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Efficient LiDAR-Trajectory Affinity Model for
Autonomous Vehicle Orchestration
M. S. Mekala , Member, IEEE, Gaurav Dhiman , Senior Member, IEEE,

Wattana Viriyasitavat , Senior Member, IEEE, Ju H. Park , Senior Member, IEEE, and Ho-Youl Jung

Abstract— Computation and memory resource management
strategies are the backbone of continuous object tracking in
intelligent vehicle orchestration. Multi-object tracking generates
enormous measurements of targets and extended object positions
using light detection and ranging (Lidar) sensors. Designing an
adequate object-tracking system is a global challenge because
of dynamic object detection and data association uncertainties
during scene understanding. In this regard, we develop an
intelligent multi-objective tracking (IMOT) system with a novel
measurement model, called the box data association inflate
(BDAI) model, to assess each target’s object state and tra-
jectory without noise by using the Bayesian approach. The
box object filter method filters ambiguous detection responses
during data association. The theoretical proof of the box object
filter is derived based on binomial expansion. Prognosticating a
lower-dimension object than the original point object reduces the
computational complexity of vehicle orchestration. Two datasets
(NuScenes dataset and our lab dataset) are considered during
the simulations, and our approach measures the kinematic states
adequately with reduced computation complexity compared to
state-of-the-art methods. The simulation outcomes show that
our proposed method is effective and works well to detect and
track objects. The NuScenes dataset contains 28130 samples for
training, 6019 examples for validation and 6008 samples for
testing. IMOT achieves 58.09% tracking accuracy and 71% mAP
with 5 ms pre-processing time. The Jetson Xavier NX consumes
49.63% GPU and 9.37% average power and exhibits 25.32 ms
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latency compared to other approaches. Our system trains a single
pair frame in 169.71 ms with affinity estimation time of 12.19 ms,
track association time of 0.19 ms and mATE of 0.245 compared
to state-of-the-art approaches

Index Terms— Mobile computing, BDAI model, box object
filter method, deep learning, multi-object tracking system.

I. INTRODUCTION

A MULTI-OBJECT tracking (MOT) mechanism is an
essential paradigm for automated vehicles to strengthen

intelligent transport systems. Researchers and scientists have
obtained many findings on measuring the state of objects
(location of an object and its size in 2D space or volume
in 3D space) and extended objects classified based on their
characteristics, such as size, direction, and shape. Therefore,
an efficient data association approach needs to be designed
to streamline the targeted and extended object measurements
generated from light detection and ranging (LiDAR) sen-
sors. MOT methods are categorised based on filters, such
as the probabilistic hypothesis density filter [1], [2] and
multi-Bernoulli filter [3]. In [4], a symmetric positive definite
random matrix was used to denote the target extent through
random variables. However, it is valid only if the kinematic
state is iteratively observed. In [5], an implicit function was
considered to represent the object shape as a replacement
for the parametric form. Likewise, the Gaussian process was
modelled to define the object state through the spatio-temporal
Gaussian process covariance function [6].

Traditional tracking systems consider motion prediction
strategies, such as the Kalman filter and bipartite graph
models [7]. However, these methods are inappropriate during
cross-turning and sudden braking scenarios because of unsatis-
factory results. For instance, if the detection process misses an
object, the corresponding box is assigned to a different object,
which causes tracking errors.

Fig. 1 illustrates a scenario to measure traffic objects using
the deployed lidar sensors to track suspicious or targeted
objects through a component-based measurement system using
the onboard unit (OBU) and roadside unit (RSU) frameworks.
Hypothesis data and current state data of an object are con-
sidered to detect and localize the objects by assigning bbox;
consequently, the tracking process is carried out based on the
tracking component, which helps to decide on the vehicle’s
next move. Past examinations concentrated on designing a
robust object appearance model to enhance the object track-
ing accuracy rate. For instance, the scale-invariant feature
transform feature, histogram of oriented gradient feature and
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Fig. 1. Continuous object detection and tracking framework.

histogram are considered to design object identification models
with various affinity estimations, such as coefficient correlation
and χ2 distance factors. The cloud-based intelligent sensor
deployment network was designed based on the Lyapunov
approach, which helps enhance service reliability [8]. In [9],
a hierarchical association model was designed for efficient
MOT based on two-level (local and global) target represen-
tation. Local patches are essential to represent the target at
the local level, and the global level represents the target
with double-bounding boxes. Most affinity models’ motion
information is linear, but in real time, the target motion
is non-linear, specifically in the case of occlusion. In this
regard, a non-linear affinity model was designed for MOT
based on an affinity score [10], where the network node
represented the tracklist and its edge represented the likelihood
of neighbouring tracklets. Affinity metrics and object feature
quality significantly impact data association model accuracy
by comprehending complex object motions and measuring
differences in object appearance. Consequently, an adequate
data association model diminishes the occlusion ratio and
the decision mistakes made in terms of object detection.
A few studies have been conducted recently in line with
these objectives; for example, a deep affinity network (DAN)
was designed for object tracking based on the affinities of
joint modelling object appearances per frame. The affinities
were measured based on the pairing permutations of selected
features [11]. In continuation, a multiple ship tracking system
was designed for an adequate assessment of complex marine
scenes (long-term occlusions), where a DAN was used to
improve scale, region (joint global region modelling module
for assessing region dimensions) and motion (motion-matching
optimisation module for assessing motion dimensions) aspects
of the object for effective tracking [12]. An ant colony heuristic
method was used to construct the data association model to
comprehend the uncertainty measurements for effective object
tracking [13].

Motivation: Object behaviour estimation is a continuous,
time- varying and dynamic processes to localise an object
through effective data association models using two frame-
works (tracking-by-detection (TBD) and detection-by-racking
(DBT)). Usually, the TBD framework comprises batch track-
ing or an online tracking strategy for effective MOT. However,
the formulation of data association issues remains challenging
because object detection is based on object hypothesis data.

One of the main concerns is constructing an affinity model
by estimating the object structure of each motion in each
frame, which requires enormous measurements. Size, shape
and motion pattern measurements are essential components in
the affinity model for localising the extended object. Subse-
quently, eliminating ambiguous object structure detections is
necessary to minimise the computation workload, which helps
to increase system speed. In this regard, the Bayesian network
is considered to accomplish the targets because it is a directed
acyclic graph model that helps search for the objects, and
maximises the detection probability based on Bayesian statis-
tics with limited available information. However, intelligent
computing devices are resource-limited, and designing a box
filter method to avoid ambiguous measurements to meet their
computation capacity is challenging. A box data association
inflate (BDAI) model and a box object filter is derived based
on binomial expansion to address this issue. Therefore, a novel
measurement model is designed to streamline object detection
and data association issues. Our main contributions are as
follows:

1) Develop a novel BDAI model to assess each target’s
object state and trajectory without noise, based on the
Bayesian approach.

2) Develop a box object filter to avoid ambiguous detection
responses based on the correlation catalecticant square
matrix during data association.

3) Design an intelligent vehicle orchestration to optimise
computation complexity for continuously monitoring
and tracking objects.

The manuscript continues as Section II briefly explains
the research gaps and problem statements of the extant
approaches. Section III describes the proposed system and
its mathematical models with novel algorithms in detail.
Section IV, evaluates the investigation outcomes and Section V
concludes the manuscript.

II. RELATED WORK

In this section, the previously proposed MOT systems
are examined, and the possible shortfalls in their effective
formulation are briefly described. A random matrix and joint
probabilistic data-association filter were considered together to
measure the targeted object motions and status, but this model
is affected by inadequate computation complexity during the
object-tracking analysis mechanism [14]. Therefore, ellipsoid
gates were considered to avoid data association issues, but this
scheme is not feasible in a large heterogeneous environment. A
robust online motion affinity model was designed based on the
tracklet confidence function to optimise the data association
issue for MOT [15]. Tracklet confidence was measured based
on tracklet continuity and detectability, and a deep appearance
learning model was designed to increase association reliability
between tracklets. In [16], a relational appearance features
and motion patterns learning-based data association model was
designed to generate tracks with the reference of one object
and its feature differences compared to other objects. In [17],
an MOT model was designed to track and detect moving
objects by eliminating features lying on tracked objects. A
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simple, instinctive cost function was considered to streamline
the real-time performance of the visual odometry system.
In [18], a constant acceleration motion model was imple-
mented to track the future positions of tracking objects. In [19],
the author focused on learning algorithms for MOT in con-
nection with linear processes to streamline multi-dimension
assignments. A probabilistic assessment method and end-to-
end optimisation factors were derived to assess the learn-
ing differences during data association. However, the object
localisation rate is not feasible for lightweight environments.
An online optical pose association technique was designed to
track objects based on a camera system. The occlusion issue
was attempted to be resolved based on the local pose-matching
strategy. PWC-Net was considered to measure the extended
pose based on the differences between the current and previous
frames [20]. In [21], MOT frameworks were comprehensively
discussed based on their assessments, formulations, principles,
drawbacks and scopes to be focused on in future examinations
with quantitative comparisons. The authors in [22] addressed
optimal object trajectory issues based on two maximum-a-
posteriori methods for MOT through object detection and data
association measurements; however, these methods are not
suitable for complex association probability models because of
the association ambiguity caused by noise and frequent inter-
object communications. A multi-person tracking algorithm
was designed based on object detection and data association
strategies. Here, the YOLOv3 algorithm was used for identi-
fying the pedestrian target and the Kalman filter was used for
tracking and predicting the target. The Hungarian algorithm
used pedestrian features (depth and motion) to detect and pre-
dict the results for tracking multi-pedestrian targets. A hybrid
track association algorithm was designed to track the distances
through an incremental Gaussian mixture model to calculate
the association cost [23]. The authors in [24] discussed the
process of data association with clustering-based algorithms
and the feature group method to reduce the occlusion drop rate
without changing the original framework. In [25], a non-local
attention association methodology was designed for online
MOT, which depended on single object tracking and data
association. It also included spatial and temporal features
to resolve drawbacks such as noise, occlusion and repeated
interactions between targets. In [26], a multi-joint integrated
track-splitting tracker was implemented based on a multi-target
track-splitting structure. Here, a tree was assembled, with each
track component identified with data associations in multiple
scans. The hypothesis-testing based tracking (HTBT) method
was designed based on the spatio-temporal interaction graph
model to construct an effective data association system [27].
A probabilistic 3D multi-object tracking (P3DMOT) system
was designed based on feature extraction, Mahalanobis and
feature differences to track unmatched objects [28]. However,
state-of-the-art approaches have not designed an effective
affinity model or path-reliability estimation method to consoli-
date the data association. To address these issues, we designed
an intelligent multi-objective tracking (IMOT) system with a
novel measurement model, called the BDAI model, to assess
each target’s object state and trajectory without noise by using
the Bayesian approach.

Fig. 2. Extended object tracking with characteristics.

III. PROPOSED SYSTEM MODEL

The proposed IMOT system is designed based on the
Bayesian theory for continuous tracking of objects by the
intelligent vehicle. Fig. 2 illustrates the measurement of an
extended object with size, shape, direction and position.
We observe that a car is localised at time τ , which is
considered an initial object measurement, and the extended
object localises with direction, size and shape. In this regard,
the designed novel data association model formulates object-
tracking uncertainties, enabling the box object filter to assess
the object location for effective tracking. The designed BDAI
model and box object filter are both derived in the following
sections.

A. Box-Object Filter Model

The multi-object tracking issue is formulated by construct-
ing object and data association model based on the object
region or surface. Let us consider, the object states are main-

tain with a single vector vτ =
(
vT

1,τ , v
T
2,τ , . . . , v

T
N ,τ f

)T
, where

τ ∈
{
1, 2, . . . , τ f

}
refers the time slot for each measure and N

is number of objects. The sub-state vector for extended objects
is vτi =

(
V T

1,τ ,U
T
1,τ

)
, where V T

1,τ refers kinematics of motion

(position, velocity), U T
1,τ refers the considered parameters to

model extent object with shapes, and both are independent
variables. An object measurement set is denoted with M ={

mτ
1,mτ

1, . . . ,m
τ f
Qτ

}
and the measurements are disordered, and

Qτ =

N∑
i=1

Qs
i +Qc

i refers total measurements at time τ , where

Qs
i is an object surface measurements with mean as

i , Qc
i

refers cluster measurements with mean ac
i , respectively. The

extent object, pτ , existence is referred with binary value and
it is denoted as pτ =

(
pτ1 , pτ2 , . . . , pτi

)T for individual object
tracking, and pτi ∈ {0, 1} where 0 indicates the object does not
exist, and 1 indicates object presence. The probability of extent
object localization is formulated with probability density factor
(PDF) and is measured as

φ pτi |p
τ−1
i =

{
φp, pτi = 0i

1− φp, otherwise
(1)

φp = exp

(
−

1
p

L∑
l=1

N∑
i=1

√
Z j

i,l (δi ) · Z
j+1
i+1,l (δi+1)

)
(2)
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where Z j
i,l (δi ) ,Z

j+1
i+1,l (δi+1) are color histogram features to

measure the target object localization with path or trajectory
j , φp is a probability of existence, δi is reliability of path
which estimates with Eq. 7, pτi = 0i evolves with Markov
chain model, l is a bin l ∈ L and L = 64 for each histogram
color space.

B. Problem Formulation

The extant and extended objects measurements together
denoted with v pτ =

(
vT
τ , pT

τ

)T , and initial probability of
object localization is φ (v p0). The PDF of precedence state
φ (v pτ |M1:τ ) is an important factor to localize the extended
object at each frame. It is formulated as follows

φ (v pτ |M1:τ ) =
φ (Mτ |v pτ ) φ

(
v pτ |τ−1

i |Mτ
i

)
φ (Mτ |M1:τ−1)

φ (v pτ |M1:τ−1) =

τ∫
1

φ (Mτ |v pτ )× φ
(
v pτ |τ−1

i |Mτ
i

)
dx

(3)

Where φ (v pτ |M1:τ−1) is the PDF of precedence state and
φ (Mτ |M1:τ−1) is a normalized policy, Mτ

i is a object position
parameter set, φ (Mτ |v pτ ) is a probability of expected motion
state which is estimated with Eq. 4, φ

(
v pτ |τ−1

i |Mτ
i

)
is a

current motion state probability which estimates with Eq. 5.
The probability rate of precedence state estimates with Eq. 3,
which has a significant impact on MoT and the probability
rate of extended object state is mathematically derived in the
following sections.

C. Extended Object Motion Analysis

The current and expected motion state analysis methods are
essential in data association to construct the effective affinity
model. In this regard, estimating the current and extended
motion states of object is significant and they are derived as
follows

1) Expected Motion State Analysis Method: The probability
of expected motion state φ (Mτ |v pτ ) estimation is a significant
factor to predict object presence in the successive frames and
it is formulated as follows.

φ (Mτ |v pτ ) =
e−as

i

Fac (Qτ )


1Qτ +

Q∑
q=1

Na∑
i=1

1Qτ−q
×

Q∏
q=1

as
i φ
(
Mqcom
τ |v

qe
τ

)
 (4)

Where, Mqcom
τ is the complete measurements of object at time

τ , vqe
τ is existent object sequence association measurements,

and the cluster density is 1Qτ = as
i
/

cluster area
2) Object Motion Analysis Method: The probability of

object’s current state is formulated as follows

φ
(
v pτ |τ−1

i |Mτ
i

)
=

N∏
i=1

φ ((vτi |vτ−1
i

)
,
(

pτi , pτ−1
i

))
×φ

(
pτi |p

τ−1
i

)  (5)

Subsequently, motion forecasting of i th object is defined as
follows

φ
((
vτi |v

τ−1
i

)
,
(

pτi , pτ−1
i

))

=


φco

(
vτi
) {

pτi , pτ−1
i

}
= {1, 0}

φe
(
vτi
) {

pτi
}
= {0}

φ
(
vτi |v

τ−1
i

) {
pτi , pτ−1

i

}
= {1, 1}

(6)

Where φco
(
vτi
)

is object confirmation, φe
(
vτi
)

object end-
status, and φ

(
vτi |v

τ−1
i

)
is prognosticate motion of object. The

above analysis methods are essential to construct the expected
path and object presence based on the association matrix for
increasing tracking efficiency.

D. BDAI Model Formulation

The path or trajectory measurement is an important factor
for continuous object tracking. Therefore, validating the path
expected measurements are required to diminish the tracking
error rate and to enhance reliability. Hence, the reliability of
the path or trajectory is measured as follows

δi =
1
h̄i

 f r∈[ f s, f e]∑
f s=1

φ (δi , vi )

 · as
i · ε · ℘ (7)

where ε = ls − f s − h̄i is a total number of object-
missed frames, h̄i is the length of object path, φ (δi , vi ) is
a probability rate between detected object and path, ℘ is a
balancing weight factor, and ls, f r, f s, f e refers last frame,
total frames, starting frame, ending frame, respectively. The
path reliability rate is ⩾ 0.5, then it considers as a high
path reliability rate, which is in the bounded range of [0, 1].
As usual, the high-reliability rate objects and their paths are
maintained in a matrix which is denoted with

[
δ

j
i

]
J×M

, where

δ
j
i =

1
h̄i

log
(
φ
(
δi,h, vi

))
.

The extended object measurements enable three factors
(object localization (φi

p), motion (φi
m), size (φi

s)) to assess
the probability of each object path quality and it is defined
as follows

φ (δi ) =

N∏
i=1

φi
p · φ

i
s · φ

i
m (8)

where φi
p is measure with Eq. 2, φi

m =

φ
((
vτi |v

τ−1
i

)
,
(

pτi , pτ−1
i

))
is measure with Eq. 6, and

the size (φi
s) is defined as follows

φi
s = exp

(
−0.5×

(
xi − xi+1

xi + xi+1
+

yi − yi+1

yi + yi+1

))
(9)

where x, y is object’s height and weight. The dynamic motion
of objects at each frame is formulated as follows, where δ j, j+1

i,i+1
is a joint path between two objects i, i + 1.

φ
(
vτi |v

τ−1
i

)
=

(
δ

j
i + δ

j+1
i+1

δ
j, j+1
i,i+1

)
− 1 (10)

A Bayesian network is an enforced directed acyclic graph with
a set of random variables that enhances the efficiency of the
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data association model by estimating the detection probability
within a timestamp. Each object’s hypothesis data are used to
assess the object tracking based on contextual affinity methods.
The data association model emphasises differential probability
errors between the predicted and current object states for
effective tracking. Therefore, PDF is gleaned based on the
Bayesian mechanism for the effective construction of the data
association model as follows:

φ
((
vτi , V τ

i
)
, pτi , γi |Mτ

i
)
= φ

(
v
τ |τ−1
i |Mτ

i

)
×φ

(
V τ

i |M
τ
i
)
× φ

(
γ τi |M

τ
i
)
(11)

where, φ
(
v
τ |τ−1
i |Mτ

i

)
is a probability of predicted state (PPS)

of object which is estimated with Eq. 5, φ
(
V τ

i |M
τ
i
)

is a
probability of predicted extension (PPE) of object, φ

(
γ τi |M

τ
i
)

is a probability of predicted attributes (PPA) of object, V τ
i is

an object extension set, Mτ
i is an object position parameter

set, γi is a random scalar of PDF.
1) Measurement Complexity: The computation complexity

measurement is required to create a trade-off between cost
and system efficiency. Consequently, measuring each object
trajectory under a heterogeneous environment is a Hercules
process, since the number of cycles is n2. The complexity of
this process is O

(
n2). Subsequently, the probability estimation

of each extended object and the construction of a correlation
matrix based on hypothesis data play important roles in
path measurement and tracking. The process complexity is
expressed as O

(
nlog2n

)
, while the optimal complexity is

expressed as O
(
n2) because of O

(
n2)
≫ O

(
nlog2n

)
. There-

fore, the path-tracking complexity is expressed as O
(
n2).

Updating the extended object measurements concerning the
time window is essential to construct the object’s reliability
matrix and hypothesis data. Therefore, the time and extended
object vectors are revamped as follows:

2) Time Update: The data association stage design is a
global challenge under multi-target tracking problems, which
can be resolved based on the measurement of the targeted
object probability. The measurement of probability predicted
extension of the object plays a vital role in evolving the object
path track through its kinematics for accelerating detection
accuracy, and is formulated as follows:

φ
(
V τ

i |M
τ
i
)
= exp

(
V τ

i ;3
τ
i , V̂ τ |τ−1

i

)
(12)

where V̂ τ
i is an extended object measurement, vs

i > d − 1 is
a degree of freedom, σi is a scalar that defines the effect of
object extension and d is a physical space dimension. where
3τi is used to measure the object origin based on the degree
of association with other objects and space dimensionality,
as follows:

3τi = 2

(
(d + 2)+

1
σ 2

i

(
vs

i (σi + 1) (σi − 2)(
σi + v

s
i
) ))

(13)

The extended object shape data measurement plays a vital role
in extended object detection and classification at each frame,
and the measurement is amended at each iteration based on

the object state, Ri invertible matrix and object characteristics,
as follows:

V̂ τ
i =

vs
i

σi − 1

(
υτi − d

)
Ri × V̂ τ

i RT
i (14)

The pre-estimation of extended object attributes is essential to
predict the presence of an object at each frame by considering
the eccentricity of the ellipse-bounded range, angle of direction
and extent object semi-coordinates. The probability of the
predicted attributes φ

(
γ τi |M

τ
i
)

of the object is derived as
follows:

φ
(
γ τi |M

τ
i
)
= exp

(
γi , φ̂

p
i , φ̂

s
i , (0,+∞)

)
(15)

where,

φ̂p = ψ̂
τ,τ−1
i × φ̂

τ |τ−1
i,p

φ̂s =
(
ψ̂
τ,τ−1
i

)2
× φ̂

τ |τ−1
i,s +1Q p (16)

where ψ̂ τ,τ−1
i is extended object state parameter derived as

follows.

ψ̂
τ,τ−1
i =

b̂τ,τ−1√
1− (êi · cos (2i − θi ))

2
(17)

êi =

√√√√√√1−

(
b̂τ,τ−1

i

)2

(̂
aτ,τ−1

i

)2 , ∴ 0 < êi < 1 (18)

where ei , 2i , b̂τ,τ−1
i , b̂τ,τ−1

i refers a eccentricity of ellipse,
inflate direction angle, semi-axes defined by V̂ τ

i .
3) Extended Object Measurement Update: The Bayesian

method formulates the PDF of an extended object with three
factors (object localisation density, extent prediction density
and random scalar density) for effective identification and
tracking. The random scholar denotes the size of the extended
object at each frame. The three factors’ product formulates
and updates the extent of object measurements for each frame
within the time window, as follows:

φ
(
vτi , V τ

i , γ
τ
i , pτi ,Mτ |τ−1

i

)
≜ η

(
vτi
)
η
(
V τ

i
)
η
(
γ τi
)

(19)

The forecasting density of each factor is defined as follows
and the object localization density is

η
(
vτi
)
∝

∫
ln
(
φ
(
vτi , V τ

i , γ
τ
i , pτ |τ+1

i ,Mτ |τ−1
i

))
×η

(
V τ

i
)
η
(
γ τi
)

dV τ
i dγ τi (20)

The predicted extension of object density is

η
(
V τ

i
)
∝

∫
ln
(
φ
(
vτi , V τ

i , γ
τ
i , pτ |τ+1

i ,Mτ |τ−1
i

))
×η

(
γ τi
)
η
(
vτi
)

dγ τi dvτi (21)

The elaborated measurements random scalar density is derived
as follows

η
(
γ τi
)
∝

∫
ln
(
φ
(
vτi , V τ

i , γ
τ
i , pτ |τ+1

i ,Mτ |τ−1
i

))
×η

(
V τ

i
)
η
(
vτi
)

dV τ
i dvτi (22)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Robert Gordon University. Downloaded on February 20,2023 at 13:46:01 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

The path joint prediction density is factorized as follows

φ
(
vτi , V τ

i , pτi , γi ,Mτ |τ−1
i

)
= φ

(
mτ

i |v
τ
i , V τ

i , γ
τ
i
)

×φ
((
vτi , V τ

i
)
, pτi , γi |Mτ

i
)

(23)

where, the φ
((
vτi , V τ

i
)
, pτi , γi |Mτ

i
)

is derived from Eq. 11,
and φ

(
pτi |v

τ
i , V τ

i , γ
τ
i
)

is derive as follows

φ
(
mτ

i |v
τ
i , V τ

i , γ
τ
i
)
∝ exp

(
m̂i ;divi +2iγi ,

Ri V τ
i RT

i
Qτ

n

)
×w

(
Mi ; qi − 1,Ri V τ

i RT
i

)
(24)

where, 2i is object measurement inflate direction, Qτ
i is an

independent of vi ,

m̂i =
1

Qq

Qq∑
q=1

mτ
i,q ,

m̂i =

Qq∑
q=1

(
mτ

i,q − m̂i,q

) (
mτ

i,q − m̂i,q

)T
(25)

and Eq. 23 is derived as follows

log
(
vτi , V τ

i , pτi , γi ,Mτ |τ−1
i

)
∝ log

∣∣V τ
i

∣∣+ m̂τ
i − dτi v

τ
i −2

τ
i γ

τ
i

×

(
Ri V τ

i RT
i

ϑi

)
+
(
ϑτi − dτi − 1

)
× log

∣∣Mτ
i

∣∣
−tr

(
Ri V τ

i R−T
i Mτ

i

)
− log

(
mi |i−1

)
+
(
vτi − v̂i |i−1

)T

−0.5
(
ϑτi + uτi + 1

)
log

∣∣V τ
i

∣∣− 0.5tr
(

V̂ τ
i V τ−1

i

)
− 0.5 log

(
φ̂τs + φ̂

τ
s

(
γ τi − φ̂

τ
p

)2
)
(0,+∞) (26)

The vi is formulated by substituting Eq. 26 in eq. 20 to
estimate the expected object detection density as follows

η
(
vτi
)
=

N∏
i=1

φ ((vτi |vτ−1
i

)
,
(

pτi , pτ−1
i

))
×φ

(
pτi |p

τ−1
i

)  (27)

The Vi is formulated by substituting Eq. 26 in eq. 21 to
estimated the density of extended object for effective tracking
as follows and the mathematically derivation is amended in
Appendix.

η
(
V τ

i
)
= exp

(
V τ

i ;3
τ
i , V̂ τ |τ−1

i

)
(28)

The γi is formulated by substituting Eq. 26 in eq. 22 to
measure the random scalar density as follows

η
(
γ τi
)
= exp

(
γi , φ̂

p
i , φ̂

s
i , (0,+∞)

)
(29)

The affinity model estimates the object structure (size,
shape and motion pattern) to localise the extended object by
algorithm 1. The hypothesis data analysis component elimi-
nates the ambiguous structure detections and redundant bboxs
by analysing the successive frames to diminish the work-
load. Consequently, tracking objects frame-by-frame based on
object-centric measurements is carried by algorithm 2, where

Fig. 3. IMOT flowchart.

the estimation of path reliability helps to validate the tracking
path accuracy. Moreover, algorithm 1 assesses the object
presence with accurate measurements where line 1 initialises
the entail factors, and line 2 is a loop to check every object per
frame. Line 3 measures the object probability density factor.
Line 4 is a loop used to assess object motion per frame based
on specific parameters that are part of the affinity method; for
example, line 5 measures the probability density factor for an
extended object. Lines 6–10 assess the comprehensive object
measurements (shape, motion, expected and scalar density)
described in our approach. Eventually, successive occluded
boxes are eliminated to preserve the computation resources.
Algorithm 2 optimises the object tracking uncertainties based
on the BDAI model through object affinity measurements
and a data association model. Line 1 initialises the entail
factors, and line 2 is a loop for the iterative analysis of object
states. Line 3 measures the reliability of each object path,
and the outcomes are updated in the catalecticant matrix.
Line 4 helps to analyse hypothetical data. Line 5 assesses
the object’s dynamic motion to measure the extended state
using algorithm 1. The path probability of the extended object
is estimated using line 6, and the core programming flow is
depicted in Fig. 3. This algorithm resolves the MOT issue
by deriving a novel data association method with a variant
Bayesian mechanism.

4) Complexity Analysis: Let us assume that the algorithm 1
& 2 diverges into three sub-modules. First, the iterative process
of data ambiguous analysis impacts the targeted object accu-
racy, and the complexity of this process is expressed as O

(
n2).

Sorting the objects based on the affinity model is significant,
and the complexity of this process is expressed as O

(
nlog2n

)
.

Third, updating the extended object measurements of each
frame helps consolidate the accuracy of the data association
model. The complexity of this process is expressed as O

(
n3).
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Algorithm 1 Reliable Object Filtering Model
input : Object-state set v[i],

M =
{
m1,τ ,m1,τ , . . . ,m Q,τ f

}
, τ , Qτ

output: Object set filtering without redundancy through
accurate measurements

Let τ ̸= 0, Qτ =

N∑
i=1

Qs
i + Qc

i ;

for each vi ∈ N do
Estimate Probability density factor

φp = exp
(
−

1
p

L∑
l=1

N∑
i=1

√
Z j

i,l (δi ) · Z
j+1
i+1,l (δi+1)

)
;

while pτi ̸= 0 do
Assessment of prognosticated object state
φ
(
vτi , V τ

i
)
= exp

(
V τ

i ; υ
τ
i , V̂ τ

i
)
;

Estimate extended object shape
V̂ τ

i =
vs

i
σi−1

(
υτi − d

)
Ri × V̂ τ

i RT
i ;

Dynamic update of each object states:
Estimate object PDF precedence
φ (v pτ |M1:τ−1) =
τ∫
1
φ (Mτ |v pτ )× φ

(
v pτ |τ−1

i |Mτ
i

)
dx ;

Update and estimate the extended object
expected density as η

(
V τ

i
)
∝∫

ln
(
φ
(
vτi , V τ

i , γ
τ
i , pτ |τ+1

i ,Mτ |τ−1
i

))
×

η
(
γ τi
)
η
(
vτi
)

dγ τi dvτi ;
Estimate elaborated measurements with a

random scalar density as η
(
γ τi
)
∝∫

ln
(
φ
(
vτi , V τ

i , γ
τ
i , pτ |τ+1

i ,Mτ |τ−1
i

))
×

η
(
V τ

i
)
η
(
vτi
)

dV τ
i dvτi ;

end
Update v[i] ←

{
η
(
vτi
)⋂

η
(
V τ

i
)⋂

η
(
γ τi
)}

;
end

The system complexity is

O
(

n2
)
+ O

(
nlog2n

)
+ O

(
n3
)

(30)

IV. EXPERIMENTAL RESULTS

The PC runs 64-bit Ubuntu 18.04.5 LTS on the Intel
Core i7-10700 CPU 3.80GHz×16 and NVIDIA GeForce.
The MATLAB1 driving scenario designer provides a simple
method of generating road users and their trajectory sce-
narios, and the MATLAB GPU Coder is used to generate
the target code for effective processes over NVIDIA Jetson.
The second set of simulations is conducted with TensorFlow,
a mmdetection3D platform, for performance cross-validation.
The performance of our system is assessed based on the
nuScenes dataset [29], and it has complete 360◦ coverage
because of 32-beam LiDAR, six cameras and radars, which
provide ground-truth knowledge regarding the targeted object
to monitor multiple objects over each frame. The nuScence
dataset diverges into 65% of the training set, 20% of the
test set and 15% of the validation set. The learning pro-
cess is controlled by tuning the hyperparameters through the

1https://de.mathworks.com/help/driving/ref/drivingscenariodesignerapp.html

evaluation process based on the validation set, which takes
place for each 80-epoch iteration. The proposed system’s
performance at the device is analysed based on Jetson Xavier
NX with mode 15W & 6-cores and mapping module frequency
of approximately 1 Hz; the results are visualised with Rviz,
which is a robot operating system tool. The dataset has
1000 scenes with 3D bounding boxes, which are annotated
at 2Hz frequency. The 3D bounding boxes are effectively
filtered using 20s long scenes based on the classes. The object
tracking accuracy and speed are measured based on the track
velocity in terms of frames per second (FPS). The multiplica-
tive error model-extended Kalman filter [30], target-specific
metric learning (TSML) [31], hypergraphs for multi-object
tracking (H2T) [32], HTBT method and P3DMOT model are
considered to assess the performance of our proposed system
based on the following metrics: ground truth (GT), mostly
tracked (MT), mostly lost (ML), false positive (FP), false
negative (FN), number of identity switches (IDS), multiple
objects tracking precious (MOTP), and multiple object track-
ing accuracy (MOTA) measurements, as listed in Table I, for
both NuScences and real-time datasets.Our data association
model is inspired by robust object detection by formulating
occluded targets for effective object tracking. Unlike state-of-
the-art approaches, the data association model is less com-
plex due to its accurate affinity measurements and efficient
matrix construction of extent objects. Note that the occluded
target identity assessment and assignment are based on the
association link between the detected object and the occluded
target. If there is no link, then it is treated as a new target
for accomplishing tracking efficiency. The target is eliminated
when it vanishes for consecutive frames or continues occlu-
sion. In our simulation, the average threshold value is set
as 0.5 to enhance the data association model performance.
Table II presents the detailed IMOT performance of each class.
For example, bicycle, bus, car, motorcycle, pedestrian, trailer
and truck have 33.8%, 66.6%, 73.2%, 57.6%, 68.9%, 61.1%
and 45.1% MOTA, respectively.

Fig. 4 illustrates object measurement and tracking analysis
based on the frame rate. An object dimensionality measure-
ment is essential to track objects in a real-time environment.
The IoU parameter helps validate the object-centric measure to
ensure targeted object detection accuracy. Fig. 4(a) illustrates
the intersection over union (IoU) rate analysis as per the object
density of each frame. The IoU rate of IMOT diminishes as the
object density rate drastically increases. However, on average,
the IoU rate of our approach is determined as > 0.7% due to
the effective measurement of extended objects through the data
association method to localise the object for effective tracking.
MEM-EKF achieves a moderate IoU rate compared to the
other two approaches. When the density rate is < 3, IMOT
achieves an accurate IoU measure because of few object detec-
tions. However, the 3-extent approaches do not achieve effi-
cient measurements even in the same circumstances.Fig. 4(b)
illustrates the PDF impact to track the extended object based
on their state measurements per frame. Our system achieves
a higher object detection probability rate than the state-of-
art approaches. Fig. 4(c) shows the measurement error rate
of all approaches, where IMOT achieves a lower error rate
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Fig. 4. Object measurement and tracking comparative analysis with respect to frame rate.

Algorithm 2 BDAI Model for Continues Object Track-
ing

input : Object-state set v[i], V T
1,τ , τ

output: Updated object path
Let τ ̸= 0, δi ̸= 0, [δ j

i ]J×M ̸= 0, φ (δi ) ̸= 0;
for each vi ∈ N do

Estimate existed objects path reliability

δi =
1/

h̄i

(
f r∈[ fs , fe]∑

fs=1
φ (δi , υi )

)
· as

i · ε;

Assess each path quality with Inflate based data

association φ (δi ) =
N∏

i=1
φi

p · φ
i
s · φ

i
m and Estimate

expected object motion with Eq. 4;
Estimate dynamic motion of object as per object

states measurement using Algorithm 1;

φ
(
vτi |v

τ−1
i

)
=

(
δ

j
i +δ

j+1
i+1

δ
j, j+1
i,i+1

)
− 1;

Construct correlation catalecticant matrix [δ j
i ]J×M ;

Where, δ j
i =

1
h̄i

log
(
φ
(
δi,h, vi

))
;

Track the object with updated object status
measurements;

end

than state-of-the-art approaches. Nevertheless, it increases to
2% as the object density rate increases. However, the error
rate is mitigated due to the effectiveness of the BDAI model
by avoiding redundant measurements based on an encoded
filter. The state-of-the-art models have achieved a ≥ 10% error
rate, which is inappropriate for deploying the object-tracking
method on the vehicle node. Fig. 4(d) illustrates several
detected object tracks at each iteration. In our simulation,
continuously occluded objects are eliminated, and the object
identification ratio decreases as the iteration count increases.
IMOT achieves a lower tracking error rate than state-of-the-art
approaches because the affinity model is formulated based on
the Bayesian approach.

A comparative analysis of the loss rate and probability
of object detection (PD) rate is illustrated in Fig 5. The
noise and redundancy removal policy causes loss of the
entail data because of the inadequate extended object mea-
surement system, which we resolve using the BDAI model.
As observed in Fig. 5(a), the IMOT approach achieves a
lower loss rate than state-of-the-art approaches because of
the extended Bayesian approach formulation; however, MEM-

TABLE I
QUANTITATIVE COMPARISON OF 3D MOT EVALUATION RESULTS ON

NUSCENES DATASET AND REAL-TIME DATASET

EKF achieves an average better loss rate than TSML and
H2T. The Bayesian approach effectively diminishes the loss
rate due to an accurate measurement system design to mea-
sure extended object characteristics, such as size and shape
(part of affinity). Subsequently, Fig. 5(b) shows the object
or path detection rate probability concerning the FPS factor.
Compared to other approaches, IMOT achieves a PD rate
of more than 90% because the catalecticant square matrix is
considered to update the state of each object along with path
reliability measurements. In most cases, the reliability rate is
[0.5, 1]. The H2T model achieves a lower prediction rate due
to inadequate computation complexity than the TSML and
MEM-EKF models. Figs. 5(c) and 5(d) illustrate the Jetson
device resource usage rate in terms of CPU cycles per second
concerning the variance of frame time and elapsed time to
execute the service. IMOT achieves a lower resource usage
rate than other approaches. Fig. 6 shows the experiment setup
and extended object measurements, and Fig. 6(a) illustrates the
detected object path concerning each approach. The original
object is detected at frame 15, where the IMOT measured
area is appropriate since the IoU rate is > 0.75 and the
HTBT, P3DMOT and H2T models achieve average better
measurements of inadequate object detection ratio than the
remaining two approaches. Each colour interprets the accuracy
of every state-of-the-art approach concerning the proposed
approach. Fig. 6(b) represents the OS1-64 channel LiDAR
setup with RTX3090 to collect real-time data.

In simulation 2, the performance of the proposed approach
is analysed with the HTBT and P3DMOT approaches. The
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Fig. 5. Comparative analysis of Loss rate and probability of object detection (PD) rate.

Fig. 6. OUSTER-64 beam LiDAR framework for extended object measurement analysis.

TABLE II
3D MOT EVALUATION RESULTS ON NUSCENES DATASET

TABLE III
QUANTITATIVE RUN-TIME ANALYSIS

TABLE IV
JESTSON XAVIER NX PERFORMANCE ANALYSIS

average runtime performance analysis report is updated based
on several tracking objects (#N ) in Table III. The run time
is measured with NVIDIA GeForce RTX-3090 GPU. Our
approach consumes an average of 169.71 ms to train single
pair frames, and the affinity estimation time is 11.99 ms, track
association time is 0.16 ms and mATE is 0.238. When N = 25,
the proposed system consumes the average run time as follows:
the affinity estimation time is 12.19 ms, the track association
time is 0.19 ms and mATE is 0.245. Table IV shows the
embedded device performance analysis results. Our approach
achieves low usage of GPU (49.63%) and power (9.73 w) and

exhibits latency with 69.12% mean average precision, which is
quite optimal due to the system’s low complexity for tracking
service execution. Subsequently, the HTBT approach achieves
adequate resource usage and more effective performance than
the other two approaches.

Fig. 6(c) and 6(d) show tracking results of our pro-
posed method. In our simulation, continuous identification of
occluded objects is omitted and the tracking of these objects
is halted. It can be seen that the background points are filtered
effectively. However, the points of the stopped vehicle are
also detected at the initial frames, but in further successive
frames, these points are also effectively tracked and eliminated
to achieve targeted accuracy.

V. CONCLUSION

This document describes an IMOT system based on intel-
ligent vehicle orchestration for continuous object tracking.
LiDAR sensors generate considerably extended object mea-
surements during target assessment. The intelligent vehicle
is responsible for assessing the decision of the object status
by examining the measured data. The proposed BDAI model
regulates the computation service based on the Bayesian
approach. It plays a vital role in achieving 58.09% accuracy
with 20 FPS by avoiding ambiguous detection responses based
on the box object filter method. The theoretical proof of
the box object filter is derived based on binomial expansion,
and comprehensive enactment equations are derived for linear
motion analysis to cope with the measurement models. Our
model outcomes indicate that our method measures MOTA,
MOTP, mAP and mATE as 0.5809, 0.279, 0.710 and 0.245,
respectively. The Jetson Xavier NX consumes 49.63% GPU
and 9.37% average power and exhibits 25.32 ms latency as
compared to other approaches.

The designed model suits lightweight cyber-physical sys-
tem (CPS) frameworks because of its low complexity and
computational resources. Generally, real-time scenarios are
unpredictable, as the extended object measurement count
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is unknown. For instance, the mmWave sensing mechanism
breeds massive measurements for indoor object localisation.
In this regard, deploying the proposed system in a real-time
environment is a challenge that we will consider in future work
for continuous object detection and tracking with embedded
devices by mapping the requirements of a lightweight mech-
anism.

APPENDIX

Vi is formulated by substituting 26 in eq. 21; such that,

η
(
V τ

i
)
= χ

(
V τ

i |V̂
τ
i ; υ

τ
i
)

(31)

Vi is derived as follows

log
(
η
(
vτi
))
∝

∫
ln
(
φ
(
vτi , V τ

i , pτi |p
τ
i+1
))

× η
(
V τ

i
)
η
(
γ τi
)

dV τ
i dγ τi

= −0.5 · ϑi × ( p̂i − divi +2iγi )Ri V τ
i RT

i

0
[
γ τi
]
=

∫
γ τi η

(
γ τi
)

dγ τi = 0η(γ τi )

= −0.5 · ϑi ×
(

p̂i − divi +2iγi

+2i0
[
γ τi
]
−2i0

[
γ τi
])T

× Ri0
[
V τ

i
]
RT

i

= −0.5 · ϑi ×
(

p̂i − divi +2iγi

+2i
[
γ τi − 0

[
γ τi
]])T

× Ri0
[
V τ

i
]
RT

i

= −0.5 · ϑi × ( p̂i − divi +2iγi )
T Ri0

[
V τ

i
]
RT

i

log η
(
vτi
)
= −0.5

(
vτi − 0

[
vτi
])T

Such that,

η
(
vτi
)
= ϒ

(
vτi |̂v

τ
i , φ

(
vτi |̂v

τ
i
))

(32)

The rest of the two parameters (Vi , γi ) are formulated simi-
larly.
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