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ABSTRACT

Due to the unequivocal need for understanding the decision
processes of deep learning networks, both modal-dependent
and model-agnostic techniques have become very popular.
Although both of these ideas provide transparency for auto-
mated decision making, most methodologies focus on either
using the modal-gradients (model- dependent) or ignoring the
model internal states and reasoning with a model’s behav-
ior/outcome (model-agnostic) to instances. In this work, we
propose a unified explanation approach that given an instance
combines both model-dependent and agnostic explanations to
produce an explanation set. The generated explanations are
not only consistent in the neighborhood of a sample but can
highlight causal relationships between image content and the
outcome. We use Wireless Capsule Endoscopy (WCE) do-
main to illustrate the effectiveness of our explanations. The
saliency maps generated by our approach are comparable or
better on the softmax information score.

Index Terms— Explainable AI, Counterfactual, Semifac-
tual, saliency map, capsule endoscopy

1. INTRODUCTION

There has been a rapid integration of deep learning based
models in real-world applications, including high risk ones
such as healthcare and defence owing to their unparalleled
predictive performance [5]. Such real-world deployment and
usage of models accompanies with it the moral obligation to
make their decision processes transparent. This is necessary
not only for accountability of high stake decisions but also
for the identification and mitigation of algorithmic or soci-
etal bias [14, 7]. This has led research to continue attempts
at opening the black boxes, to gain insight in decision mak-
ing processes [4, 20, 10] while also considering that useful
explanations could emerge through model-agnostic explainer
methods ( [15, 23, 6, 24]). Although both of these approaches
are suited to explaining model predictions, dominant expla-
nation approaches today focus on one or the other.

Factual explainers that reason with gradients [19, 10, 20]
aim to identify regions or pixels within an image that most
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significantly contributed to the prediction and thereafter visu-
alize these attribution weights in saliency maps [4, 20, 19].
For example, given an endoscopic image with an ulcer, a
saliency map would highlight the ulcer region in response to
a question such as “Why did you make that decision?”. How-
ever, although popular saliency methods [19, 20, 10] are fairly
easy to implement they also have limitations.

One limitation of gradient-based saliency methods is the
use of a baseline image and the sensitivity to the choice of
that baseline [13]. Here a baseline helps contrast the query
scenario from a “baseline” scenario and typically marks an
absence against which the “presence” can be measured, e.g
a black image. Since attribution maps are then accumulated
over a classical linear path from baseline to the query; the
choice of baseline is crucial to the success of the explana-
tion. A second limitation is that the pixel perturbations done
to arrive from a baseline to query are typically blind to image
content. We argue against such pixel perturbations to create
images between the baseline and query image as well as the
baseline itself. Because not only are the images in between
not natural but are also prone to abnormal gradient behaviours
from irrelevant pixels as identified in [10].

Consider our ulcer example from before, the perturbations
with respect to clinical biomarkers relating to ulcer abnor-
mality are more meaningful than individual pixels. For ex-
ample take perturbations that cause “more or less inflamma-
tion around a suspected ulcer”, knowing that an ulcer is of-
ten accompanied with inflammation is important, as a lack of
it might suggest incorrectly to the doctor that the suspected
ulcer is just intestinal debris stuck to the surface. Such per-
turbations are not only more meaningful but every image re-
sulting from them is directly interpretable. This also implies
that a more apt baseline would be one that marks absence of
the biomarker (here the ulcer) and not complete absence of
the signal. A third limitation of such methods is their single-
pointwise explanation mode of operation [3, 1], whereby an
explanation to a given image is made in isolation of its local-
ity, i.e. without considering its neighborhood (i.e, how expla-
nation changes as the input changes slightly).

Counterfactual reasoning has gained popularity [6] as a
locality-aware explainer that is model agnostic (i.e. does not
need access to a network’s internal mechanism (gradients,
layer activations, etc). Often these provide causally under-



standable explanations which have been argued to be GDPR
compliant [23] and help address questions on fairness, trust
and robustness [8]. These explanations generate a counterfac-
tual as an alternative scenario with a desirable outcome that
counters the observed (real) outcome. As such they generate
explanations through relationships like: “If the ulcer had not
been present, this image would not be abnormal.” In other
words, it pinpoints how the input must change to flip the out-
come. It is clear how such explanations might seem intuitive
and interesting [6] to a doctor in our context. In fact, coun-
terfactual thinking is very natural to how humans reason es-
pecially in response to negative outcomes in order to prevent
them in the future [16].

In vision, explaining an instance with its corresponding
counterfactual [8, 2] has become common for highlighting
changes that would most easily flip the prediction. In [8], au-
thors perform minimal edits by swapping regions of a query
image from a distractor image till a decision flip occurs. How-
ever, the choice of a suitable distractor image is crucial for
quick convergence but this choice can be unintuitive for some
domains such as the medical domain or when little informa-
tion is available for the dataset. Further, the image resulting
from such edits can be unnatural looking at times and there-
fore lack explainability. For such explanations to be efficient,
the changes applied to the image for a different prediction
must be minimal and human interpretable [23]. Alipour et al.
[2] use the latent space of a pretrained styleGAN for retriev-
ing counterfactual latent codes and is similar to our approach
in idea but differs in implementation (their method produces
causal explanations only unlike ours, while also employing
pretrained attribute detectors in latent space that are largely
unavailable for medical domains.) Recently, semi-factuals
have been argued to offer advantages similar to counterfac-
tuals [12]. As opposed to counterfactuals that propose expla-
nations as ’If only’ clause, semi-factuals propose explanation
of type ’even if’ i.e. what changes to the situation would still
lead to the same outcome. In our earlier example, a semi-
factual image might illustrate the inflammatory changes that
occur right before an ulcer starts forming, at this point the
doctor will still identify the image as abnormal.

Despite advantages, one of the biggest challenges in us-
ing counterfactual and semi-factual explanations (together
referred to as contrastive explanations) lies in generating
instances that not only expose realistic and progressive vi-
sual changes smoothly (as to be directly understandable),
but also ensuring progression alignment with the expected
class prediction behaviour (congruous change in softmax
score) [2]. Addressing this need for aligned progression both
in the image and classifier space is precisely the problem
we propose to solve in this work. We argue that in favor of
human interpretability and algorithmic transparency, explana-
tions that support both the aformentioned modes (causal and
non-causal) are better than either one. We demonstrate the
effectiveness of our explanations in the domain of WCE with

focus on Ulcerative Colitis (UC). We use the UC biomarkers
used by experts in diagnosis such as inflammation and ul-
cerations as progression attributes to manage counterfactual
explanations. The main contributions are:

• a unified framework that generates both causal and non-
causal explanations for each decision;

• a method to control progression along a specific UC
biomarker such that the counterfactual relationships in-
ferred are causal as opposed to being adhoc

• a formal algorithm to generate saliency maps that are
comparable to (or better) than others on the Softmax
Information Curve (SIC) metrics 3.

2. METHODOLOGY

Given an attribute of choice (e.g., a UC biomarker like in-
flammation, vascular pattern etc.) and the query image iqa, the
goal is to retrieve two instances that are closest to the decision
boundary as semifactual (on the same side) and counterfac-
tual (on the other side), while preserving visual interpretabil-
ity along a path of images directed by the attribute (Figure 2).
Regions of importance is highlighted by a saliency map (can
be generated for each image on the path, including the query).

Given a classifier C that outputs label y ∈ {0, 1} through
a prediction function f : Rn → [0, 1] for an image xi ∈
R512∗512, an explanation set is produced, X = {ism, icf , isf},
along attribute a. Here ism ∈ R512x512 is the saliency
map, icf ∈ R512x512 is the nearest counterfactual and
isf ∈ R512x512 the semifactual along a. We use this to
generate an explanation: “ image iqa is abnormal with proba-
bility p due to signs/regions highlighted by the saliency map
ism. The least amount of abnormality required for the pre-
diction to be abnormal is seen in isf (semifactual). However,
if the abnormal signs change to as in icf (counterfactual) the
image would no longer be classified as abnormal”. Impor-
tantly the changes along the single attribute, a, is also directly
visually interpretable by a user (e.g., a doctor).

Attribute discovery in latent space: We use Style-
GAN2 [11] and train it on WCE images (discussed in Dataset
and Training details sec). StyleGAN2 uses a mapping net-
work between a latent variable and the network generator,
G, which transforms the latent variable to an intermediate
d-dimensional space, W , of latent vectors, w ∈ Rd, where
style attributes are known to be more amenable to control.
We use SeFA [17] for the unsupervised discovery of at-
tributes in the intermediate W space. In the natural image
domain, pretrained attribute detectors can be utilized for la-
beling these attributes however for our case of pathological
and anatomical variations of the colon such attribute detectors
are not available a priori. We perform clustering on images
using TSNE [21] for isolating attributes relevant to patholog-
ical changes. This is done by planting seed images before
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Fig. 1. Figure shows iq and the corresponding directional derivatives. The derivatives expose the semantic similarity between
the query and it’s neighbors. We use this similarity to weigh in the contribution of each neighbor towards the saliency map.

clustering that had been identified by a doctor as good repre-
sentatives of UC pathological changes. Upon clustering we
sampled the attributes closest to seed images and have used
these as explanation attributes.

Generating the explanation set X : Once relevant at-
tributes are identified, to explain a query iqa with latent wq

a ∈
Rd such that iqa = G(wq

a) along attribute a, a set of k local
images ia is created, ia = {i1a, i2a...ika} from latents wa =
{w1

a, w
2
a, ...w

k
a} where wj

a = wq
a − αj ∗ a and αj varies

linearly in [A, B] and a ∈ R512 is the aforementioned at-
tribute vector. In Figure 3, attribute a corresponds to (red-
dish) inflammatory regions and set ia can be understood as
images with decrease in severity of such inflammation as α
progresses from A = 0 to B = 30 in steps of 2. icf , isf
in X are retrieved based on the classifier output for ia such
that icf = argmax

ija

(σ(C(ija))) ∀ σ(C(ija)) < 0.5 and isf =

argmin
ija

(σ(C(ija))) ∀ σ(C(ija)) > 0.5 where ija ∈ ia and σ

is the softmax function. For the saliency map, to avoid the
spuriousness observed in previous literature, we use the la-
tent space to curate a neighborhood such that every image
in the neighborhood of a query varies only along the cho-
sen attribute. In other words, the pixel changes that occur
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Fig. 2. The approach explains a query image along the ulcer
attribute path together with a semifactual and counterfactual
along the same path. Here the query exhibits an abnormality
with inflammation. Even with inflammation reduced down to
as in (c) the prediction would still be abnormal (semifactual).
However, if only the visual signs change from (c) to as in (b),
the prediction would be normal (counterfactual).
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Fig. 3. Images in ia along attribute a. Top left corner shows
softmax score. Notice how apart from effected region (for at-
tribute a), other regions in the image undergo only minimal
changes. As a result, the generated explanations are consis-
tent in the locality of a query.

in this neighborhood are neither uniform nor content blind
[10, 20], but targeted towards those pixels that most strongly
affect the attribute/biomarker. We use directional derivatives
in ia along attribute a for identifying these regions and weight
them based on semantic similarity with iqa to generate the
saliency map. The directional derivative Diff (iqa, i

j
a) between

the query and ija = G(wj
a)∀{wj

a}kj=1 is given by:

Diff (iqa, i
j
a) =

∣∣∣∣G(wq
a)−G(wj

a)

1

∣∣∣∣ (1)

The directional derivatives Diff (iqa, i
j
a) over iqa and ia ex-

poses pixels with consistent change in the direction of increas-
ing/decreasing attribute (see Figure 1), in other words it is a
measure of semantic similarity to the image being explained.
We use these derivatives to measure the contribution of each
image in ia. A formal algorithm is described in algorithm 1.

Dataset and Training Details: The dataset consists of
approximately 200k unlabeled WCE images. The majority
of images come from WCE examinations of 10 patients with
varying UC activity, as well as other pathologies with PillCam
Colon 2 Capsule, Medtronic. The images are 576x576 in res-
olution with varying degree of bowel cleanliness. In addition
to this we use PS-DeVCEM dataset [22] with 80k images of
the same capsule modality. Remaining images come from
the OSF-Kvasir Dataset [18] with 3478 images from seven
classes taken with the capsule modality Olympus EC-S10.
We use StyleGAN2 without progressive growing and work



Algorithm 1: Saliency map generation
Input: Classifier C, query iqa; ia = {i1a, i

2
a...i

k
a, i

q
a};

Output: ism
for iqa do

predict output class probabilities for ia
output← C(ia)
backpropagate and collect gradients with respect to ia
[grad1

a, grad
2
a...grad

q
a]← ia.grad()

directional derivatives along attribute a
for i ∈ (ia\{iqa}) do

Diff(iq, i)←
∣∣∣∣G(w

q
a)−G(wi

a)

1

∣∣∣∣
end

S(iq, a)←
∑k

j=1 grad
j
a·Diff(iq,j)

k
ism ← meanThresholding(S(iq, a))

end

exclusively on the original intermediate latent space W and
not the extended space W+. The mapping network is 8-layer
multilayer perceptron with LeakyReLU activation and 0.01
initial learning rate. The generator as well as discriminator
use Adam optimizer (1 = 0,2 = 0.99) and initial learning rate
0.002 and batch size eight. Like [11] we use logistic loss with
R1 regularizer and path length regularizer. Other parameters
were as [11]. The model was trained on TwinTitan RTX for
30 days. 1

3. RESULTS

Qualitative Comparison: GuidedIG [10] produces noisy
saliency maps (as only pixels with low partial derivatives are
moved towards their original intensity at each step to avoid
high gradient regions and thus abnormal behavior), but if
the pixels affecting the decision are not localized but spread
globally across the image, (as in WCE), the resulting saliency
map can appear to be noisier. Similarly, while Smoothgrad
[19] captures the right regions, the saliency maps are overall
noisy. Integrated Gradients [20] correlates very closely with
our maps. Figure 5 shows X for various query images.

Quantitative Comparison: We use Softmax Information
Curve (SIC AUC) [9] for quantitative comparison. SIC AUC
measures the softmax score of a model against salient regions
indicated by the saliency map. Figure 6 shows the SIC AUC
for different approaches averaged over 50 images. Integrated
gradients achieve the best score followed by our approach.
We suspect this to be due to the SIC score’s preference for
smallest regions of effect (as in IG) instead of identifying all
contributing regions (as in ours).

4. CONCLUSION

In this work, we propose a framework for generating causal
as well as non-causal explanations for any image classifier.
Our model is network agnostic and supports not only visual

1Github : https://github.com/anuja13/ContrastiveExplanations
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Fig. 4. Qualitative comparison of saliency maps between our
approach and other approaches. Integrated Gradients (IG)
[20], Guided integrated gradients [10], SmoothGrad [19]
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Fig. 5. Figure shows X generated with this approach on dif-
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insight into model decisions, but offers end users the opportu-
nity to visualize alternate scenarios relevant to the current sit-
uation, for example in prognosis of UC as shown in this work.
To the best of our knowledge, this is one of the first works to
propose a single framework for generating both causal as well
as non-causal explanation for deep learning based models.
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