two bytes). Usage of the Hamming distance of pay-
load data helps detect attacks on infrequent IDs. However, since all features are calculated for ID
groups, inter-correlation among IDs cannot be detected for any feature. This limits the wide range
of attack detection capability of the proposed solution. Khan et al. [76] used data pre-processing
to enhance the scalability and performance efficiency of the proposed IDS. This included feature
conversion, feature reduction, and feature normalization. Principal Component Analysis was used
to feature reduction. Experimental results showed that the feature pre-processing led to 19.31%
accuracy improvement compared to raw data.

6 AI MODEL SECURITY AND RELIABILITY

AI is rapidly changing the automotive industry. The integration of AI capabilities into the modern
automobile adds not only sophistication but also a new attack vector and risks. The Society of Au-
tomotive Engineers (SAE) defined six levels of vehicle automation, starting from level 0 to level 5.
Level 0 is defined as no automation, whereas level 5 is defined as self-driving automation [132].
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Perception, prediction, planning, decision making, and control functions of self-driving cars will be
fully controlled by AI models [132]. Hence, the reliability of AI models is a serious issue, especially
for sensitive applications like vehicles. Risks associated with these vehicles are safety, liability, pri-
vacy, cyber security, and industry influence [152]. However, these intelligent models can improve
safety, as 90% of vehicle accidents are due to human errors [146]. Cyber security can be considered
as a more serious issue, as this can lead to all other risks listed previously.

AI models are vulnerable to a range of cyber attacks. Three types of attacks target the differ-
ent phases of the ML life cycle [164]. Evasion attacks perform during inference time and try to
introduce inputs that lead to incorrect outputs. Poisoning attacks perform during the training
stage and change the training data by inserting, editing, or removing to change the model bound-
aries. Privacy attacks could target any stage and intend to retrieve sensitive data. Gu et al. [47]
demonstrated the vulnerabilities of outsourced training (transfer learning) of AI models such as
AlexNet and VGG. They implemented a maliciously trained backdoored neural network (BadNets)
for the MNIST dataset and more complex traffic sign detection. It showed that the implemented
algorithm could misclassify the stop signs as speed-limit signs by using a Post-It note. Papernot
et al. [128] developed a black-box adversary that can observe labels given by a DNN model to cho-
sen inputs. They developed a model to substitute the target DNN. To this end, inputs were synthet-
ically generated and classified by the targeted DNN. Dynamic backdooring attacks—random back-
door, the backdoor generating network (BaN), and the conditional backdoor generating network
(c-BaN)—were developed to bypass current state-of-the-art defense mechanisms against backdoor
attacks [139]. Jagielski et al. [66] developed a poisoning attack that required minimal knowledge
on the learning process of linear regression models and validated with a range of datasets and
models. They also developed a defense method against all poisoning attacks. Barreno et al. [18]
demonstrated a white-box poisoning attack on an IDS system.

If an attacker compromises an IDS, then it will not be able to detect the attacks on vehicle net-
works. Therefore, it is important to consider the security of AI-based IDSs at the development and
deployment stages. AI-based IDSs are vulnerable to white-box, black-box, and model tampering
attacks. In a white-box attack, the attacker has full access and knowledge about the AI model, in-
cluding learned weights and training data. The attacker of a black-box attack has no access and
knowledge about the AI model internals or training data. The attacker can only observe output
labels predicted by the AI model to the selected inputs. A model tampering attack is an attack
through the tampering of the AI model. Wang et al. [168] developed an LSTM model to detect
anomalies in the CAN bus and then used a black-box attack to replace the LSTM model with a
new victim model. Only a small sample of testing data was required to train a victim model. It took
just 50 man-hours to build the victim model, which led to incorrect predictions. Li et al. [92] used
an LSTM-based IDS to detect simple CAN payload attacks with a greater than 98% detection rate.
They attacked the LSTM IDS using the fast gradient sign method and the basic iterative method.
Under these attacks, detection rates of the IDS were 1.58% and 0.53%, respectively. This highlights
the importance of security for IVN IDSs. They proposed an adversarial defending algorithm that
provided protection against both fast gradient sign method and basic iterative method attacks.

There are several criteria, such as evaluating the goal of the attack, knowledge required to per-
form the attack, efficiency of the attack, and availability of mitigation, required to assess the at-
tacks. To increase the security of AI models, a broader array of measures such as legal measures,
organizational measures, and technical measures outside the AI system need to be taken [21].

7 DISCUSSION

This article focused on the exploitation of AI techniques for IVN IDSs. A novel taxonomy based
on detection features and AI algorithms was used to classify the reviewed works. This section
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Fig. 6. Development steps of AI-based attack detection in the CAN bus.

discusses the findings of the survey, limitations of current approaches, and future research
directions in the development of AI-based IDSs for IVNs.

7.1 Findings

Based on the findings of this review, Figure 6 illustrates the development steps of an AI-based attack
detection method in the CAN bus. This includes five stages—namely, attacks, change in the CAN
data frames due to these attacks (ID and payload), feature selection, ML training approach, and AI
algorithm selection. Listed attacks could change the ID or payload or both fields at the same time
to achieve the desired outcome. Frame insertion or deletion is used to change the ID field, whereas
replay or modification is used to manipulate the payload field. Selected features should indicate
these changes. For instance, selecting the ID as the only feature will limit the detection capability
of payload manipulation attacks. Selecting all features will increase the detection power of the
algorithm for various attacks with additional computational overhead. However, CAN ID-based
IDSs might have higher generalization capability than payload-based IDSs, as the CAN payload is
extremely unique to the vehicle brands or models than CAN IDs. The majority of CAN ID-based
IDSs have utilized the frequent or sequential behavior of the IDs. Even though the functionality
of the IDs of vehicle brands or models is different, frequent or sequential behavior is common for
different vehicle brands and models. Therefore, these models have a higher generalization capa-
bility. DLC and payload might correlate as DLC is the length of the payload. In this case, DLC
can be ignored. More features can be derived through the different fields of the CAN data frame
using feature engineering techniques, and this increases the attack detection capability. Physical
characteristics such as voltage signals were used as a feature in the work of Xun et al. [178], and
this has the capability to identify attack sources that could not identify with other IDSs discussed.
Priorities of IDs were not considered in reviewed literature and will be a good feature to explore.

Supervised or unsupervised learning can be used to train traditional ML, DL, sequential learning,
and hybrid models. Unsupervised learning algorithms have better capability to detect unknown at-
tacks than supervised learning algorithms. Unsupervised learning requires only benign data (one
class) for training and threshold estimation. This is a promising approach for this domain, as collect-
ing benign data is relatively easier than collecting attack data in vehicle networks. This is referred
to as one-class classification. OCSVM (a traditional ML model) and autoencoders (DL) were com-
monly used as the unsupervised learning approaches. Variants of RNN such as LSTM and GRU are
capable of capturing long-term and short-term temporal patterns of time series data in IVNs. LSTM
and GRU autoencoders were successfully used as unsupervised approaches to detect attacks. Com-
bining LSTM or GRU with other DL algorithms such as CNN (ensemble models) or rule-based mod-
els (hybrid models) have increased the attack detection capability for a wide range of attacks. Unsu-
pervised learning tends to produce higher false positives than supervised learning. As a solution, a
window-based approach can be used to reduce the false positives. Unsupervised learning can detect
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Fig. 7. AI-based IDSs distribution.

a wider range of attacks (including unknown attacks) than supervised learning models. Generally,
deep learning models have achieved better accuracy than traditional ML models. However, the
high resource requirements and detection latency are the main concerns of DL models given the
limited resource availability of IVN devices. Hybrid models and ensemble models have increased
the detection power, as these models can improve performance while decreasing the weakness of
individual models. A few works have used transfer learning, GAN, and federated learning, which
showed promising results in terms of accuracy, new attack detection, and model security. Figure 7
depicts the reviewed AI-based IDS distribution across feature selection, ML training, and AI algo-
rithms. Only two works have used the physical characteristic based features. Therefore, these two
works are not included in this distribution. However, 100 works used ID, payload, and CAN frame-
based features. The highest number of IDSs are based on the CAN frame. Among these, 34 works
have a low generalization capability, as they used supervised learning. In contrast, only a limited
number of works have used supervised learning to train ID-based or payload-based IDSs. Due to
the complexity of the payload field, the majority of works have used DL-based algorithms to train
payload-based IDSs. Overall, 45% of IDSs have used DL-based algorithms to detect attacks on IVNs.

Different attack and deployment environment characteristics require an IDS that employs mul-
tiple methods to cover a wide range of attacks with limited resources. Based on the reviewed
literature, an unsupervised ensemble model will be the ideal candidate algorithm that can meet
this requirement. Table 10 depicts the benefits and drawbacks of AI algorithms used in in-vehicle
IDSs.

7.2 Future Research Directions

This section identifies the limitation of current approaches and highlights future research direc-
tions for securing IVNs (CAN bus).

7.2.1 Availability of Benchmark Datasets. The performance of an AI-based algorithm highly
depends on the data it uses. The usage of low-quality data in AI algorithms leads to bad outputs.
The poor quality of publicly available datasets can be identified as a limitation for IDS research
in this area. These datasets in particular suffered from the simulation of the attack under realistic
conditions. Section 5.5 discussed the benefits and drawbacks of the existing datasets. It is difficult to
evaluate, compare, and improve the IDSs without having a proper dataset. There are three reasons
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Table 10. Benefits and Drawbacks of Commonly Used AI Algorithms in In-Vehicle IDSs

Algorithms Benefits Drawbacks

OCSVM Use only one-class (benign) data to train the classifier Non-linear kernel took much time to optimize [30]
SVM Better learning ability for small samples [145] Sensitive to kernel function parameters [97]
ANN Flexibility and adaptability to environmental changes

[44], able to train with non-linear data [97]
Long model training time [145] and lack of model
explainability [44].

Boosting, KNN, RF, NB Better learning ability to small samples, train
quickly[97], high model explainability [127]

Low accuracy compared to DL models [97]

K-means Class label not required (unsupervised training) Sensitive to outliers [127], sensitive to parameter K [97]
LSTM Possibility to use only one-class (benign) data to train

the classifier, suitable for sequential data (CAN bus
data) [62]

Long model training time, lack of model explainability
[91], required a large dataset for training [182]

DNN, CNN, BDN, GAN High generalization capability [180], good at pattern
recognition problems [91]

Long model training time [87], lack of model
explainability [91], required a large dataset for training
[182]

Autoencoder Capability to detect point, contextual, and collective
anomalies by identifying variable correlations

Computationally expensive, required a large dataset for
training

N-gram Suitable for sequential data (CAN bus data), no domain
knowledge required about CAN data, context
awareness, possibility to use only one-class (benign)
data to train the classifier

Difficulty to capture all data relevant to normal
behavior

HMM Suitable for sequential data (CAN bus data), no domain
knowledge required about CAN data, possibility to use
only one-class (benign) data to train the classifier

Highly dependent on assumptions about the system
[44]

for this limitation. First, it is costly to produce vehicle networks data with real attacks except for
simple message injection attacks. Second, there is a risk involved with creating realistic attack data
for running vehicles on public roads and, third, issues with the disclosure of sensitive information
[166]. Often, researchers used datasets created by themselves with synthetic attacks that were
not reflected in real-world situations. Considering the publicly available CAN datasets, the ROAD
dataset [166] will be the best dataset to use to evaluate and compare in-vehicle IDSs, as it consists
of multiple real attack types along with benign datasets under various driving conditions. Usage
of multiple datasets is another feasible solution.

7.2.2 Accuracy and Detection of Low Frequent Attacks. ECUs in a modern vehicle generate about
2,000 CAN frames per second to the CAN bus [140]. Therefore, even 1% of false-negative rate miss
200 attack frames per second. Missing a detection of a particular attack may lead to serious safety
problems. Detecting a normal message as an attack also brings unwanted countermeasures that
cause inconvenience for the driver. Even though 99% of detection accuracy is a good achievement
in other application domains, this might not be enough in this domain. Various attacks and differ-
ent characteristics make it hard to improve the detection rate. The majority of proposed solutions
were not able to detect low frequent (low-volume) attacks, as these attacks have little effect on
CAN bus data behavior. DL-based (particularly unsupervised methods) ensemble models and hy-
brid models are possible future research directions to improve the accuracy and detection capabil-
ity of low frequent attacks. Moreover, transformer-based models are also a possible direction, as
these models have successfully been used in other domains for time series forecasting [174]. Com-
bining CAN data frame features with physical characteristics features to improve the performance
will be an interesting direction to study in the future.

7.2.3 Detection Latency. Message transmission in IVNs happens in real time. IVN IDSs should
detect and take appropriate countermeasures in real or near real time. However, the majority of
reviewed DL-based literature was not able to detect attacks in real or near real time. DL-based
IDSs can utilize the large number of computational resources in the cloud to improve the detection
time. However, since vehicles are moving objects, connection stability is a key factor to consider
for cloud deployments. Edge computing will be another option despite the computationally
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constrained environment. This is an area to explore in the future with different experiments
under real-world conditions.

7.2.4 Evaluation Metrics. IDSs in the literature evaluated their proposed models using collected
real data, public real data, or synthetic data. Since the evaluation of collected real and synthetic
data was done under different adversarial settings, it is challenging to compare their security uni-
formly. Performance comparisons for public real or synthetic datasets are possible, as they share
the same benign and attack data. However, the majority of reviewed works did not use common
evaluation metrics to compare their security. For example, a few works used accuracy and pre-
cision, whereas others used F1-score, precision, and recall as the evaluation metrics. Comparing
the performance using only one common metric such as precision or recall is challenging. The
Matthews correlation coefficient [26] is considered a more reliable metric for binary classification
problems such as anomaly detection. Some works only presented visual evaluations such as bar or
line charts. This also makes the model comparison much more difficult. Therefore, it is vital to use
a few metrics such as the Matthews correlation coefficient, F1-score, precision, recall, false-positive
rate, and false-negative rate to make a fair comparison. Accuracy as a metric is inappropriate in
this case, as all discussed attack datasets in Section 5.5 are highly imbalanced. Detection latency is
another critical factor for an in-vehicle IDS. However, only limited works evaluated their models
for detection latency and discussed the used experimental platform. Hence, including these met-
rics in the evaluation criteria helps identify more effective methods and improve attack detection
in IVNs.

7.2.5 Unsupervised Learning. Unsupervised learning (OCSVM, autoencoders) is well suited for
the CAN bus, as CAN bus dataflow is predictable and constant [161]. Another reason is that collect-
ing attack data is more expensive in vehicle networks than benign data collection. In unsupervised
learning, only benign data is used to model normal behavior, and a threshold is determined to de-
tect anomalies. However, one major limitation for this approach is the need for a large dataset that
sufficiently represents the normal profile. To this end, streaming learning can be considered as a
future research direction. The model needs to be deployed in a vehicle, and the parameters and
threshold can be updated for a sufficiently large time to cover various normal driving conditions.

7.2.6 Requirement of Large Datasets. Usually, AI algorithms require a large dataset for model
training. However, as discussed earlier, the availability of realistic attack and benign datasets is
a major limitation in this domain. Learning from a few examples is a key challenge for IVN at-
tack detection. Algorithms such as transfer learning [163], one-shot learning [167], and zero-shot
learning [176] were used in other domains such as image recognition and Natural Language Pro-
cessing applications to address this challenge. Adapting them to vehicle network data could be
future research directions to utilize small datasets to detect new attack types.

7.2.7 Cost of Implementation. The majority of reviewed literature was not focused on deploy-
ment requirements and countermeasures. ECUs in vehicle networks have limited memory storage,
computing power, and bandwidth. IDS development and deployment are bounded by these re-
sources. IDSs can be deployed as host-based IDSs or network-based IDSs. Host-based IDSs are not
a viable solution for vehicles, as they require a change in ECUs that are not cost effective. There-
fore, deploying a network-based IDS as an additional node in the CAN bus would be the most
appropriate solution. Deploying the IDS in clouds can be considered as another feasible solution.

7.2.8 Protecting IDS. Even though AI-based models can identify anomalies in vehicle networks
with a high detection rate, these models themselves are vulnerable to cyber attacks such as white-
box, black-box, and tempering attacks. None of the discussed literature focuses on protecting the
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proposed models from cyber attacks except the models proposed by Aliyu et al. [8] and Li et al. [92].
Aliyu et al. [8] claimed that blockchain technology could be used to improve the security of IDSs.
In contrast, Li et al. [92] proposed a defending scheme against adversarial attacks on LSTM-based
IDSs. Developing a secure IDS for IVNs under an adversarial setting is a challenging future research
direction. Solutions used in other domains can also be adapted to vehicle networks.

8 CONCLUSION

Modern automobiles are equipped with various communication networks, multiple sensors, actu-
ators, cameras, radars, and communication devices to improve performance, efficiency, intelligent
services, and safety of passengers. This increased complexity and connectivity make vehicles vul-
nerable to cyber attacks. Both in-vehicle and VANET networks are exposed to such attacks. IDSs
are used to identify cyber attacks in vehicle networks. AI-based IDSs are proven to be effective for
vehicle networks due to their high generalization capability.

This study reviewed and categorized 102 recent AI proposals (IDSs) to protect IVNs (particu-
larly on the CAN bus). To this end, we introduced a novel taxonomy based on attacks, CAN data
frame features, and supervised and unsupervised AI algorithms. In particular, we outlined attack
characteristics, feature usage, effective algorithms to detect these attacks, and the security of AI
models. This study also reviewed benchmark datasets available to train and evaluate AI algorithms.
Development steps of AI-based attack detection discussed the findings with regard to each step
and guided cyber attack detection in the CAN bus using AI algorithms.

Unsupervised learning using traditional ML algorithms such as OCSVM and DL algorithms like
autoencoders showed promising results. In general, DL algorithms showed high detection capabil-
ity over traditional ML models. LSTM and GRU-based ensemble learning and hybrid models (rules
and ML based) can be used to overcome many limitations in the attack detection of the CAN bus.
Transfer learning, one-shot learning, zero-shot learning, and federated learning can be identified
as future trends in CAN bus IDS research. As concluding remarks, we outlined key limitations and
reasons for limitations and proposed possible future research directions for IVN security.
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