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ABSTRACT 

Underbalanced drilling facilitates the effective control of wellbore pressures 

amongst several other important advantages when compared to conventional 

drilling technology. However, this involves the flow of multiphase fluids which 

introduces additional complexities due to highly transient flow patterns, 

unpredictable wellbore hydraulics and increased tendency for the settling of drilled 

cuttings in the wellbore. An accurate prediction of the fluid dynamics and cutting 

transport efficiency is required to achieve an effective pressure management hole 

cleaning operation 

In this research, a theoretical, numerical and experimental study was performed 

to analyse and investigate the cutting transport dynamics and wellbore hydraulics. 

The analytical study involved the development of several mechanistic models that 

are valid for both single phase and two-phase flows in the concentric and eccentric 

annuli with and without inner pipe rotation. Reynolds number and effective 

viscosity equations valid for annuli flow of both Newtonian and non-Newtonian 

Power law, Bingham plastic and Yield power law fluids were derived and presented.   

New Laminar and turbulent friction geometry parameter and friction factor 

equations that take in account the combined effect of the fluid rheology, fluid 

circulation rate, pipe eccentricity and inner pipe rotation speed for the evaluation 

of the that flow dynamics and pressure losses in the annuli were formulated from 

the solution of the continuity equation of motion for axial steady-state flows. In 

addition, new flow gas-liquid pattern dependent multi-layered models valid for 

horizontal and inclined annuli flows were developed for the different cuttings 

transport mechanisms. Numerical computational fluid dynamics simulations were 

performed to discretise and solve the governing equations for fluid flow using a 

finite volume mathematical approach to obtain velocity, viscosity and pressure 

fields for different input conditions. Furthermore, an experimental study was 

carried out to evaluate the interplay between the two-phase gas-liquid flow 

patterns and the major drilling parameters and investigate its influence on the 

cuttings and fluid flow dynamics in a horizontal and inclined drilling wellbore.  

Results showed that the effect of the drillpipe rotation on cuttings transport in the 

annuli is highly dependent on the fluid rheological properties, the drillpipe 

eccentricity, the wellbore inclination and fluid flow pattern. The annuli pressure 
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gradient was found to be dependent on the fluid flow pattern and the prevailing 

cutting transport mechanism. The minimum requirements to clean an eccentric 

annulus is higher than that required for the concentric annulus. Furthermore, the 

local mixture properties and gas-liquid flow pattern of the fluid is strongly 

influenced by the inclination angle of the wellbore which as of a result, influences 

the annuli pressure losses and cutting transport dynamics. Although drillpipe 

rotation can improve cuttings transport through the annuli, the influence of 

drillpipe rotation on the cutting’s movement in the two-phase gas-liquid drilling 

fluid is much less than that of the single-phase drilling fluid. 

Overall, a good match was found when the mathematical models were compared 

to the experimental data. The output of this research is very useful for 

implementing an efficient cutting transport operation, hydraulic program 

optimisation and effective wellbore control, particularly for managed pressure 

drilling operations. 
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gf = Gas in contact with the wall/casing (Liquid film region) 
Gs = Gas in the slug body  
Ls = Liquid in the slug body 
M = Gas-liquid mixture  
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ns = No-slip  
p = Drillpipe wall  
pw = Pipe wall  
SG = Superficial gas  
SL = Superficial liquid 
w = Annuli wall  
wG = Pipe wall in contact with gas  
wL = Pipe wall in contact with liquid 
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Introduction 
 

 

1.1 Background 

Drilling of complex wells in the oil and gas industry has been on the rise due to 

the increasing demand for crude oil. These complex wells such as horizontal wells, 

extended reach wells and multilateral wells are often drilled in order to maximise 

the hydrocarbon recovery from the reservoir and optimise productivity. In 

depleted or low-pressure reservoirs, if the hydrostatic pressure is higher than the 

formation pressure, wellbore instability issues emerge, leading to lost circulation, 

and formation damage. Multiphase (gas-liquid) drilling fluids or underbalanced 

drilling techniques are mostly used in these environments to control the wellbore 

pressures and improve the stability and productivity of the field by reducing 

formation damage (Baojiang, 2016).While operating in underbalanced drilling 

(UBD) conditions, the pressure in the wellbore is kept below the static pressure of 

the formation, allowing formation fluids to flow into wellbore and up to the surface. 

In some cases, an inert gas is pumped into the drilling fluid in order to reduce the 

equivalent density of the fluid and thereby reduce the hydrostatic pressure 

throughout the entire wellbore. Due to the complexity of multiphase flow, the 

prediction of the flow dynamics, wellbore hydraulics and the effective transport of 

the cuttings out of the wellbore is a lot more challenging when compared to 

conventional drilling operations. An improper hole cleaning job can lead to 

increased torque and drag, lost circulation, weight stacking, increased hydraulic 

requirements, stuck pipe and wellbore instability, all of which have a negative 

impact on the effectiveness or cost of the drilling project and may affect the 

productivity of the field (Hajipour, 2020).   

Field and laboratory analysis over the years has shown that an effective cutting 

transport during drilling operation is dependent on a number of important 

parameters including the rheological properties of the drilling fluid, the drillpipe 

and wellbore/casing sizes, the wellbore inclination angle, the cutting sizes, rate of 

penetration (ROP), drillpipe rotary speeds, eccentricity and most importantly the 

fluid flowrates (Ford, et al., 1990). However, the influence of these drilling 
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parameters on the effectiveness of hole cleaning has not been adequately 

investigated for UBD conditions where a multiphase drilling fluid is flowing in the 

wellbore annuli. If the velocity of the drilling fluid in the wellbore annuli is not high 

enough to transport the cuttings, the cuttings would settle out of the flow and 

form a stationary at the low-side or bottom of the wellbore. The fluid velocity 

required to avoid the formation of this stationary bed is often referred to as the 

critical velocity or the minimum transport velocity. The magnitude of this velocity 

is dependent on the cutting transport mechanism, meaning that the cuttings would 

be transported as a moving bed if the fluid velocity is higher than the minimum 

transport velocity for the moving/sliding bed and in suspension if the fluid velocity 

is higher than the minimum transport velocity required to suspend the cuttings in 

the annuli. In general, for multiphase (gas-liquid-solid) flow in pipes or tiebacks, 

it has been reported that the fluid flow pattern has a major influence on solids 

transport and the ability of the fluid to transport the solids effectively is highly 

dependent on the prevailing flow pattern. Other than the influence of the flow 

pattern on solids transport, the flow pattern also has a direct impact on the 

pressure losses experienced by the two-phase flow through the pipe. It is fair to 

assume that if this phenomenon exists for multiphase flow in pipes it would also 

be an issue of concern in the for multiphase flow in the annuli. Due to the 

complexity and highly transient flow pattern of multiphase flow, at the present 

time, there is no rigorous method available for the prediction of the pressure 

gradient for multiphase flows through pipes or annuli.  For this reason, the 

alternative has been to develop either empirical or mechanistic models that are 

flow pattern dependent for the determination of the pressure losses for two-phase 

flows. For underbalanced drilling operations, since the need for wellbore pressure 

management is critical, it is important that the methods employed for the 

prediction of the pressure profile through the length of the wellbore be dependent 

on the flow pattern existing in the entire wellbore. Two-layered or three-layered 

cutting transport models developed for the prediction of cutting transport 

efficiency and the pressure losses for the flow of single-phase drilling fluid in the 

wellbore annuli has been applied directly to that of the underbalanced drilling 

scenario by various researcher to develop a method for performing wellbore 

predictive calculations (Doan et al., 2000; Li and Kuru, 2005; Ozbayoglu and 

Miska, 2003). However, the direct application of these models for underbalanced 

drilling operations is questionable and may lead to highly inaccurate predictions, 
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the main reason being that the transient gas-liquid fluid flow pattern has been 

ignored. There are several cutting transport mechanisms that may exist either 

individually or simultaneously in the wellbore annuli and unlike the single-phase 

flow, is most likely to be highly influenced by the fluid flow pattern in the 

multiphase flow. Again, due to gas expansion with changes in pressure and 

temperature, the fluid properties change rapidly, thereby changing the speed of 

the phases, the in-situ hold up and hence the flow pattern. This phenomenon also 

has to be taken into account when performing predictive calculations as it has a 

huge influence on the wellbore pressure losses and cutting transport efficiency. It 

is important to understand the fundamental physics of the hydraulics of 

multiphase flow in the annuli and how to manipulate the key drilling parameters 

to optimise the wellbore pressure management and ensure an effective hole-

cleaning process. In this research, a theoretical, numerical and experimental study 

is performed to investigate the effect of the major drilling parameters on wellbore 

hydraulics and cutting transport efficiency for both single-phase and two-phase 

Newtonian and non-Newtonian fluid flow. 

 
 
 
1.2 Research objectives 

The aim of this study is to investigate the effect of the major drilling parameters 

on wellbore hydraulics and cutting transport efficiency and to develop reliable 

methods that can be used to perform the accurate design and predictive wellbore 

calculations required to optimise and maximise the benefits of underbalanced 

drilling operations. This research focused on the following objectives: 

1. Conduct an intensive literature review of single-phase and two-phase 

Newtonian and non-Newtonian flow in both pipes and annuli, evaluating the 

current predictive methods of the flow dynamics and cuttings transport. 

2. Design and construct an experimental rig and data acquisition system to 

imitate the wellbore drilling process using single-phase and two-phase drilling 

fluids. 
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3. Establish methods to determine the rheological parameters for non-Newtonian 

drilling fluids. 

4. Experimentally investigate the flow dynamics and cutting transport 

phenomenon in single-phase and two-phase flow in the annuli for different flow 

patterns. 

5. Develop new analytical and mechanistic equations for the determination of the 

friction factor for Newtonian and non-Newtonian fluid flow in an annulus with 

any level of eccentricity and with or without drillpipe rotation. 

6. Develop using a computational fluid dynamics (CFD) approach a method to 

discretise fluid flow governing equations, create geometry and mesh a 

concentric and eccentric annulus to perform numerical simulations for the flow 

of Newtonian and non-Newtonian fluids in a wellbore with and without drillpipe 

rotation. 

7. Develop new flow pattern dependent mechanistic models for the prediction of 

wellbore hydraulics for underbalanced drilling operations. 

8. Develop new flow pattern dependent multi-layered cutting transport models 

for the evaluation of cuttings transport performance for underbalanced drilling 

operations 

9. Validate and refine developed mathematical models using the data obtained 

from the numerical and experimental study. 

 
 
 
1.3 Method and Approach 

A theoretical, numerical and experimental study was carried out to explore the 

effect of several input conditions on wellbore hydraulics and cuttings transport 

efficiency. Generally, the methodology was based on the exploration of 

fundamental studies previously performed for single-phase and two-phase flow in 

both pipes and annuli, identifying the gaps in regard to their direct application to 

a wellbore with underbalanced drilling conditions and developing new 

mathematical models from the fundamental physics of single-phase and two-

phase Newtonian and non-Newtonian annuli flows. New mathematical flow pattern 

dependent models were developed to determine the pressure losses in the 

concentric and eccentric annuli with or without inner pipe rotation, by considering 

the fluid properties and momentum equations for each of the phases flowing in 
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the annuli. A novel idea is applied to develop new flow pattern dependent multi-

layered cutting transport models from the consideration of the different cutting 

transport mechanisms that exists in the wellbore annuli. The numerical 

computational fluid dynamics (CFD) simulations were generated using a finite 

volume technique to mesh the annuli and discretise the governing equation for 

fluid flow to obtain optimum data required to test and validate the theories and 

mathematical modelling performed in the theoretical study. Furthermore, an 

experimental rig equipped with data acquisition tools is designed and constructed 

to emulate the conventional and underbalanced wellbore drilling process, perform 

flow pattern characterisation and investigate how the key drilling parameters 

influence the wellbore hydraulics and cuttings transport dynamics. Experimental 

data was obtained and compared with the results generated from the theoretical 

study in other to validate the new mathematical models. 
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Literature review 
 
 

2.1 Non-Newtonian fluid flow in annuli 

In oil well drilling, the drilling fluid, which generally has a non-Newtonian 

rheological behavior, flows into the wellbore through the drillpipe and out through 

the annular space between the drillpipe and the wellbore or casing to the surface. 

The main functions of the drilling fluid are to control or maintain wellbore pressure, 

lubricate the drilling bit and transport the drilled cuttings out of the wellbore. 

Unlike the Newtonian fluids, the drilling fluid is shear rate dependent and deforms 

under the action of a shear stress in a manner that is dependent on the rheological 

characteristics of the fluid. Although various rheological models have been 

proposed to describe the rheological behavior of non-Newtonian fluids, the most 

popular and widely accepted models are the power law, Bingham plastic and the 

Yield power law generally known as the Herschel-Bulkley model (Kelessidis, et al., 

2006). The figure 2.1 shows the shear stress to strain relationship for models that 

describes the rheological behavior of the different fluid types. The flow curve of 

the Newtonian fluid shows a straight line through the origin of the coordinates 

which means that the shear stress is directly proportional to the shear rate. The 

slope of the curve is referred to as the viscosity of the fluid and for a Newtonian 

fluid, remains constant under the application of a shear stress at a given 

temperature and pressure. The power law model describes fluids which are shear 

dependent and are functions of the flow behaviour index and the consistency index 

of the fluid. The flow curves of this type of fluids pass through the origin but they 

are not linear. Thus, there exist a term referred to as the apparent viscosity which 

is not constant and highly dependent on the magnitude of the applied shear stress. 

The Bingham plastic and the Herschel-Bulkley fluids are non-Newtonian fluids that 

possess a yield stress. For these types of fluids, a finite shear stress is required to 

be overcome before flow commences and thus the flow curve does not pass 

through the origin but intercepts the shear stress coordinate at the yield stress 

point. After the yield stress has been overcome, the Bingham plastic fluids exhibit 

a trend that is similar to the Newtonian fluids while the Herschel-Bulkley fluids 

follows a non-linear trend that is similar to that of the power law fluids. 
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The fundamental models that are used to describe the rheological behavior of 

bentonite mixtures particularly for drilling applications are the power law, Bingham 

plastic or the Herschel-Bulkley model. The shear stress to strain relationship and 

the apparent viscosity of the drilling fluids can be expressed as a function of the 

flow behaviour index, n  and the consistency index, K of the fluid.  

 
 
 
Powel law model: 

 
τ = 	K	γ!	 2.1 

 
µ2; = 	K	γ!?@	 2.2 

 
 
Bingham plastic model: 

 
τ = 	 τ= +	µ;	γ 2.3 

τ

γ

Newtonian

Power law

Bingham
plastic

         Figure 2.1: Shear stress to shear strain relationship for non-Newtonian fluids 
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µ2$ =

τ=
γ
+		µ;		 2.4 

 
 
Herschel-Bulkley model: 
 
τ = 	 τ< + 	K	γ! 2.5 

 
 
µ2>$ =	

τA
γ
+ 	K	γ!?@ 2.6 

 
 
 
During drilling operations, the drilling fluid flows through the annulus under the 

action of an axial pressure gradient and in order to control wellbore pressures, it 

is important to perform drilling hydraulic calculations that are dependent on the 

rheological characteristics of the drilling fluid that is being used. The drilling fluids 

being shear dependent are highly influenced by the flowrate and most importantly 

the geometry of the wellbore. In some cases, the drillpipe is rotated with the idea 

of improving the drilling process and improving the cutting transport efficiency 

(Xiaofeng, et al., 2014). The drillpipe rotation subjects the drilling fluid to an axial 

and tangential force that makes the fluid flow in a helical pattern due to the 

presence of an axial and tangential velocity component. The tangential velocities 

are highest at the drillpipe wall and zero at the borehole or casing wall, while the 

axial velocities are zero at the drillpipe wall and at the borehole or casing wall due 

to the no-slip effect that occurs at the boundaries. Unlike the Newtonian fluid flow, 

the axial and tangential velocity components are coupled and thus, needs to be 

solved simultaneously, adding more complexity to the solution procedure. The 

drillpipe may be positioned eccentrically in the wellbore, especially in a deviated 

wellbore where the drillpipe has a strong tendency to be offset towards the low 

side of the wellbore due of gravitational effects (Luo & Penden, 1987). This creates 

an uneven distribution of the velocity fields where a higher velocity exists in the 

larger space in contrast to a lower velocity in the smaller area of the wellbore 

annuli (Figure 2.2).  
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                               Figure 2.2: Wellbore velocity profiles in eccentric annuli 

 
 
 
The pump rate, eccentricity, drillpipe rotary speed and the drilling fluid rheological 

properties has been the major parameters used to perform or model hydraulic 

calculations even though some of the reports of various researchers has been 

conflicting. For example, while the earlier researchers that investigated the effect 

of drillpipe rotation on wellbore hydraulics reported that the annuli pressure 

gradient decreases with an increase with drillpipe rotation due to the shear-

thinning effect of the drilling fluid, later studies and field measurements have 

reported the reverse effect (Terry, 2015). Some other investigators have either 

reported an increase or a decrease in pressure gradient depending on the annuli 

geometry and the fluid rheology. (Luo & Penden, 1990) showed that the annular 

frictional pressure gradient reduces with an increase in drillpipe rotation due to 

the shear-thinning behavior of drilling fluids. They showed from theoretical 

analysis that the effect of drillpipe rotation on annular pressure losses depends on 

three dimensionless variables, which are the dimensionless drillpipe rotary speed, 

the flow behaviour index and the ratio of the annular diameters. 

 

 

U(r) 

U(r) 
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(Ooms, et al., 1999) carried out a numerical, analytical and experimental study to 

investigate the influence of drillpipe rotation on drilling hydraulics and concluded 

that for laminar flow through an eccentric annulus, the inertia effect induced by 

the pipe rotation increases the axial pressure drop. They inferred that the 

magnitude of this increase was dependent on the annular gap width, the 

eccentricity and the Taylor number of the flow. (Ahmed & Miska, 2008) carried 

out an experimental investigation of different power law and yield power law 

polymer-based fluid flow with inner pipe rotation in several annular geometries. 

They reported that inner pipe rotation creates an inertia effect and induces a shear 

thinning effect on the fluids and in a slightly eccentric annulus, shear-thinning 

effect dominates the inertial effect, whereas for the highly eccentric annulus, the 

inertial effect dominates. Their results indicated that the inner pipe rotation 

increases the frictional pressure loss and the magnitude of increase was 

dependent on the fluid flow regime. Under laminar flow conditions, the effect of 

the rotary speed on the friction factor and consequently the pressure loss is 

relatively large in comparison to higher Reynolds number flows, where the effect 

of the inner pipe rotary speed on the pressure loss is minimal. (Ozbayoglu & 

Sorgun, 2010) also reported from an experimental study that increase in pipe 

rotatory speed increases the friction factor for low Reynolds number flows and has 

a little or no effect for flows with high Reynolds number. They concluded that an 

increase in pipe rotation leads to a corresponding increase in drillpipe rotation and 

failure to consider rotation effects may lead to underestimating the pressure 

gradient.  

(Podryabinkin, et al., 2013) carried out numerical studies in an attempt to 

investigate the hydrodynamic behavior of drilling fluid flow in an eccentric annulus. 

A finite volume method was used to obtain numerical solutions for the flow of 

Newtonian and non-Newtonian Herschel-Bulkley rheological fluids with the 

combined effect of inner pipe rotation and eccentricity. They pointed out the 

importance of the consideration of eccentricity and drillpipe rotation when 

performing drilling hydraulics modeling and concluded that eccentricity usually 

decreases the pressure drop as much as 50%. They showed that drillpipe rotation 

significantly alters the velocity distribution of the flow and when the axial flow 

dominates, rotation in the eccentric annulus increases the pressure drop when 

compared to the normal axial flow. Furthermore, it was suggested that performing 

systematic flow modelling and study can enable recommendations to modify 
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drilling parameters in other to optimize fluid flow for maximum rates of 

penetration and prevent wellbore instability issues. 

 

(Viera, et al., 2014) presented results obtained from an experimental and 

numerical CFD simulation of the pressure drop of non-Newtonian fluid flow 

through a concentric and eccentric annulus (e=0.75). The experiments involved 

the use of aqueous solutions of Xanthan gum, XG and Carboxymethylcellulose, 

CMC with a rheology best fitted to the power law model to simulate the drilling 

fluids and considered an inner cylinder rotation in the range of 0 - 300rpm. Their 

experimental and numerical simulation results showed that for a concentric 

annulus, the pressure drop was slightly reduced with an increase in pipe rotation 

speed. The reverse effect of inner pipe rotation was reported to take place in the 

eccentric annulus where an increase in pressure drop occurred with inner pipe 

rotation of up to 200rpm. They also presented CFD simulation results for the 

velocity profiles at different sections of the annuli that showed that inner cylinder 

rotation had little or no effect on the axial velocity fields for the concentric annulus 

but altered the distribution of the axial velocity fields for the eccentric annulus. 

(Bicalho, et al., 2016) experimentally and numerically studied the laminar and 

isothermal helical flow of non-Newtonian fluids through horizontal annular sections 

with partial obstruction and analysed the effect of the orbital motion of the inner 

pipe for fluid flow through the eccentric annulus. Xanthan gum, XG of different 

concentrations by mass (0.1, 0.3 and 0.5%) that were best fitted to the Herschel-

Bulkley model were used in other to simulate the behavior of non-Newtonian 

drilling fluids. From the analyses of the results obtained, they reported that the 

effect of inner cylinder rotation on pressure drop was not well defined in their 

experiments using the 0.1 and 0.3% concentrations of XG. However, experiments 

using the 0.5% concentrations of XG resulted in a decrease in pressure drop with 

inner pipe rotation. It was pointed out that in the case of the obstructed eccentric 

annulus, preferential zones are found in the larger sector of the annulus and 

favours the accumulation of particles in the smaller sector of the annulus when 

there is no inner pipe rotation. They concluded that the inner pipe rotation results 

in a uniform distribution of the velocity axial velocity fields and improves the flow 

in the smaller sector of the annulus, thereby improving cuttings transport during 

drilling.  
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The published results of the effect of inner pipe rotation on the pressure gradient 

of single-phase non-Newtonian fluid flow through annuli has been conflicting. 

While some researchers have shown that the increase in inner pipe rotation 

increased the pressure gradient, others have shown analytically and 

experimentally that the increase in pipe rotation decreased the annuli pressure 

gradient.  The effect of inner pipe rotation on the annuli velocity distribution has 

also been of concern especially during drilling operations as this effect might help 

to improve the cutting transport efficiency and the drilling process. 

An accurate prediction of the velocity distribution in the annuli is required for a 

successful design of mud displacement in cementing operations and cutting 

transport modelling especially in highly deviated wellbores. To obtain the annuli 

velocity fields, analytical solutions of the equation of motion for the steady state 

axial flow of an incompressible non-Newtonian fluid flow between two coaxial 

cylinders has been developed and presented by several investigators. The 

governing equations that can be used to describe the isothermal flow of fluids 

through a concentric or eccentric annulus is the equations of continuity and the 

equations of motion.  

 

The equation of continuity can be expressed in cylindrical coordinates as (Bird, et 

al., 2002) 
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(Fredrickson & Bird, 1958) simplified the governing equations of fluid motion 

(Equations 2.8-2.10) in other to analyze the flow of non-Newtonian Bingham 

plastic and Power law fluid flow in a concentric annulus. They published plots that 

showed the relationship between the flowrate and frictional pressure gradient for 

laminar non-Newtonian fluid flow through a concentric annulus. However, as the 

outcome of this study could not be applied when the annuli is eccentric, later 

studies were carried out to develop a relationship between the flowrate and 

pressure gradient for fluid flow through an eccentric annulus. The equation of fluid 

motion for an isothermal steady-state incompressible laminar flow of a specific 

system can be simplified and expressed in cylindrical coordinates as: 

 
1
r
d
dr
(rτ.,) = 	

dP
dL

+ 		ρg.	 
2.11 

 

This first-order differential equation is valid for any kind of fluid flow through an 

annulus and may be integrated to yield the axial shear stress across the entire 

region of the flow  
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τ., =	
P
2
	Vr −	

(⋋ R)B

r
Y 2.12 

 

 

P designates the sum of forces per unit volume of the fluid flow and ⋋ is the 

constant of integration. The radial distance ⋋ R = 0 represents the radial position 

at which the magnitude of the local shear stress value is zero τ., = 0 for fluids 

without a yield stress and is the point at which maximum axial velocity exists. This 

equation was taken as the starting point for the derivations of the velocity profiles 

and the pressure gradient to volumetric flowrate relationship for the non-

Newtonian fluids. 

 

They showed that the shear stress distribution and velocity profiles for axial flow 

of non-Newtonian fluids through annuli are a function of the rheological 

characteristics of the fluid (Figure 2.3). Thus, it is strictly important that the annuli 

flow behavior and pressure gradient for non-Newtonian fluids is modeled in line 

with the rheological characteristics of the fluid. 

Figure 2.3:Axial velocity and shear stress distribution for annuli flows 
(Fredrickson & Bird, 1958) 
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(Uner, et al., 1988) presented an approximate solution to predict the relationship 

between the flowrate and the pressure gradient for a steady-state laminar flow of 

non-Newtonian fluids through an eccentric annulus. The solutions to the equations 

of motion for non-Newtonian fluid flow in annuli geometries are usually difficult to 

obtain due to the nonlinear nature of the shear stress-shear rate relationship. 

Eccentricity, however, adds more complexity to the problem because unlike the 

concentric annuli, the fluid forces acting in the flow vary across the angular 

direction of the eccentric annuli creating an additional difficulty to obtain analytical 

solutions. This makes the derivations of the analytical solutions for the equations 

of motion for non-Newtonian fluids unattainable at this present time. 

In this study, the exact model for the slot height and the solutions of the velocity 

profiles for Power law fluids derived by (Iyoho & Azar, 1981) was extended to 

approximate the volumetric flowrate for eccentric annuli flows. The eccentric 

annulus was modelled as a slit of variable height (Figure 2.4) to develop an 

analytical relationship between the flowrate and pressure drop for the Power law, 

Bingham plastic models, by simplifying the equations of continuity and motion.  

 

The slit height, h is expressed as a function of the angle, 0 < θ < 2π as: 

 

h = 	 r<a(1 − kBsinBθ)@ B⁄ + k cos θ −	r∗d 2.13 

 

where 

 

k = 	ϵ(1 −	r∗) 2.14 

 

The eccentric annulus is characterized by two parameters, namely, an eccentric 

ratio, ϵ and a radius ratio, r∗defined by  

 

ϵ = 	
d5

r< −	rE
 2.15 

and 

 

r∗ = 	rE r<⁄  2.16 

where, rE and r< are the radii of the inner and outer pipe respectively  
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The velocity profiles and pressure drop to flowrate relationships were developed, 

taking into consideration the fundamental rheological behavior of the non-

Newtonian Power law and Bingham plastic models and applying the no-slip 

boundary conditions that exist at the walls of the geometry. The equation for the 

axial velocity profile and pressure drop to flowrate relationship for the Power law 

fluids in an eccentric annulus were presented as: 

 

 

v. =	
1

s + 1\
PF −	P'
KL ]

(

\	
h
2
	]
(G@

Z1 −	\	
2y
h
	]
(G@

[ 2.17 

 

 

where s = 	1 n⁄  

 

and  

 

Qf = 	
π

s + 1 \
	
1
2
	]
(G@

V
1 −	r∗B

2E − 	πr∗
Y
(

h a(1 − kBsinBθ)@ B⁄ + k cos θ −	r∗d
(GB

dθ
)

F
 2.18 

 
 
where 
 
 

Qf = 	
Q

r<(GH i
PF −	P'
KL j

( 2.19 

 
 
and 
 
 

E = 	h (1 − kBsinBθ)@ B⁄ dθ
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F
 2.20 

 
 
The term PF −	P' represents the modified axial pressure drop between z	 = 	0 and 

z	 = 	L. 

 

The velocity profile equations and the pressure drop to flowrate relationship for 

the Bingham plastic fluid flow in an eccentric annulus were presented as follows  
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These models were compared to previously published theoretical and 

experimental data and was reported to show a significant agreement. They 

pointed out that the application of these models for geometries with small radius 

ratios, r∗ produces inaccurate results. However, satisfactory results can be 

obtained for geometries with radius ratios, r∗ ≥ 0.5. 

 
 
There have been issues regarding the accuracy of the slot models in terms of the 

obtaining reliable solutions for the velocity and shear stress profiles (Luo & 

Penden, 1990). The reason for this is that the slot models are derived on the basis 
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of modifying the models for flow between parallel plates the only difference being 

that the distance between the plates varies across the domain. As a result, the 

shear stress profiles obtained from the slot models are linear and the velocity 

profiles are symmetric about the center line of the annulus. Unlike the case of pipe 

flow the shear stress profile for annuli flows are not linear and the velocity profiles 

are not symmetric about the center line of the annulus. This makes the application 

of the slot models for velocity profile predictions invalid as unrealistic solutions 

can be obtained.  

 

 
(Haciislamoglu & Langlinais, 1990) presented numerical studies investigating the 

flow of non-Newtonian fluids through eccentric annuli. The equations of motion 

were discretized using a finite difference technique and solved on grids 

transformed to the bipolar coordinate system. The velocity profiles in the eccentric 

annuli were analyzed from data obtained from the numerical procedures. The 

numerical results showed that the velocity in the narrow part of the annulus was 

reduced due to the increased resistance of flow created by the reduction in the 

gap between the inner and outer pipes while the velocity in the larger region of 

the annuli was increased. This effect was seen to be increasingly emphatic as the 

eccentricity was increased showing a high velocity in the larger region of the annuli 

while a no flow or stagnant region was created in the narrow region of the annuli.  

The effect of eccentricity on the frictional pressure losses in the annuli were also 

analyzed and it was shown that for a constant flowrate, the frictional pressure 

gradient decreases with an increase in eccentricity. With fluids that are more shear 

thinning (decreasing n), their velocity profiles in the large and narrow parts of the 

annuli become flatter; thus, increasing the overall viscosity of the flow. 

Consequently, these fluids are subject to less reduction in frictional pressure 

losses in eccentric annulus.  A non-linear regression analysis was performed on 

the generated numerical data to develop an empirical correlation that serves as a 

correction factor for the prediction of pressure gradient in an eccentric annulus.  

The correction factor R, developed as a function of the pipe diameter ratios, the 

eccentricity e, and the flow behaviour index n, is given as 
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R = 1 − 0.072
e
n \
dE
d<
]
F.KILI

− 1.5	eB√n\
dE
d<
]
F.@KLB

+ 		0.96	eH√n\
dE
d<
]
F.BLBM

 2.28 

 

where dE and d< are the diameters of the inner and outer pipe respectively  

 

The pressure gradient in the eccentric annuli (dP dL⁄ )5 can thus be calculated from 

the knowledge of the pressure gradient in the concentric annuli (dP dL⁄ )+ using the 

following relationship:  

 

\
dP
dL]5

= R	 \
dP
dL]+

 2.29 

 

However, the correlation was reported to be accurate within ±5% and valid for 

eccentricities from 0 to 0.95, pipe diameter ratios of 0.3 to 0.9 and flow behavior 

indexes of within 0.4 to 1.0. 

 

 

 

The numerical data was obtained using a method where the eccentric annular 

geometry was defined in a bipolar coordinate system, which consists of two 

orthogonal families of circles. The walls of the eccentric annulus are represented 

Figure 2.4: Eccentric annulus defined by bipolar coordinates 
(Haciislamoglu & Langlinais, 1990) 

𝐚𝐧 
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by two constant values of ε while η, varied from 0 to 2π, across the angular 

direction of the eccentric annulus (Figure 2.4). The relationship between the 

cartesian coordinates,	x and y, and the bipolar coordinates, ε and η, can be 

obtained as follows: 

 

 

x =
a! sinh(ε)

cosh(ε) −	cos(η)
 2.30 

 

y =
a! sin(η)

cosh(ε) −	cos(η)
 2.31 

 

where  a!= rE	sinh(εE)= r<	sinh(ε<)	 and 0	 ≤ 	η	 ≤ 	2π 

 

 

The circle ε = 	 εE represents the inner tube and the circle ε = 	 ε< represents the 

outer tube. Thus, any point within the eccentric annulus can be described by ε 

from εE to ε< and by η from 0 to 2π. Based on these geometric considerations and 

the coordinate transformation, the following relationships to compute εE and ε< 

may be expressed respectively as:  

 

 

εE = cosh?@ Z
p1 + (rE r<⁄ 	)q −	eBp1 + (rE r<⁄ 	)q

a!e(rE r<⁄ 	)
[ 2.32 

 

 

ε< = cosh?@ Z
p1 + (rE r<⁄ 	)q −	eBp1 + (rE r<⁄ 	)q

a!e
[ 2.33 

 

where, e is the dimensionless eccentricity. 

 

 

The unidirectional equation of motion expressed in the cartesian coordinate 

system (Equation 2.34) may be transformed to the bipolar coordinate system and 

expressed as (Equation 2.35) after a tedious process. 

  



 
 

21 

 
dP
dL
	+		

∂
∂x \

µ
∂v
∂x]

	+		
∂
∂y \

µ
∂v
∂y]

	= 	0 2.34 

 

 

\
a
ψ]

B dP
dL

+	
∂
∂ε \

µ
∂v
∂ε]

+	
∂
∂η \

µ
∂v
∂η]

= 0 2.35 

 

 

where ψ =	 cosh(ε) −	cos(η)					εE ≤ 	ε	 ≤ 	 ε<, 0	 ≤ 	η	 ≤ 	2π 

 

The Herschel-Bulkley model (Equation 2.5) was used in this study to characterize 

the rheological property of the fluids as it combines both the Power law and 

Bingham plastic models. It reduces to the Power law model when yield stress is 

zero and the Bingham plastic model when flow behaviour index, n = 1. The 

viscosity of the fluid is transformed to the bipolar coordinate system with a similar 

technique to yield: 

µ = 	
τ<

�	a!ψ �i	∂v∂ε	j
B
+	\	∂v∂η	]

B
	�

+ 	K	�	
a!
ψ
�\	

∂v
∂ε
	]
B

+	\	
∂v
∂η
	]
B

	�

!?@

 2.36 

 

 

 

Figure 2.5: Eccentric annulus grid in bipolar coordinates 
(Haciislamoglu & Langlinais, 1990) 
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This equation for viscosity is substituted into the equation of motion expressed in 

bipolar coordinates (Equation 2.35) and solved with the application of a numerical 

and computational approach. The equation of fluid motion is discretized based on 

a finite difference technique where the eccentric annular geometry is subdivided 

into a network of grids. Since the axis that goes through the central points of the 

inner and outer pipes is the line-of-symmetry which divides the velocity fields into 

two identical parts, the governing equations are only solved in one half of the 

eccentric annulus to reduce computational cost. The Figure 2.5 shows the grid 

network in bipolar coordinates. They concluded that the previous studies 

performed for eccentric annuli flows have been shown to employ an inadequate 

approach to the solution of the equation of motion and this proposed bipolar 

coordinate method developed is a rigorous numerical solution of the equation of 

motion for non-Newtonian annuli flow that can be used to predict the velocity 

profiles, viscosity profiles, and frictional pressure gradients in the eccentric annuli. 

(Luo & Penden, 1990)  analyzed the non-Newtonian laminar flow of fluids through 

an eccentric annulus in other to develop an analytical and rigorous solution for the 

prediction of the velocity profiles and pressure gradient to volumetric flowrate 

relationship. They claimed that the use of the slot approximation method was 

inaccurate, and the procedures involved with the bipolar coordinate method were 

extremely tedious and involved a lot of time-consuming computations. They 

proposed a method that was based on the representation of the annulus by an 

infinite number of concentric annuli with variable outer radii, with the idea of 

developing mathematical equations that were functions of the radius and angular 

positions in the eccentric annulus. Although the proposed models were developed 

for laminar flows of non-Newtonian fluids through the eccentric annuli, the 

application of the models for calculations involving the flow of non-Newtonian 

fluids through the concentric annuli is pretty much straight forward and follows 

the same computational procedures.  

(Fredrickson & Bird, 1958) simplified the equations of motion for a steady-state 

isothermal flow of incompressible fluids (Equations 2.8-2.10) and integrated the 

product of the simplification to obtain an equation that represents the axial shear 

stress profile as a function of the radii and modified pressure gradient as 
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G"
2
rB − rτ., = B 2.37 

 

The term B is the constant of integration and G" represents the modified pressure 

gradient defined by: 

 

G" = 	ρg.	 −	
∂P
∂z

 2.38 

 

Applying the appropriate boundary conditions to the Equation 2.37 yields the 

following expressions of the shear stress profiles for the Power law and Bingham 

plastic fluids respectively 

 

τ., = 	0		at	r = 	 r65 
 

τ., =	
G"
2
r V1 −	

r65B

r
Y 

2.39 

 

τ., =	−τ=		at	r = 	 r!5	 
 

τ., =	−
G"
2
V	
r!5B

r
− rY −	i

r!5
r
j τ=,			r@ 	≤ r	 ≤ 	 r!5		 

 
τ., =	τ=		at	r = 	 r;5 
 

τ., =	
G"
2
V	r −	

r;5B

r
Y +	i

r;5
r
j τ=,				r;5 	≤ r	 ≤ 	 rB		 

 

2.40 

 

Combining the shear stress Equations (2.39-2.40) with the appropriate rheological 

models Equations (2.1-2.4) and integrating the results yields the following 

expressions for the velocity profiles for the Power law and Bingham plastic fluids.  

 

Power law: 

 

v5 = \
G"
2K]

(
h V

r65B

r
− rY

(

dr
,

,!
,				r@ 	≤ r	 ≤ 	 r65 2.41 

 

 

 



 
 

24 

v5 = \
G"
2K]

(
h Vr	 −	

r65B

r
Y
(

dr
,"#

,
,				r65 	≤ r	 ≤ 	 rB5 2.42 

 

where s = 	1 n⁄  

 

Bingham plastic: 

 

v = 	
G"
2µ;

Vr!5B ln
r
r@
−	
rB −	r@B

2
Y +	

σ
µ;
kr!5 	ln

r
r@
−	(r −	r@)l	 , r@ 	≤ r	 ≤ 	 r!5 2.43 

 

 
 
 

v = 	
G"
2µ;

V
rB5B − 	rB	

2
−	r;5B ln

rB5
r
	Y +	

σ
µ;
�r;5 	ln

rB5
r
−	(rB5 − 	r)�	 , r;5 	≤ r	 ≤ 	 rB5 2.44 

 
 
The parameter rB5 represents the distance between the inner pipe and the outer 

pipe and is not constants across the angular direction of the eccentric annuli. 

However, if the annulus is concentric the value of rB5 becomes constant and is 

equal to the radius of the outer pipe. The value rB5 can be calculated from the 

Equation 2.45 where θ represents the angular position in the annulus and e is the 

fractional eccentricity. 

 

 

rB5 = (rB −	r@)e	cos θ + �rBB − [(rB −	r@)e	 sin θ]B 2.45 

 

 

The radial position of the maximum velocity for the power law fluid, r65 may be 

obtained from the Equation 2.46 for cases where n > 0.5 and r@ rB5⁄ > 0.3  while the 

boundaries of the unsheared plug r;5 and r!5 can be obtained from the Equations 

(2.47-2.48) for cases where r@ rB5⁄ > 0.3 and B; (rB5 −	r@)⁄ ≤ 0.5. 

 

r65 =	�((rB5B −	r@B) 2 ln(rB5 r@⁄ )⁄ ) 2.46 

 
 
 
B; = 2τ= G"⁄ = 	 r;5 −	r!5 2.47 
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r;5 =	�((rB5B −	r@B) 2 ln(rB5 r@⁄ )⁄ ) +	τ= G"⁄  2.48 

 
 
 
The results of the solution of these equations show that the velocity profiles and 

the magnitudes of shear stress/shear rate are not symmetric about the radial 

position at which the maximum velocity exits and where the magnitude of the 

shear stress is zero τ., = 0. This occurrence shows why the assumption that the 

maximum velocity exits at the midpoint in the radial space of the annulus would 

lead to erroneous results.  

 

The pressure gradient to volumetric flowrate relationship was derived for the 

Power law and Bingham plastic fluids as:  

 

Power law: 

Q =	 rBH \
G"rB
K ]

(
Qf;' 2.49 

 

 

Qf;' =	
n

1 + 3n
	\
1
2]

(
h \

rB5
rB
]
HG()

F
�Z1 −	\

r65
rB5

]
B
[
(G@

−	\
r@
rB5
]
@?(

Z\
r65
rB5

]
B
−	\

r@
rB5
]
B
[
@G(

� 	dθ 

2.50 

 
 

 

 

Bingham plastic: 

 

 

Q =	V
G"rBI

µ;
YQf$; 2.51 
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Qf$; =	
1
8
	h \

rB5
rB
]
I)

F
�Z1 −	\

r@
rB5
]
I
[ − 	2

r;5
rB5

V
r;5 −	B;	

r;5
Y Z1 −	\

r@
rB5
]
B
[ 																				

−
4B;
3rB5

Z1 +	\
r@
rB5
]
H
[ +	

B;
3rB5

\
2r;5 −	B;	

rB5
]
H

	� dθ 

2.52 

 

 

 

Although the method required for the solution of these equations are far less 

tedious than that required for the slot models or the bipolar coordinate 

transformation method, iterative and numerical integrations would be needed to 

solve these equations as the analytical solution does not exist at this present time. 

The results obtained from the solution of the volumetric flow rate for Power law 

fluids were numerically compared with those obtained from the slot models or the 

bipolar coordinate transformation method. They concluded that for low fractional 

eccentricity cases, their proposed method produced more accurate results while 

for middle and higher eccentricity cases the slot model produced better 

approximations. 

Experimental, numerical and theoretical modelling studies has been performed 

over the years with the aim of investigating and predicting the behaviour of non-

Newtonian fluids flow through the concentric/eccentric annuli with or without inner 

cylinder rotation. Most of these studies have pointed out that eccentricity alters 

the axial velocity distribution in the annuli where a higher magnitude of velocity 

exists in the larger region of the eccentric annuli while a significantly lower 

magnitude of velocity exists in the smaller region. Inner pipe rotation has been 

shown to influence the velocity fields in the eccentric annuli as it redistributes 

velocity fields and improves the flow of fluids in the stagnation zones or the smaller 

region of the eccentric annuli. Although literature has shown no disputing to the 

effect of the inner pipe rotation on the velocity fields in annuli flows, the results 

published on the effect of the inner pipe rotation on the annuli pressure gradient 

has been quite conflicting. While some researchers have concluded that inner pipe 

rotation can be used to decrease the pressure drop for non-Newtonian flows 

through an eccentric annulus, some have reported that the increase in the inner 

pipe rotation leads to a corresponding increase in the pressure drop. (Diaz, et al., 

2004) in an attempt to develop a method to account for the effect of inner pipe 

rotation on the pressure drop for fluid flow in concentric annuli using an 

experimental and theoretical approach reported that for the shear-thinning fluid, 
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the pressure drop decreased with an increase in pipe rotary speed and started to 

increase again. Hence literature has shown that the effect of the inner pipe 

rotation on the axial pressure drop in a concentric or eccentric annulus is not quite 

certain. For drilling applications, it is important to be able to accurately predict the 

velocity fields and pressure gradient behavior in other to alleviate wellbore control 

and stability issues. In cases where a multiphase fluid (gas and non-Newtonian 

liquid) is used as the drilling fluid for oil well drilling operations, it is imperative 

that the hydraulic modeling and design of the drilling process takes into account 

the distinctive properties of two-phase flow, because unlike single-phase flow of 

general fluids through conduits, multiphase flow is highly transient in nature and 

adds more complexity to the system. While the velocity field prediction is required 

for the modeling of an effective cutting transport system during drilling, the 

accurate prediction of the annuli pressure gradient is necessary especially for 

wellbore bottom-hole pressure management.  

 
 
2.2 Multiphase Gas – Liquid flow in pipes  
 
The hydrodynamics of single-phase flow in pipes and annuli is well understood at 

this present time. Pressure gradient vs flowrate behaviour and the heat transfer 

processes for single-phase fluid flow in pipes and annuli can be determined in a 

relatively straightforward manner although the solution of non-Newtonian flow in 

annuli requires a more compound approach. The simultaneous flow of two phases 

in a pipe presents more complexity due to its transient nature, flow pattern 

variation and a large number of flow variables associated with the flow. The 

mechanism of mass, momentum and energy transfer between phases vary 

depending on the prevailing flow pattern (Guo, et al., 2007). In other to 

investigate the multiphase flow of fluids through the annuli, it is necessary to 

explore the primary studies that have been done on the multiphase flow of fluids 

through pipes as the ideas and modelling techniques developed for two-phase 

flows in pipes have been the fundamental basis on which the methods for the 

prediction and modelling of the hydrodynamic behaviour of two phase flows in 

annuli are being developed. In fact, the early methods used for the prediction of 

two-phase flow behaviour in annuli have either applied correlations originally 

developed for flow in pipes by use of the hydraulic diameter concept or have 
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applied empirical correlations developed from data obtained from two-phase flow 

through annuli (Brill & Mukherjee, 1999).  

 

Over the years extensive experimental and theoretical studies have been carried 

out to develop models that can be used to predict the dynamics of multiphase 

flow.  Based on experimental data, correlations developed to describe the flow are 

only valid for a limited range of operating conditions. However, improvements in 

technology has provided the flexibility to construct and use large-scale 

computational models to simulate two-phase flows especially in complex 

geometries where experimental investigation is not feasible (Sandra, et al., 2008).  

Two-phase flow models were developed using an empirical and mechanistic 

approach, limiting their applicability to the number of flow parameters and 

conditions considered. For example, the early two-phase models developed 

neglected the flow patterns in predicting the flow behaviour and were found to be 

inaccurate under various flow conditions. This brought about a drive for several 

investigator to determine the important parameters that govern multiphase flow 

in an attempt to close the gap of the uncertainty posed by two-phase flow. 

 

(Wallis, 1969) derived a simple vet versatile model well known as the 

Homogeneous No-slip Model. This model assumes that the flow is a pseudo single-

phase fluid and that both fluids move at the same velocity. The physical properties 

of the system are determined from the single-phase liquid and gas properties 

using the input or No-slip liquid holdup. They assumed that the flow was a steady 

state compressible one-dimensional flow, all phases were mixed and exist at any 

point in the flow field, and no slippage occurs between the phases. These 

assumptions limited the accuracy and applicability of the Homogeneous No-slip 

Model. 

 

The homogeneous No-slip model is based on the determination of the pressure 

gradient of a two-phase flow by the solution of the conservation of momentum 

and energy equations using average mixture properties of the fluid. The total 

pressure gradient of a multiphase flow can be obtained from the summation of 

the gravitational, frictional and acceleration components which makes up the 

momentum Equation 2.53. 
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The conservation of energy equation can be expressed as  
 

 
dQO
dL

= 	ρ!(V6A"
dhP
dL

+	ρ!(V6A"
d
dL
V
VPB

2
Y	+	ρ!(V6A"g sin θ; +	

dw(

dL
	 2.53 

 
 
 

−
dP
dL

= 	
S"Q
A"

τ;Q +	ρ!(g sin θ; +		ρ!(V6
dVP
dL

	 2.54 

 
 
 

−\
dP
dL]8

=	\
dP
dL]4

+	\
dP
dL]&

+ \
dP
dL]R

	   
2.55 

 
 
 
 
Where dQO dL⁄  represents the heat transfer per unit length of the pipe and hP 

represents the mixture enthalpy of the system. The term dw( dL⁄ 		is the shaft work 

rate per unit length of the pipe and is usually assumed to be negligible for flow in 

pipes. 

 

The first component of the Equation 2.54 represents the frictional pressure 

gradient which is derived by expressing the wall shear stress in terms of the 

friction factor. The wall shear stress and the resulting frictional pressure gradient 

expressed in terms of the friction factor can be written respectively as: 

 

τQ =	
1
2
fρ!(VPB 2.56 

 

\
dP
dL]4

=	
2
D
fρ!(VPB 	= 		

2
D
f
GB

	ρ!(
	 2.57 

 

 

G = 	ρnsVM	 2.58 

 

where f, is the fanning friction factor and G is the total mass flux of the mixture 

assuming that the conditions for no-slippage exists. The friction factor is 
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determined from standard methods using the mixture no-slip Reynolds number 

defined as: 

 

 

Re!" =	
	ρns	VM	D
µ!"

 2.59 

 

 

The mixture properties can be utilized to calculate the pressure distribution and 

the temperature distribution of the flow, by applying standard single-phase flow 

methods. The mixture average properties of the flow are determined from the 

input liquid hold (no-slip liquid hold up) or in terms of the mass fraction (quality) 

as follows: 

 

The mixture velocity of the mixture can be calculated from the summation of the 

superficial velocity of the gas and the liquid phase obtained from dividing the liquid 

and gas flowrates by the total cross-sectional area of the pipe V7' =	Q' A"⁄ ;	V7& =

	Q& A"⁄ ;	   

 

VP =	V7' +	V7&	 2.60 

 

The no-slip mixture density and viscosity of the fluid is calculated using the input 

or no-slip liquid hold up as: 

 

	ρ!( 	= 	 ρ'λ' +	ρ&(1 − λ')	 2.61 

 

	µ!( 	= 	 µ'λ' +	µ&(1 − λ')	 2.62 

 

The no-slip mixture density can also be expressed in terms of the mass fraction 

(quality) as:  

 

1
	ρns

=	
x
ρG
+	
1 − x
ρL

	= xV# +	(1 − x)V$ 2.63 
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The mass fraction (quality) is the ratio of the mass flux of the gas phase to the 

total flux of the mixture and can be written in terms of the liquid hold up as:  

   

 

x = 	
ρGV#AP(1 −	HL)

ρGV#AP(1 −	HL) +	ρLV$APHL
 2.64 

 
 
For no-slip conditions, V# = 	V$  and  H' =	λ' reducing equation 2.64 to  
 
  
 

x = 	
ρG(1 − λL)	

	ρns
 2.65 

 
 
 
The mixture enthalpy is averaged based on the mass fraction and is given by 
 
hP = xh& +	(1 − x)h' 2.66 

 
The determination of two-phase mixture properties has not been a simple task. 

Various methods have been proposed by two- phase flow researchers to estimate 

the mixture parameters of two-phase flows. By all means, these are not rigorous 

methods, and are merely approximations. 

 
 
The gravitational pressure gradient component can be determined directly form  
 
 

\
dP
dL]&

=	 	ρ!(g sin θ; 2.67 

 
 

In general, the use of the density based on the in-situ liquid holdup in the 

determination of the gravitational pressure gradient component is rigorous. This 

is mainly because the gravitational head depends on the accumulative weight of 

the two phases, which are related to the in-situ volume fractions of the two 

phases. In the Homogeneous No-Slip Model, however, the no-slip liquid holdup is 

used to determine the mixture density, resulting in an inaccurate prediction of the 

gravitational pressure gradient. This represents the largest limitation of the 

homogeneous no-slip model. The prediction of the accelerational pressure 

gradient component in the no-slip homogeneous model is determined using a 
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systematic approach that is well attached to the physical phenomena of two-phase 

flow. 

 

The mass flow rate of the two-phase mixture can be expressed in terms of the no-

slip density and mixture velocity as: 

 

Ṁ = 	ρnsVMAP 2.68 

 

From Equation 2.54 the accelerational pressure gradient component can be 

written in terms of the mass flux of the two-phase mixture 

 

\
dP
dL]R

=	ρ!(VP
dVP
dL

= 	
Ṁ
A"
dVP
dL

= G
d
dL
V
Ṁ

ρ!(A"
Y	 2.69 

 

 

Taking the partial derivative of the Equation 2.69 yields: 

 
 

\
dP
dL]R

=	GB
d
dL \

1
ρ!(

] −	
GB

ρ!(
1
A"
dA"
dL

 2.70 

 
 
Differentiating the Equation 2.70 in terms of the specific volumes of the phases, 

yields the following equations  

 

 
d
dL \

1
ρ!(

] = 	
d
dL
(xV& +	(1 − x)V')	 2.71 

 
 
d
dL \

1
ρ!(

] = 	 (V& −	V'	)
dx
dL
+ x

dV&
dL

+	(1 − x)
dV'
dL

 2.72 

 
Assuming that the flow is compressible, the equation 2.72 can be expanded in 

terms of pressure as: 
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d
dL \

1
ρ!(

] = 	 (V& −	V'	)
dx
dL
+ x

dV&
dP

dP
dL

+	(1 − x)
dV'
dP

dP
dL

 2.73 

 
 
 
Substituting the equation 2.73 into equation 2.70 yields the final form of the 

accelerational pressure gradient equation  

 
 

\
dP
dL]R

=	GB �(V& −	V'	)
dx
dL
+ x

dV&
dP

dP
dL

+	(1 − x)
dV'
dP

dP
dL
� −	

GB

ρ!(
1
A"
dA"
dL

 2.74 

 
 
 
Combining the frictional, gravitational and accelerational pressure gradient 

components Equation 2.57, 2.67 and 2.74 yields the total pressure gradient for a 

two-phase gas-liquid flow: 

 

 

−\
dP
dL]8

=	
2
D
fρ!(VPB +		 	ρ!(g sin θ;

+	GB �(V& −	V'	)
dx
dL
+ x

dV&
dL

dP
dL

+	(1 − x)
dV'
dL

dP
dL
� −	

GB

ρ!(
1
A"
dA"
dL

	 
2.75 

 
 
Rearranging the equation 2.75 and solving for the pressure gradient term the 

yields  

 
 

−\
dP
dL]8

=	

2
D fρ!(VP

B +		 	ρ!(g sin θ +	GB	(V& −	V'	)B 	
dx
dL			−	

GB
ρ!(

1
A"
dA"
dL

1 +	GB \x dV&dP +	(1 − x) dV'dP ]
 2.76 

 
 
 
The denominator of the total pressure gradient equation 2.76 can be related to 

the velocity of sound of the two-phase mixture as  

 

M2
B =	\

VP
cP
]
B
=	−	GB \x

dV&
dP

+	(1 − x)
dV'
dP ]

	 2.77 

 

Where cP  and M2 represents the mixture velocity of sound and the Mach number 

respectively. The velocity of sound of the gas and the liquid phases are defined as  
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1
c#%

= ρG
2 	
d
dP
B
1
ρG
C = 	−	ρG

2 	
dVG
dP

,					and							
1
c$%

= ρL
2 	
d
dP
B
1
ρL
C = 	−	ρL

2 	
dVL
dP

 2.78 

 

Using equation 2.58 and solving equation 2.77 for the mixture velocity of sound 

yields the following equations  

 
1
c&%

=	−	ρns
2 	Gx

dVG
dP

+	(1 − x)
dVL
dP
H 2.79 

 
 
 
1
c&%

=	−	IρLλL +	ρG(1 − λL)J 		 KρG(1 − λL) G−
dVG
dP
H +	ρLλL G−

dVL
dP
HL	 2.80 

 
 

Substituting the velocity of sound of the gas and the liquid phases Equation 2.78 

into Equation 2.80 yields  

 

 
1
c&%

=	IρLλL +	ρG(1 − λL)J 	B
(1 − λL)
ρGc#%

+	
λL

ρLc$%
C	 2.81 

 
 
 
 
 
 
Lockhart & Martinelli (1949) developed a separated flow model that assumes that 

the gas phase and liquid phase flows separately from each other and is limited to 

determination of frictional pressure drop for horizontal pipes. The solution of the 

frictional pressure gradient is performed via a method that is similar to that of the 

single-phase flow methods but applies the hydraulic diameter concept to account 

for flow of each of the phases. Although the model was derived theoretically using 

the concept of the single-phase flow, experimental data was required to complete 

the process, providing a solution for the separated flow model. The concept 

applied in the development of this model and the solution procedures are 

explained further.  
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The frictional pressure loss for the flow of two-phase gas-liquid fluids in pipes, 

obtained by applying the hydraulic diameter concept to each of the phases, may 

be written as 

 
 
 

−\
dP
dL]'

=		
2f'ρ'V'B

D'
 2.82 

 
 

−\
dP
dL]&

=		
2f&ρ&V&B

D&
 2.83 

 
 
The liquid and gas phase velocities can be determined respectively from  

 

v' =	
Q'
A'

=	
Q'

a π4 D'
B 				and				v& =	

Q&
A&

=	
Q&

bπ4 D&
B 2.84 

 
 
The parameters a and b represent the ratio of the cross-sectional area of the flow 

of each of the phases to the total area of the pipe based on the hydraulic diameter 

of the phase. D' and D& are the hydraulic diameters of the liquid and gas phase 

respectively. 

 

The liquid holdup which represents the actual cross-sectional area of the flow of 

each of the phases to the total area of the pipe can be determined with the 

following expressions  

 
AL
AP
+	
AG
AP
=	HL +	HG = 1	 2.85 

 

 

a π4 D'
B + 	bπ4 D&

B

π
4 D

B
= 1 2.86 

 

 

H' = 	a \
D'
D ]

B
= 	1 −	b \

D&
D ]

B
 2.87 
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Using the general Blasius equation for friction, f = CERe?6$  and the phase velocities, 

the pressure gradient equations 2.82 and 2.83 can be written as  

 

 

−\
dP
dL]'

=		�
2
D
C' �	�

Q'
π
4 D

B
	�	
ρ'D
µ'

		�

?6%

ρ'�
Q'
π
4 D

B
�

B

�a6%?B \
D
D'
]
L?6%

 2.88 

 
 
 

−\
dP
dL]&

=		�
2
D
C& �	�

Q&
π
4 D

B
	�	
ρ&D
µ&

�

?6&

ρ& �
Q&
π
4 D

B
�

B

�b6&?B \
D
D&
]
L?6&

 2.89 

 

 

 

where C'𝑎𝑛𝑑	mZ  and C&	𝑎𝑛𝑑	m: are friction factor constants for the liquid and gas 

phase. 

The pressure gradient that would occur assuming only the liquid or gas phase 

were flowing individually in the pipe is referred to as the superficial pressure 

gradient. Equation 2.90 and 2.91 expresses the superficial pressure gradient of 

the liquid and gas phase respectively. 

 
 
 

−\
dP
dL]7'

=		 C' k		
ρ'V7'D
µ'

		l
?6% 2	ρ'	V7'B

D
=		�

2
D
C' �	�

Q'
π
4 D

B
	�	
ρ'	D
µ'

		�

?6%

ρ' �
Q'
π
4 D

B
�

B

� 2.90 

 
 
 
 

−\
dP
dL]7&

=		 C& k		
ρ&V7&D
µ&

		l
?6& 2	ρ&	V7&B

D
=		�

2
D
C& �	�

Q&
π
4 D

B
	�	
ρ&D
µ&

�

?6&

ρ& �
Q&
π
4 D

B
�

B

� 2.91 

 
 
 
 
From the Equations 2.90 and 2.91, it is clear that the terms in the bracket of 

Equations 2.88 and 2.89 are the same making it possible to express the liquid and 

gas pressure gradients in terms of their superficial pressure gradient.  
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−\
dP
dL]'

=		− \
dP
dL]7'

a6%?B \
D
D'
]
L?6%

 2.92 

 
 
 

−\
dP
dL]&

=	−\
dP
dL]7&

b6&?B \
D
D&
]
L?6&

 2.93 

 

 

Lockhart and Martinelli defined two dimensionless groups ∅' and ∅& as the square 

root of the ratio of the phase pressure gradient to its superficial pressure gradient. 

Taking a ratio of the gas to liquid dimensionless group and assuming that the 

pressure gradient in the liquid and the pressure gradient in the gas phase are 

equal for a steady-state flow, they obtained a dimensionless parameter X which 

they defined as the Lockhart and Martinelli parameter. From equation 2.98 it is 

clear that the parameter X is just the square root of the ratio of the liquid 

superficial pressure gradient to the gas superficial pressure gradient.  

 
 
 
 

∅' =		 
−idPdLj'
−idPdLj7'

	= 	 a
6%?B
B \

D
D'
]
L?6%
B

 2.94 

 
 
 
 
 

∅& =		 
−idPdLj&
−idPdLj7&

	= 	 b
6&?B
B \

D
D&
]

L?6&
B

 2.95 

 
 
 
 

X = 	
∅&
∅'

=		 
−idPdLj&
−idPdLj7&

	× 	
− idPdLj7'
−idPdLj'

			 2.96 
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−\
dP
dL]'

=			− \
dP
dL]&

 2.97 

 
 
From quation 2.97 Equation 2.96 reduces to  
 
 

X = 	
∅&
∅'

=		 
−idPdLj7'
−idPdLj7&

				;									 2.98 

 

 

The Lockhart and Martinelli model cannot be solved analytically to obtain the 

solution of the pressure gradient in the pipe due to the fact that the model contains 

various unknowns. However, they developed a method for the solution of the 

model using an experimental approach. Four scenarios depending on the flow 

regime that each of the phases were flowing in that is, whether the gas or the 

liquid phase exists in the laminar or turbulent flow domain. The experiments were 

carried out using the air and water or diesel, kerosene and several oils to simulate 

the flow of two-phases in small diameter pipes in the range of 0.15 to 2.54 

(Shoham, 2005). Using the experimental data obtained from the study, they 

plotted the dimensionless groups ∅' and ∅& vs the parameter X  and reported a 

significant correlation of the experimental data with the parameter  X. In other to 

calculate the pressure gradient one has to first determine ∅' or ∅& from the plots.   

 

The pressure gradient calculation using the separated model can be made more 

convenient by using the Equations 2.99 and 2.100 derived by (Chisholm 1967) 

using a curve fitting to the original plots for the parameter ∅' and the liquid hold 

up H'. However, the constant C in Equation 2.99 is dependent on the flow regime 

of each of the phases and can be determined as provided in the table 2.1 

 

∅'
B = 1 +	

C
X
+	

1
XB

 2.99 
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H' = 1 −	(1 +	XF.K)?F.HMK 2.100 

 

 
                               Table 2.1: Chisholm 1967 correlation coefficients for the constant 𝐶 

Liquid phase Gas phase Constant  C 
Turbulent Turbulent 20 
Laminar Turbulent 12 
Turbulent Laminar 10 
Laminar Laminar 5 

 
 
 

The early investigators of multiphase flow as explained previously, treated the 

flow as a homogenous mixture of gas and liquid. This led to some drawbacks as 

these methods did not recognise that slippage occurs between the gas and the 

liquid phase and did not account for the effect of the prevailing flow pattern. For 

this reason, the no-slip approach underpredicted the pressure gradient. 

Empirical correlations were developed to make improvements to the no-slip 

approach. This approach used empirical liquid holdup correlations to account for 

the slippage between the phases, and the liquid holdup and friction factor 

predictions were dependent on empirically developed flow pattern maps.  

Unfortunately, these methods also treated the flow as a homogenous mixture of 

gas and liquid resulting in an inaccurate prediction of the flow dynamics.  

 

Table 2.2: List of major two-phase flow models and their range of applicability 

 

 

 

 

 

 

 

 

 

 

 

 

Empirical Models Flow pattern Slippage Angle 

(Poettmann & Carpenter, 1952)   θ = 90 

(Baxendell & Thomas, 1961)    θ = 90 

(Fancher & Brown, 1963)   θ = 90 

(Hagedom & Brown, 1965)   θ = 90 

(Asheim, 1986)   θ = 90 

(Duns & Ros, 1963)   θ = 90 

(Orkiszewski, 1967)   θ = 90 

(Aziz, et al., 1972)   θ = 90 

(Chierici, et al., 1974)   θ = 90 

(Beggs & Brill, 1973)   −90 ≤ θ ≥ 90 

(Mukherjee & Brill, 1985)   −90 ≤ θ ≥ 90 

    Considered         Not considered    
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The empirical correlations developed were separated into three major categories: 

The correlations placed in the first category were not flow pattern dependent and 

did not consider the slippage between the gas and the liquid phase. The mixture 

properties of the flow were calculated based on the no-slip or input liquid holdup 

as both phases were assumed to travel at the same velocity.  The second category 

correlations considered the slippage between the phases but are independent on 

the flow pattern. Although a correlation is required for both liquid holdup and 

friction factor calculations, the same correlations are used for all the flow patterns. 

To account for the slippage effect of the liquid and gas flowing at different 

velocities, a method to predict the portion of the pipe occupied by the liquid phase 

at any local point is required. In the third category correlations, slippage between 

the phases and the flow pattern are considered. However, several correlations are 

required to predict the liquid holdup and friction factor along with methods to 

predict the prevailing flow pattern. 

 

Table 2.2 gives a list of some of the major empirical models developed by various 

researchers and their ranges of applicability. It is clear that most of the early 

empirical models were built for vertical two-phase flow in pipes except for the 

Beggs and Brill and the Mukherjee and Brill multiphase correlations. This made 

the Beggs and Brill and the Mukherjee and Brill multiphase correlations more 

attractive to end users as the models were flow pattern dependent, accounted for 

slippage effects, and could be applied to a wide range of pipe inclination angles. 

The models were also reported to be applicable to injection wells and hilly terrain 

pipelines.  

  

 
 
 
 
Beggs and Brill (1973) presented the first method to predict the two-phase flow 

behaviour and determine pressure gradient at all inclinations. They developed 

empirical correlations for predicting the flow pattern and the corresponding 

pressure drop using experimental data obtained from a 90ft long transparent 

acrylic pipe. The parameters considered in the study and the range in which they 
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varied were: gas-liquid flow patterns, maximum gas flowrate of 300 Mscf/D, liquid 

flowrate up to 30 gal/min, system average pressure within 35 to 95 psia, 1 to 

1.5in pipe sizes, Liquid holdup varying from 0 to 0.870 and inclination angle of -

90o to + 90o. 

For each of the selected pipe sizes, the liquid and gas rates (water and air) were 

varied while observing the resulting flow patterns when the pipe was horizontal. 

After this the pipe angle was varied through the range of angles considered so 

that the effect of the pipe inclination on hold up and pressure gradient could be  

studied. In this study they showed that the input liquid holdup and Froude number 

were very important parameters for two-phase flow in terms of flow pattern 

prediction. They concluded that the inclination angle significantly affected the 

liquid holdup and pressure gradient for most flow conditions, and the frictional 

pressure drop is highly affected by liquid holdup. A correlation was developed to 

determine the pressure gradient after determining the flow pattern and in-situ 

liquid hold up. 

 

Beggs and Brill (1973) presented several correlations that predict the transition 

boundaries between several flow patterns as a function of the no-slip liquid holdup 

and the mixture Froude number. The Table 2.3 shows the inequality equations 

that were developed for the different gas-liquid flow patterns considered. 

 

 
Table 2.3:Beggs and brill flow pattern transition boundaries 

Flow pattern Existing range 

Segregated 
λ' 	< 0.01	&	N4, <	L@	 or  		λ' ≥ 0.01	&	N4, < LB 

 

Intermittent 

0.01 ≤ λ' < 0.4	&		LH 	< N4, ≤ L@ 

or 

λ' ≥ 0.4	&	LH < N4, ≤ LI								 

 

Distributed  

λ' < 0.4	&	N4, ≥ L@	 

or 

λ' ≥ 0.4	&	N4, > LI		 

 

Transition  λ' ≥ 0.01	&		LB <	N4, ≤ LH 
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The equation for the flow pattern transition boundaries are given as: 

 

L@ = 316λ'F.HFB							 2.101 

 

LB = 0.0009252λ'?B.I[KI				 2.102 

 

LH = 0.10λ'?@.IL@[	 2.103 

 

 

LI = 0.50λ'?[.MHK	 2.104 

Since the pipe inclination angle has an impact on the liquid holdup, the horizontal 

liquid holdup is first calculated and then corrected to account for the pipe angle. 

The liquid holdup in the dispersed bubble flow pattern was reported to be 

independent of the pipe inclination angle and needs no correction. The horizontal 

liquid holdup is given as: 

 

 

H'(F) =	
aλ'0

N4,+
	 ; 									H'(F) ≥	λ'	 

2.105 

 

 

N4, =	
V6B

gD
		 2.106 

 
Equation 2.105 is used to calculate the horizontal liquid holdup for all the flow 

patterns. However, the empirical coefficients used are different for each flow 

pattern as given in Table 2.4  

 
 
 

            Table 2.4: Beggs and Brill empirical coefficients for horizontal liquid holdup 

Flow pattern a b c 
Segregated 0.980 0.4846 0.0868 
Intermittent 0.845 0.5351 0.0173 
Distributed 1.065 0.5824 0.0609 
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The correction factor ψ that is applied to account for the effect of pipe inclination 

on the liquid holdup is given by 

 

 

ψ = 1.0 + 	βiasinp1.8θ;q − 0.333sinHp1.8θ;qd		 2.107 

 

where θ;, is the pipe angle and βi is defined by Equation 2.108.     

 

 

βi = 	 (1.0 −	λ') lnpeλ'
1N4,:N'^#q ;  where  βi	 ≥ 0 2.108 

 

 

The empirical coefficients f, g and h for the different flow patterns are given in 

Table 2.5 

 

Table 2.5: Beggs and Brill (1973) empirical coefficients for β 

Flow pattern e f g h 
Segregated uphill 0.011 -3.7680 -1.6140 3.5390 
Intermittent uphill 2.960 0.3050 0.0978 -0.4473 
Distributed uphill No correction C = 0; 
All downhill flows 4.70 -0.3692 -0.5056 0.1244 

 

 
The expression for the inclination angle corrected liquid holdup is then given as  

 

 

H'(-) =	H'(F)ψ 2.109 

 

 

If the transition flow pattern exists, the liquid holdup is obtained by interpolating 

between the segregated and intermittent flow pattern to obtain the transition 

liquid holdup  

 

pH'(-)q8,2!(E*E<! =	WpH'
(-)q75:,5:2*59	 +	(1 −W)pH'

(-)q_!*5,6E**5!* 2.110 
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Where the interpolation weight parameter W is given as:  

 

W =	
LH −	N4,
LH − LB

 

 

The two-phase friction factor f*; is calculated from the following equations  

 
f*;
f!(

=	e( 2.111 

 

	y = 	ln �
λ'

pH'(-)q
B� 2.112 

 

 

There are discontinuities for y values of about 2.63 × 10?I and 1.1016. It is unlikely 

that the discontinuity at the smaller value of y would be encountered. However, it 

is necessary that s is set to zero if equals one. This ensures that the correlation 

degenerates to the single-phase i.e.  s(y = 1) = 0	; 

 

s = 	
y

−0.0523 + 3.28y − 0.872yB + 0.01853yI
							 2.113 

 

 

s = 	 ln(2.2y − 1.2)	; 																						1	 < y	 < 1.2		 2.114 

 

Payne et al. (1979) carried out an experimental study on two-phase flow in an 

inclined pipe and found out that because the Beggs and Brill (1973) method was 

based on experimental data obtained for smooth pipes, it underpredicted the 

friction factors. They recommended that the no-slip friction factor should be 

obtained from the moody friction chart or from equation 2.115 for the actual value 

of the relative roughness, using an iterative procedure.     

 

 

1
f!(

= 1.74 − 2 log V
2ε
D
+

18.7
Re!(�f!(

Y	 2.115 
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Where Re!(, is the no slip Reynolds number defined by Equation 2.59 

 

Payne et al discovered that the Beggs and Brill method also overpredicted the 

liquid holdup for both uphill and downhill flows. They recommended correction 

factors for the liquid holdup defined by: 

 

H'(-) = 	0.924H'(-)	; 							θ; 	> 0 2.116 

 

H'(-) = 	0.685H'(-)	; 							θ; 	< 	0 2.117 

 

 

 

The pressure gradient for all the flow patterns can then be calculated from  

 

−
dP
dZ

=
aρ'H'(-) +	ρ&p1 − H'(-)q	dg sin θ; +	

f*;[ρ'λ' +	ρ&(1 − λ')	]V6B

2D
1 −	V6V7&	[ρ'λ' +	ρ&(1 −	λ'	)]P

 2.118 

 

 

 

This correlation has been one of the most widely used method to predict two-

phase flow patterns and calculate the pressure gradient in pipes due to its ease of 

application and the vast range of parameters considered. The pressure gradient 

Equation 2.118 was derived by considering the sum of the individual components 

that contribute to the pressure drop in a steady state fluid flow. These are made 

up of the potential energy change, kinetic energy change and the frictional loss 

component.  

 
 
 
 
Mukherjee and Brill (1985) carried out an experimental study using air, kerosene 

and lube oil in an attempt to alleviate some of the limitations of the Beggs and 

Brill (1973) method. They carried out experiments using an inverted U-shaped, 

1.5-in. nominal ID steel pipe which could be raised or lowered to allow the varying 
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of the pipe inclination angle within a range of 0o to ± 90o from the horizontal. 

Transparent test sections were used to allow for flow-pattern observations and 

permitted the use of capacitance sensors to measure liquid holdup. About 1000 

pressure drop measurements were taken and more than 1500 liquid holdup 

measurements for a broad range of gas and liquid flowrates. Flow pattern and 

liquid prediction methods were developed using an empirical approach and the 

suggested pressure gradient calculation methods are very similar to that of the 

Beggs & Brill (1973) method. However, a steady state momentum balance on the 

gas and liquid phases was applied to generate a method to calculate the pressure 

gradient for stratified flow in a highly deviated or horizontal well. 

 

The models generated using the empirical approach were found to be inaccurate 

under certain conditions and often proved inadequate in that they are limited by 

conditions and the range of experimental data on which they were developed. The 

empirical models cannot be used with confidence for all types of fluids and 

conditions encountered in the oil and gas industry. Furthermore, some of the 

empirical models produce large discontinuities at flow pattern transitions which 

may create convergence errors (Petalas and Aziz, 2000).  

 

 

Further along the line, the mechanistic modelling approach was developed to 

improve the prediction of the flow dynamics and was a compromise between the 

empirical and the two-fluid approach. The mechanistic modelling approach tends 

to consider the important parameters that govern the flow dynamics by applying 

the fundamental laws of physics. However, a relatively much lower amount of 

empiricism is still required to determine closure relationships or predict certain 

flow mechanisms. Although most mechanistic models that predict two-phase flow 

behaviour in pipes are for an isolated mechanism, such as flow pattern, liquid film 

thickness, or bubble rise velocity in liquid columns, the mechanistic models being 

based on fundamental laws, offered more accurate modelling of the geometric and 

fluid property variations. 
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Taitel and Dukler (1976) developed a mechanistic model for the unambiguous 

analytical prediction of the transition between flow patterns. The model predicts 

the relationship between the following variables at which the flow pattern 

transitions occur; gas and liquid mass flowrates, fluid properties, pipe sizes and 

pipe inclination angle. The mechanisms for the flow pattern transitions are based 

on physical concepts and are fully predictive in the sense that no flow pattern data 

was used in the model development. 

The study provided considerable insight to the mechanism for transition between 

five basic flow patterns which were dispersed bubble, stratified smooth, stratified 

wavy, intermittent (slug and plug), and annular with dispersed liquid. No 

distinction is made between slug, plug, or elongated bubble flows, which are 

considered as different conditions in the intermittent flow pattern. 

The process of analysing the transitions between the different flow patterns starts 

from the condition of stratified flow. The approach is to visualize a stratified liquid 

and then do determine the mechanism by which a change from stratified flow can 

be expected to take place, as well as the flow pattern that can be expected to 

result from the change. 

Assuming a stratified flow of gas and liquid in a pipe, if the liquid flowrate is 

increased, the liquid level in the pipe rises, and a wave is formed which grows 

rapidly tending to block the flow. At lower gas flowrates, the liquid bridges the 

pipe to produce the slug or plug flow pattern. At higher gas flowrates, there is 

insufficient liquid flowing to maintain or, in some cases, even to form the liquid 

bridge, so the liquid is swept up and around the pipe to form an annulus with 

some entrainment if the gas flowrate is high enough. A summary of the transition 

criteria of the different gas-liquid fluid flow patterns are presented in Table 2.6: 
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         Table 2.6: Taitel and Dukler (1976) gas-liquid flow pattern transition criteria  

Stratified to non-stratified transition:  

FB

⎣
⎢
⎢
⎢
⎡ 1
CBB

	
V&̈ 	

dA'̈
dh'̈
A&̈

	

⎦
⎥
⎥
⎥
⎤
≥ 1 CB = 1 −	

h'
D

 F = 	�
ρ&

(ρ' −	ρ&)
		

V7&
�Dg cos θ;

 

 

Intermittent to Annular Transition: 

h' D⁄ = 0.5 

If the equilibrium liquid level in the pipe is above the pipe centre line, intermittent 
flow pattern would occur, and if  h' D⁄ < 0.5, the annular flow pattern would 
occur. Barnea et al (1980) modified the criterion for the transition and suggested 
the following equation:  
 

h'̈ =	
h'
D
	= 0.5	 × 	0.7 = 0.35 

Thus, for h'̈ > 0.35,  the slug flow pattern would occur whereas for h'̈ ≤ 0.35, 
the intermittent flow pattern would occur. 
 

 

Stratified smooth to stratified wavy transition: 

K	 ≥ 	
2

¬V&̈V'̈√s
 

KB =	
ρ&V7&Bρ'V7'

	µ'	(ρ' −	ρ&)g cos θ;
=	

ρ&V7&B

(ρ' −	ρ&)gDcos θ;
\
ρ'V7'D
	µ'

] 
 

Intermittent to dispersed bubble transition: 

TB 	≥ 	 ®
8	A&̈

S`̄V'̈
BpV'̈D'̈q

?6Z° 

T = 	

⎣
⎢
⎢
⎡C' �		

ρ'V7'D
µ'

		�
?6Z 2	ρ'	V7'B

D
(ρ' −	ρ&)g cos θ;	

⎦
⎥
⎥
⎤
@
Ba

=	 ±
− idPdLj7'

(ρ' −	ρ&)g cos θ;	
²

@
Ba

 

 
 

 

 

The flow pattern transition criteria are a unique function of the dimensionless liquid 

level in the pipe, which has to be obtained initially before the prevailing flow 

pattern can be predicted. The equilibrium liquid level in the pipe can be determined 

for a given set of input flow conditions by applying the momentum balance on the 

gas and liquid phases. Assuming a steady state flow and neglecting the rate of 
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change of momentum across the control volume, the momentum balances for the 

liquid and the gas phase can be expressed respectively as 

 

 

−
dP
dL

−	
S'
A'
	τQ' +	

SE
A'
	τE −	ρ'	g 	sin θ; = 0	 2.119 

 
 

−
dP
dL

−	
S&
A&

	τQ& +	
SE
A&

	τE −	ρ&	g 	sin θ; = 0	 2.120 

 
The combination of Equations 2.119 and 2.120 eliminates the pressure gradient 

term and yields an equation that is implicit for the equilibrium liquid height h'.  

 
 
S&
A&
	τQ& −	

S'
A'
	τQ' +	τE		SE 	\

1
A'

+
1
A&
] −	(ρ' −	ρ&)	g 	sin θ; = 0 2.121 

 
 
The liquid, gas and interfacial shear stresses can be calculated respectively from 

the following equations  

 
 

τQ' =	
1
2
f'ρ'V'B 2.122 

 
 

τQ& =	
1
2
f&ρ&V&B 2.123 

 
 

τE =	
1
2
fEρ&(V& −	VE)B 2.124 

 
 
The calculation of the friction factors for the different shear stress equations are 

carried out using the standard single-phase flow method by applying the hydraulic 

diameter for each of the phases. The friction factor for smooth pipes equations 

can be expressed as  

 
 
f' = C'	ReL?6%   and     f& = C&	ReG?6& 2.125 
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The following coefficients are utilised for the friction factor equations: C' = C& =

	16	 and mZ =	m: = 1 for laminar flow, and C' = C& = 	0.046	 and mZ =	m: = 0.2 for 

turbulent flow. 

 
The Reynold numbers and hydraulic diameters for each of the phases are given 

as  

 

Re' =	
	ρ'	V'	D'

µ'
 2.126 

 
 

Re& =	
	ρ&	V&	D&

µ&
 2.127 

 
 

D' =
4	A'
S'

 2.128 

 
 
 

D& =
4	A&
S& +	SE

 2.129 

 
 
The interfacial shear stress can be approximated by  

 
 

τE =	
1
2
fEρ&(V& −	VE)B 	≈ 	

1
2
fEρ&(V& −	V')B	 2.130 

 
 
For a stratified smooth flow, Taitel and Dukler (1976) suggested the friction factor 

of the gas phase should be used the interfacial friction factor fE =	 f&, while for a 

stratified wavy flow a value of fE = 	0.0142 can be used (Shoham, 2005). 

Using the dimensionless variables in Equation 2.127 it is useful to transform these 

equations to a dimensionless form making the variables a function of the 

dimensionless liquid height h'̈. The resulting dimensionless form of the equations 

can be expressed as: 

 

				V'̈ =	
V'
V7'

,					V&̈ =	
V&
V7&

,					S'̈ =	
S'
D
	, h'̈ =	

h'
D
	, A'̈ =	

A'
DB
	,	 2.131 

  

 
 



 
 

51 

			XB ZpV'̈D'̈q
?!	V'̈

B S'̈
A'̈
[ −	ZpV&̈D&̈q

?6	V&̈
B 	V

S&̈
A&̈

+	
S`̄
A'̈

+	
S`̄
A&̈
Y[ − 4Y = 0 2.132 

 
 
 
where 
 
 

XB =	

4	C'
D i		ρ'V7'Dµ'

		j
?! 	ρ'	V7'B

2
4	C&
D i		ρ&V7&Dµ&

		j
?6 	ρ&	V7&B

2

	= 	
− idPdLj7'
−idPdLj7&

 2.133 

 
 
and  
 

	Y = 	
NρL −	ρGOg sin θp

4	CG
D G		

ρGVSGD
µG

		H
−m 	ρG	VSG

2

2

=	
NρL −	ρGOg sin θp

− IdPdLJSG

 2.134 

 
 
 
 
The following functional relations are required for the solution of the dimensionless 

equations in other to obtain the equilibrium liquid height. 

  

 

A'̈ = 0.25 Zπ −	cos?@p2h'̈ − 1q +	p2h'̈ − 1q¬1 −	p2h'̈ − 1q
B
	[ 2.135 

 
 

A&̈ = 	0.25 Zcos?@p2h'̈ − 1q −	p2h'̈ − 1q¬1 −	p2h'̈ − 1q
B
	[ 2.136 

 
 
S'̈ = 	π −	cos?@p2h'̈ − 1q		 2.137 

 
 
S&̈ =		 cos?@p2h'̈ − 1q	 2.138 

 
 

S`̄ = ¬1 −	p2h'̈ − 1q
B
   2.139 
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V'̈ =	
A"̈
A'̈
			and			V&̈ =	

A"̈
A&̈
				 2.140 

 
 
 

D'̈ =
4	A'̈
S'̈

					and			D&̈ =
4	A&̈
S&̈ +	S`̄

 2.141 

 

 

 

 

 

When the determination of the equilibrium liquid holdup has been determined, the 

gas-liquid flow pattern is predicted, and the resulting pressure gradient can be 

calculated from Equation 2.119 or 2.120 as both equations would yield the same 

result. It should be noted that the pressure gradient obtained using the Taitel and 

Dukler model is only valid for all flow conditions at which the stratified flow pattern 

exists. This constitutes one of the major limitations of the Taitel and Dukler (1976) 

model. Other mechanistic models have been developed by several investigators 

to calculate pressure gradients for other flow patterns namely Dispersed bubble, 

bubble, slug, and annular flow pattern (Hasan and Kabir, 1988; Ansari et al., 

1990; Petalas and Aziz, 2000; Xiao et al., 1990; Barnea, 1987). The mass and 

momentum transfers between the gas and the liquid phases at different pipe 

inclinations are unique for each flow pattern prompting a distinctive modelling 

approach for the different flow patterns. For instance, slug flow hydrodynamics is 

complex with unsteady flow behaviour characteristics. It possesses a distinctive 

gas-liquid fluid configuration and complex velocity, liquid holdup and pressure 

distributions. This makes the prediction of the liquid holdup, pressure drop, heat 

transfer, and mass transfer difficult and challenging, hindering the development 

of accurate predictive methods.  
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Duckler and Hubbard (1975) carried out an experimental study to shed light on 

the mechanism and process of mass transfer for slug flow in horizontal and near 

horizontal pipes. Using a horizontal test section of 1.5-in id, 65ft long and 

equipped with fast response pressure transducers, an understanding of the slug 

flow mechanism was developed from an extensive visualization study including 

short exposure time still photographs, motion picture sequences at several 

speeds, and dye tracer work. From visual observations they outlined the stages 

at which slug flow develops in a pipe: 

 

 

Liquid and gas flow simultaneously into a pipe with the liquid flowing as a stratified 

phase and the gas flowing above the liquid. When the gas-liquid velocities under 

which the slug flow pattern is attained, the liquid level rises, approaching the top 

of the pipe and waves begin to appear on the liquid surface. Eventually the liquid 

level bridges the pipe and momentarily blocks the gas flow. (See Figure 2.6A, B, 

and C). As soon as the bridging occurs, the liquid in the bridge is accelerated to 

the gas velocity. The liquid appears to be accelerated uniformly across its cross-

section, thereby picking up all the slow-moving liquid ahead of it and accelerating 

it to slug velocity. (See Figure 2.6D.) As the slug is travels down the pipe, the 

liquid is shed uniformly from its back forming a film region which decelerates 

rapidly from the slug velocity to a much lower velocity, due to the interfacial and 

wall shear stresses. The length of the slug stabilises as the slug is now picking up 

liquid at the same rate that it is shed. With the slug having a higher kinetic energy 

than that of the liquid film, the liquid film penetrates a distance into the slug before 

attaining the slug velocity, creating an eddy at the front of the slug which is 

essentially a mixing vortex. The length of the mixing eddy is the distance of 

penetration of the liquid film.  
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    Figure 2.6: Process of formation of the slug flow pattern (Duckler & Hubbard, 1975) 

 

Duckler and Hubbard (1975) developed a hydrodynamic model for a fully 

developed slug flow in pipes based on the observed flow dynamics and mechanism 

of the slug movement. The total pressure drop across a slug unit in a horizontal 

flow is the combination of the acceleration and frictional pressure drop. The 

acceleration pressure drop results from of the acceleration of the slow moving 

liquid film to the slug velocity while the frictional pressure drop results from the 

wall shear stress. However, in the model development, the pressure drop of the 

gas phase flowing above the liquid film was neglected, only considering the slug 

body and the liquid film region.  

 

Taitel and Barnea (1990) presented a pioneering comprehensive analysis for slug 

flow in pipes. The idea of the study was to extend the scope of the existing slug 

flow models and develop a unified model that accounts for horizontal, inclined 

upward and vertical upward slug flow. The observation of the slug flow mechanism 

suggested by the Dukler and Hubbard was adopted in the development of the 

model. However, some of the aspects of both models differ. For example, this 
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model recognised that the gas and the liquid phase in the slug body region may 

move at different velocities unlike the Dukler and Hubbard model that assumes a 

homogeneous no-slip flow in the slug body V'( =	V&( =	V(. This gives the model a 

major advantage as it alleviates the error produced by assuming that both phases 

flow at the same velocity and calculating the fluid properties using the no-slip 

approach. Another great advantage of this model is that it can be applied to 

perform two-phase slug flow hydraulic calculations for a wider range of pipe 

inclination angles as most of the slug flow mechanistic models developed prior to 

this considered either only vertical upward, horizontal or inclined slug flow.   

The translational velocity V8 coordinate system was used in the formulation of the 

model along with the basic assumption of steady state flow. In this coordinate 

system, the liquid and the gas phases can be expressed as flowing backwards at 

velocity of V8 −	V'( and V8 −	V&(, with respect to the coordinate system. This 

velocity is defined as the relative velocity and as the cross-sectional area of the 

liquid film behind the slug decreases, the relative velocity increases. Thus, it is 

possible to relate the velocities in the slug body region and the liquid film region 

to a given location in a fully developed slug unit. The significant advantage of 

using this coordinate system is that the flow variables become dependent on the 

local position in the pipe but independent of time. The mass flowrate W' of the 

liquid in a slug unit can be obtained by integrating the liquid flow through a fixed 

pipe area over the time taken for the passage of a slug unit. The mass flowrate of 

the of the liquid phase can be expressed as  

 
 
 

W' = V	V'(	ρ'	A"H'(	t( 					+ 	h V'1	ρ'	A"H'1	dt
	8'

F
				Y

1
	t3

 2.142 

 
 

The times taken for the entire slug unit t3, slug body t( and the liquid film region 

t1 to cross a given point in the pipe can be expressed in terms of the translational 

velocity as 

 

t3 =
L3
V8
							t( =

L(
V8
					t1 =

L1
V8
						 2.143 
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Substituting equation 2.143 and dt = dL V8⁄  into 2.142 and yields  

 

 

W' =		V'(	ρ'	A"H'(
	L(
L3
		+ 		

1
L3
	h V'1	ρ'	A"H'1		dL

	''

F
	 2.144 

 
 
 
 
In order to determine the pressure drop, the hydrodynamics of the liquid film 

region would have to be carefully considered. A momentum balance of the phases 

in the liquid film region would be required to obtained profiles of the liquid film 

velocity and the liquid film holdup as there are a function of position and vary 

along the length of the slug in the pipe. The momentum equations for the liquid 

film and gas pocket is expressed in terms of the translational velocity coordinate 

system, respectively as 

 
 
 
 

	ρ'v1
∂v1
∂L

	= −
∂P
∂L
	+		

τ'1S'1
A'1

		− 		
τESE
A'1

+	ρ'g sin θ; −	ρ'g cos θ;
∂h'1
∂L

	 2.145 

 
 
and  

 
 

	ρ&v:
∂v:
∂L

	= 	−
∂P
∂L
	+	

τ&1S&1
A&1

	+ 	
τESE
A&1

	+ 	ρ&g sin θ; −	ρ&g cos θ;
∂h'1
∂L

 2.146 

 
 
 
The relative velocities of the liquid and gas phase in the liquid film region is given 

as  

 

v1 = V8 − V'1		; 			v: = V8 − V&1	 2.147 

Applying a mass balance on a control volume bounded by a slug body with respect 

to the translational velocity coordinate system, the mass pickup/shedding rate can 

be obtained. In this coordinate system, the interface in liquid film region is 

assumed to be stationary and all the liquid flows backwards. The liquid film moves 

backwards at V8 − V'1		and the liquid slug moves backward at V8 − V'(. The mass 
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flow rate backward is equivalent to the mass pickup/shedding rate x, which can 

be obtained by applying the liquid phase continuity equation to the control volume 

at the translational velocity coordinate system as  

 

x = 	ρ'A"H'((V8 − V'() = 		 ρ'A"H'1(V8 − V'1)	 2.148 

 

The relative velocities of the liquid phase in the liquid film region, v1 can be 

determined from Equation 2.148 and in a similar approach, the relative velocity 

of the gas phase in the liquid film region, v: can also be obtained. 

 
 

v1 	= 		 (V8 −	V'1) = 	
(V8 −	V'()H'(

H'1
 2.149 

 
 
 

v: 	= 		 (V8 −	V&1) = 	
(V8 −	V&()(1 − 	H'()

(1 − 	H'1)
 2.150 

 
 
 
 

Combining Equations 2.145 through 2.150, rearranging and simplifying yields an 

ordinary differential equation for the liquid film height as a function of the local 

position in the liquid film region.  

 
 
 
∂h'1
∂L

= 	
	τ'1S'1A'1

	− 	τ&1S&1A&1
−	τESE i

1
A'1

+ 1
A&1

j +	(ρ' −	ρ&)g sin θ;

ρ&v:
(V8 −	V&()(1 − 	H'()

(1 − 	H'1)B
	∂H'1∂h'1

	− 		ρ'v1
(V8 −	V'()H'(

H'1B
	∂H'1∂h'1

	+ 	(ρ' −	ρ&)g cos θ;
 

2.151 

 

The differential Equation 2.151 can be solved numerically to obtain the liquid film 

profile, h'1(L) and the liquid film velocity profile, V'1(L). The initial condition for the 

ODE is h'1(L = 0) = 	h( =	H'(	D	 corresponding to V'1(L = 0) = 	V8 −	V'(	. The 

numerical integration is performed until the mass balance equation is satisfied, 



 
 

58 

yielding the length of the liquid film, the liquid film holdup and velocity just before 

the pickup point. (Shoham, 2005) 

 

The change in the liquid film holdup with respect to the height of the liquid film 

can be determined from geometrical relationship as  

 

∂H'1
∂h'1

=
4
πD

�1 −	\2
h'1
D
− 1]

B

 2.152 

 
 

The terms S'1, S&1, SE, A'1, and A&1 can be determined from geometrical relationships 

as presented earlier in Equations 2.135 to 2.141. 

 
The shear stresses in Equation 2.151 is expressed in terms of the actual velocity 

of the phases as 

 

τ'1 = f1
ρ'V'1|V'1|

2
 2.153 

 
 
 

τ&1 = f:
ρ&V&1|V&1|

2
 2.154 

 
 
 

τE = fE
ρ&(V&1 −	V'1)|V&1 −	V'1|

2
 2.155 

 

 

The friction factor between the liquid film and the pipe wall, f1 and the gas phase 

and the pipe wall, f: can be obtained from the general Blasius correlation for 

smooth pipes, f = CRe?6	 using the hydraulic diameter concept. The hydraulic 

diameter for the liquid film and the gas can is given as 

 
 
 

d'1 =	
4A'1
S'1

				 			d&: =	
4A&1
S&1

 2.156 
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The following coefficients are utilised for the friction factor equation: C = 16	 and 

m = 	1 for laminar flow, and C = 0.046	and m = 	0.2 for turbulent flow. For rough 

pipes, the following expression can be used to determine the friction factors of 

liquid or gas phases.  

 
 

f = 0.001375	 �	1 +	Z2	 ×	10I 	
ϵ
D
+	
10[

Re
[
@ H⁄

	� 2.157 

 
 
The determination of the interfacial friction factor, fE is more complex than that of 

the liquid or the gas phase friction factor. If the flow has a smooth interface, the 

interfacial friction factor is approximated as the gas phase friction factor i.e. fE =

	f:. If the flow exhibits a wavy interface, then a constant value of fE = 	0.014 

suggested for a stratified wavy flow can be used as the interfacial friction factor.  

 
 
 
Due to the intermittent nature of slug flow in pipes, the local axial pressure drop 

is not constant and cannot be determined through a conventional approach. 

However, the axial pressure gradient of slug flow can be determined by obtaining 

the average pressure drop across a slug unit. Since the momentum fluxes in and 

out of the control volume of a slug flow is equivalent, the global pressure drop can 

be reduced to a force balance relationship as: 

 
 

−∆P3 =	ρ3g sin θ; L3 +	
τ(πD
	A"

L( +	h
τ'1S'1 + τ&1S&1

	A"

''

F

	dL 2.158 

 
Where  

 
ρ3 =	ρ'H'R +	ρ&(1 −	H'R	) 2.159 

 
and the average liquid holdup of a slug unit H'R is defined as   
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H'R =	
	V8H'( 		− 	V'(H'( 	+ 	V7'

V8
 2.160 

 
 

From the Equation 2.158, it is evident that the pressure drop across a slug unit 

contains the gravitational pressure drop component and the frictional pressure 

drop component. The acceleration pressure drop component does not exist in its 

own form but has be accounted for the third term of the Equation 2.158.   

Closure relationships are required in other to calculate the pressure drop across a 

slug unit. Some of the closure relationships as presented by (Shoham, 2005) are 

given in Table 2.7 
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Table 2.7: Closure relationships for mechanistic slug flow model for pipe flow 

Parameter  Closure relationship 
 

Translational velocity, V( 

 
V( =	c)V* + 	0.54/gD cosθp +	/gD sinθp, 
 

0) 	≤ 	θp 	≤ 	 90) 
 
For laminar flow c) = 2	 
For turbulent flow c) = 1.2 
 

Gas bubble velocity in slug body V+, 

 

V+, =	c)V* + 	0.54 9
gσ(ρ" −	ρ+)

ρ"$
?
-.$/

H",$ sinθp 

 
For laminar flow c) = 2	 
For turbulent flow c) = 1.2 
 

 
 

Liquid holdup in the slug body H", 

 
Horizontal flow: 
 

H", =	
1

1 +	A V*8.66D
%.01 

 
Horizontal to upward inclined flow: 
 
H", =	exp2345.6/	×	%-

!"9	:	$.;6	×	%-!#<'$%=> 
 
0) 	≤ 	θp 	≤ 	 90) 
 

Re", =	
	ρ"	V*	D
µ"

 

 
 

Slug frequency, υ, 

 

υ, = 0.0226 K
V?"
gDL

%.$

	K
212.6
V*

	+	V*L
%.$

M0.836

+ 2.75PsinθpQ
-.$/R 

 
0) 	≤ 	θp 	≤ 	 11) 
 

Slug length, L, 

 
L, = 30	D	,							D ≤ 2	in 
 
ln(L,) = −25.4 + 28.5[ln(D)]-.%	,							D > 2	in 
 
D = inches, L, in ft  
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2.3 Multiphase Gas – Liquid flow in annuli 

There are a lot of works regarding two-phase flow in pipes. However, their 

application to two-phase flow in annuli is limited due to the additional complexity 

of the flow dynamics generally encountered for flows in annuli geometries. 

Although some the early investigators had developed methods for predicting two-

phase flow dynamics for annuli flows using the methods previously developed for 

two-phase flow in circular pipes by applying the hydraulic diameter concept, 

studies have shown that this approach often generates significant errors. For 

example, the error involved in predicting the friction factor in annuli pipes by 

applying the hydraulic diameter concept can vary between about 40 to 50 percent 

depending on the inner to outer pipe diameter ratio and the degree of eccentricity 

of the inner pipe (Caetano et al., 1992). These errors prompted the development 

of specific methods for the prediction of two-phase flow behaviour in annuli 

configurations by applying either some of the techniques developed for single 

phase flow in annuli, two-phase flow in circular pipes or a combination of both. 

 

Sadatomi et al. (1982) studied the Taylor bubble rise velocity for two-phase flow 

in circular, rectangular, triangular and concentric annuli configurations. They 

reported that the Taylor bubble’s shape differs from that of a circular-cap and 

varies in the range of an elliptical-cap to a parabolic-cap. The new shapes found 

were reported to provide faster bubble rising velocities when compared to flow 

without insertions which is a function of the particular flow geometry. In this study, 

flow pattern maps were developed for air-water vertical flows through the various 

circular and noncircular configurations considered by detecting the transition 

criteria between the different flow patterns. They concluded from the analysis of 

their experimental results that the flow geometry had little to no influence on the 

flow pattern transitions. However, they did not provide information on the factors 

that affects the flow pattern transitions. 

 

 

Kelessidis and Dukler (1988) investigated the flow patterns in a vertical upward 

gas-liquid flow in a concentric and 50% eccentric annulus in other to examine the 

factors that influences the flow pattern transitions and propose methods to predict 

the flow pattern transition zones. The test section consisted of two acrylic pipes 
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which are eclectically non conducting. The outer diameter of the inner tube, and 

the inner diameter of the outer tube was 0.0508m and 0.0762m respectively. The 

flow pattern identification was achieved by mounting conductivity probes on the 

inner and outer pipe walls of the annular configuration. 

The flow patterns observed in this study were the bubble flow, slug flow, churn 

flow and annular flow. 

The flow pattern classification was accomplished by applying a probability density 

function (PDF) to the voltage-time traces obtained from the conductance probes. 

The voltage scale of the voltage-time trace signal V(t), is divided into equal 

increments of width w and the time scale into equal increments of width ∆T (Figure 

2.7). During the observation period, if the voltage is seen within the range (v	 −

	w/2, v	 + 	w/2) for a total of nE times, then, for a stationary time series, the PDF, 

p(v), can be defined as 

 

 

P(v) = 		 lim
Q⟶F

	P[v, w]
w

= 		 lim
Q⟶F

1
w\

lim
8⟶g

	Th
T ]

 2.161 

 

 

P[v,w] is the probability distribution function and Th =	nE∆T. 

Figure 2.7: Voltage-time trace illustrating the estimation of the PDF 
(Kelessidis & Dukler, 1988) 
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PDF plots are generated from the signals obtained by the conductivity probes for 

the different flow patterns and flow pattern transitions. The PDF values are plotted 

against the normalized voltage values V 	V62h⁄ , where V62h represents the 

maximum value of the voltage. 

For the Bubble flow pattern, the PDF plot will show a distribution with a single 

peak near the maximum voltage as the conductivity probe will be exposed majorly 

to liquid the liquid phase and little of the gas phase. Hence, the ∫Pdv = 1 for 

V 	V62h⁄ > 0.75 (Figure 2.8). Two well-defined peaks exist in the PDF plot for the 

slug pattern. One of the peaks exists in the range of 0.75	 ≤ V 	V62h⁄ 	≤ 1.0 and the 

other has a maximum at zero with a range of V 	V62h⁄ ≤ 0.25. For a fully developed 

slug flow it was suggested that the Taylor bubble must occupy at least 20% of the 

entire length of the column and the peak at the low voltage must have an integral 

> 0.2.  

 

The churn flow pattern PDF displays a single peak at the low voltage region with 

its maximum voltage at zero position (Figure 2.9). The peak exists in the range 

0.75	 ≤ V 	V62h⁄ 	≤ 1.0. for the annular flow pattern, a single peak is observed at the 

zero-voltage position since the output of the conductivity probe is zero. 

 

  

 Figure 2.8: Example of PDF plots for the bubble (left) and slug flow pattern (right) 
(Kelessidis & Dukler, 1988). 
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 Figure 2.9: Example of PDF plots for the churn (left) and annular flow pattern (right) 
(Kelessidis & Dukler, 1988) 

 

 

The transition between the investigated flow patterns were characterized in a 

similar approach based on the signal voltage peak values, the position of the peaks 

and the integral value of the PDF function. Mathematical models for flow pattern 

prediction were developed with an approach dependent on the study presented 

by Barnea et al, (1980) were they investigated how the void fractions and liquid 

and gas flowrates influence the transition criteria between the various flow 

patterns. Although only the 50% eccentricity was considered in this study, it was 

concluded from the analysis of the experimental data that the degree of 

eccentricity has little effect on the flow pattern transitions. 

 

Caetano et al. (1992) experimentally and theoretically studied the upward gas-

liquid flow through a concentric and fully eccentric annulus. The experimental 

setup consisted of a 16-m long vertical annulus with a 76.2-mm ID outer tube and 

a 42.2-mm OD inner tube. A comprehensive experimental data was obtained from 

the setup using air-water and air-kerosene mixtures over a wide range of flow 

conditions. A classification of the different flow patterns encountered for vertical 

flows in a concentric and eccentric annulus was performed along with the 

development of flow pattern maps based on the input superficial gas and liquid 
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velocities. Measurements of volumetric average liquid holdup and average total 

pressure gradient were obtained for each the different fluid mixtures and flow 

patterns for a wide range of flow conditions. Mechanistic models were developed 

for each of the existing two-phase annuli flow patterns to calculate important 

parameters like the average in-situ liquid holdup and pressure gradient of the 

flow. The development of the models was based on the physical phenomena of 

two-phase flow incorporated with annulus characteristics such as the casing and 

tubing sizes and eccentricity. In this study, it was shown from data analysis that 

the application of the hydraulic diameter concept for annuli configurations can be 

inaccurate especially when the flow has a low Reynolds number. it is common 

practice to predict friction factor for flow in noncircular conduits by applying the 

hydraulic diameter concept. However, this procedure should be limited to high 

Reynolds numbers, since unacceptable errors may occur for lower degrees of 

turbulence. This prompted the development of a more rigorous approach to 

calculate the friction factor and accurately predict the frictional pressure gradient 

in annuli under low or moderate degrees of turbulence. 

Assuming that all annuli configurations have the same hydraulic diameter and 

Reynolds number, comparison of the friction factor behaviour in annuli can be 

made in terms of the pipe diameter ratio and the friction geometry parameter. 

 

The fanning friction factor for laminar flow through a circular pipe is given by 

 

f" =		
F"
Re
	= 		

16
Re

 2.162 

 

Where F" represents the friction geometry parameter which has a constant value 

of 16 for pipe flow. 

 

The friction factor for laminar flow of Newtonian fluids in a concentric annulus 

developed by Bird et al. (1976) was used to express the friction factor in terms of 

the friction geometry parameter and the annulus pipe diameter ratio as 
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fiR =		
FiR
Re

	= 		
16
Re
		

(1 − K)B

k1 − K
I

1 − KB −	
1 − KB
ln(1 K⁄ )l

 2.163 

 

The friction geometry parameter for a concentric annulus, FiR can then be 

expressed as a function of the pipe diameter ratio,	K2 =	D@ DB⁄  as  

 

FiR =		 FiR(K2) = 		
16(1 − K2)B

Z1 − K2
I

1 − K2B
−	 1 − K2

B

ln(1 K2⁄ )[
 2.164 

 

 

The equations to calculate the friction factor for a Newtonian laminar flow through 

an eccentric annulus,	fOR are present as follows: 

 

fOR =		
FOR
Re

	= 			
1
Re
		
4(1 − K2)Bp1 − K2Bq

∅sinhIη<
 2.165 

 

 

 

The friction geometry parameter for an eccentric annulus expressed as a function 

of the pipe diameter ratio,	K2 and the eccentricity, e is given as 

 

FOR =		 FOR(K2, e) 	= 			
4(1 − K2)Bp1 − K2Bq

∅sinhIη<
 2.166 

 

cosh ηE =					
K2(1 + eB) + (1 − eB)

2K2e
 2.167 

 

cosh ηA =			
K2(1 − eB) + (1 + eB)

2e
 2.168 

 

∅ =				 (coth ηE −	coth η<)B ®
1

η< −	ηE	
− 2 ¹

2m
exp(B6j$) 	− 	exp(B6j()

g

6k@

° 										

+ 	
1
4 \

1
sinhIη<

−	
1

sinhIηE
] 

2.169 
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       Figure 2.10: Friction geometry parameter for laminar flow in annuli and circular pipes 

 

 

Figure 2.10 shows graphically the influence of the pipe diameter ratio and the 

eccentricity on the friction geometry parameter. The friction geometry parameter 

is a function of the pipe diameter ratio for a concentric annulus, a function of both 

the pipe diameter ratio and eccentricity for an eccentric annulus and is constant 

for a pipe flow. If the pipe diameter ratio is held constant, the friction geometry 

parameter decreases with an increase in eccentricity and as a result leads to a 

decrease in the friction factor and consequently a decrease in the frictional 

pressure gradient. The friction geometry parameter and the consequent friction 

factor for a pipe flow is always higher than of the annuli with high degrees of 

eccentricity. This again shows why it is highly probable to obtain inaccurate results 

when the application of the hydraulic diameter is used to predict the friction factor 

for annuli flow using standard or conventional single-phase pipe flow methods.  
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Friction factors for turbulent flows through a concentric and eccentric annulus was 

developed using a semi-empirical approach and compared to experimental data.  

The friction pressure drop was measured for single-phase turbulent water flow in 

concentric and fully eccentric annuli, and Fanning friction factors were calculated 

for each test using the developed friction factor equations. The friction factor 

equations for turbulent flow in a concentric and eccentric annulus is given 

respectively as: 
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The study showed that for the same hydraulic diameter, there is a significant 

difference between the annuli friction factor values when compared to that of a 

circular pipe. In turbulent flow in annuli, the difference between the measured and 

the predicted friction factor values decreases with an increase in the Reynolds 

number of the flow. Usually the friction factor for a concentric annulus is higher 

than for pipe flow; however, for a fully eccentric annulus the friction factor is lower 

than for pipe flow. This difference is greatly dependent on the annulus pipe 

diameter ratio and the degree of eccentricity.  
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Sunthankar et al. (2000) performed extensive experiments using a horizontal 

field-scale low-pressure flow loop (8" X 4.5", 90' long) to simulate the annuli flow 

of non-Newtonian fluids with or without drillpipe rotation. The liquids used were 

water and aqueous polymer solution (CMC+XCD+water), at flow rates in the range 

75-360 gpm and air in the range 10-1000 scfm. The study involved the 

measurements of the pressure drop and average liquid holdup along the entire 

annular section, including the identification of the flow pattern by visual 

observation and the investigation of the effect of the gas-liquid input flowrates, 

fluid viscosity and drillpipe rotation on average liquid holdup and pressure drop. 

However, the drillpipe rotary speed considered in these experiments was 100 rpm. 

It was noted that the intermittent flow pattern was observed for a wide range of 

the tests carried out prompting the need to modify the available flow pattern 

transition criteria for two-phase annuli flows. For the flow of air-aqueous polymer 

solution fluids it was observed that the flow pattern appeared to be similar to that 

of the air-water fluids with or without the drillpipe rotation. Flow pattern maps 

developed by visual observations were compared to their model for flow pattern 

prediction which was developed by modifying the Taitel and Dukler (1976) based 

on the hydraulic diameter concept.  

In this study, it was concluded that the frictional pressure drop for air-water annuli 

flow increased with the drillpipe rotation due to a turbulence effect caused by the 

rotating drillpipe while for the air-aqueous polymer solution flow, the effect of the 

drillpipe rotation was dependent on both the turbulent effect of the drillpipe and 

the shear-thinning effect of the fluid. Thus, the frictional pressure drop was found 

to either increase or decrease depending on the gas-liquid flow rates, the rheology 

of the fluid and the rotary speed of the drillpipe. 

 

 

Lage and Time (2002) formulated a steady-state mechanistic model to predict the 

mixture behaviour for vertical two-phase flow in a concentric annulus. An 

experimental program was lunched to obtain a wide variety of data by pumping 

air and water to form the two-phase mixture that simulated the gas injection 

through the drill string during underbalanced drilling operations.  The flow pattern 

transition criteria were developed based on the underlying physics governing two-
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phase flow mixture as presented by Taitel et al. 1980. Pressure gradient 

calculation models for slug and annular flow were developed by considering the 

mass balance between each of the phases and the friction factor model used was 

that suggested by Caetano et al. (1992). The proposed model was compared to 

measurements obtained from the experimental study, showing good agreement 

and was reported to have a better performance when evaluated by comparing its 

performance to the mechanistic model developed by Caetano et al. (1992) and 

the empirical model developed by Beggs and Brill (1973). Although the objective 

of this study was to develop a model to predict the behaviour of two-phase flow 

through an annulus during underbalanced drilling operations UBD, the application 

of the model to the drilling scenario is questionable as both the experimental and 

mathematical modelling were based on Newtonian air-water mixtures while the 

drilling fluid is practically a non-Newtonian fluid. For example, the friction factor 

used in the model was developed fundamentally for annuli Newtonian flows and 

cannot be applied directly to model the flow of non-Newtonian drilling fluid through 

the annuli.  

 

 

Omurlu and Ozbayoglu (2007) conducted an experimental and theoretical study 

for two-phase modeling of liquid-air flow through horizontal fully eccentric annuli. 

The test section was 16ft long and made of acrylic casings and a steel drillpipe. 

Two pairs of annular geometrical configurations were used to simulate the flow of 

air and water mixtures and visually identify the prevailing flow pattern. They 

introduced the use of a representative diameter in other to characterize the fully 

eccentric annulus and reported that the use of this parameter was more accurate 

in predicting the flow pattern and pressure gradient when compared to the 

experimental data. The models presented for the calculation of the pressure 

gradients for the different flow patterns did not take into account the geometry of 

the annulus and once again are developed from methods designed for Newtonian 

flow through pipes.       

 

Although a large number of experimental and theoretical work has been done on 

multiphase flow in annuli, most of the empirical or mechanistic models that has 

been presented for annuli flows have been developed by modifying the models 

that were initially developed for Newtonian two-phase flows in pipe. It has been 
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shown that the rheological behavior of non-Newtonian fluids differs to that of the 

Newtonian fluids. Thus, the application of the conventional methods developed for 

Newtonian fluids in predicting the behaviour of drilling fluid flow in annuli would 

definitely be inadequate and lead to inaccurate results as the drilling fluids exhibit 

a non-Newtonian behaviour. For drilling applications, there are a number of 

parameters that influence the behaviour of the fluid flow dynamics and would need 

to be taken into account when modeling the flow of non-Newtonian annuli drilling 

fluid flow.  

 

Ettehadi and Ozbayoglu (2013) conducted an experimental study to investigate 

the effect of the changes in the gas and liquid rates, penetration rate, and drillpipe 

rotation speed on multiphase flow through horizontal and inclined annuli. The 

fluids used for the simulation of the drilling fluids were water to represent the 

liquid phase and air to represent the gaseous phase. It was observed that for a 

constant gas-liquid flowrate, the drillpipe rotation led to an increase in the total 

pressure gradient of the flow and for an inclined annulus, the pressure gradient is 

not affected when the drillpipe rotary speeds is higher than 80 rpm. It was also 

observed that for gas superficial velocity more than 20 ft/sec, the effect of drillpipe 

rotation speed is negligible due to high turbulence effects. They reported that for 

a horizontal eccentric annuli flow, increasing the gas velocity in the wellbore, lead 

to a relatively smaller change in the total pressure loss change when compared to 

the pressure gradient changes for the inclined configurations. This is because the 

frictional pressure gradient component is only effective term contributing to the 

total pressure gradient in the horizontal configuration whereas in the other 

configurations the frictional and gravitational components contribute to the total 

pressure gradient.   

 
 
 
 
 

Nossen, et al. (2017) carried out a project involving experimental and numerical 

studies of the fundamental physics governing multiphase annuli flows. Their drive 

was to develop a method that could be applied to acquire reliable data and shed 

light on the physical understanding that can be used as a basis for developing 

reliable commercial models for prediction of the behaviour of multiphase flows in 
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annuli. The well flow loop constructed in this study was equipped with various 

instrumentation for measurement of flow details including gamma densitometers 

and X-ray computer tomography. Velocity profile measurements were obtained 

using LDA (Laser Doppler Anemometry). With this experimental setup, they were 

able to obtain measurements for the flow patterns, liquid holdup, phase 

distributions and annuli velocity profiles. The analysis of the data obtained from 

this study showed that the behavior of multiphase flow in pipes was different that 

of the annuli flow and concluded that this method of data acquisition can be 

beneficial in developing robust mechanistic models and limit the number of 

assumptions made due to the difficulty of obtaining detailed experimental data.  

 

 

Ibarra et al. (2019) conducted a recent study to investigate two-phase flow 

through a concentric and fully eccentric annulus. The flow of gas-water and gas-

oil were studied using high speed photography, differential pressure transducers, 

and a broad-beam gamma densitometer to characterize the flow the properties of 

the liquid phase, the inner pipe eccentricity and the inclination angle of the 

annulus. The first part of this study involved the identification of the flow patterns 

and the measurement of the average liquid holdup, the slip ratio and pressure 

gradient in the respective annular configurations. Flow pattern identification and 

mapping were achieved by collecting data with the help of visual observations 

from high-speed cameras and probability density function of the average liquid 

holdup obtained from the gamma densitometer. It was reported that the structure 

of the flow in the eccentric annulus was more stable than that of the concentric 

annuli and the observed trend can be attributed to the difference in velocity 

distribution of the flow between the concentric and eccentric annulus. The 

experimental data also showed that for the same flow conditions, the pressure 

gradient in the concentric annulus is higher than that of the eccentric annulus. 

The second part of this study involved the development of flow pattern transition 

algorithms and a mechanistic model to determine the pressure gradient for slug 

flow. The friction factor model for single-phase annular flows presented by 

Caetano et al. (1992) was modified to give a better performance for a wider range 

of the annulus pipe diameter ratio. 
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The friction factor for the concentric and eccentric can be expressed respectively 

as  

 

fiR = f"	FiRi	 2.172 

 

 

fOR = f"	FORi	 2.173 

 

The friction factor for laminar Newtonian flow in pipes is give as f" = 16 Re⁄ , while 

the Zigrang and Sylvester (1982) friction factor correlation was suggested to be 

applied for Newtonian turbulent flow in pipes.  
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Where the parameter ε represents the roughness of the pipe.  

 

The friction geometry parameter for the concentric annuli was modified by 

introducing a correction factor K<	  
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The parameter c = 1 for laminar flow while for turbulent flow, the parameter is 

given by  

 
c = 0.45exp[−	(Re − 3000) 10[⁄ ] 2.178 

The prediction of the models was compared to the experimental data and was 

reported to show good agreement for both the concentric and the fully eccentric 

annulus. However, for the horizontal gas-liquid flow in the concentric annulus, the 

model was found to under predict the pressure gradient by an absolute average 

relative error of about 23%.  

 
 
 
 
2.4 Cuttings transport in drilling annuli  
One of the primary functions of the drilling fluid is efficient transportation of the 

drilled cuttings from the wellbore to the surface. This transport process is usually 

called the drilled cuttings transport and the ability of the drilling fluid to lift the 

drilled cuttings out of the wellbore is referred to as the carrying capacity of the 

drilling fluid. A poor hole cleaning process can lead to wellbore instability issues 

and may also lead to stuck pipe or an increased drag and torque on the drillstring 

which may possibly result in a twist-off pipe, incurring cost and an unwanted non-

productive time. Understanding the cutting transport process itself relies on 

exercising the knowledge from three key areas namely, the flow characteristics of 

the drilling fluid flow through the annuli, the settling characteristics of the drilled 

cuttings, and the mechanism at which the drilled cuttings are being transported 

(Luo, 1988). Experimental and field reports have indicated that the effective hole 

cleaning process during drilling activities is a function of some important 

parameters that can be managed appropriately to optimise the overall drilling 

process. These parameters are the fluid flowrate, the fluid rheological and physical 

properties, and the cutting sizes.  However, over the years, it has been reported 

that the wellbore geometry also have a strong influence on the hole cleaning 

efficiency so the main issue has been the development of a reliable method that 

adjusts the fluid properties and fluid circulation rates to suit the fixed design 

parameters such as wellbore inclination angle, drillpipe rotary speed, pipe 

eccentricity, etc, in order to have an optimum hole cleaning process.  
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Empirical and mechanistic cutting transport models have been published by 

various researchers in an attempt to provide solutions for the prediction of the 

cutting transport dynamics by taking into account the important parameters that 

influence the movement of cuttings in the wellbore annuli. Some of these models 

were developed with an idea of determining the minimum liquid flowrate that 

would be required prevent the cuttings from settling and forming a stationary bed 

at the bottom section of the annuli while some of the were developed with an idea 

of predicting the cuttings velocity from the simultaneous  solution of the governing 

fluid-cuttings transport momentum equations. 

 

Peden et al. (1990) were one of the early investigators that performed 

experiments in other to investigate the influence of drillpipe rotation and 

eccentricity (+50% and -50%) on the cutting transport process during drilling. A 

concept known as the minimum transport velocity MTV was adopted to 

characterise the cuttings transport efficiency, assuming that there is a critical 

annuli velocity above which the drilled cuttings is transported in suspension or 

rolling at the bottom of the wellbore annuli. Thus, the operational flow rate, used 

in the drilling hydraulics programme, should be able to generate an annular 

velocity that is at least equal to the minimum transport velocity and the lower the 

MTV required, the easier it is to achieve an effective hole cleaning operation. In 

an attempt to shed light on the factors responsible for the initiation of cutting 

movement in a wellbore annulus, they analysed the forces that act on a cutting 

lying at the bottom of a deviated wellbore annulus being transported in a drilling 

fluid. These forces are the lift forces, the drag forces, the frictional forces and the 

gravitational forces. The lift force is the force that tends to lift the cuttings into 

suspension in the annuli and is presumed to be generated due to two main 

reasons. The first reason is due to the asymmetric distribution fluid velocity around 

the cutting that creates an asymmetric pressure distribution around the cutting 

where a higher pressure exists on the lower surface than on the upper surface of 

the cutting. This creates a net upward force on the cuttings. The second reason is 

due to the instantaneous turbulent velocity fluctuations generated as a result of 

the turbulent flow regime.  

It was deduced that the cuttings would be transported in by rolling/sliding at the 

low side of the wellbore annuli wall for conditions where the drag force acting on 

the particle in the direction of the flow is equal to or greater than the gravitational 
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force and the cuttings would be transported in the suspension regime, the lift for 

has to be greater than the gravitational force component perpendicular to the 

wellbore axis. The predictions obtained by minimum transport velocity MTV 

models were compared to their experimental results showing significant 

agreement for cuttings suspension. The minimum transport velocity models were 

previously developed by Luo (1988) where dimensional analysis was applied to 

the important parameters that influence the effective movement of cuttings in a 

wellbore annulus. Luo  (1988) did not validate the models but recommended that 

the models should be validated with the results obtained from an experimental 

study.  

 

Peden et al. (1990) presented several conclusions on how certain parameters 

influence the hole cleaning process. For the wellbore inclination angle, they 

concluded that this angle has a significant effect on hole cleaning and this effect 

was dependent on the mechanism of the cuttings transport considered. The worst 

scenario for hole cleaning was seen between 40° and 60° inclination angle for both 

cuttings rolling and suspension transport mechanisms. However, the specific angle 

where the worst hole cleaning is obtained appears to be dependent on a wide 

range of other parameters some of which are the fluid rheology properties, well 

geometry, cuttings sizes and drillpipe rotary speed. Pipe rotation reduces the 

minimum transport velocity for the cases of +50% eccentricity and no significant 

effect of drillpipe rotation was noticed for the cases of -50% eccentricity. The MTV 

required for smaller concentric annuli are lower than that required for the larger 

concentric annuli and for large annuli, pipe rotation has no significant effect on 

hole cleaning while the opposite effect occurs for smaller annuli types. An 

interesting conclusion drawn from this study was that the degree of turbulence of 

the flow strongly influences the hole cleaning efficiency leading to situations 

whereby water may require a lower MTV than a viscous fluid. However, even 

though this effect turbulence effect was highlighted, it was not considered in the 

model that was used to validate their experimental study or develop their 

computer model. 

 

 

Clark and Bickham (1994) developed mechanistic models that could be applied to 

perform cuttings transport analysis throughout a drilling wellbore. When the 
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velocity of the drilling mud in the annuli is high enough, the drill cuttings are 

transported upward. This annular mud flowrate only needs to exceed the cuttings 

bed build-up conditions in the most sensitive areas the in the entire wellbore and 

as the annular mud velocity is continuously decreased, a point is reached where 

some cuttings are lost from the flow. They called this velocity the critical velocity 

required to effective clean the wellbore. From experimental flow loop tests, they 

identified the three significant patterns that describe the mechanisms for cuttings 

transport: the rolling, lifting and stationary bed pattern. They reported the 

prevailing cutting transport mechanism is highly dependent on the wellbore 

inclination angle. At high angles, the cutting transport mechanism is mainly the 

rolling pattern. At lower wellbore angles where the wellbore’s complementary 

angle is greater than the cutting’s angle of repose, cuttings are lifted from a 

churning fluidized bed. Whereas at near-vertical to vertical wellbore angles, the 

cuttings are uniformly distributed in the annuli and tend to settle downhole against 

the flowing mud. At high wellbore angles, a stationary cuttings bed is formed and 

accumulates in the lower part of the wellbore annuli when the wellbore’s 

complementary angle is less than the cutting’s angle of repose. However, if the 

wellbore complementary angle, is less than the angle of repose, the cuttings are 

either rolled or lifted from the bed surface. It was then inferred that the flowrate 

required to remove a stationary cuttings bed can be predicted if the dynamic 

forces acting on the bed can be calculated as a function of local fluid velocity in 

the annuli. It was assumed that the static forces acting on the cuttings are the 

buoyancy force, gravity force, and the plastic force due to the yield stress of the 

mud, while the dynamic forces acting on the cuttings are the lift force, drag force, 

and a pressure gradient force. These forces are assumed to act through the centre 

of gravity of the cuttings and the rheology of the drilling fluid is assumed to be 

governed by the Herschel-Bulkley rheological model. From a force balance 

analysis, the two equations were developed for the prediction of the critical 

velocity required to transport the cuttings via a lifting or rolling mechanism in the 

wellbore annuli. The model was compared to experimental and field data and was 

reported to produce favourable agreements. They concluded that these models 

can be used to reliably predict the cutting transport efficiency in a drilling wellbore 

as a function of the major drilling operating parameters. However, they admitted 

that the effect of the drillpipe eccentricity and the drillpipe rotation were not taken 

into consideration in the development and validation of these models even though 
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theses parameters have been reported by earlier researchers to have a significant 

influence on the cutting transport efficiency.  

    

A computational/numerical approach is another method that has been used for 

the prediction and modelling of cuttings transport in the drilling annuli. The drilled 

cuttings transport is modelled as a two-phase flow process. A dispersed cutting 

phase is assumed to be flowing simultaneously in a continuous liquid phase for a 

single-phase drilling fluid or in a continuous multiphase drilling fluid. For instance, 

in underbalanced drilling operations, the reservoir fluids (gas, oil or/and water) 

that flow into the wellbore due to the underbalance condition of the system are 

assumed to be combined with the drilling fluid as the continuous phase with 

uniform and homogeneous transport properties (Masuda, et al., 2000). The drilled 

cuttings are assumed to be under the influence of several forces that influences 

the annuli cuttings distribution, including the drag force, the lift force and the 

gravitational force. This modelling technique is commonly referred to as a two-

layered or three-layered modelling approach, depending on the number of 

distinctive layers assumed to exist in the annuli flow. In the two-layered modelling 

approach, the flow is considered to be consisted of two-layers, where the upper 

layer consists of drilling fluid with a certain concentration of suspended cuttings 

and the lower layer is made of a stationary or moving cuttings bed (Li et al., 

2007). In the three-layered modelling approach, the flow is considered to be 

consisted of three-layers in the annuli. The bottom layer is assumed to be a 

stationary cuttings bed, the middle layer is assumed to be a moving bed region 

while the upper layer is considered to be the cuttings suspension region. The 

distribution of the cuttings in the annuli varies with time and location. Thus, the 

multi-layered dynamic models can offer a theoretical basis for hole cleaning and 

drilling hydraulics modelling. This is usually based on the assumption that the 

cuttings and drilling fluids are incompressible and there is slippage between the 

cuttings and fluids in the suspension layer of the flow.  

The multi-layered dynamic models are generally formulated with the idea that the 

behaviour of the drilling fluid and cuttings in the suspension layer are governed 

by their separate mass and momentum balance equations and each of the phases 

flow at separate velocities, which is believed to be the reason for the slippage 

between the  drilling fluid phase and cuttings phase.  
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For the two-layered model, the general form of the transient conservation 

equations is derived by relating the mass accumulation in a differential volume of 

element to the net rate of mass inflow across the bounding interface.  

The mass and momentum balance partial differential equations can be solved 

numerically to obtain the unknown variables, including the area of the cuttings 

bed, deposit bed velocity, cuttings concentration in the suspension layer, drilling 

fluid velocity and cuttings velocity in the suspension layer, and the annuli pressure 

gradient. However, a number of empirical correlations are required to describe the 

interphase interactions, cutting interactions (due to particle-particle collisions), 

and interactions between each of the distinctive layers and the physical boundary 

of the annuli. These empirical correlations are mainly derived from experimental 

investigation of the dynamics of particle-particle interactions and particle-fluid 

interactions during particle-fluid simultaneous flow in a conduit.  

 

 

The empirical, numerical CFD and experimental methodology have been applied 

by various investigators to develop methods can be applied to predict the cutting 

transport behaviour and efficiency of hole cleaning during drilling activities. 

Although the actual method used by these researchers have differed in a lot of 

aspects, the effect of the major drilling parameters on the efficiency of hole 

cleaning published has shown similar trends. The key parameters that have been 

concluded to be the most dominant or controlling factor for the behaviour of 

cuttings in the drilling annuli. Literature has stated that these major parameters 

are the flowrate, annuli size, wellbore geometry, cutting size, drilling fluid 

viscosity, rate of penetration ROP, wellbore inclination angle, drillpipe rotation and 

the cutting and drilling fluid densities. The sensitivity of each of these parameters 

or a combination of a number of these parameters on hole cleaning have been 

studied by various researchers (Table 2.7) leading to the development of 

predictive models or guidelines to ensure an effective hole cleaning operation 

during drilling activities.   

Gao and Young (1995) performed an analysis of field generated data along with a 

theoretical analysis for hole cleaning efficiency with an aim to develop a series of 

guidelines that can be applied to achieve an effective hole cleaning operation 

based on the sensitivity of some of the parameters that govern hole cleaning.  
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The major conclusions of the effect of the drilling parameters on the effectiveness 

of the hole cleaning aspect of a drilling operation obtained from literature has been 

summarised in this study. This summary has been arrived at by taking the 

similarities of the effect of each of the major drilling parameters as discovered and 

published by previous researchers or from field acquired data, from the past to 

this present time (Table 2.7). The effect of the major drilling parameters on hole 

cleaning are as follows: 

  

 

 

 

 

Drilling fluid circulation rates: 

The drilling fluid flowrate is the most important parameter that highly impacts the 

hole cleaning efficiency during drilling operations. There are two distinctly different 

mechanisms of cuttings transport that have been identified. The first is whereby 

the cuttings are transported by rolling or sliding along the low side wall of the 

annuli and the second is where the cuttings are transported by suspension in the 

flowing annuli drilling fluid. These two mechanisms have led to the definition of a 

minimum transport velocity MTV or critical velocity that is required to transport 

the cuttings via rolling or sliding at the bottom of the annuli and a minimum 

transport velocity MTV or critical velocity required to suspend the cuttings in the 

annuli. The flowrate of the drilling fluid must be high enough to generate an annuli 

velocity that exceeds at least the MTV or critical velocity for rolling in other to 

ensure an adequate hole cleaning operation.  It is suggested that in other to 

prevent the formation of a stationary cuttings bed, a high flowrate as possible, 

that guarantees the MTV required for cutting suspension should be aimed for 

towards the optimisation of the hole cleaning efficiency.  

 

 

Fluid rheology and flow regime: 

The effect of the fluid rheology on the cutting transport is dependent on the drilling 

fluid flow regime. Increasing the drilling fluid viscosity can improve the cutting 

transport efficiency in the laminar flow regime. however, for the turbulent flow 

regime, reducing the viscosity may be favourable for cutting transport especially 
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in a deviated wellbore. The turbulent flow regime provides a better hole cleaning 

when the viscosity of the drilling fluid is relatively low and if the fluid viscosity is 

increased above a certain threshold, the laminar flow regime would be a lot more 

effective. Once a stationary cuttings bed is formed on the low side of the wellbore 

annuli, the MTV for cuttings suspension must be achieved if the drilling fluid has 

a high viscosity as it is difficult to remove the cuttings using a highly viscous fluid. 

However, with a low viscosity drilling fluid, the removal of the cuttings bed is far 

more efficient and strongly recommended.  

 

 

 

Effect of wellbore inclination angle: 

The effect of the wellbore inclination angle on hole cleaning efficiency is dependent 

on the prevailing cutting transport mechanism. The minimum transport velocity 

MTV required to suspend the cuttings in the annuli increases with an increase in 

the wellbore inclination angle. The minimum transport velocity MTV required to 

transport the cuttings in the rolling mechanism increases with an increase in the 

wellbore angle from the vertical until about a range of 40o to 60o. Thereafter, any 

further increase in the wellbore angle leads to a decrease in the minimum 

transport velocity MTV required to clean the hole.  

 

 

Rate of penetration (ROP): 

Drilling with a high ROP increases the concentration of the cuttings generated in 

the annuli which as a result reduces the ability of the drilling fluid to have an 

effective transport. An instantaneously high ROP should be avoided when drilling. 

It is favourable to minimise the ROP in other to improve the hole cleaning 

efficiency especially when drilling extended reach wells. The higher the rate of 

penetration, the higher the minimum transport velocity required to transport the 

cuttings out of the wellbore.  

 

 

Drillpipe rotation: 

The effect of the drillpipe rotation is dependent on the geometry of the wellbore 

and the rheology of the drilling fluid. In large annuli, drillpipe rotation has no 
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significant effect on the hole cleaning while for smaller annuli clearances, drillpipe 

rotation significantly improves cutting transport. The effect of pipe rotation is also 

dependent on the degree of eccentricity of the drillpipe in the annuli. The cutting 

transport efficiency is improved with drillpipe rotation for an eccentric annulus. 

However, for the concentric annuli, drillpipe rotation had a little or negligible effect 

on hole cleaning.  Although the general reports from experimental and field studies 

have shown that drillpipe rotation improves cutting transport, some studies have 

reported that this effect is rheology dependent as they noticed a negligible effect 

when using water as the drilling fluid, but a significant improvement when using 

a viscous non-Newtonian fluid. In some studies, it was reported that the axial 

drillpipe rotation had an insignificant effect on the hole cleaning efficiency. 

However, if the drillpipe is rotated in an orbital manner, it can improve the hole 

cleaning for the cuttings rolling mechanism in a deviated wellbore. It is indicated 

that field operations data have shown that pipe rotation significantly improves the 

cutting transport efficiency in extended reach wells as a direct result of the orbital 

motion and sweeping effect of the drillpipe.  

 

Cutting size: 

Although almost all developed cutting transport models relate the MTV or critical 

velocity to the cutting size in a proportional manner that implies that the larger 

the cutting size, the more the difficulty for transportation, there have been reports 

that this phenomenon is not always the case. Depending on the drilling fluid 

viscosity, annuli velocity, and wellbore inclination angle, smaller cuttings may 

show more resistance to movement than the larger cuttings. Some reports have 

shown that smaller cuttings are harder to transport with water in horizontal 

wellbores where the transport of larger cuttings are relatively favourable. 

However, using a more viscous fluid presents the opposite results. Smaller 

cuttings are transported most efficiently in inclined wellbores when using low-

viscosity fluids, while between 0° and 50° larger cuttings are transported most 

efficiently with high viscosity drilling fluids. 

 

Table 2.8: Studies of the effect of the major drilling parameters on hole cleaning 

Source Method Factors  Model  Major conclusions  
Okrajni and Azar (1986) Experimental 

Theoretical 
Single-phase flow 
Fluid rheology 
Rpm 

AM 
The worst cuttings transport 
is experienced at inclination 



 
 

84 

Hole angle 
Eccentricity 

angles within the range of 40 
to 45.  

Gavignet and Sobey. 
(1989) 
 
 

 

Theoretical Single-phase flow 
 

TLM 

The criterion for the 
formation of a stationary bed 
is strongly dependent on drill 
pipe eccentricity and particle, 
pipe, and hole sizes 

Ford et al. 1990 Experimental Single-phase flow 
Fluid rheology 
Rpm 
Hole angle 
Cutting size 
Pipe size 

-- 

 Increasing the fluid viscosity 
decreases the MTV for both 
the cuttings rolling and 
suspension mechanisms 
when using the medium and 
highly viscous fluids. 
However, the MTV for both 
transport mechanisms was 
lower when using water than 
it was when using the 
medium viscosity fluid  

Sifferman and Becker. 
(1992) 

Experimental Single-phase flow 
Flowrate 
Fluid rheology 
ROP 
Rpm 
Hole angle 
Cutting size 

-- 

Drillpipe rotation reduces 
annular cuttings build-up 
under certain conditions and 
this effect is greater at 
inclination angles near 
horizontal, for small cuttings  

 
Sanchez et al. (1999) 
 
 

Experimental Single-phase flow 
Rpm 
Hole angle 

-- 
Pipe rotation has a significant 
effect on hole cleaning 

Kamp and Rivero (1999) Numerical Flowrate 
ROP TLM 

At constant mud flowrate, the 
bed height increases as the 
rate of penetration increases  

Doan et al. (2000) Experimental 
Numerical 

Two-phase flow 
Cuttings rate TLM 

Cuttings removal from annuli 
is highly dependent on the 
cuttings injection rate 

Walker and Li (2000) Experimental 
 

Two-phase flow 
Particle size 
Fluid rheology 
Eccentricity 

-- 

Fluid rheology plays an 
important role for solids 
transport. It is beneficial to 
pick up solids with a low 
viscosity fluid in turbulent 
flow but to maximize the 
carrying capacity a gel or a 
multiphase system should be 
used to transport the solids out 
of the wellbore 

Cho et al. (2001) Experimental 
Theoretical 

Single-phase flow 
Hole angle 

TLM 

A highly viscous fluid reduces 
the cuttings-bed area and 
increases the pressure gradient 
under the same nominal 
annular velocity.  

Bilgesu et al. (2002) Numerical Single-phase flow 
 CFD 

The velocity in the annuli 
plays a major role in the 
effectiveness of hole cleaning. 

Ozbayoglu and Miska 
(2003) 
 

Experimental 
Theoretical 

Two-phase flow 
 THLM -- 

Yibing and Kuru (2004) Numerical Two-phase flow 
Fluid rheology 

TLM The quality of foam has an 
effect on the cutting transport 
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Theoretical ROP efficiency. As the foam 
quality increases, the foam 
viscosity also increases, which 
is favourable for cuttings 
transport and vice versa. 

Duan et al. (2006) Experimental 

Theoretical 

Single-phase flow 
Hole angle 
Rpm 

EM 

In horizontal pipes, smaller 
cuttings are more difficult to 
transport with water but easier 
with a viscous fluid. 
Improvement due to pipe 
rotation in the transport of 
small cuttings is two times 
that as seen for larger cuttings  

Ozbayoglu et al. (2007) Numerical 

Theoretical 

Single-phase flow 
Hole angle 
ROP EM 

The major variable 
influencing the cuttings bed 
thickness is the shear stress 
acting on the cuttings bed 
surface.  

Li et al. (2007) Numerical 

 

Single-phase flow 
Flowrate 
Fluid rheology 
eccentricity 

TLM 

A thicker mud will remove the 
cuttings at lower flow rates 
than that of a thin mud or 
water. However, Water will 
remove the cuttings more 
effectively if the sufficient 
pump capacity is available to 
pump the water at the required 
critical flow rate 

Costa et al. (2007) Numerical 

 

Single-phase flow 
ROP TLM 

A decrease in ROP leads to a 
decrease in cuttings bed height  

Duan et al. (2008) Experimental 

Theoretical 

Two-phase flow 
Rpm 
Eccentricity 
 

AM 

EM 

Pipe rotation significantly 
decreases cuttings 
concentration and pressure 
drop in a horizontal annulus 
during foam drilling.  

Wang et al. (2010) Numerical 

 

Single-phase flow 
Rpm 

THLM 

The thickness of the cuttings 
bed decreases with an increase 
in flowrate and pipe rotation. 
Drillpipe rotation is one of the 
most effective practises for 
hole cleaning.  

Li  et al. (2010) Numerical 

 

Single-phase flow 
Rpm CFD 

Pipe rotation within the range 
of 80 to 120 rpm has a 
significant benefit on hole 
cleaning. 

Wei et al. (2013) Experimental 

Theoretical 

Two-phase flow 
Rpm 
eccentricity 

EM 

In horizontal gas-liquid flow, 
depending on the fluid 
flowrate and viscosity, 
cuttings transport is mainly 
saltation, and the drillpipe 
rotation improves cuttings 
transport. 

Cayeux et al. (2014) Numerical 

 

Single-phase flow 
Flowrate 
Rpm 
ROP 
 

CFD 

An increase in pipe rotation 
from 60 to 100 Rpm showed a 
significant improvement in 
cutting transport. The 
reduction of ROP is a viable 
option that benefits hole 
cleaning. 
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Xiaofeng et al. (2014) Numerical  

Theoretical 

Single-phase flow 
Flowrate 
Rpm 
Hole angle 
 

CFD 

EM 

Pipe rotation has a major 
influence on the distribution 
of cuttings in inclined annuli. 
Increasing pipe rotation 
speeds can significantly 
reduce cuttings volume and 
annular pressure drop at low 
or medium flow rates.  

Gul et al. (2017) Experimental 

 

Two-phase flow 
Flowrate 
 -- 

The area of the cuttings bed 
decreases with an increase in 
liquid and gas flowrates. 
However, an increase in the 
liquid flowrate was found to 
be more effective. 

Akhshik et al. (2015) 

 
 
 
 
 
 

 

Numerical 

 

Single-phase flow 
Flowrate 
Rpm 
ROP 
Hole angle 
 

CFD–

DEM 

The transportation mechanism 
of particles is the suspension 
regime at low well inclination 
angles (near vertical), rolling 
regime at high inclination 
angles (near horizontal) and a 
combination of both medium 
inclination angles. Pipe 
rotation significantly 
decreases cuttings 
concentration  

Pandya et al. (2020) Experimental 

Theoretical 

Single-phase flow 
Flowrate 
Hole angle 
Cuttings density 
 

EM 

The transport efficiency of 
solids is strongly dependent 
on the fluid rheological 
properties. Particle-transport 
mechanisms are highly 
influenced and vary 
depending on the wellbore 
inclination angle. 

Zhang et al. (2020) 

 
 

Numerical 

 

Single-phase flow 
Flowrate 
Hole angle 
 CFD 

The maximum height at which 
the cutting can be suspended 
to decreases with an increase 
in the cutting’s diameter. This 
makes the cuttings more likely 
to form a bed at the lower 
region of the annuli 

Erge and Van Oort. (2020) Numerical 

Theoretical 

Single-phase flow 
Fluid rheology 
Rpm 
eccentricity 

CFD 

Axial flow alone is not 
sufficient for effective hole 
cleaning, especially in the 
highly deviated and horizontal 
wells. In a fully eccentric 
annulus, without pipe rotation, 
cuttings will form a bed on the 
low side of the annuli even at 
elevated axial flow rates 
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2.4.1 Multiphase cutting transport in annuli 

In general, the models developed for cutting transport for drilling applications 

have been formulated based on an empirical, mechanistic or numerical 

methodology. However, their application to two-phase flow scenarios are 

questionable as the dynamics of solids transport in a multiphase fluid is flow 

pattern dependent which means that the ability of the multiphase fluids to 

transport solid particles is strongly influenced by the prevailing flow pattern of the 

flow (Oyeneyin, 2015). For instance, for underbalanced drilling operations, the 

intermittent and dispersed bubble flow pattern are more effective than the other 

flow patterns in terms of hole cleaning (Lage, et al., 2000).  

The numerical two-layer or three-layer cutting transport modelling approach has 

recently gained a lot of popularity over the empirical or mechanistic cutting 

transport models mainly because it allows for the simultaneous solutions of 

cuttings moving in the different transport mechanisms, accounts for cutting-

cutting physical interactions and can be applied to complex wellbore geometries. 

However, the direct application for simulation of cutting transport in two-phase 

flows has neglected the complex and transient nature posed by two-phase fluid 

flows in a conduit. 

The multi-layered cutting transport modelling expresses the mass and momentum 

conservation equation for the two-phase fluid as if the fluid is homogeneous 

mixture with a no-slip effect where the gas and the liquid phases flow at the same 

velocities. The mechanism of mass, momentum and energy transfer between 

phases in a two-phase is highly dependent on the flow pattern (Guo, et al., 2007) 

and the prevailing flow pattern is dependent on a number of parameters amongst 

which is the fluid input flowrate, the geometry of the conduit and the physical 

properties of the fluid. In other to accurately perform numerical simulations for 

multiphase fluids with cuttings, the momentum and mass conservation equations 

must take into account the flow pattern transitions along with the momentum and 

mass conservation equations for the cuttings phase where the drag, lift and other 

dynamic or static forces acting on the drilled cuttings are also determined based 

on the local position in the annuli. This is important because the forces acting on 

the cuttings in the annuli would vary depending on the location of the cuttings in 

the annuli and the magnitude of this effect is strongly dependent on the flow 

pattern existing in the given section of the wellbore.  
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2.5 Summary of research gaps 

In order to develop a reliable method for the prediction of the dynamic behaviour 

of multiphase drilling fluid flow, it is important that the combined effect of the 

rheology of the drilling fluid, the wellbore geometry, as well as the other important 

drilling parameters are taken into consideration.  The methods developed for the 

modelling of multiphase drilling fluid annuli flows have either been accomplished 

by modifying the models originally developed for two-phase flows in pipes using 

the hydraulic diameter concept or adopted the concept formulated for Newtonian 

two-phase flow in annuli. The drilling fluid is a non-Newtonian fluid that is shear 

dependent. Thus, its behaviour when flowing through the annuli is highly 

dependent on the physical conditions to which it is subjected to. Early researchers 

that studied the annuli flow of single-phase drilling fluids showed experimentally, 

numerically and from field data that the rheology of the drilling fluid combined 

with the other important drilling parameters as discussed in the literature, 

significantly impacts the dynamic behaviour of the flow, thereby influencing the 

drilling hydraulics and the hole cleaning efficiency during drilling activities. The 

current methods developed for the modelling of two-phase drilling fluid flow in 

annuli for oil well drilling applications have neglected the combined effect of the 

drilling fluid rheology with the major drilling parameters. If this leads to inaccurate 

or erroneous predictions for single-phase drilling fluid annuli flows, it can be 

deduced that the negligence of this effect would also lead to inaccurate predictions 

for two-phase drilling fluid annuli flows provided that the liquid phase of the drilling 

fluid possesses a non-Newtonian characteristic behaviour.  

 
From the analysis of the previous studies that have been done on two-phase flows 

in annuli, it is evident that some of the results published have been conflicting in 

certain aspects. It has been established from literature that the effect of the 

drillpipe rotation on the velocity fields in the concentric annuli is negligible while 

for the eccentric annuli, the drillpipe rotation significantly redistributes the velocity 

fields and improves the flow in the stagnation zones or in the smaller region of 

the annuli. However, the results of the effect of the drillpipe rotation on the 

pressure drop in the concentric or eccentric annuli for both single-phase and two-

phase flow has been conflicting and not generally or conclusively defined. While 

some studies have reported that the increase in drillpipe rotation decreases the 

pressure gradient, other studies have reported an increase in pressure gradient 
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or either an increase or a decrease in pressure gradient depending on the 

investigated flowing conditions. Another issue is that the currently developed 

models for the hydraulics of multiphase drilling fluid annuli flows have ignored the 

combined effects of the drilling fluid rheology, the eccentricity and the drillpipe 

rotation which significantly influences the accuracy for the prediction of the 

pressure drop.  

 

Furthermore, cuttings transport predictions are essential for the planning of 

directional and horizontal drilling operations. An effective multiphase cuttings 

transport modelling is one of the essential components for the achievement of a 

successful underbalanced drilling operation. A poorly designed and/or executed 

UBD procedure can provoke deeper formation damage than that which may result 

from a properly planned and executed conventional overbalanced drilling 

operation (Bennion, et al., 1996). The current multi-layered cutting transport 

models developed for multiphase flow applications neglects the complex and 

transient nature of multiphase flow. The ability of a two-phase drilling fluid to 

transport cuttings effectively is highly dependent on the flow pattern along with a 

number of other drilling parameters. Negligence of the fluid flow pattern may lead 

to large prediction errors as the mechanism of mass, momentum and energy 

transfer between the phases are highly dependent on the flow pattern and hence 

the forces acting on the cuttings would be strongly influenced by this 

phenomenon.  

 

This study aims to experimentally, theoretically and numerically investigate the 

dynamics of cuttings transport and the effect of the drillpipe rotation and 

eccentricity on the pressure gradient for drilling fluid annuli flow and develop 

reliable drilling hydraulic and cutting transport models that alleviate the 

inaccuracies posed by the current models. The flow patterns to be considered are 

the dispersed bubble, bubble, stratified flow and slug flow patterns, as these flow 

patterns most likely to be encountered for underbalanced or multiphase drilling 

operations (Mousavi, et al., 2008). The output of this research would provide 

methods that can be applied for multiphase drilling hydraulics calculations for 

wellbore pressure maintenance and models to optimise the cutting transport 

efficiency throughout the life of a drilling operation. 
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Experimental study 
 
A laboratory program was designed and conducted in order to simulate the flow 

of single-phase and multiphase fluids in a drilling annulus. An experimental rig 

was built at Robert Gordon University (RGU), consisting of various measurement 

equipment and a data acquisition system to acquire real-time experimental data. 

The experimental rig includes a horizontal and an inclined test sections and is 

designed to operate with a maximum gas flowrate of 28 m3/hr and a maximum 

liquid flowrate of 35 m3/hr. Single phase or multiphase (air and liquid) Newtonian 

or non-Newtonian water-based polymer mixtures with or without solid particles 

are flowed through a flow loop in order to imitate an oil well drilling process and 

study the fluid and cutting transport dynamics. The test sections are designed and 

constructed in a systematic manner to represent a concentric annulus and can be 

switched to represent an eccentric annulus when desired. Various concentrations 

of water-based polymer solutions were prepared, and rheological measurements 

were carried out using a rotational rheometer to obtain the shear stress to shear 

rate relationship. The liquid and gas flowrates required to establish the required 

flow patterns for the different experimental fluid types, section geometries and 

inclination angles were mapped out prior to the start of the experimental 

investigation and data acquisition phase. The flow patterns considered for the 

experimental study are the dispersed bubble, bubble, stratified flow and slug flow 

patterns, as these are the flow patterns that have been reported to mostly occur 

during underbalanced or multiphase drilling operations. Prior to commissioning 

the experimental rig, the measuring equipment were calibrated and tested along 

with the data acquisition systems, to ensure that accurate data was generated, 

and measurement errors were minimised.  

The main aim of the experimental study was to create a single-phase or 

multiphase drilling scenario and physically investigate the combined effects of fluid 

rheology, eccentricity and drillpipe rotation on real-time drilling hydraulics and 

cutting transport mechanism and efficiency. The experiments conducted provided 

an experimental database that was used for the verification and validation of the 

empirical correlations and mechanistic models that were developed in this study. 
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3.1 Test fluids 

The drilling fluid used during oil-well drilling operations possess mostly a non-

Newtonian rheological behaviour. Thus, experiments performed to investigate the 

behaviour of flow of drilling fluids through the annuli must make use of non-

Newtonian fluid mixtures to produce a similar effect. In other to reproduce the 

pseudoplastic behaviour of the drilling fluid, polymer solutions prepared with 

concentrations of 0.1% and 0.5% Xanthan Gum (XG) in water were used in this 

experimental study. This was done by adding the required amount of the Xanthan 

Gum (XG) into distilled water in the mixing/storage tanks and vigorously agitating 

the mixture until the solute is completely dissolved in the mixture. At several 

points during the experiments, fluid samples were taken from the tank and tested 

to determine the rheological properties of the testing fluid and provide the 

certainty of repeatability. These rheological measurements (shear stress to shear 

strain relationship) are carried out using a Brookfield Viscometer. Figure 3.1 

presents a plot of the shear stress to shear rate data obtained for the test fluids 

used in this experimental study. 

 

 

 

 
         Figure 3.1:Shear stress versus shear rate data for the test fluids 
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3.1.1 Determination of rheological parameters  

To obtain the rheological parameters of the water-based Xanthan Gum (XG) 

polymer mixtures, a nonlinear regression was performed on the shear stress to 

shear strain relationship generated for each of the polymer solutions. The shear 

stress to shear strain data was best fitted to the appropriate rheological models 

(Equations 2.1-2.6) using a systematic computational method explained as 

follows: 

 

A modified golden search iterative method and non-linear regression analysis was 

performed simultaneously to obtain the rheological parameters (τA, K, and	n) of the 

polymer mixtures from their shear stress to shear strain relationship data. The 

procedure is based on the prediction of the appropriate yield stress value that best 

fits the rheological data obtained using the Brookfield Viscometer. The golden 

search iterative method is an iterative process used to determine the minimum or 

maximum of a given function within a certain domain. This adopted iterative 

method involves the selection of a lower bound shear stress value τ'	and an upper 

bound shear stress value τo, with the assumption that the optimum yield shear 

stress value lies within τ'	and τo. Two yield stress values, τ@ and τB are calculated 

from the upper and lower bound shear stress values, and a non-linear regression 

is performed on the data using both values. The correlation coefficients RB 

obtained using τ@ and τB are then compared, and if the convergence criterion is 

not met, either the upper or the lower limit value is changed and passed on to the 

next iterative process. This process is repeated until the correlation coefficient, RB 

obtained using τ@ and τB form the current upper and lower bound yield stress 

values converges to the same value (Figure 3.2), thereby yielding the yield stress 

τA as well as the flow behaviour index, n  and the consistency index, K of the fluid. 

 

The equations used to predict the yield stress values at every iteration can be 

expressed as:  

 

τ@ = τ' + Gm	(τo −	τ') 3.1 

 

τB = τo − Gm	(τo −	τ') 3.2 
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The parameter Gm in Equations 3.1 and 3.2 is referred to as the golden ratio and 

is approximately equal to 0.618.  

 

 

 
    Figure 3.2:Variation of correlation coefficient with assumed values of yield stress 

    

 

 

The steps involved in the computation algorithm used to determine the rheological 

parameters of the experimental testing fluids is explained as follows: 

 

1. Store the data of the shear stress to shear rate relationship of the polymer 

mixture in a matrix T of n rows and two columns  

2. Guess a value for the upper τo	and lower limit τ' (in this study, an initial guess 

of zero for the lower limit value τ' = 0	was used and the initial guess for the 

upper limit value was the minimum shear stress value in the matrix T, τ' =

	τ6E!) 

3. Compute τ@ and τB using equations 3.1 and 3.2 

4. Subtract τ@ from all the shear stress values in matrix T and store results in 

another matrix T1 
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5. Subtract τB from all the shear stress values in matrix T and store results in 

another matrix T2 

6. Perform non-linear regression on both matrix T1 and T2 to obtain the 

correlation coefficients RB@ and RBB respectively  

7. If RB@ 	< 	RBB, set upper limit equal to τ@ , τo = τ@ else if RB@ 	> 	RBB, set lower 

limit equal to τB, τ' = τB 

8. Repeat steps 3 to 7 until RB@ and RBB converges to the same value yielding τ@ =

τB =	τF. The slope and intercept from the non-linear regression yields the 

parameters n and K. 

 

A script written in MATLAB for the computation of the rheological parameters of 

the experimental testing fluids using this developed computation algorithm is 

presented in the appendix A. The rheological parameters for the test fluids used 

in this experimental study are presented in the Table 3.1.  

 
 
          Table 3.1: Rheological parameters for experimental test fluids 

Fluid type Phases  𝐊(𝐏𝐚	𝐬𝐧) 𝐧 𝛕𝐨(𝐏𝐚) 
1 Water  0.014 1.002 0 
3 Polymer (0.1% XG) 0.1566 0.66 1.88 
5 Polymer (0.5% XG) 0.6461 0.43 2.29 

 
 
 
 
              Table 3.2: Experimental test fluid types 

Fluid type Phase type Contents 
1 Single-phase Water  
2 Two-phase Water + air  
3 Single-phase Polymer (0.1% XG) 
4 Two-phase Polymer (0.1% XG) + air 
5 Single-phase Polymer (0.5% XG) 
6 Two-phase Polymer (0.5% XG) + air  

 
 
 
 
The fluid types used for the experimental study are summarised in the Table 3.2. 

In this study the numbers 1 to 6 would be used to represent the fluid types used 

in an experimental run depending on the types and rheological characteristics of 

the phases that make up the testing fluid.  
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3.2 Model drilled cuttings  

Solid materials were used in this experimental study to represent the drilled 

cuttings with the aim of studying the transport mechanism of cuttings in wellbore 

annuli and investigating the effect of the major drilling parameters on cuttings 

transport efficiency. Plastic and glass beads of different, sizes, weight and 

concentrations were used to simulate the cuttings in a wellbore annulus (Figure 

3.3b). This offered a significant benefit of providing a clearer system, enabling the 

visibility of the cutting transport dynamics to be more effective. Another added 

advantage of using the plastic beads is they can be retrieved, cleaned and re-used 

for other experimental runs. A sieve tank (Figure 3.3a) was designed and 

constructed and connected to the drain outlet of the mixing/storage tanks. A mesh 

size of 0.9mm apertures were used to ensure that all the particles used in the 

experiments were captured prior to the disposal of the experimental fluids. The 

retrieved particles are then washed with water and sorted using a sieve shaker to 

prepare them for the next experimental runs. 

 

  
(a) (b) 

              Figure 3.3: (a) solids separation tank and (b) glass and plastic beads 

 

Table 3.3 presents some of the properties of the particles used to simulate the 

cutting transport in this experimental study. 

 
 
          Table 3.3: Types of the particles used in experimental study 

Particle Colour Shape Size, mm Density, Kg/m3 

1 Red Spherical 3 - 4 950 
2 White Spherical 3 - 8.5 500 
3 Light Green Spherical 2.5 - 3.7 2100 
4 Dark Green Spherical 2.20 - 2.4 1500 
5 Blue Spherical 1.25 - 1.65 2000 
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3.3 Experimental rig design and setup  

A multiphase flow rig, capable of simulating both single-phase and two-phase fluid 

flow in concentric and eccentric annuli geometries was designed and constructed 

to conduct this experimental study. The flow loop consists of transparent test 

sections that enables the visual observations of the two-phase gas-liquid flow 

patterns and particle transport mechanism under various experimental conditions. 

Each annular test section has an outer diameter of 0.1440 m, an inner pipe 

diameter of 0.0885m. Figure 3.5 shows an illustration of the entire experimental 

unit used to run tests and acquire experimental data. 

 

 

 
                          Figure 3.4:Schematic diagram of the experimental unit 

The main components of the experimental unit are described in the following 

sections. 

 

 

 

3.3.1 Test sections  

The experimental unit is composed of two annular test sections made of a 144mm 

outer diameter acrylic glass tube and an 88 mm diameter inner Acrylonitrile 

Butadiene Styrene ABS pipe. The Figure 3.1 shows the acrylic glass tube and the 

inner ABS pipe. The ABS pipes are completely sealed at both ends to prevent the 

flow or accumulation of fluids through inner pipe. One of the test sections is 

mounted in a horizontal orientation and is approximately 14ft long. The outer test 

Flow direction 
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section is mounted on an erected plane in which the inclination angle can be set 

and varied at will. 

  

Figure 3.5: Acrylic glass tube and ABS pipe used to construct a concentric/eccentric 

annulus test section 

 

 

 

The use of the transparent acrylic glass tube offers some significant benefit of 

being able to visually observe the prevailing gas-liquid flow patterns, the cutting 

transport mechanism and the point in time where the cuttings begin to settle at 

the low side of the annuli to form a stationary bed. The inner pipe is fitted into 

flanges to position them centrally in the acrylic glass tube. Either concentric and 

eccentric holes are bored into the flanges to allow for the inner pipe to be 

positioned concentrically or eccentrically (e = 0.7). Roller ball bearings are fitted 

into the flanges to enable the inner pipe to rotate readily about its axis (Figure 

3.7). A steel pipe fluid accumulator was installed upstream of the test sections in 

order to stabilise and create a timely fully developed flow. A non-return valve is 

installed on the steel pipe and connected to the gas line from a gas compressor. 

When multiphase gas-liquid flow is desired, the two phases are introduced 

simultaneously and mixed in the steel pipe containing the baffle plates before 

flowing into the test sections. 
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                          Figure 3.6:Concentric and eccentric flanges  

 

 

 

In order to maintain the bearings, it is required that they are lubricated at regular 

intervals and this lubrication is important process in preventing the failure of the 

bearings. When the experimental unit is assembled, there is no access to bearings, 

so the maintenance processes are only possible if the rig is dismantled. The use 

of the sealed bearings provided a solution to this issue as they are already 

lubricated by the manufacturer and require no further lubrication. Another major 

advantage of using the sealed bearings is that the seals prevent the entry of solid 

particles when performing cutting transport experiments thereby reducing the 

chances of mechanical wear and tear and favouring the lifespan of the bearings. 

 
 
 
 
3.3.2 Pressure transducer  

Absolute and differential pressure transducers were connected to the test sections 

to obtain pressure measurements. While the absolute pressure transducers were 

used to obtain the pressure readings at local points in the test sections, the 

differential transducers were used to obtain the pressure difference between two 

points in the test sections. The absolute pressure transducers are in the range of 

0 to 7bar while the differential pressure transducers are in the range of -25 to 

25mbar.  
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3.3.3 Flow meter  

The magnetic inductive flowmeter was selected as an option to measure the 

flowrate of the liquids. The magnetic inductive flowmeter consists of a transmitter 

and a converter which exist separately but are connected to one another by cables 

forming a functional unit. The converter has an analog output and can also be 

provided optionally with a pulse output. The analog output supplies an electric 

current in the standard signal 0 to 4 to 20mA, which is proportional to the fluid 

flowrate, and is designed to meet the requirements for control, indication and 

recording as well as other measurement applications.  The converter is the 

equipment that converts an electrode voltage into an output signal which is 

proportional to the flowrate.  

The transmitter operates with no moving parts, consists of a meter tube, 

electromagnets, reference core and measuring electrodes and measures the mass 

or volume flow rate of electrically conductive liquids in pipes. When electrically 

conductive products flow through the transmitter, a voltage is induced that is 

taped off by the electrodes which are insulated against the meter tube. The 

induced measure voltage is proportional to the mean velocity of the flow. 

Flowrate measurements using the magnetic inductive flowmeter offer some major 

advantages. The transmitter has no moving parts and therefore can be operated 

with little or no maintenance, the flow is not altered as there is no expansion or 

contraction of the meter tube and thus constitutes no pressure loss on the flow, 

flowrate measurements for high or low conductivity liquids are straight forward 

due to high input resistance of the converter, possess a high degree of 

measurement accuracy  

 

 

 

3.3.4 DC motor 

A DC motor is connected to the inner pipe with a metal shaft to enable the inner 

pipe to rotate about its axis in the annulus (Figure 3.7). The motor has a rated 

torque of 4.2Nm and operates to a maximum rotary speed of 159rpm. In order to 

regulate the speed of the motor, and thus the speed of the inner pipe in the 

annulus, the motor is connected to a low voltage DC motor speed controller. The 
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DC motor speed controller is used to vary the supply voltage to the motor thereby 

enabling the increase or decrease in the speed of the inner pipe to the desired 

rpm value. 

 
       Figure 3.7:DC motor connected to inner pipe and the motor speed controller 

 
3.3.5 Photoelectric sensor 

A cylindrical photoelectric sensor was used to determine the rotary speed rpm of 

the inner pipe in the annulus. The sensor is a retro-reflective photoelectric sensor 

that has both the transmitter and receiver contained within the same housing but 

require a reflector opposite to the sensor. The photoelectric sensor is placed just 

above the area of the shaft where the reflective tape is located (Figure 3.8). The 

reflector bounces the light beam back to the transmitter until an object breaks the 

beam. When the light beam is broken a voltage is outputted from the device. The 

times at which these voltages are detected can be used to determine the 

frequency and thus, the speed of the rotating inner pipe. 

 
 

 
  

               Figure 3.8:Photoelectric sensor and reflector tape arrangement 

Photoelectric sensor Reflective tape 
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3.3.6 Data acquisition system 

The data acquisition system is composed of a computer and two data acquisition 

devices from National instruments. The DAQ devices which are the NI SCB-68 E 

series and the USB-6009 are used to obtain real-time data from the experimental 

rig (Figure 3.9).  A LabVIEW software is installed on the computer and a virtual 

instrument program is written in other to display and acquire the desired data 

from the key experimental rig equipment and sensors such as the pump, the 

absolute and differential pressure transducers, the photoelectric sensors (inner 

pipe rotary speed, rpm) and the liquid and gas flow meters.  

 

 
                                      Figure 3.9:Data acquisition devices 

 
 
 

3.4 Calibration of experimental rig  

In order to ensure that the experimental data obtained from the experimental rig 

are reliable, the equipment were calibrated and tested to ensure that the 

measured readings were accurate, and the errors imposed by the device or 

equipment were minimised.  

 

3.4.1 Pressure transducers  

The absolute and differential pressure transducers were calibrated using a Druck 

pressure calibrator obtained from SCOTIA Instrumentation Ltd (Figure B.1). In 

order to mitigate obtaining erroneous readings during experimental tests, it is 
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important to ensure that at a given pressure, all the pressure transducers installed 

on the experimental rig outputs the same voltage. This may not always be the 

case as each of the transducers has a certain range of accuracy or manufactured 

error. To calibrate the pressure transducers, the transducers are connected to the  

Druck pressure calibrator and wired to the DAQ device and thus, the LabVIEW 

software. Once a given pressure is supplied from the Druck to the pressure 

transducers, the voltage output from the transducer is converted to pressure in 

the LabVIEW virtual instrument program and recorded. This process is repeated 

three times for each transducer and an average of all the readings are taken to 

improve the calibration accuracy. After the process has been completed, a 

regression analysis is performed on the pressure readings to obtain pressure 

correction equations for all the transducers. These pressure correction equations 

are written into the main LabVIEW virtual instrument program to ensure that the 

transducers output the same voltage readings for a given or applied pressure.  

Figure B.2 and B.3 show an example of the calibration plot of one of the absolute 

and differential pressure transducers that were calibrated and installed on the 

experimental rig. 

 

 

3.4.2 Fluid flow meter 

The readings obtained from the liquid flow meter was checked manually to ensure 

that the flowrate reading display in LabVIEW front panel was accurate. This was 

accomplished by running the pump and flowing water from the mixing tanks, 

through the flow loop with the return line flowing back to the tanks. A plastic 

container of 10 litres in volume was placed at the outlet of the flow loop and the 

time taken for the container to be filled completely with water was recorded. As 

the system had no mass accumulation, the actual flowrate of the liquid 

experimental rig was deduced and compared to the values received from the liquid 

flow meter. Figure B.4 shows a comparison of the flowmeter readings to the 

measured liquid flowrate readings. From the plot it is clear that the flowmeter 

readings are quite accurate and require no adjustments. 
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3.5 Data acquisition techniques 

A LabVIEW software is used together with the NI SCB-68 E series and the USB-

6009 DAQ devices to obtain data from the experimental unit. The NI SCB-68 E 

series offered an advantage of having a relatively larger board surface area and 

has 8 different analog input channels that can be used for instrumentation, making 

it possible to connect a total of 16 devices. The pressure transducers, pump and 

flowmeters were connected to the SCB-68 E series DAQ device while the 

photoelectric sensor was connected to the USB-6009 DAQ device. Separate 

LabVIEW virtual instrument programs were written to obtain and process the data 

generated by the DAQ devices. Figure B.5 shows the front panel design for 

pressure and flowrate data acquisition. 

 
 
 
 
3.5.1 Pressure readings  

The absolute and differential pressure transducers are connected to the SCB-68 E 

series DAQ device and real-time data is obtained simultaneously from all the 

transducers during experimental runs. The pressure correction equations derived 

from the transducer calibration process is incorporated into the LabVIEW program 

to ensure that all the transducers are operating in the same plane, and errors are 

minimised. Two-phase flow mixtures are transient and highly turbulent, and the 

pressure drop across the annuli sections is dependent on the transient in-situ 

liquid hold up and the gas-liquid flow patterns amongst other parameters. This 

means that the differential pressure readings from the transducers would vary 

significantly for a given experimental run with constant gas-liquid flowrate. In 

order to account for this effect, a sub VI LabVIEW program is included to take the 

average of the differential pressure readings over the period of time for the 

experimental run. Figure 3.10 shows the Block diagram design for pressure data 

acquisition. 
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        Figure 3.10:LabVIEW block diagram for pressure to flowrate data acquisition 

 

 
        

3.5.2 Rotary speed of the inner pipe  

The photoelectric sensor was used to obtain the information of the rotary speed 

of the inner ABS pipe in the annuli test sections. A reflective tape cut to a size that 

is a lot smaller than the circumference of the rotating shaft, is placed on the 

rotating shaft connected to the motor. When the shaft is rotated, and the reflective 

tape comes across the sensor the light beam produced by the sensor is broken 

and an impulse voltage is outputted from the device and obtained by the USB-

6009 DAQ device. The frequency at which the photoelectric sensor outputs the 

impulse signal can be used to calculate the instantaneous rotation speed ω*, of 

the inner pipe using the following relationships: 

 

  

F* =
1

pTp −	Tp?@q
 3.3 
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ω* = 60	 ×	F* 3.4 

 
where Tp and Tp?@ are the times at which the current and the previous impulse 

voltages were obtained respectively.  

A precaution to note is that depending on the width of the reflector tape, the RPM 

of the inner pipe can be greatly overestimated. This error is significantly 

pronounced at lower rotary speeds where the reflector tape takes more time to 

rotate past the sensors beam. Thus, the sensor would output multiple impulse 

voltage signals during one revolution of the shaft, rendering the rotary speed 

calculations invalid.  This can be corrected by ensuring that once an impulse 

voltage signal is generated by the sensor, every other voltage signal is ignored 

until a zero-voltage signal is obtained. This would ensure that only one impulse 

voltage signal is obtained for one revolution of the inner pipe, making the 

instantaneous rotary speed calculations highly accurate. Figure 3.11 shows the 

Block diagram design for the inner pipe rotary speed data acquisition. 

 

 
        Figure 3.11:LabVIEW block diagram for inner pipe rotary speed calculation 
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3.6 Experimental test procedures   

The operational ranges for the test conditions explored is presented in Table 3.4. 

 

                                    Table 3.4: Operational parameters for experimental tests  

Parameters Value range 

Eccentricity 0 and 0.7 

Rotation 0 to 150 rpm 

Angle 0 - 300 

Air flowrate 0 to 28 m3/hr 

Liquid flowrate 0 to 35 m3/hr 

 

 

The following procedures are used for the experimental investigation and data 

acquisition involving the fluid flow hydraulics and cutting transport dynamics in 

the concentric or eccentric annuli, with or without inner pipe rotation.  

 

3.6.1 Single-phase flow  

This section highlights the experimental procedures used when the testing fluids 

are of fluid types 1, 3 and 5. This procedure is the same for when the experimental 

rig is setup as a concentric or an eccentric annulus. The experimental procedures 

are as follows: 

 

1. Prepare testing fluid in the mixing/storage tanks  

2. Power on the flowmeter, pressure transducer, photoelectric sensor 

3. Start-up data acquisition system 

4. Switch on the pump 

5. Adjust the controller to set the liquid flowrate to the desired value  

6. Switch on DC motor and set inner pipe rotation speed to the desired Rpm  

7.  Start recording data  

8. As soon as the readings stabilise, adjust motor speed controller to change the 

rpm values and take readings until data for all the rotary speeds are recorded. 

9. Switch off the DC motor  

10.  Re-adjust the controller to set the liquid flowrate to the next desired value 

11.  Repeat steps 6 – 10 until the required data has been acquired. 
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3.6.2 Single-phase flow with solid particles  

This section highlights the experimental procedures used when the testing fluids 

of fluid types 1, 3 and 5 are mixed homogeneously with solid particles. This 

procedure is the same for when the experimental rig is setup as a concentric or 

an eccentric annulus. The experimental procedures are as follows: 

 
 
1. Prepare testing fluid in the mixing/storage tanks  

2. Switch on the mechanical agitators  

3. Add solid particles until the required solid-liquid volumetric concentration is 

reached 

4. Power on the flowmeter, pressure transducer, photoelectric sensor 

5. Start-up data acquisition system 

6. Switch on the pump. 

7. Adjust the controller to set the flowrate to the desired value  

8. Switch on DC motor and set inner pipe rotation speed to the desired Rpm  

9. Start high-speed camera to record the flow dynamics in the test section 

10.  Start recording data 

11.  Adjust motor speed controller to change the Rpm values and take readings 

until data for all the rotary speeds are recorded. 

12.  Switch off high-speed camera 

13.  Switch off the DC motor  

14.  Re-adjust the controller to set the flowrate to the next desired value  

15.  Repeat steps 8 – 14 until the required data has been acquired. 

 
3.6.3 Two-phase flow  

This section highlights the experimental procedures used when the testing fluids 

are of fluid types 2, 4 and 6. This procedure is the same for when the experimental 

rig is setup as a concentric or an eccentric annulus. The experimental procedures 

are as follows: 

 

1. Prepare testing fluid in the mixing/storage tanks  

2. Power on the flowmeter, pressure transducer, photoelectric sensor 

3. Start-up data acquisition system 
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4. Switch on the pump and air supply 

5. Adjust the controller to set the liquid flowrate to the desired value  

6. Adjust the gas controller to set the air flowrate to the desired value  

7. Start high-speed camera to record the flow dynamics in the test section 

8. Switch on DC motor and set inner pipe rotation speed to the desired Rpm  

9. Start recording data  

10.  As soon as the readings stabilise, adjust motor speed controller to change the 

rpm values and take readings until data for all the rotary speeds are recorded. 

11.  Switch off high-speed camera 

12.  Switch off the DC motor  

13.  Re-adjust the controller to set the liquid flowrate to the next desired value 

14.  Re-adjust the gas controller to set the air flowrate to the next desired value 

15.  Repeat steps 7 – 14 until the required data has been acquired. 

 
 
 
3.6.4 Two-phase flow with solid particles 
This section highlights the experimental procedures used when the testing fluids 

of fluid types 2, 4 and 6 are mixed homogeneously with solid particles. This 

procedure is the same for when the experimental rig is setup as a concentric or 

an eccentric annulus. The experimental procedures are as follows: 

 
 
1. Prepare testing fluid in the mixing/storage tanks  

2. Switch on the mechanical agitators  

3. Add solid particles until the required solid-liquid volumetric concentration is 

reached 

4. Power on the flowmeter, pressure transducer, photoelectric sensor 

5. Start-up data acquisition system 

6. Switch on the pump and air supply. 

7. Adjust the controller to set the flowrate to the desired value  

8. Adjust the gas controller to set the air flowrate to the desired value  

9. Switch on DC motor and set inner pipe rotation speed to the desired Rpm  

10.  Start high-speed camera to record the flow dynamics in the test section 

11.  Start recording data 
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12.  Adjust motor speed controller to change the Rpm values and take readings 

until data for all the rotary speeds are recorded. 

13.  Switch off high-speed camera 

14.  Switch off the DC motor  

15.  Re-adjust the controller to set the liquid-solids flowrate to the next desired 

value  

16.  Re-adjust the gas controller to set the air flowrate to the next desired value 

17.  Repeat steps 9 – 16 until the required data has been acquired. 
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 Mathematical modelling of multiphase flow in annuli 

4.1 Reynolds number for annuli flow of non-Newtonian fluids  

The prediction of the pressure loss in either single phase or two-phase flow in the 

drilling annuli requires the generalisation of a Reynolds number which is 

dependent on the rheological characteristics of the drilling fluid. The Reynolds 

number for fluid flow in any geometrical configuration can be interpreted as the 

ratio of inertial forces to viscous forces. This is a dimensionless number that allows 

for the estimation of the transition from laminar to turbulent flow conditions and 

is also used as a criterion for dynamic similitude. This means that if two 

geometrical configurations with different diameters, different flowrates or different 

fluid properties have the same dimensionless numbers, they are classified as 

dynamically similar. 

The relationship between the friction factor and the Reynolds number for laminar 

isothermal flow of Newtonian fluids in cylindrical ducts can be expressed as 

follows: 

 

 
f
2
=

ξ
Re

 4.1 

 

The relationship between the friction factor and the frictional pressure gradient is 

given as 

 
f
2
=
τQ
ρvB

=	
dp
dL

D#
4ρvB

 4.2 

 
 
and the Reynolds number for Newtonian fluid flow is  
 

Re =
ρvD#
µ

 4.3 

 
 

For non-Newtonian fluids the rheological models are shear rate dependent and 

there exists an apparent or effective viscosity that is highly dependent on not just 

the forces applied to the fluid, but the rheological properties of the fluid. Thus, the 
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determination of the Reynolds number for non-Newtonian fluids cannot be 

performed through the conventional approach applied to obtain the Reynolds 

number for the Newtonian annuli flows. 

 

Metzner and Reed (1955) solved the momentum equations using the Power law 

model (Equation 2.1) to develop a generalised Reynolds number. They analytically 

obtained a relationship between the friction factor and the Reynolds number for a 

fully developed laminar flow in a pipe. This generalised Reynolds number when 

multiplied by the friction factor, produced the same result as the one given by a 

Newtonian fluid.  

 
 
 
 

Re =
ρvB?!D#!

K∅(n)!ξ!?@
 4.4 

 
 
 

The parameter ξ in the Equation 4.4 is the product of the friction factor and the 

Reynolds number for a Newtonian fluid under laminar flow conditions. The function 

∅(n) is a hyperbolic function of the flow behaviour index which is largely dependent 

on the conduit geometry. This hyperbolic function may be represented generally 

in the following form  

 
 
 

∅(n) =
𝑢n + 1
(𝑢 + 1)n

 4.5 

 
where 𝑢 is a geometrical parameter that is dependent on the cross-section the 

conduit and n is the flow behaviour index of the fluid. The geometrical parameter 

𝑢 is defined by  

 

 

𝑢 =
24
ξ

 4.6 
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Metzner and Reed defined the parameter ξ = 	8 for flow in circular ducts and ξ = 	12 

for flow through infinite plates.  

 
The Reynolds number derived using the Power law model cannot be used to 

characterise the Bingham plastic or the Herschel-Bulkley drilling fluids as these 

fluids have different rheological properties to that of the Power law drilling fluids. 

In this study, the generalised Reynolds number for the Bingham plastic or the 

Herschel-Bulkley drilling fluids are derived as the Power law theory is not capable 

of describing the viscosity characteristics of fluids with different rheological 

properties. 

 

For non-Newtonian drilling fluids, the wall shear stress τQ in the equation has to 

be calculated by the appropriate viscosity law using the Equations 2.1-2.6. Since 

the shear rate is defined as the negative gradient of the velocity profile, the wall 

shear stress can be obtained if the expression of the velocity gradient is considered 

at the wall of the annuli pipe. For a Herschel-Bulkley drilling fluid, the shear stress 

at the wall of the annuli pipe can be expressed as 

 

 

τQ =	τ< + 	K	\−
dv
dr]Q

!

 4.7 

 
 
 
 
For incompressible fully developed 2D flows of liquids with a rate-dependent 

viscosity, the calculation of shear rate is more complex because unlike that of 

Newtonian fluids the velocity profile is not parabolic. The true wall shear rate can 

be found using the Weissenberg-Rabinowitsch-Mooney (WRM) equation expressed 

for flow through a slit as 

 

 

\−
dv
dr]Q

=	
1
3 \
−
dv
dr]2Q

k2 +	
1
m
l 4.8 
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The term (−dv dr⁄ )2Q represents the apparent shear rate while the constant m is 

the gradient of the log-log plot of the shear stress against the shear rate and may 

be expressed as: 

 

 

 

m =	
d ln(τQ)

d ln(−dv dr⁄ )2Q
=	

d ln(τQ)
d ln(γ2Q)

 4.9 

 

 
The constant m can be determined by the differentiation (chain rule) of the 

logarithmic expression as follows  

 

 

m =	
d ln(τQ)
d ln(γ2Q)

= 	
d ln(τ< + 	K	γ2Q!)

d ln(γ2Q)
 4.10 

 

m =		
d

d ln(γ2Q)
lnpτ< + 	K	e!	 Z!(q,-)q 4.11 

 
 

m =		
n	K	γ2Q!

τ< + 	K	γ2Q!
 4.12 

 
 
The apparent shear rate at the wall of the annuli in the case of a Newtonian fluid 

flow can be expressed as 

 
 

γ2Q =	\−
dv
dr]2Q

=	
12v
D#

 4.13 

 
 
Substituting Equation 4.13 into Equation 4.8 and 4.12 and simplifying the result 

yields the final expression for the shear rate at the wall of the annuli as 

 

\−
dv
dr]Q

=	\
2m + 1
3m ]\

12v
D#

] 4.14 
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m =		
n	K	 i12vD#

j
!

τ< + 	K	 i
12v
D#

j
! 4.15 

 
 
 

Using Equation 4.14, the shear stress at the wall of the drilling annuli yields  

 
 

τQ =	τ< + 	K \
2m + 1
3m ]

!

\
12v
D#

]
!
 4.16 

 
 
 

For fluid flow through parallel plates, where ξ = 	12, the relationship between the 

friction factor and the Reynolds number from Equation 4.1 can be written as  

 
 

Re =
24
f

 4.17 

 
 
From Equation 4.2 and 4.16, the friction factor f can be expressed as  

 
 
 

f =
2τQ
ρvB

=	
2 \τ< + 	K i

2m + 1
3m j

!
i12vD#

j
!
]

ρvB
 

4.18 

 
 
 
Thus, the Reynolds number that characterises the flow of Herschel-Bulkley drilling 

fluids, Re>$ in a drilling annulus can be expressed as  

 

 

Re>$ = 24	
ρvB

2 \τ< + 	K i
2m + 1
3m j

!
i12vD#

j
!
]
 4.19 
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This Equation for Re>$ can be expressed in the generalised form as  

 
 

Re>$ =	
ρvD#

τ<D#
12v + 	K i

2m + 1
3m j

!
i12vD#

j
!?@ 4.20 

 
 
 
From Equation 4.20, it can be deduced that the equation for the effective or 

apparent viscosity of the Herschel-Bulkley drilling fluid for annuli flows is  

 
 
 

µ>$ =	
τ<D#
12v

+ 	K \
2m + 1
3m ]

!

\
12v
D#

]
!?@

 4.21 

 
 
 
 
For a Power law fluid where the yield stress is zero τ< = 0, the constant m becomes 

equal to the flow behaviour index of the fluid, m = n.Thus, the Reynolds number 

and effective viscosity of the Power law drilling fluid can be expressed respectively 

as  

 

 

Re"' =	
ρvD#

	K i2m + 1
3m j

!
i12vD#

j
!?@ 4.22 

 

 

µ"' = 		K \
2m + 1
3m ]

!

\
12v
D#

]
!?@

 4.23 

 
 
 
 
For drilling fluids described by the Bingham plastic rheological model, the shear 

stress at the annuli wall can be expressed from Equation 2.3 as  
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τQ =	τ= +	µ; 	\−
dv
dr]Q

 4.24 

 
 
 

τQ =	τ= +	µ; 		\
2m + 1
3m ]\

12v
D#

] 4.25 

 
 
Following the procedures as explained above, the constant m for the Bingham 

plastic fluid can be expressed as  

 
 

m =		
µ; 	i

12v
D#

j

τ= +	µ; 	i
12v
D#

j
 4.26 

 
 
The Reynolds number for the Bingham plastic drilling fluid flow in the annuli Re$", 

can then be derived as follows  

 
 
 

f =
2τQ
ρvB

=	
2 Vτ= +	µ; 		i

2m + 1
3m ji12vD#

jY

ρvB
 

4.27 

 
 
 

Re$" =	
ρvD#

τrD#
12v +	µ; 		i

2m + 1
3m j

 4.28 

 
 
Thus, the effective viscosity of the Bingham plastic drilling fluid can be expressed 

as  

 
 

µ$" =	
τ=D#
12v

+	µ; 		\
2m + 1
3m ] 4.29 
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4.2 Friction factor for laminar flow of non-Newtonian fluids  

The literature review in chapter 2 has indicated that the theoretical methods 

adopted for the calculation of the frictional pressure gradient for non-Newtonian 

fluid flows in the annuli have either neglected the effects of eccentricity, fluid 

rheology or drillpipe rotation. The friction factors determined with the concept of 

the friction geometry parameter has been applied for the determination of the 

frictional pressure gradient especially for two-phase flow. The friction geometry 

parameter has been developed for Newtonian fluid flow in the concentric and 

eccentric annuli and cannot be applied directly for the determination of the friction 

factor for non-Newtonian fluid flow. Another major concern is that these methods 

have neglected the drillpipe rotation effect and the shear thinning characteristics 

of the non-Newtonian drilling fluid, both of which are known to have a significant 

impact on the drilling hydraulics from field data and experimental reports. 

However, a vigorous treatment of the helical flow fields is possible for any annulus 

configuration and would be developed from the solution of the continuity equation. 

This section presents new methods for the determination of the friction factor for 

the concentric and eccentric annuli, with or without drillpipe rotation. 

In a situation whereby a fluid flows through the annular space between the 

drillpipe and the casing during drilling operations, the drillpipe might be rotated 

at a certain angular velocity while the casing or borehole well is stationary. The 

motion of the fluid through the annuli would be purely due to the axial pressure 

gradient because the centrifugal force in the radial direction, produced by the 

rotary motion of the fluid, is compensated by the pressure and gravitational force 

in the radial direction and hence would not contribute to the motion of the fluid.  

The drilling fluid flow in this situation would move in a helical path creating the 

existence of an axial and tangential velocity component due to the rotation of the 

drillpipe. The equation of motion in the cylindrical coordinates (Equations 2.7-

2.10) can be simplified to obtain two major equations that can describe the helical 

flow of fluids in the annuli. These equations can be expressed in terms of the axial 

and tangential shear stress gradients as   
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4.30 

 

For concentric annuli helical flows, the flow is a function of r and does not vary in 

the radial direction θ. Thus, these systems of equations can be simplified to yield  

 

 

 

	
1
rB
∂
∂r
(rBτ-,) = 0 4.31 

 

ρg. −
∂P
∂z
−	
1
r
∂
∂r
(rτ.,) = 0 4.32 

 

 

The first two terms in the Equation 4.32 can be combined and expressed as a 

modified pressure gradient (∂P6 ∂z⁄ ) 

 

 
∂P6
∂z

−	
1
r
∂
∂r
(rτ.,) = 0 4.33 

 
 
 

The integration of these equations yields the equations for the axial τ., and 

tangential τ-, shear stresses for fluid flow in a conduit, expressed respectively as   

 

 

τ., =
∂P6
∂z

r
2
	+	

C.
r

 4.34 
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τ-, =
Cs
rB

 

 

4.35 

 

The constants C. and Cs in the axial and tangential shear stress equations are 

constants of integration.  

 
 
 
 
 
 
 
 
4.2.1 Generalised rheology model  

A rheology model referred to as the generalised rheology model in this study, is 

used in the development of the methods for the prediction of the friction factors 

for non-Newtonian annuli flows. This generalised rheology model expresses the 

shear stress to shear rate relationship for the drilling fluid as  

 
τ = 	 τ∈+	∈ γ! 4.36 

The apparent viscosity may then be expressed as: 

 

 

µ2 =	
τ∈
γ
+	∈ γ!?@ 4.37 

 

 

 

 

The constants τ∈, ∈, and n are the yield stress, consistency index, and flow 

behaviour index of the drilling fluid. This generalised model represents drilling 

fluids with the rheological behaviour described by the Power law, Bingham plastic 

or the Herschel-Bulkley rheology, depending on the input constants to the model. 

Table 4.1 shows the input constants dependent on the drilling fluid type. 
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           Table 4.1: Constants for the generalised rheology model 

Fluid rheology type τ∈ ∈ n 

Newtonian τ∈ = 0 ∈	= 	µ n = 1 

Power law (shear thinning)  τ∈ = 0 ∈	= 	K n < 1 

Bingham plastic τ∈ = τ/ 	∈	= 	µ0 n = 1 

Herschel-Bulkley (shear thinning) τ∈ = τ1 ∈	= 	K n < 1 

 

 

 
Following this concept, a generalised Reynolds number for the drilling fluid annuli 

flow can be expressed as 

 
 

Re&5! =	
ρvD#

τ∈D#
12v +	∈ i

2m + 1
3m j

!
i12vD#

j
!?@ 4.38 

 
 
 

m =		
n	 ∈ 	 i12vD#

j
!

τ∈+	∈ 	i
12v
D#

j
! 4.39 

 
 
 

4.2.2 Annuli shear stress and velocity profiles  

When the drillpipe is rotated, the drilling fluid would experience a multi-directional 

shear force that creates the helical movement of the fluid. Thus, the shear stress 

to shear rate relationship, which is the fluid rheology model, must be represented 

in a tensor form. The magnitude of the shear rate for a multi-directional shear 

flow can be expressed in the cylindrical coordinate system as  
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For a concentric annulus, assuming that the axial and tangential velocity 

component (v. and v-), existing in the helical flow are constant in the axial z-

direction, and vary in the radial r-direction, the magnitude of the shear rate can 

be simplified to yield  

 

 

|γB| = 		�r
∂
∂r
i
v-
r
j�

B

+	\
∂v.
∂r ]

B

 4.41 

 

 

|γ| = 		�\r
∂ω
∂r ]

B

+ \
∂v.
∂r ]

B

 
4.42 

 

 

where v- = ωr 

 
 
In the case where there is no drillpipe rotation and the drilling fluid flow is purely 

in the axial direction, the shear rate equation reduces to the conventional or 

general form for a 2D fluid flow γ = 	∂v. ∂r⁄ . Similarly, the magnitude of the shear 

stress for the helical flow of fluids can be expressed as  

 
 
 
|𝜏| = 		�τ.,B + τ-,B 4.43 

 
Adopting the form of the Newtonian model, the axial and tangential shear stresses 

may be expressed in form of their velocity gradients as: 

 

  

τ-, =	µ2 \r
∂ω
∂r ]

 4.44 

 

 



 
 

122 

τ., =	−µ2 \
∂v.
∂r ]

 4.45 

 

 

The apparent viscosity of the drilling fluid subjected to a helical flow pattern, using 

the general model in Equation 4.37 and 4.42 is derived as follows: 

 

 

µ2 =	
τ∈
|γ|
+	∈ |γ|!?@ 4.46 

 

 

µ2 =	
τ∈

À¬ir ∂ω∂r j
B
+ i∂v.∂r j

B
À
+	∈ ��\r

∂ω
∂r ]

B

+ \
∂v.
∂r ]

B

�

!?@

 4.47 

 

 

Using Equation 4.44 and 4.45, the apparent viscosity equation can be further 

simplified to yield 

 

µ2 =

⎣
⎢
⎢
⎢
⎡
		∈ |τ-,B + τ.,B|

!?@
B

1 −	 τ∈
|τ-,B + τ.,B|

@
B ⎦
⎥
⎥
⎥
⎤
(

 4.48 

 

 

 

where s = 1 n⁄  
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Figure 4.1 shows the shape of the velocity profile for a fully developed annuli flow 

of non-Newtonian drilling fluids that possess a yield stress. For fluids with a yield 

stress to flow through the annuli, the axial pressure force must produce a shear 

stress that exceeds the yield stress τ∈. Thus, as the fluid flows through the annuli, 

there is a region of the fluid that does not shear and the fluid elements in this 

region, move at the local maximum velocity. This unsheared region of the fluid is 

referred to as the unsheared plug. In the derivation of the shear stress and velocity 

profiles, the points that mark the boundaries of the unsheared plug in the radial 

direction are signified as the points r = 	 r2 and r = 	 r0 as shown in Figure 4.1. For 

the Herschel-Bulkley drilling fluid the shear stress at point r = 	 r2 is equal to the 

negative value of the yield stress τ., =	−τ∈ = −τ< while the shear stress at the 

point r = 	 r0 is equal to the positive value of the yield stress τ., =	+τ∈ = +τ<. 

Likewise, for the Bingham plastic fluid, the shear stresses at the points r = 	 r2 and 

r = 	 r0 are equal to the negative and positive value of the Bingham yield stress 

respectively τ., =	−τ∈ = −τ= and τ., =	+τ∈ = +τ=. The Power law fluid does not 

possess a yield stress and hence does not have the region of an unsheared plug 

in the annuli. In the axial velocity profile of the Power law fluid, the local maximum 

velocity exists at the point r2 =	 r0 and the shear stress at this point is zero τ., =

A
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Annuli radial space

r = 	 r!
τ"# = −τ∈
v" =	v%!&

r = 	 r'
τ"# = +τ∈
v" =	v%!&

Figure 4.1:Annuli velocity profile of a non-Newtonian with a yield stress 
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	τ∈ = 0. The width of the unsheared plug can be determined by considering a force 

balance of the pressure force being equal to the shear force in the region of the 

plug. The pressure force acts on the cross-sectional area of the plug, while the 

shear force, which is equal to the yield stress times the surface area of the plug, 

acts on the inner and outer surfaces of the plug. Performing this force balance 

over a differential length ∂z of the plug, yields the equation for the width of the 

plug as: 

 

 

π(r0B −	r2B)
∂P6
∂z

∂z = 	2π(r0 +	r2)τ∈ ∂z 
4.49 

 

 

r0 −	r2 =
	2τ∈
∂P6
∂z

 4.50 

 

τ∈ =	
1
2
∂P6
∂z

(r0 −	r2) 
4.51 

 

 

It is obvious that the width of the plug depends on just the axial pressure gradient 

and the yield stress value of the fluid and is independent of the size of the annuli. 

However, in an eccentric annulus, the width of the unsheared plug and the position 

of the local maximum velocity varies across the angular direction of the annuli. 

Thus, the points r = 	 r2 and r = 	 r0 are a function of the angle θ hence the shear 

stress and velocity profiles vary across the angular direction of the annuli and are 

direct functions of the angle θ. To account for this phenomenon, the annuli can be 

represented by an infinite number of concentric annuli with variable outer radii rB5 

as shown in Figure 4.2. 
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                       Figure 4.2:Eccentric annulus with a variable outer radius 

 

 

The outer radius of the eccentric annulus is a function of the angle θ and the 

eccentricity e and can be determine with the following equations: 

 

 

rB5 = d5 cos θ + ¬rBB − (d5 sin θ)B	 
4.52 

 

 

d5 =	 (rB −	r@)e 4.53 

 

By using this concept, the line 	r@ to rB5 represents the distance from the inner pipe 

to the outer pipe of a given concentric annuli and hence the mechanical equations 

for the flow do not vary with θ but only varies along the radial direction r. for this 

reason, the equations for the concentric annuli can be used to obtain a solution 

for the flow in the eccentric annuli.    

 

The axial shear stress profile at a given angular position in the annuli may be 

obtained by applying the boundary conditions to Equation 4.34 that τ., =	−τ∈ at 

r = 	 r2 and inserting the Equation 4.51 to the result to yield: 
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τ.,(θ, r) =
1
2
∂P6
∂z

	ZVr −
r2B

r
Y	−	

r2(r0 −	r2)
r

[						r@ ≤ r ≤ r2 4.54 

 

Similarly, from the boundary condition that τ., =	+τ∈ at r = 	 r0, the axial shear 

stress profile is  

 

τ.,(θ, r) =
1
2
∂P6
∂z

	ZVr −
r0B

r
Y 	+	

r0(r0 −	r2)
r

[						r0 ≤ r ≤ rB5 4.55 

 
 
 
where r2 = f(θ, e) and r0 = f(θ, e). 
 
 
Substituting the axial and tangential shear stress equations into the Equation 4.48 

yields the equations for the annuli viscosity profile as: 
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⎣
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B
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B

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤
(

 4.56 

 
 

Inserting the shear stress profile equations into Equation 4.45 and integrating the 

results with the appropriate boundary conditions produces the velocity profile 

equation for fluid flow in the concentric and eccentric annulus, with or without 

drillpipe rotation. In the region of  r@ ≤ r ≤ r2, the axial velocity of the fluid 

increases with an increase in r, so the axial velocity gradient can either be greater 

than or equal to 0, ∂v. ∂r⁄ ≥ 0. Conversely, in the region of r0 ≤ r ≤ rB5, the axial 

velocity gradient is either zero or a negative value as the fluid velocity decreases 

with an increase in r. in the region of the maximum axial velocity or the plug 

region r2 ≤ r ≤ r0, the axial velocity gradient is equal to zero ∂v. ∂r⁄ = 0. The 

velocity gradients or shear rate equations are thereby given as  
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∂v.
∂r

= 		
1

2µ2(θ, r)
∂P6
∂z

	ZV
r2B

r
− rY +	

r2(r0 −	r2)
r

[				r@ ≤ r ≤ r2		 4.57 

 
 
 
∂v.
∂r

= 		0				r2 ≤ r ≤ r0		 
4.58 

 
 
 
∂v.
∂r

= 		
1

2µ2(θ, r)
∂P6
∂z

	ZVr −
r0B

r
Y +	

r0(r0 −	r2)
r

[				r0 ≤ r ≤ rB5		 4.59 

 
 
Integrating Equation 4.57 and applying the no-slip boundary condition that 

v.(θ, r) = 0, at the drillpipe wall r = 	 r@ yields the axial velocity profile: 

 

 

v.(θ, r) = 		
1
2
∂P6
∂z

h 	
1

µ2(θ, r)
ZV
r2B

r
− rY +	

r2(r0 −	r2)
r

[ 		dr		
,

,!
r@ ≤ r ≤ r2		 4.60 

 

 
Similarly, integrating Equation 4.59 while applying the no-slip boundary condition 

that v.(θ, r) = 0, at the drillpipe wall r = 	 rB5 yields: 

 
 
 

v.(θ, r) = 		
1
2
∂P6
∂z

h 	
1

µ2(θ, r)
ZVr −

r0B

r
Y +	

r0(r0 −	r2)
r

[ 		dr		
,"#

,
r0 ≤ r ≤ rB5		 4.61 

 
 
In the region r2 ≤ r ≤ r0,  v.(θ, r) = 		 v.(θ, r2) = 	 v.(θ, r0) = 		 v.62h(θ) 

 
The angular velocity profile may be derived from Equation 4.44 as follows  

 
∂ω
∂r

= 		
1

µ2(θ, r)
Cs
rH

 4.62 

 

 



 
 

128 

Integrating the above equation and applying the boundary condition that the 

angular velocity is maximum at the drillpipe wall, ω =	ω62h at r = 	 r@ we can arrive 

at: 

 

ω(θ, r) = 		ω62h −	Cs(θ, r)h
dr

µ2(θ, r)	rH
,

,!
 4.63 

 

The volume flow rate for the generalised drilling fluid flow through the concentric 

and eccentric annulus with or without drillpipe rotation annulus can be expressed 

by integrating the velocity distribution over the entire annulus region while 

applying the appropriate boundary conditions: 

 

 

Q = h h v.(θ, r)	r	drdθ
,"#

,!

B)

F
 4.64 

 

 

Substituting the equations for the axial velocity profiles into Equation 4.63, the 

equation for the volume flow rate becomes: 

 

 

 

Q =
1
4
∂P6
∂z

h (r2B −	rB)h 	
1

µ2(θ, r)
ZV
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r
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1
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h (rB −	r0B)h 	
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µ2(θ, r)
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r0B

r
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F
 

 

4.65 

 

 

The constant Cs(θ, r) can be determined by applying the no-slip boundary condition 

that ω = 	0 at the outer wall of the annulus r = 	 rB5 , thereby arriving at: 
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Cs(θ, r) 	= 		
ω62h

∫ dr
µ2(θ, r)	rH

,"#

,!

 4.66 

 
 
The following function can be used to determine the radial position r2 = f(θ, e) and 

r0 = f(θ, e). 

 

 

f(r2, r0) = 		h 	
1

µ2(θ, r)
ZV
r2B

r
− rY +	

r2(r0 −	r2)
r

[ 		dr		
,,

,!
	 

 
 

−h 	
1

µ2(θ, r)
ZVr −

r0B

r
Y +	

r0(r0 −	r2)
r

[ 		dr		
,"#

,2
 

 

4.67 

 

 

 

Due to the complexity of these fluid flow equations, there is currently no method 

by which an analytical resolution or simplification can be derived towards the 

solution of the fluid flow equations. Thus, these equations, must be solved 

simultaneously using numerical integration and iterative methods. However, 

special iterative methods should be applied in other to reduce the computational 

cost of the solution.  From the solution of these fluid flow equations, Figures 4.3 

to 4.8 are presented to show the combined effect of drillpipe rotation and 

eccentricity on the fluid velocities for a non-Newtonian drilling fluid flowing 

through a concentric and eccentric annulus.  The inner and outer pipe sizes used 

for this case study are 40mm and 80mm respectively and the fluid rheological 

parameters were selected from public domain to represent a Power law drilling 

fluid. The parameters for the Power law fluid were τ∈ = 0, Pa, ∈	= 	0.096, Pa	s! and  

n = 0.75, while for the Herschel-Bulkley fluid a yield stress of τ∈ = 0.5, Pa was 

included to the parameters  in order to simulate the behaviour of the Herschel-

Bulkley drilling fluid. The drilling fluid flowrate for both fluid types was 6.696 m3/h, 

the eccentricity value was 	e = 0.7 and the drillpipe rotary speeds were varied from 

0 to 300 rpm.  
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Figure 4.3: Axial velocity profiles for the Power law fluid flow in the concentric annulus    

with drillpipe rotation 
 
 
The axial velocity fields existing in the angular position θ = 0 and θ = π are 

determined in order to theoretically examine the combined effect of drillpipe rotary 

speeds and eccentricity in the drilling annuli.  For an eccentric annulus geometry, 

the angular position θ = 0 represents the largest region of the annuli while the 

position θ = π is the region with the smallest radial distance from the drillpipe wall 

to the outer pipe.  

The results obtained for the case of the concentric annulus e = 0 shows that when 

the drilling fluid flowrate is held constant, an increase in the drillpipe rotary speed 

has very little or no effect on the annuli axial velocity distribution and there is no 

change in the axial velocity in the angular direction (Figure 4.3). For the Power 

law fluid, the radial position r = 	 r2 =	 r0 is the location where the local maximum 

axial velocity exists across the angular direction of the annuli. For the eccentric 

annulus e = 0.7 without the drillpipe rotation, the axial velocity at the angular 

position θ = 0 significantly increases, while the axial velocity at the angular 

position θ = π decreases to become a region of relatively very little fluid flow or 

near stagnancy (Figure 4.4).  At this region of low fluid flow in the eccentric 
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annulus, the drill cuttings may tend to accumulate to form a stationary cuttings 

bed. 

 
 
 

 
Figure 4.4:Axial velocity profiles for the Power law fluid flow in the eccentric annulus 

with drillpipe rotation 

 

Figures 4.5 and 4.6 show the effect of drillpipe rotation on the axial velocity  

for the angular position θ = 0 and θ = π respectively. When the flowrate is held 

constant, an increase in the pipe rotary speed leads to a slight decrease in the 

axial velocity in the angular position θ = 0 and a significant increase in the axial 

velocity in the angular position θ = π. The axial velocity at the other angular 

positions in the annuli also either increase or decrease with increase in drillpipe 

rotation, depending on the radial distance from the drillpipe to the outer pipe and 

the local apparent viscosity of the fluid. These results explain why the eccentric 

annulus has been reported in literature to encourage the accumulation of drill 

cuttings at the bottom of the annuli and why drillpipe rotation may significantly 

improve the cutting transport or prevent the formation of a stationary bed.   
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Figure 4.5:Effect of drillpipe rotation on the axial velocity at the largest region of the 

eccentric annulus for the Power law fluid flow 

 
 

 
Figure 4.6:Effect of drillpipe rotation on the axial velocity at the smallest region of the 

eccentric annulus for the Power law fluid flow 
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Figure 4.7:Axial velocity profiles for the Herschel-Bulkley fluid flow in the eccentric 

annulus with drillpipe rotation 

 

Figures 4.7 shows the axial velocity for the Herschel-Bulkley fluid flow in the 

eccentric annulus. Similarly, for the Power law fluid flow in the eccentric annulus, 

the axial velocity in the largest region in the annulus largely increases while that 

of the smallest region decreases to an almost no flow zone. It is obvious that the 

reason for this is that the resistance of flow between the layers of the fluid are 

greater in the smaller region than the enlarged region of the annuli, leading to a 

disproportionate distribution of the velocity fields across the annulus. The increase 

in the drillpipe rotary speed leads to an increase in the axial velocity of the fluid 

at the region where there is relatively very little flow in the eccentric annulus for 

the Herschel-Bulkley fluid. From Figures 4.6 and 4.8, it can be deduced that 

drillpipe rotation can improve the fluid flow in the smallest region of the eccentric 

annuli by over 50% for a Power law or Herschel-Bulkley non-Newtonian drilling 

fluid. However, even though the drillpipe rotation may tend to improve the 

cuttings transport efficiency, the effect of drillpipe rotation on the annuli pressure 

gradient must be considered simultaneously in order to manage wellbore 

pressures.  
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Figure 4.8:Effect of drillpipe rotation on the axial velocity at the smallest region of the 

eccentric annulus for the Herschel-Bulkley fluid flow. 

 
 
 
 
 
 

4.3 Friction geometry parameter  

The friction factor for fluid flow through annuli configurations has been calculated 

using the friction geometry parameter obtained from the analytical solution of the 

continuity equation and equations of motion for fully developed Newtonian steady 

state axial fluid flow. For the eccentric annuli, analytical solutions using the bipolar 

coordinate system has also been obtained for Newtonian axial fluid flow under 

steady state assumptions.  

These analytical solutions cannot be applied to obtain solutions for non-Newtonian 

Concentric/Eccentric laminar fluid flows especially in a helical annulus. However, 

a vigorous treatment of the helical flow fields is possible for any annulus 

configuration and has been developed from the solution of the continuity equation 

and the general momentum equations governing fluid flow. 
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The fanning friction factor for a concentric/eccentric annulus with or without 

rotation, considering the generalized non-Newtonian fluid flow can be expressed 

as: 

 

f =
F)

Re&5!
 4.68 

 

The generalised Reynolds number Re&5! for the drilling fluid annuli flow can be 

obtained from Equations 4.38 and 4.39, the parameter F) in Equation 4.68 

represents the annuli geometry parameter and the frictional pressure gradient for 

single phase drilling fluid flow in a concentric/eccentric annulus, with or without 

drillpipe rotation can then be calculated from: 

 

 

dP
dL

= 		
2fρvB

D#
 4.69 

 

 

From the solution of the governing equations for non-Newtonian fluid flow, the 

friction geometry parameter for the concentric and eccentric annulus, with or 

without drillpipe rotation, the annuli geometry parameter can be obtained from 

the following equations  
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4.70 
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Is1 = 4S)µ&5! 4.71 

 

 

F) =
π(dB + d@)D#H

Is1
 4.72 
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 4.73 
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                      Figure 4.9: Friction geometry parameter plot (n = 0.75) 
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                  Figure 4.10:Friction geometry parameter plot (n = 0.55) 

 
 
 
Figures 4.9 and 4.10 show that the friction geometry parameter for non-

Newtonian annuli fluid flow is significantly dependent on the flow behaviour index 

and the flow rate of fluid. For the Herschel-Bulkley fluid, the friction geometry 

parameter is not only dependent on just the flow behaviour index and fluid flow 

rate but is also dependent on the yield stress of the fluid. This emphasises why 

the friction geometry parameter developed for the Newtonian annuli fluid flow 

cannot be applied to calculate the friction factor for non-Newtonian annuli fluid 

flow.  

 
 
                     Table 4.2:Input parameters for sample calculations 

Input   
Outer wall/casing diameter, m 0.08 
Drillpipe diameter, m  0.04 
Flow rate, m3/h 6.7 
Fluid density kg/m3 800 
Consistency index, pa.sn 0.096 
Flow behaviour index 0.75 
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The friction geometry parameter values obtained from the newly developed 

analytical model was compared the that which was suggested by Caetano et al. 

(1992) for the friction geometry parameter for laminar flow of Newtonian fluids in 

annuli (Table 4.3). The results showed that values matched perfectly with an 

absolute error of ±0. 
 
 

Table 4.3:Friction geometry parameter values for Newtonian fluid flow at different pipe 
diameter ratios in the concentric annuli (e =0).  

Pipe diameter ratio Friction geometry parameter (e = 0) 
Caetano et al. (1992) New analytical model 

0.1 22.3430 22.3430 
0.2 23.0881 23.0881 
0.3 23.4612 23.4612 
0.4 23.6783 23.6783 
0.5 23.8125 23.8125 
0.6 23.8970 23.8970 
0.7 23.9495 23.9495 
0.8 23.9801 23.9801 
0.9 23.9956 23.9956 

 
 
 
 

Furthermore, sample calculations for the pressure gradient in annuli flows, 

performed using the data given in Table 4.2 were compared to the pressure 

gradient obtained using Haciislamoglu and Langlinais (1990) empirical corrleation 

(Equation 2.28 and 2.29) which has been applied by various studies to calculate 

the pressure gradient in an eccentric annulus. Haciislamoglu and Langlinais (1990) 

claimed that their empirical correlation has an accuracy of ±5% and is valid for 

eccentricities from 0 to 0.95, pipe diameter ratios of 0.3 to 0.9 and flow behaviour 

indices of 0.4 to 1.0. However, the comparison of the analytical model showed a 

maximum deviation of about 7%. The Haciislamoglu and Langlinais (1990) 

emprical corrleation was developed for Power law non-Newtonian annuli fluid flow 

and cannot be applied for annuli flow of non-Newtonian fluids with other 

rheological characteristics. However, the new model can be apllied to calculate the 

frictional pressure gradient for the laminar flow of Power law, Bingham plastic and 

Herschel-Bulkley drilling fluids in a concentric and eccentric annulus, with or 

without drillpipe rotation.  
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                   Figure 4.11:Pressure gradient versus eccentricity 

 

 

 

Figure 4.12 and 4.13 shows the trends of the friction geometry parameter for the 

helical flow of non-Newtonian Power law fluid flow in the eccentric annuli. It can 

be seen that the friction geometry parameter for non-Newtonian fluid flow 

decreases with an increase with drillpipe rotary speed. However, for low annulus 

pipe diameter ratios, the effect of the drillpipe rotation on the friction geometry 

parameter is insignificant. This is mainly because the axial force is a lot more 

dominant than the tangential force due to the large annular gap between the 

drillpipe and the outer wall/casing. Thus, the fluid in the annuli is subjected to a 

low tangential shear rate, resulting in a relatively lower effect on the axial pressure 

gradient. For larger pipe diameter ratios, the tangential shear rate due to the 

drillpipe rotation is higher as the annular gap between the drillpipe and the outer 

wall/casing reduces. At very high annulus pipe diameter ratios, the effect of 

drillpipe rotation on the friction geometry parameter becomes less significant.  
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Figure 4.12:Effect of drillpipe rotation on the friction geometry parameter(e = 0.5,n = 
0.75) 

 
 
 
 

 
Figure 4.13:Effect of drillpipe rotation on the friction geometry parameter(e = 
0.5,n=0.55) 
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4.4 Friction factor for turbulent flow of non-Newtonian fluids  

There is no rigorous or exact method available for the prediction of the friction 

factor for annuli or pipe flows under turbulent flowing conditions till date. However, 

the friction factor for single phase turbulent flows can be predicted from the 

application of three main methods: The empirical approach, semi-empirical 

approach and the universal velocity distribution (Caetano, et al., 1992). 

The semi-empirical approach involves the use of experimental data for turbulent 

flow in combination with characteristics of laminar flow in the same noncircular 

configuration. An example of this prediction category is the procedure of Gunn 

and Darling (1963). An important conclusion by Gunn and Darling is that the 

similarity existing between friction factors for circular and noncircular 

configurations in the laminar region is also accompanied by a similarity in the 

turbulent region. Using dimensional analysis, they showed that for turbulent flow 

in noncircular sections, the following functional dependency for friction factor 

exists.  

 

 

f = 	∅ \Re,
Fi
Fui

] 4.74 

 

 

The term 43
443

 is the ratio of the friction geometry parameters for circular and 

noncircular conduits. The friction factor is inversely proportional to the ratio 43
443

 at 

low Reynolds number and independent of the ratio at high Reynolds number. 

 

In this study, the Gunn and Darling (1963) method is applied to predict the friction 

factor for Non-Newtonian turbulent flows through the annuli, by modifying the 

method suggested by Caetano et al (1992) for Newtonian fluid flow through a 

concentric and eccentric annulus. This method has been reported to be beneficial 

for turbulent friction factor predictions due to its simplicity and good performance 

(Brill & Mukherjee, 1999).  

 

The non-Newtonian turbulent friction factor with or without drillpipe rotation for a 

concentric and eccentric annulus may be predicted from the following equations 

using the generalised Reynolds number Re&5! for the drilling fluid annuli flow and 
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the friction geometry parameter for laminar steady state flow through the annuli.  

 

Vf \
16
F)
]
R
Y
?F.L

= 		4 log �Re&5! Zf \
16
F)
]
R
[
F.L

� − 0.4 4.75 

 

 

 

A = 0.45el—(m55#6?HFFF)/@F)n 4.76 

 

 
 
 
 
 
4.5 Multiphase drilling hydraulics modelling  

When two or more phases flow simultaneously in through annuli configurations, 

the flow behaviour a lot more complex than that of the single-phase flow. The 

phases separate and the shear stresses at the pipe wall are different for each 

phase due to the differences in their densities and viscosities. For liquid and gas 

flows, the expansion of the highly compressible gas phase with decreasing 

pressure increases the in-situ volumetric flow rate of the gas. As a result, the 

liquid and gas phases do not travel at the same velocity in the pipe. For upward 

flow, the less dense and less viscous gas phase tends to flow faster than the liquid 

phase, while for downward flows, the liquid phase flows faster than the gas phase. 

This phenomenon, generally referred to as slippage, significantly influences the 

pressure gradient in the annuli and has to be taken into account when performing 

pressure gradient predictions. Different flow patterns can exist in the drilling 

annulus as a result of the large pressure and temperature changes the fluids 

encounter. The prevailing flow pattern has a significant influence on the pressure 

and temperature gradients in the annuli as the buoyancy, turbulence and surface 

tension forces vary significantly with fluid flow rates, wellbore sizes, inclination 

angle, and fluid properties of the phases that make up the drilling fluid. Thus, the 

ability to predict the flow pattern as a function of the drilling parameters is of 

primary importance for wellbore pressure management. Many empirical 

correlations have been developed to predict the flow pattern, slippage between 

phases and the frictional pressure gradient for pipes and annuli configurations. 
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However, these approaches often present major disadvantages due to the high 

degree of empiricism applied towards the predicting of the fluid flow behaviour. 

In this study, a mechanistic approach that relies on the fundamental mechanisms 

that govern multiphase flow of fluids in annuli, has been applied to develop flow 

pattern specific models that rely much less on empirical correlations. Mechanistic 

models have been developed for the Dispersed bubble, bubble, stratified and slug 

flow patterns as these flow patterns have been reported to be most likely 

encountered in a drilling wellbore. Flow pattern prediction techniques used in this 

study are similar to the methods presented by Caetano, et al., (1992) for annuli 

flows. The drilling hydraulics models for each of the flow patterns have been 

developed as detailed in the following sections by exploiting the fundamental 

physics governing two-phase flow in a conduit.  

 

Model development  

The basis for virtually all computations involving fluid flow in annuli is the 

conservation of mass, momentum and energy. Application of these principles 

permits the prediction of pressure and temperature changes with respect to time 

and space across an entire drilling wellbore. The conservation of mass in a control 

volume can be expressed as: 

 
∂ρ
∂t
+	
∂ρV
∂L

	= 0	 4.77 

 

 

For a steady state flow, it is assumed that there is no accumulation and the mass 

of fluid flowing into the system is equal to the mass of fluid flowing out. The 

Equation 4.77 then becomes  

 
∂ρV
∂L

	= 0 4.78 

 
 

From this expression it is evident that for a steady state flow,  ρv =	constant. 

 

The conservation of linear momentum for single phase flow through an annulus 

can be expressed as: 
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∂ρv
∂t

+	
∂ρVB

∂L
	= 	−

∂P
∂L
−	
τπD#
A

− 	ρg sin θ;	 
4.79 

  

 
D# =	dB −	d@ 4.80 

 
 

τ = 	
fρVB

2
 4.81 

 
 

Combining the Equations 4.78 and 4.79 to eliminate the rate of accumulation of 

linear momentum and assuming steady state flow yields: 

 

∂P
∂L

= 	−	
∂ρVB

∂L
−	
τπD#
A

− 	ρg sin θ; 4.82 

 

Equation 4.82 shows that the pressure gradient is made up three main 

components namely: the frictional component, acceleration or kinetic component, 

and the elevation component. For multiphase flow, the prediction of the pressure 

gradient requires the analysis of each of these components as a function of the 

prevailing flow pattern.  

 

 

 

4.5.1 Pressure drop for dispersed bubble flow  

The dispersed bubble flow pattern occurs at low to medium gas superficial gas 

velocities with high superficial liquid velocities. The flow pattern is discontinuous 

gas phase which is distributed as spherical discrete bubbles in a continuous liquid 

phase. The discrete gas bubbles do not exhibit significant slippage through the 

liquid phase. Thus, the dispersed bubble flow can be treated as a no-slip 

homogeneous mixture flow as it is assumed that the liquid and gas flow at the 

mixture velocity. The mixture properties of the drilling fluid may be determined 

from the following relationships: 

 

V6 =	V7' +	V7&	 4.83 
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λ' =	
	V7'

V7' +	V7&
 4.84 

 

 

ρ6 =	ρ'λ' +	ρ&(1 −	λ'	) 4.85 

 

 

µ6 =	µ'λ' +	µ&(1 −	λ'	) 4.86 

 

The annuli pressure gradient for the dispersed bubble flow pattern, determined 

based on the mixture properties of the drilling fluid can be expressed as: 

 

∂P
∂L

= 	−	
∂ρV6B

∂L
−	
τ(πD#
A

−	ρ6g sin θ; 4.87 

 

τ( =	
f6ρ6V6B

2
 4.88 

 

 

Re6 =
ρ6V6d#
µ6

 4.89 

 

The liquid viscosity µ' is set as the generalised non-Newtonian viscosity for the 

drilling fluid µ&5! and the friction factor f6, is determined by the method presented 

in Section 4.3 and 4.4.  

 

4.5.2 Pressure drop for bubble flow 

The pressure gradient calculation for the Bubble flow pattern is similar to that of 

the dispersed bubble flow pattern but slippage between the phases is taken into 

account and the in-situ liquid holdup H'is used instead of the no-slip holdup.  

 
ρ0 =	ρ'H' +	ρ&(1 −	H'	) 4.90 

 
 
µ0 =	µ'H' +	µ&(1 −	H'	) 4.91 
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4.5.3 Pressure drop for stratified flow  

Stratified flow occurs when the simultaneous flow of liquid and gas in a pipe is 

stable. The liquid height and pressure gradient can be obtained by assuming 

equilibrium stratified flow is attained for a set of given flow conditions: the liquid 

and gas flowrates, the annulus size and eccentricity, rpm, and the physical 

properties of the phases.  This is carried out by applying a momentum balance of 

all the phases in a differential control volume. For a steady state stratified flow, it 

is assumed that there is little or no acceleration so the rate of change of 

momentum across the control volume is neglected.  

The momentum balance for the liquid and gas phases in a drilling annulus can be 

expressed as: 

 

 

−
dP
∂L

+	
τ'QS'Q
A'

+	
τ';S';
A'

−	
τESE
A'

+	ρ'g sin θ; = 0 4.92 

 

 

 

−
dP
dL

+		
τ&QS&Q
A&

+	
τ&;S&;
A&

+	
τESE
A&

+	ρ&g sin θ; = 0 4.93 

 

 
 

Substituting Equation 4.92 into Equation 4.93 thereby eliminating the pressure 

gradient term, yields a combined momentum equation that is implicit for the 

equilibrium liquid height in the annulus.  

 

τ'QS'Q
A'

	+ 	
τ';S';
A'

−	
τ&QS&Q
A&

−	
τ&;S&;
A&

−	τESE \
1
A'

+
1
A&
] +	(ρ' −	ρ&)g sin θ; = 0 4.94 

 

 

When the combined momentum equation has been satisfied, the pressure gradient 

can then be obtained from the momentum equations of either the liquid or the 

gas phase as both equations would yield the same result.  
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4.5.4 Pressure drop for slug flow  

Intermittent flow exists over a vast range of liquid and gas flowrates in horizontal, 

vertical and inclined pipe configurations. It is the flow pattern found to be 

dominant in upward inclined flows.  The process of slug flow possesses a complex 

hydrodynamic behaviour making liquid hold up, pressure drop and mass transfer 

predictions difficult due to its unsteady nature. In order to perform accurate 

hydraulic calculations for slug flow in a concentric/eccentric drilling annulus it is 

important to understand the flow mechanism. As presented by Duckler and 

Hubbard (1975) as gas and liquid flow at velocities under which slug velocities 

take place, the liquid level decelerates leading to an increase in liquid level 

approaching the top of the pipe. Eventually the liquid bridges the pipe temporarily 

blocking the flow of the gas and forming a gas pocket and liquid slug zone. The 

liquid is accelerated uniformly across its cross-section picking up the slow-moving 

liquid film in its front and accelerating it to the slug velocity. At the same time the 

liquid is shed from the back of the slug as the gas pocket pushes into it creating 

the liquid film region. Assuming a steady state flow, the pickup rate is equal to 

the shedding rate and since the slug is picking up liquid at the same rate that it is 

shed, the length of the slug stabilizes. 

 

The slug flow model development is based on the study presented by Taitel and 

Barnea (1990) to predict pressure drop across a slug unit in a horizontal and 

upward inclined pipe flow. The fundamentals have been adopted here and 

modified to develop mechanistic models for the determination of the pressure 

gradient for Intermittent flow in the concentric and eccentric annuli.  
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       Figure 4.14:Configuration of a fully developed in an inclined wellbore annulus 

 

 

The liquid and gas flowrates in a control volume containing the liquid slug and 

liquid-film/gas pocket region can be expressed respectively as: 

 

Q' =	V'(A'( +	V'1A'1 4.95 

 

Q& =	V&(A&( +	V&1A&1 4.96 

 

The time taken for the slug unit, the liquid slug region and the liquid-film/gas 

pocket region to cross a given point in the wellbore annulus can be expressed in 

terms of the translational velocity:  

 

 

t3 =
L3
V8
							t( =

L(
V8
					t'1 =

L'1
V8
						 4.97 

 

 

Where the length of a fully developed slug unit is given by: L3 = L( + L'1 
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From Equation 4.95 and 4.97 the liquid volume in the slug unit can be expressed 

as:  

 

Q't3 =	V'(A'(t( +	V'1A'1t'1	 4.98 

 

 

Q' −	V'(A'(
L(
L3
	− 	V'1A'1

L'1
L3
	= 0 4.99 

 

 

Considering that the liquid level is not constant throughout the length of the 

liquid-film/gas pocket region 

 

Q' −	V'(AH'(
L(
L3
	− 	h

V'1AH'1
L3

	∂L'1

'7'

F

	= 0 4.100 

 

 
The Liquid film velocity can be obtained from the mass balance due to the pickup 

rate of the liquid film in the front of the slug as follows. 

 

(V8 −	V'()H'( 	= 	 (V8 −	V'1)H'1 4.101 

 

 

V'1 	= 	V8 −	
(V8 −	V'()H'(

H'1
	 4.102 

 

 

Q' −	V'(AH'(
L(
L3
	− 	h VV8 −	

(V8 −	V'()H'(
H'1

Y
AH'1
L3

	∂L'1

'7'

F

	= 0 4.103 

 

 

Q' −	V'(AH'( +	
V8AH'(L'1

L3
−	
V8A
L3

h H'1 	∂L'1

'7'

F

	= 0 4.104 
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The area and holdup of the liquid film is a function of the liquid height. Since the 

liquid height varies along the length of the liquid-film/gas pocket region, the area 

of the liquid film would correspondingly vary across the film length. The area of 

the liquid film in a concentric and eccentric annulus can be obtained from 

geometrical relationships. 

  Figure 4.15:Annulus geometry schematic for rate of change of liquid area with height 

 

 

 

Unlike pipe flow, the liquid height and holdup for annuli flows cannot be 

determined with the conventional approach as there exist an inner pipe inside the 

outer pipe. Again, the liquid height may be influenced by the eccentricity of the 

inner drillpipe because for the same liquid area, the liquid height in a concentric 

annulus may be different from that of the eccentric annulus, the effect being 

dependent on the degree of eccentricity of the annuli geometry. To account for 

this effect a new model is developed to determine the liquid height and liquid 

holdup for a concentric and eccentric annulus.   

 
From the schematic diagram (Figure 4.15), the area of the liquid film in a 

concentric or eccentric annulus can be obtained by considering the gradient of the 

area of the liquid film (area of the shaded portion) in the annulus. Using 
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geometrical relationships and taking half of the annulus configuration, the rate of 

change of the area of the liquid film is derived as: 

 

 

dA'1
dy

= 2 �V
dB
4

B

	− 	\
dB
2
sin αB]

B

Y
@ 	B⁄

− V
d@
4

B

−	\
d@
2
sin α@]

B

Y
@ 	B⁄

� 4.105 

 

The geometric positions hB and h@ in Figure 4.15 can be expressed respectively 

as: 

 

hB =
dB
2
+		

dB
2
sin αB 4.106 

 

 

h@ =	
dB
2
−	d5 +		

d@
2
sin α@ 4.107 

 

Since the positions hB and h@ are both equal to the liquid film height, 	

hB =	h@ = h'1 the following relationships can be derived  

 
 
 

sin αB =	
2h'1 −	dB

dB
																									sin α@ =	

2h'1 −	dB +	2d5
d@

					 4.108 

 
 
 
From Equations 4.105 to 4.108, the expression for the area of the liquid in a 

concentric or eccentric annulus can be expressed as: 

 
 

A'1 = 2h ��
dB
4

B

−	V
1
2
(2h'1 −	dB)Y

B

�

@
Ba

− �
d@
4

B

− V
1
2
(2h'1 −	dB +	2d5)Y

B

�

@
Ba

� dh'1

#7'

F

 4.109 

 
 

d5 =
1
2
(dB −	d@)e 

 
 

Equation 4.109 is solved analytically to yield the following rigorous equations for 

the area of the liquid film: 
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X1 = 		
dB
4

B

sin?@ \
2h'1 − dB

dB
] 	−	

d@
4

B

sin?@ \
2h'1 − dB + 2d5

d@
] 4.110 

 
 
 
 
 
 

X2 =
1
2
⎝

⎛(2h'1 − dB)ph'1dB − h'1
B	q

@
Ba

+	(dB −	2d5

−	2h'1) ®(dB 	− 	2d5)h'1 −	h'1
B +

1
4
5d@

B − V
1
2
(dB 	− 	2d5)Y

B

°

@
Ba

+
1
4
πdB

B

⎠

⎞	 

4.111 

 
 
 
 

X3 =
1
2
(dB 	− 	2d5)	�

1
4
d@

B − V
1
2
(dB 	− 	2d5)Y

B

�

@
Ba

+	
1
4
d@

B sin?@ \
dB − 2d5

d@
] 4.112 

 
 

 

Summation of the of the Equations 4.110, 4.111 and 4.112 yields the area of the 

liquid film in a concentric or eccentric annulus.  

 
 
A'1 = X1 + X2 + X3 4.113 

 
 
 
Thus, the liquid holdup in the liquid-film/gas pocket region can then be calculated 

from: 

 

H'1 =
4(X1 + X2 + X3	)
πp		dB

B −	d@	B	q
 4.114 
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   Figure 4.16:Change in the liquid film height with distance in the liquid film region 

 

 

The steady state slug flow pattern differs significantly from the other flow patterns 

as the fluids tend to accelerate creating a change in the liquid height of film with 

length (Figure 4.16). This phenomenon clearly influences the axial pressure 

gradient and must be accounted for in the governing equations used to describe 

the slug flow behaviour.  

 
The conservation of momentum equations for the liquid film and gas pocket in the 

drilling annulus can be expressed as 

 

 

−
∂P
∂L
+	ρ'v'1

∂v'1
∂L

+	
τ'1QS'1Q
A'1

+	
τ'1;S'1;
A'1

−	
τESE
A'1

+	ρ'g sin θ; −	ρ'g cos θ;
∂h'1
∂L

= 0 4.115 

 

 

 

−
∂P
∂L
+	ρ&v&1

∂v&1
∂L

+	
τ&1QS&1Q
A&1

+	
τ&1;S&1;
A&1

+	
τESE
A&1

+	ρ&g sin θ; −	ρ&g cos θ;
∂h'1
∂L

= 0 4.116 
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The relative velocities to the translational velocity are used as the analysis is 

carried out in the translational-velocity coordinate system assuming that the 

interface between the liquid film and the gas is stationary. The relative velocities 

of the liquid film and gas are given as: 

 

 

v'1 = V8 − V'1		; 			v&1 = V8 − V&1	 4.117 

 

Using Equations 4.101 and 4.102, the relative velocity of the liquid film can be 

expressed as:  

 

v'1 	= 		
(V8 −	V'()H'(

H'1
 4.118 

 

 

Similarly, from the mass balance of the gas phase in the liquid-film/gas pocket 

region, the relative velocity of the gas may then be expressed as follows: 

 

(V8 −	V&()(1 − 	H'() 	= 	 (V8 −	V&1)(1 − 	H'1) 4.119 

 

 

	v&1 =	
(V8 −	V&()(1 − 	H'()

(1 − 	H'1)
 4.120 

 

 
The change in the relative velocities with length is a function of the hold-up of  

the liquid film and can be expressed as:  

 
𝜕v'1
∂L

= 	
∂v'1
∂H'1

	×
∂H'1
∂h'1

	×
∂h'1
∂L

			 4.121 

 

 
∂vGf
∂L = 	

∂vGf
∂H!"

	×
∂H!"
∂h!"

	×
∂h!"
∂L  4.122 

 

𝜕v'1
∂H'1

=	
(V8 −	V'()H'(

H'1B
	 4.123 
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∂v&1
∂H'1

=	
(V8 −	V&()(1 − 	H'()

(1 − 	H'1)B
 4.124 

 
 

Substituting Equation 4.116 into Equation 4.115 thereby eliminating the pressure 

gradient term and applying Equation 4.121 through 4.124, the gradient of the 

change in liquid height with wellbore length yields  

 

 
∂h'1
∂L

= 	
	τ'1QS'1QA'1

	+ 	
τ'1;S'1;
A'1

−	τ&1QS&1QA&1
−	
τ&1;S&1;
A&1

−	τESE i
1
A'1

+ 1
A&1

j +	(ρ' −	ρ&)g sin θ;

ρ&v&1
(V8 −	V&()(1 − 	H'()

(1 − 	H'1)B
	∂H'1∂h'1

	− 		ρ'v'1
(V8 −	V'()H'(

H'1B
	∂H'1∂h'1

	+ 	(ρ' −	ρ&)g cos θ;
 

4.125 

 

 
Equation 4.125 has to be integrated numerically to yield the liquid film profile 

h'1(L), and also to determine the liquid holdup and liquid film velocity distributions. 

The boundary condition for integrating the first-other differential equation is 

h'1(L = 0) = 	h'1F corresponding to v'1(L = 0) = V8 − V'(. Before starting the 

numerical integration, the boundary condition is obtained by first solving Equation 

4.126 to obtain h'1F 

 

 

f(h'1F) = 	
H'(πp		dB

B −	d@	B	q − 4(X1 + X2 + X3	)
πp		dB

B −	d@	B	q
 4.126 

 

 

The numerical integration is performed while checking that Equation 4.104 is 

satisfied. Once the mass balance is satisfied the integration is stopped yielding the 

length of the liquid film in the liquid-film/gas pocket region. 

 
 
The interfacial, outer wall and drillpipe shear stresses of the gas and liquid phases 

are expressed in terms of the actual phase velocities rather than the relative 
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velocities used in the momentum equations. This is because the translational 

velocity coordinate system is nonaccelerating hence the force is invariant. 

 

 

τ'1Q = f'1Q
ρ'V'1|V'1|

2
 4.127 

 

τ&1Q = f&1Q
ρ&V&1|V&1|

2
 4.128 

 

 
 

τE = fE
ρ&(V&1 −	V'1)|V&1 −	V'1|

2
 4.129 

 
 

τ'1; =
f'1;	ρ'V'1|V'1|

2
 4.130 

 
 
 

τ&1; =
f&1;	ρ&V&1|V&1|

2
 4.131 

 
 
 

The friction factors in the equations above are determined using the hydraulic 

diameters expressed as follows: 

 

 

 

d'1Q =	
4A'1
S'1Q

				 			d&1Q =	
4A&1
S&1Q

 4.132 

 

 

 

d'1; =	
4A'1
S'1;

				 			d&1; =	
4A&1
S&1;

 4.133 

 
 
 
 
Due to the intermittent nature of slug flow, the local axial pressure drop is not 

constant. Thus, it is practical to determine the average pressure drop and 
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corresponding pressure gradient across a slug unit. The pressure drop across a 

slug unit can be calculated by performing a global force and momentum balance 

across a given slug unit in an annulus. The global pressure drop across a slug unit 

can be expressed as:  

 

∆P3 =	ρ3g sin θ; L3 +	
τ(πD#
A

L( +	h
τ'1QS'1Q +	τ'1;S'1; + τ&1QS&1Q + τ&1;S&1;

A

'7'

F

	dL 4.134 

 

ρ3 =	ρ'H'R +	ρ&(1 −	H'R	) 4.135 

 

τ( =	
f(ρ(V6B

2
 4.136 

 

ρ( =	ρ'H'( +	ρ&(1 −	H'(	) 4.137 

 
 
The first term in Equation 4.134 represents the gravitational component of the 

pressure drop while the second and third represent the frictional pressure drop 

component in the slug body region and the liquid-film/gas pocket region. The 

pressure gradient is given as: 

 

−
dP
dL

= 	
−∆P3
L3

	 4.138 

 

 
 
The average liquid holdup H'R in a slug unit can generally be expressed as: 
 
 

H'R =	H'(
L(
L3
+	H'1

L'1
L3
	 4.139 

 
 
 
Since the liquid holdup in the film is not constant along the length of the liquid-

film/gas pocket region, the average liquid holdup should then be expressed as:  

  

H'R =	H'(
L(
L3
+	

1
L3
h H'1

'7'

F

	∂L'1 
4.140 
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h H'1

'7'

F

	∂L'1 =		H'RL3 −	H'(L( 4.141 

 
 
Substituting Equation 4.141 into Equation 4.104 and rearranging yields a 

simplified equation for the average liquid holdup in a slug unit, thereby avoiding 

the integral term. 

 

Q' −	V'(AH'( +	
V8AH'(L'1

L3
−	
V8A
L3

(H'RL3 −	H'(L() 	= 0 4.142 

 

H'R 	= 	 \Q' −	V'(AH'( +	
V8AH'(L'1

L3
+	
V8AH'(L(

L3
	]

1
V8A

 4.143 

 

H'R 	=
V7' −	V'(H'( +	V8H'(

V8
 4.144 

 
 
 
 
 

4.6 Geometric and Closure relationships  

In order to obtain solutions from the developed hydraulic models, the 

simultaneous calculations of the gas-liquid interface length and the wetted 

perimeter of the gas and the liquid phases are required. These geometrical 

parameters, as shown in the Figure 4.17 are mainly functions of the gas-liquid 

input parameters, the wellbore annuli sizes and the degrees of eccentricity of the 

drillpipe. Analytical equations have been developed in this study to compute the 

gas-liquid interface length and the wetted perimeter of the gas and the liquid 

phases directly form input parameters. These equations are presented as follows: 
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                   Figure 4.17:Schematic showing the annuli geometric parameters 
 

 

 

The gas-liquid interface length SE :  
 
SE =	bB −	b@ 4.145 

 
SE =	dB sin i

αB
2
j −	d@ sin i

α@
2
j 

 
4.146 

 

αB = 2 cos?@ \
dB −	h'1

dB
]																α@ = 2 cos?@ \

d@ −	h0
d@

] 4.147 

 
 
h0 =	h'1 −	dh 4.148 

 

dh =	
dB
2
−	\

2d5 +	d@
2 ] 4.149 

 
 
 

SE =	dB sin kcos?@ \
dB − 	2h'1

dB
]l −	d@ sin kcos?@ \

d@ −	2(h'1 −	dh)	
d@

]l 4.150 
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Wetted perimeter of the gas phase on the drillpipe and wellbore wall/casing 

respectively: 

 

 

S&1; =	πd@ − 	d@ cos?@ \
d@ −	2(h'1 −	dh)	

d@
] 4.151 

 
 
 

S&1Q =	πdB − 	dB cos?@ \
dB − 	2h'1

dB
] 4.152 

 
 
Wetted perimeter of the liquid phase on the drillpipe and wellbore wall/casing 

respectively: 

 
 

S'1Q =	dB cos?@ \
dB − 	2h'1

dB
] 4.153 

 
 
 

S'1; =	d@ cos?@ \
d@ −	2(h'1 −	dh)	

d@
] 4.154 

 
 
 
 
 
 
 
 
 
 
Translational velocity: 

The slug flow model was developed by subjecting the annuli gas-liquid flow to the 

translational velocity coordinate system in which for a steady state system, the 

gas and the liquid phases were expressed as flowing backwards with respect to 

the coordinate system. The translational velocity is the sum of the drift velocity of 

a gas bubble, which is equivalent to the velocity of a Taylor bubble in a stagnant 

liquid, plus the contribution of the mixture velocity in the preceding slug. The 

equation for the translational velocity of may be written as: 
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V8 = 	1.2V6 +	V%	 4.155 

 
 
 

The drift velocity for vertical flow V%,^, based on potential flow analysis and the 

studies of Davies and Taylor (1950) and Dumitrescu (1943) was expressed as: 

 

 

V%,^ = 0.345[	g	D]F.L 4.156 

 

Several studies reported that drift velocity also occurs for horizontal flows due to 

the difference in hydrostatic head between the liquid film and the nose of the 

Taylor bubble. Based on the analysis of Benjamin (1968), the drift velocity for 

horizontal flows may be expressed as: 

  

V%,> = 0.54[	g	D]F.L 4.157 

 

 

Bendiksen (1984) observed that the drift velocity for horizontal flows was larger 

than that of the vertical. He reported that as the inclination angle decreased from 

the vertical, the drift velocity increased until a maximum value was attained at 

about the 30o inclination angle from the horizontal. Further decrease in the 

inclination angle resulted in a drop of the drift velocity. They proposed a 

correlation for the drift velocity as a function of the inclination angle, by summing 

up a component of the drift velocity for horizontal and vertical flows to yield: 

 

 

V% = V%,> cos θ; +	V%,^ sin θ; 	,					0° 	≤ θ; 	≤ 	 90° 4.158 

 

 
Based on the study of Sadatomi et al. (1982), Caetano et al. (1992) recommended 

that the equi-periphery diameter DO; should be used as the characteristic 

dimension of the annuli instead of the hydraulic diameter. The equi-periphery 

diameter of the drilling annuli is the sum of the drillpipe diameter and the 

wellbore/casing diameter: 
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DO; =	d@ +	dB	 4.159 

 

From Equations 4.155 to 4.159, the final form of the translational velocity may be 

expressed as: 

 
 
V8 = 	1.2V6 + 	0.54¬g	DO; cos θ; + 	0.345¬g	DO; sin θ;	 4.160 

 
 
 
 
 
The gas velocity in the slug body V&( may be obtained from the following equation  

 
 

V&( = 1.2V6 + 1.53 Z
(ρ' − ρ&)	g	σ

ρ'B
[
F.BL

H'(F.L sin θ; 4.161 

 
 
 

4.7 Chapter summary 

The review of previous studies showed the several studies have provided 

conflicting views on the effect of the inner pipe rotation on the pressure drop in 

the concentric or eccentric annuli for both single-phase and two-phase flow. While 

some studies have reported that the increase in drillpipe rotation decreases the 

pressure losses, other studies have reported an increase in pressure losses or 

either an increase or a decrease in pressure losses for annuli flows. While the 

friction geometry parameter developed for flow of Newtonian fluids through the 

annuli has been applied by some studies in the past to perform frictional pressure 

gradient calculations for non-Newtonian fluid flows through the annuli, This 

chapter revealed that unlike the Newtonian annuli flow, the friction geometry 

parameter for non-Newtonian annuli flows are dependent on the combined effect 

of the rheological properties of the fluid, inner pipe rotary speed and the 

eccentricity of the inner pipe. To account for these issues, the following analytical 

equations were developed and presented for the evaluation of annuli fluid 

dynamics and pressure losses in the concentric or eccentric annuli with and 

without inner pipe rotation:  
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1. Generalised Reynolds number and effective viscosity equations valid for annuli 

flow of both Newtonian and non-Newtonian (Power law, Bingham plastic and 

Yield power law) fluids were derived from fundamental principles and 

presented (Section 4.1)  

 

2. New friction geometry parameter equations valid for both Newtonian and non-

Newtonian flows were analytically developed (Equation 4.68 to 4.73). 

Analytical velocity and shear stress profile equations were derived (Section 

4.2.2) and laminar and turbulent friction factor equations that take in account 

the combined effect of the fluid rheology, fluid circulation rate, pipe eccentricity 

and inner pipe rotary speed were presented (Equation 4.75 and 4.76). The 

output of these equations was compared favourably to that suggested by 

Caetano et al. (1992) for Newtonian fluids (Table 4.3) and Haciislamoglu and 

Langlinais (1990) (Figure 4.11) 

 

Furthermore, for two-phase gas-liquid fluids, in addition to combined effect of 

the aforementioned parameters, it is required that the gas-liquid fluid flow 

pattern is taken into account in order to accurately predict the pressure losses 

experienced by both Newtonian and non-Newtonian annuli flows. Section 4.5 

presents details of the development of different flow pattern dependent models 

valid for the Dispersed bubble, bubble, stratified and slug flow patterns. New 

equations to determine the liquid height and area, which is valid for any level 

of pipe eccentricity was developed by applying a novel concept (Equation 4.110 

to 4.114). In addition, flow pattern dependent geometric relationships 

necessary for the prediction of the pressure loss in the concentric and eccentric 

annuli were also derived and presented in section 4.6.   
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Cuttings transport modelling 
 
 
A successful drilling operation requires that the drilled cuttings being generated 

are effectively transported with the aid of the drilling fluid, through the annulus of 

the wellbore to the surface. Inefficient hole cleaning during drilling may cause 

several problems such as increased torque and drag, stuck pipe, high hydraulic 

requirements, poor wellbore pressure management, lost circulation or complete 

loss of wellbore. Literature in chapter two shows that hole cleaning is dependent 

on a number of important parameters that govern the cutting transport dynamics 

in a wellbore and these parameters have been selectively investigated by several 

researchers with the aim of developing fundamental theories that could be used 

to explain the cuttings transport phenomenon. Empirical and mechanistic cutting 

transport models have been developed using the concept of the critical velocity 

required to ensure that cuttings are mobile in the annuli or with the concept of 

the multi-layered model with an assumption that cuttings are transported in 

several distinctive layers with each layer having a different cutting transport 

mechanism. However, multiphase flow characteristics have been ignored when 

applying these concepts in the modelling or flow dynamics predictions for 

multiphase drilling fluids.  During underbalanced drilling operations, the drilling 

fluid is a multiphase fluid composed of a liquid and a gas phase either due to the 

intentional introduction of the gas from the surface or the influx of gas or other 

fluids from the subsurface formations into the wellbore. Multiphase drilling fluid 

flow in annuli is accompanied by transient flow patterns that significantly influence 

the hole cleaning efficiency of the drilling program. The mass, momentum and 

energy transfer between the phases in the multiphase flow are different to that of 

the single-phase flow and the forces acting on the cuttings in the wellbore are 

reliant on the prevailing flow pattern in the annuli. While some flow patterns are 

favourable for cuttings transport the others are known to have a higher tendency 

to affect the cuttings transport dynamics and encourage the settling of the cuttings 

to form a stationary bed at the low side of the annuli. Thus, it is important to take 

into consideration the flow pattern along with the other relevant drilling 

parameters when performing cutting transport modelling for multiphase drilling 

fluid annuli flow. In this chapter, the concept of the minimum transport velocity 
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has been used to develop models that can be used to predict the minimum annuli 

velocity required to ensure that the cuttings in the wellbore are mobile and 

entrained in the flow. Furthermore, a flow pattern dependent multi-layered 

modelling approach has be applied to develop mechanistic models using the 

principles of conservation of mass and linear momentum to determine the axial 

pressure gradient in a drilling wellbore. 

 
 
 
5.1 Concept of minimum transport velocity  
 
When the flowrate in the annuli is below the minimum threshold required to 

transport the cuttings out of the wellbore, the cuttings would fall to the low side 

of the annuli and form a stationary bed. This gives rise to the concept of the 

minimum transport velocity MTV, which can be referred to as the critical velocity 

that must exist in the annuli in order to prevent the formation of a stationary bed 

and ensure that the cuttings are transported effectively. The idea behind this 

concept is based on the modelling of the critical annuli velocity as a function of 

the major drilling parameters that have either been proven from field reports or 

from experimental studies to have a significant influence on the cutting transport 

efficiency during drilling activities. However, the fundamental knowledge of the 

transport mechanism of fluid-solids mixtures in horizontal, vertical and inclined 

pipes or annuli has to be considerably understood and applied towards the 

establishment of the critical annuli velocity. There are a number of patterns that 

can be formed in a conduit when transporting fluid-solids mixtures. These cutting 

transport patterns have been generally classified as suspension, moving bed and 

stationary bed patterns in other to simplify the solution to the problem. The 

pressure gradient experienced by the flow in the annuli is also highly dependent 

on the mechanism on which the cuttings entrained in the drilling fluids are being 

transported. Thus, the concept of the minimum transport velocity is not only 

required to ensure the cuttings are being transported effectively but is very useful 

to determine the annuli pressure gradient, which is an important factor for 

wellbore pressure management. The lower the MTV, the higher the tendency to 

achieve an annular velocity that would effectively clean the wellbore during 

drilling. The knowledge of the MTV is beneficial in the aspect of designing the 
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operational conditions used in the drilling hydraulics programme in order to 

optimise cost and efficiency.  

 
 

 

5.1.1 Initiation of cutting movement  

There are various forces that act on a cutting in the wellbore annuli. These forces 

are a function of the annuli velocity and properties of the drilling fluid in which the 

cuttings are entrained. These forces are responsible for the movement or settling 

of the cuttings and govern the mechanism by which the cuttings are being 

transported in the annulus. At a relatively low fluid flowrate, the annuli velocity is 

insufficient relative to the cuttings velocity to keep the cuttings hence the cuttings 

will settle towards the bottom of the annulus to form a stationary bed, thereby 

reducing the cross-section area of the flow and increasing the annuli fluid velocity 

in available flowing region.  

This process takes place until an equilibrium point is reached at which the fluid 

velocity is high enough to maintain the remaining cuttings in suspension and the 

increase in the height of the stationary bed existing at the bottom side of the 

annuli stops. If the drilling fluid flowrate is gradually increased, the height of the 

stationary bed will be gradually reduced as more cuttings would be lifted into 

suspension region and a moving bed region may be formed, where a certain 

concentration of the cutting slides along the top of the stationary bed. However, 

there exists a vertical concentration gradient across the annuli space where most 

of the cuttings tend to move in the lower half of suspension region. A sufficient 

and further increase in the fluid velocity would lead to the movement of the 

stationary bed at the bottom of the annuli and a cuttings suspension region above 

the moving bed region. Eventually, when the annuli velocity is sufficiently high, 

the moving bed will disappear, and all the cuttings will be transported in 

suspension. The forces responsible for the transition between the cutting transport 

mechanisms are the drag lift, buoyancy, frictional and gravitational forces.  

 
The lift force is the force that tends to lift the cuttings into suspension in the annuli 

while the drag force which is due to the viscous drag of the fluid acting on the 

surface of the cutting, tends to move the cuttings in the direction of the flow.  
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            Figure 5.1:Forces acting on cutting particles in an inclined wellbore annulus 

 

 

The lift and drag force can be expressed respectively as: 

 

 

F' = C+'	A+' 	
ρ1	v;B

2
 5.1 

 

 

F% = C+%	A+5 	
ρ1	v;B

2
 5.2 

 

 

where A+' is the projected area of the particle in the direction normal to the flow, 

A+5 is the projected area of the upper exposed portion of the particle, C+' is the 

cutting lift coefficient, C+%	is the drag coefficient of the cutting and v; represents 

the velocity of the fluid in the location of the cutting. 

 

  

The frictional and gravitational force acts against the movement of the cuttings 

and has to be overcome before the cuttings can be transported. The frictional and 

gravitational force may be expressed as: 
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F1 = f(	F& 5.3 

 

 

F& = V+	(ρ+ −	ρ1)	g 5.4 

 
f( is the friction coefficient between the cuttings and the annular wall under the 

wet condition and V+ represents the volume of the cutting.  

 
 
In a horizontal or inclined wellbore, the cuttings may roll or slide along the bottom 

wall of the annuli so the total resistance force acting on the cuttings is the sum of 

the gravitational force and the frictional force between the cuttings and the 

wellbore wall. The total resistant force to the cuttings movement in the annuli be 

obtained as follows: 

 

 

F1 = f(	F& sin β 5.5 

 

 

F& = V+	(ρ+ −	ρ1)	g cos β 5.6 

 

 

Fm = V+	(ρ+ −	ρ1)	g	[cosβ+	fs sinβ] 5.7 

 

Under the action of the drag force of the drilling fluid, the cuttings may be 

transported in the direction of the flow as a moving bed by rolling or sliding along 

the surface of the annular wall. For this action to occur, the drag force has to be 

greater than or equal to the total resistance force acting against the cutting. This 

condition may be expressed as: 

 

 

C+%	A+5 	
ρ1	v;B

2
	≥ 	V+	(ρ+ −	ρ1)	g	[cosβ+	fs sinβ]	 5.8 
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Similarly, the cuttings would be transported in the suspension pattern if the lift 

force is strong enough to overcome the gravitational force acting against the 

cutting: 

 

 

C+'	A+' 	
ρ1	v;B

2
	≥ 	V+	(ρ+ −	ρ1)	g sinβ	 5.9 

 
 
 
 
 
 
 
5.1.2 Factors affecting cutting transport  
 
From the force balance analysis on a cutting in the wellbore annuli, it can be 

deduced that if the annuli fluid velocity is below the minimum transport velocity 

MTV required to keep the cuttings suspended, the cuttings would fall towards the 

bottom of the annuli wall. However, the cuttings would be transported as a moving 

bed if the drilling fluid velocity is less than the minimum transport velocity required 

to suspend the cuttings but greater than the minimum transport velocity that is 

needed to roll or slide the cuttings along the bottom of the wellbore. If the drilling 

fluid velocity is below the minimum transport velocity MTV required to transport 

the cuttings as a moving bed, the cutting would form a stationary bed at the 

bottom of the wellbore annuli.  

Based on these assumptions and the force balance analysis, the critical condition 

for initiating the cuttings suspension or rolling movement may be obtained by 

defining the minimum transport velocity MTV as a function of the major 

parameters that govern cutting transport. The minimum transport velocity for 

rolling and suspension can be defined respectively by the following functions: 

 
 
 
VPm = fpρ1	, ρ+, d+, dh, µ1,		, g(ρ+ −	ρ1)[f(sinβ	 + 	cosβ]	q 5.10 
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VP7 = fpρ1	, ρ+, d+, dh, µ1,			g(ρ+ −	ρ1)sinβ	q 5.11 

 

Based on this concept, minimum transport velocity models for transporting drilled 

cuttings in suspension and rolling/sliding at the low side of the wellbore annulus 

were developed from dimensional analysis using the Buckingham pi theorem. The 

developed models for the minimum transport velocity MTV are given in the final 

form as: 

 

 

Rolling: 

 

 

VPm = 	A	
	µ1
d+ρ1

Z
d+

H	ρ1	g	(ρ+ 		− 	ρ1)[cos β +	 f( sin β]
µ1B

[
$

k
dh
d+
l
i

 5.12 

 

 

Suspension:    

 

 

VP7 = 	E	
µ1
d+ρ1

Z
d+

H	ρ1	g	(ρ+ 		− 	ρ1) sin β
µ1B

[
4

k
dh
d+
l
&

 5.13 

 

 
 
For a fully eccentric annulus, the distance between the drillpipe and the borehole 

wall is zero so the above MTV equations cannot be used to predict the minimum 

velocity as there is no fluid located in the lowest region of the annulus. A 

parameter A5 which represents 1% of the wellbore area from the bottom of the 

wellbore is suggested in this study for determining the minimum transport velocity 

in the fully eccentric annulus. However, the average velocity in the area A5 would 

have to be computed from CFD numerical simulations or obtained from 

experimental investigation. The models for the minimum transport velocity MTV 

for rolling and suspension for the fully eccentric annuli are: 

 
 

Rolling: 
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VPm =	B@ 	
	µ1
d+ρ1

Z
d+

H	ρ1	g	(ρ+ 		− 	ρ1)[cos β +	 f( sin β]
µ1B

[
$"

Z
A5
d+

B[
$8

 5.14 

 

Suspension:    

 

 

VP7 =	E@ 	
µ1
d+ρ1

Z
d+

H	ρ1	g	(ρ+ 		− 	ρ1) sin β
µ1B

[
O"

Z
A5
d+

B[
O8

 5.15 

 

 
 
where B@, BB, BH, E@, EB and EH are the coefficients which should be evaluated based 

on numerical or experimental data. 

 
 
The fluid properties used for the minimum transport velocity predictions are those 

which are existing at the bottom of the wellbore annuli where the cuttings are 

most likely to settle and form a stationary bed. The fluid density ρ1	 and viscosity 

µ1	 in the MTV equations are the dependent on the multiphase flow pattern in the 

annuli. This is more reason why the flow pattern is important in cutting transport 

optimisation as the fluids located in the lowest region in the annuli is a function of 

the prevailing flow pattern.  

 
 
 
 
 
 
5.2Multi-layered model development  
 
The pressure gradient in the wellbore annuli flowing with a multiphase drilling fluid 

is significantly dependent on the gas-liquid flow pattern and the cuttings transport 

mechanism. A stationary bed is formed in the annuli when the drilling fluid velocity 

is below the minimum transport velocity to keep the cuttings in the moving bed 

regime. The stationary bed height increases, thereby increasing the annuli fluid 

velocity until the point is reached where the oncoming cuttings have enough forces 

to keep them in suspension or in motion as a moving bed. This reduction in area 
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and the vertical concentration gradient of the cuttings have an impact on the 

hydraulics of the system. There are three layers that could be formed in the 

annulus during the drilling operation (Figure 5.2): a suspension layer where the 

cuttings are transported in suspension, a moving bed layer where the cuttings are 

moving as a bed either on the bottom pipe wall or on top of the stationary bed, 

and a stationary bed layer. One, two or three of these layers can occur 

simultaneously in the wellbore annuli depending on the flowing or operating 

conditions. 

 

 

 

 

 

 The area of the flow can be obtained from the following relationships: 

 

Q =	A1Z<QV1 5.16 

 

A1Z<Q =	
Q
V1

 5.17 

 
 
 

Figure 5.2:Configuration of the three-layered cutting transport mechanism in wellbore annuli 
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V1 = 	maxpV2^:	, VPm		q 5.18 

 
 

A2 =	A0	 +	A1Z<Q =	
πp		dB

B −	d@	B	q
4

 
5.19 

 

The area of the stationary cutting bed in a concentric or eccentric annulus can be 

expressed as: 

 

 

dA
2
= 	 h a(rBB 	− 	 (rB sin αB)B)@ 	B⁄ − (r@B 	− 	 (r@ sin α@)B)@ 	B⁄ ddy

=k#

=kF

 5.20 

 
 
 
 
The approach for the formulation of the stationary bed equation is similar to the 

method derived in chapter 4. Equations 4.110 to 4.113 can be used to calculate 

the area of the stationary bed by substituting the bed height. The bed height in a 

concentric or eccentric annulus can be obtained from the following function: 

 

 

f(h) =
A0
2
−			 h �V

dB
4

B

	− 	\
dB
2
sin \

2h − dB
dB

]]
B

Y
@ 	B⁄=k#

=kF

− �
dB
4

B

	− 	V
dB
2
sin V

2h − dB + e(dB −	d@)
dB

YY
B

�
@ 	B⁄

� dh 

5.21 

In this mathematical model development, the multiphase gas-liquid flow pattern 

is taken into consideration with the cuttings transport mechanism, making this a 

major improvement from the previously developed multi-layered models. The 

mass, momentum and energy conservations for multiphase flowing fluids in 

conduits are flow pattern dependent; therefore, the model development using the 

governing conservation equations needs to be flow pattern specific. The model 

development is based on the assumption that the drilling activity is carried out at 

operating conditions where the suspension, moving bed and stationary bed layers 

are formed simultaneously in the annulus.  
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5.2.1 Dispersed bubble flow  

Assuming that the flow is steady-state and there is no slip between the cuttings 

and fluid phase. The continuity equation for the cuttings and the fluid phase in a 

given control volume may be written as: 
 

 

Cuttings phase: 

 
 

			
∂pρ;C@A@V@q

∂L
	+		

∂pρ;CBABVBq
∂L

	+	
∂pρ;CHAHVHq

∂L
	= 	0 5.22 

 
 
Drilling fluid phase: 

 
 
 

		
∂(ρ1(1 − 	C@)A@V@)

∂L
	+		

∂(ρ1(1 − 	CB)ABVB)
∂L

	+	
∂(ρ1(1 − 	CH)AHVH)

∂L
	= 	0 5.23 

 
 
 
 
Integrating the continuity equations across the control volume, and 

acknowledging that the stationary bed is not moving VH = 0, the mass balance of 

the cuttings and the fluid phase can then be expressed as: 

 
 
 
Cuttings phase: 

 
 
ρ;	C@A@V@ 	+ 		ρ;CBABVB 		= 	 ρ;C;AV6 5.24 

 
 
Drilling fluid phase: 

 
 
ρ6	(1 − 	C@)A@V@ +		ρ6	(1 − 	CB)ABVB 		= 	 ρ6	p1 −	C;qAV6 5.25 
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The momentum equations can be obtained from considering the sum of the forces 

acting on each of the layers (Figure 5.3): 

 

 

 

 

Suspension layer: 

 

−
dP
∂L

+	
τ@QS@Q
A@

+	
τ@;S@;
A@

−	
τ@BS@B
A@

+	ρ@g sin θ;	 = 0 5.26 

 
 

Moving bed layer: 

 

−
dP
∂L

+	
τBQSBQ
AB

+	
τB;SB;
AB

	+ 	
τ@BS@B
AB

+	
τBHSBH
AB

	+ 			ρBg sin θ;	 = 0 5.27 

 
 

Figure 5.3:Schematic diagram of the three-layer model for dispersed bubble flow 
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The mixture density for each of the layers are given as: 
 
 
ρ@ =	ρ6(1 −	C@	) +	ρ;C@ 5.28 

 
 
ρB =	ρ6(1 −	C@	) +	+	ρ;CB 5.29 

 

 

where ρ6, defined by the Equation 4.85, is the gas-liquid mixture density. 

 
 
 
The wetted perimeters required for the solution of these equations are dependent 

on the height of the stationary bed h0 and the height of the suspension-moving 

bed interface hB. The functions for the wetted perimeters derived solely from 

wellbore geometry and trigonometry are given as: 

 
 
 
 

S@B =	dB sin kcos?@ \
dB − 	2hB

dB
]l −	d@ sin kcos?@ \

d@ −	2(hB −	dh)	
d@

]l 5.30 

 

 

SBH =	dB sin kcos?@ \
dB − 	2h0

dB
]l −	d@ sin kcos?@ \

d@ −	2(h0 −	dh)	
d@

]l 5.31 

 

 

 

S@; =	πd@ − 	d@ cos?@ \
d@ −	2(hB −	dh)	

d@
] 5.32 

 
 
 

S@Q =	πdB − 	dB cos?@ \
dB − 	2hB

dB
] 5.33 

 
 

SHQ =	dB cos?@ \
dB − 	2h0

dB
] 5.34 
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SH; =	d@ cos?@ \
d@ −	2(h0 −	dh)	

d@
] 5.35 

 
 
 
 
SBQ = 	πdB −	S@Q −	SHQ 5.36 

 
 
 
SB; = 	πd@ −	S@; −	SH; 5.37 

 
 
 
The cross-sectional area of each of the layers can be computed using Equations 

4.110 to 4.113 as a function of the interfacial heights hB and h0: 

 

 

A@ =	A2 −	pX@(hB) +	XB(hB) +	XH(hB)q 5.38 

 
 
 
A0 =	X@(h0) +	XB(h0) +	XH(h0) 5.39 

 
 
 
AB =	A2 −	A@ −	A0 5.40 

 

In order to obtain a solution, Equations 5.24 to 5.40 would have to be solved 

simultaneously using an iterative technique. 

 

 

5.2.2  Stratified flow   
 
The vertical cuttings concentration in stratified flow pattern is different to that 

which is experienced by the dispersed bubble flow pattern. When the stratified 

gas-liquid flow is formed in the wellbore annuli, the cuttings would fall to the liquid 

phase flowing below the gas phase due to density differences. This leads to the 

formation of 4 distinctive layers in the annuli where the suspension and moving 

bed layers are embedded in the liquid phase alone (Figure 5.4). The layer one 
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only contains all of the gas phase, hence the velocity of the layer 1 can be 

expressed as a function of the input gas flowrate into the wellbore from: 

 

 

V@ 	= 		
Q&
A@

 5.41 

 

 

Since there are no cuttings traveling in the gas phase in layer 1, the material 

balance for the cuttings and the liquid phase in the layer 2 and 3 may be expressed 

as: 

 
 
 
 
Cuttings phase: 

 
 
ρ+	CBABVB 	+ 		ρ+CHAHVH 		= 	 ρ+C+Q' 5.42 

 
 
Drilling fluid phase: 

 
 
ρ'	(1 − 	CB)ABVB +		ρ'	(1 − 	CH)AHVH 		= 	 ρ'	(1 −	C+)Q' 5.43 

 
 
 
 
 



 
 

179 

 
Figure 5.4:Schematic diagram of the four-layer model for stratified (gas, liquid and 
cuttings) flow 

 
 
 
 
 
 

The momentum equations obtained from considering the sum of the forces acting 

on each of the layers may be expressed as: 

 
 
 
Layer 1: Gas phase  

 

−
dP
∂L

+	
τ@QS@Q
A@

+	
τ@;S@;
A@

−	
τ@BS@B
A@

+	ρ@g sin θ;	 = 0 5.44 

 
 

Layer 2: Suspension layer (Liquid phase) 

 

 

−
dP
∂L

+	
τBQSBQ
AB

+	
τB;SB;
AB

	+ 	
τ@BS@B
AB

−	
τBHSBH
AB

	+ 			ρBg sin θ;	 = 0 5.45 

 
 
 
Layer 3: Moving bed layer (Liquid phase) 
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−
dP
∂L

+	
τHQSHQ
AH

+	
τH;SH;
AH

	+ 	
τBHSBH
AH

	+ 	
τHISHI
AH

	+ 			ρHg sin θ;	 = 0 5.46 

 
 
The density of the layer 1 is the density of the gas phase as only the gas phase is 

flowing in this layer. Thus, the in-situ density for each of the layers are given as: 

 
 
ρ@ =	ρ& 5.47 

 
ρB =	ρ'(1 −	CB	) +	ρ;CB 5.48 

 
ρH =	ρ'(1 −	CH	) +	ρ;CH 5.49 

 
 
 
The wetted perimeters required for the solution of the stratified flow momentum 

equations are not only dependent on the height of the stationary bed h0 and the 

height of the suspension-moving bed interface h@, but is also dependent on the 

height of the gas-liquid interface hB. The functions required to compute the wetted 

perimeters derived from the wellbore geometry can be expressed as: 

 
 
 
 
 

S@B =	dB sin kcos?@ \
dB − 	2hB

dB
]l −	d@ sin kcos?@ \

d@ −	2(hB −	dh)	
d@

]l 5.50 

 

SBH =	dB sin kcos?@ \
dB − 	2h@

dB
]l −	d@ sin kcos?@ \

d@ −	2(h@ −	dh)	
d@

]l 5.51 

 

 

SHI =	dB sin kcos?@ \
dB − 	2h0

dB
]l −	d@ sin kcos?@ \

d@ −	2(h0 −	dh)	
d@

]l 5.52 

 

 

 

S@; =	πd@ − 	d@ cos?@ \
d@ −	2(hB −	dh)	

d@
] 5.53 
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S@Q =	πdB − 	dB cos?@ \
dB − 	2hB

dB
] 5.54 

 
 
 

SHQ =	dB cos?@ \
dB − 	2h@

dB
] −	SIQ 5.55 

 
 
 

SIQ =	dB cos?@ \
dB − 	2h0

dB
] 5.56 

 
 
 

SH; =	d@ cos?@ \
d@ −	2(h@ −	dh)	

d@
] −	SI; 5.57 

 
 
 

SI; =	d@ cos?@ \
d@ −	2(h0 −	dh)	

d@
] 5.58 

 
 
 
 
SBQ = 	πdB −	S@Q −	SHQ −	SIQ 5.59 

 
 
 
SB; = 	πd@ −	S@; −	SH; −	SI; 5.60 

 
 
 
 
The cross-sectional area of each of the layers can be computed using a similar 

approach to that which was used in the dispersed bubble flow pattern. The 

functions required for determining the area of the layers may be expressed as: 

 

A@ =	A2 −	pX@(hB) +	XB(hB) +	XH(hB)q 5.61 

 
 
A0 =	X@(h0) +	XB(h0) +	XH(h0) 5.62 

 
 
AH =	pX@(h@) +	XB(h@) +	XH(h@)q −	A0 5.63 
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AB =	A2 −	A@ −	AH −	A0 5.64 

 

The wall and interfacial shear stresses in the mathematical models can be 

determined respectively from the following equations: 

 

 

τE =	
fEρEVEB

2
 5.65 

 

 

τEp =	
fEρEpVE −	Vpq

B

2
 

5.66 

 

where subscripts i and j indicate the position of the layers in the annulus. 

 

 

5.2.3 Slug flow  

The cutting transport modelling for the slug flow pattern is relatively more complex 

than that of the other flow patterns. This is because there is not only the formation 

of several vertical layers due to the disparities in the cutting transport mechanism, 

but also two separate regions in the axial direction, where the phase configuration 

and the fluid shearing forces differ significantly.  As explained in detail in Chapter 

4, a fully developed slug unit is composed of the axial movement of a slug body 

accompanied by a liquid-film/gas pocket region. In the slug unit, if the drilling fluid 

annuli velocity in the slug body is below the minimum transport velocity required 

to keep the cuttings mobile, this would lead to the formation of a stationary 

cuttings bed and the flow of the oncoming liquid-film/gas pocket region over the 

stationary bed. The process of slug flow on its own in a conduit possesses a 

complex hydrodynamic behaviour making predictions difficult due to its unsteady 

nature and the fluid forces or conservation of momentum in the slug body differs 

to that which exists in the liquid-film/gas pocket region. The fluid configuration of 

a fully developed slug flow containing cuttings with formation of the different 

cutting transport mechanisms can be observed from the Figure 5.5. 
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Figure 5.5:A fully developed slug flow with different cutting transport mechanisms in an 
inclined wellbore annulus 

 

 
 
The material balance of the cutting gas and fluid phase in the entire fully 

developed slug unit may be expressed as:   

 
 
Cuttings phase: 

 

ρ+	C@A@V@L( 		+ 			ρ+CBABVBL( 		+ 		ρ+C'1	A1Z<Qh V'1	H'1 	∂L'1

'7'

F

	= 		 ρ+C+A2V6L3 5.67 

 

 
 
Drilling fluid phase: 

 
 
ρ(	(1 − 	C@)A@V@L( 		+ 		ρ(	(1 − 	CB)ABVBL( 		+	 
 

ρ'	(1 − 	C'1)	A1Z<Qh V'1	H'1 	∂L'1

'7'

F

	+ 		ρ&	A1Z<Qh V&1	(1 − 	H'1)	∂L'1

'7'

F

		

= 	 ρ6	(1 −	C+)A2V6L3 
 

5.68 
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Slug body region: 

The mass and momentum balance equations in the slug body region of the fully 

developed slug unit are similar to that of the dispersed bubble flow. In the slug 

body region, the cuttings can be both or either in suspension or mobile as a moving 

bed. The momentum equations for the suspension and moving-bed layer may be 

expressed as:  

 
 
 

Suspension layer: 

 

−
dP
∂L](

+	
τ@QS@Q
A@

+	
τ@;S@;
A@

−	
τ@BS@B
A@

+	ρ@g sin θ;	 = 0 5.69 

 
 
 
 
Moving bed layer: 

 

−
dP
∂L](

+	
τBQSBQ
AB

+	
τB;SB;
AB

	+ 	
τ@BS@B
AB

+	
τBHSBH
AB

	+ 			ρBg sin θ;	 = 0 5.70 

 
 
 
 
The mixture density for each of the layers are given as: 
 
 
ρ@ =	ρ((1 −	C@	) +	ρ;C@ 5.71 

 
 
ρB =	ρ((1 −	C@	) +	+	ρ;CB 5.72 

 
 
 
The parameters and procedures for the solution of the equations here are the 

same as that required for the dispersed bubble flow pattern. However, the fluid 

density in the slug body ρ( is obtained as a function of the liquid hold up in the 

slug body H'( and not the input or no-slip liquid hold.   

 
 
 
ρ( =	ρ'H'( +	ρ&(1 −	H'(	) 5.73 
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Liquid-film/gas pocket region: 

The faster flowing slug body moving behind the slower liquid film overruns and 

picks up the liquid in the liquid film and accelerates it to the slug velocity. The 

acceleration of the liquid film is accompanied with a change in the height of the 

liquid film, the liquid hold-up, the velocity of the liquid film and the interfacial and 

wall shear stresses in the axial direction of the flow. The cuttings flowing in the 

liquid-film/gas pocket region are only located in the liquid film due to density 

differences, so the cuttings benefit from the acceleration of the liquid film, keeping 

them in suspension. Figure 5.6 shows the geometric configuration of the liquid 

film/gas pocket region which contains the gas layer on top, a liquid region with 

cuttings suspension and stationary bed. 

 

 

 

The liquid film hydrodynamics analysis in the translational velocity co-ordinate 

system permits the respective expression of the conservation of momentum 

equations for the gas pocket and the liquid film in the drilling annulus as: 

 

 

Figure 5.6:Schematic diagram of the mathematical model for liquid film/gas pocket region 
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Layer 1: Gas pocket 

 

−
∂P
∂L
+	ρ&v&1

∂v&1
∂L

+	
τ@QS@Q
A&1

+	
τ@;S@;
A&1

+	
τ@BS@B
A&1

+	ρ&g sin θ;	 − 	ρ&g cos θ;	
∂h'1
∂L

= 0 5.74 

 

 

Layer 2: Liquid film and drilled cuttings  

 

−
∂P
∂L
+	ρ'1+v'1

∂v'1
∂L

	+		
τBQSBQ
A'1

	+ 		
τB;SB;
A'1

	− 		
τ@BS@B
A'1

	+ 			
τBHSBH
A'1

	 

 

														+		ρ'1+g sin θ;	 − 	ρ'1+g cos θ;	
∂h'1
∂L

= 0 
 

5.75 

 

 

 

The relative velocities of the liquid film and gas are given as: 

 

v'1 = V8 − V'1	 and  v&1 = V8 − V&1 5.76 

 

ρ'1+, is the mixture density of the liquid and the cuttings in the liquid film, given 

as:  

 
 
ρ'1+ =	ρ'(1 −	C'1	) +		ρ+C'1 5.77 

 
 

 
 
 
Substituting Equation 5.74 into Equation 5.75 to eliminate the pressure gradient 

term and applying similar methods detailed in Chapter 4 for a fully developed slug 

flow, yields an ordinary differential equation for the change in the liquid film height 

in the axial direction. 

 

 



 
 

187 

∂h'1
∂L

= 	
	τBQSBQA'1

+	
τB;SB;
A'1

−	τ@QS@QA&1
−
τ@;S@;
A&1

+ τBHSBHA'1
−	τ@BS@B i

1
A'1

+ 1
A&1

j +	(ρ'1+ −	ρ&)g sin θ;	

ρ&v&1
(V8 −	V&()(1 − 	H'()

(1 − 	H'1)B
	∂HLf∂hLf

	− 		ρ'1+v'1
(V8 −	V'()H'(

H'1B
	∂HLf∂hLf

	+ 	(ρ'1+ −	ρ&)g cos θ;	
 

5.78 

 

 

 

 

∂H!"
∂h!"

	= 	2

()d24
2
−	*12 (2hb −	d2)-

2

.

1
2%

− )d14
2
− *12 (2hb −	d2 +	2de)-

2

.

1
2%

/

Aflow
 

5.79 

 

 

 

 
Equation 5.78 has to be integrated numerically and iteratively following the 

procedures explained in Section 4.5.4 for slug flow to yield the length of the liquid 

film with the solution for the simultaneous flow of cuttings and gas-liquid fluids 

flow with a slug flow pattern. Before starting the numerical integration, the 

boundary condition is obtained by first solving the Equation 5.80 to obtain h'1F, 

where h'1(L = 0) = 	h'1F corresponds to v'1(L = 0) = V8 − V'( 

 

 

 

 

f(h'1F) = 	H'( −
X1(h'1F) 	+ 	X2(h'1F) 	+ 	X3(h'1F) −	A0

A1Z<Q
 5.80 

 
 
 
 
Once the mass balance is satisfied the integration (Equation 4.104) is stopped 

yielding the length of the liquid film in the liquid-film/gas pocket region L1. The 

total annuli pressure drop experienced by the flow can be obtained from the global 

force and momentum balance across the entire slug unit. The global pressure drop 

across a slug unit can is written as the summation of the pressure drop in the slug 

body region and the pressure drop in the liquid film region. The average density 
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of the fluids in the liquid-film/gas pocket region can be determined from the 

flowing equation: 

 

ρ'1R =
	ρ'1+
L'1

h H'1 	∂L'1

'7'

F

+	
ρ&
L1
h (1 −	H'1	) 	∂L'1

'7'

F

 5.81 

 

 

The total annuli pressure drop across a slug unit can be obtained from the global 

force and momentum balance across the given slug unit. The global pressure drop 

across a slug unit can be written as the summation of the pressure drop in the 

slug body region and the pressure drop in the liquid film region yielding: 

  

∆P3 =		
dP
∂L](

L( +		ρ'1Rg sin θ;	 L'1 	

+ 	h
τBQSBQ +	τB;SB; + τ@QS@Q + τ@;S@; +	τBHSBH

A2 −	A0

'7'

F

	dL 
5.82 

 
 
 

The velocity of the moving bed region, VP$ for all the flow patterns may be 

obtained by considering the forces acting on the cuttings in the wellbore. To 

initiate cutting movement, the forces moving the cuttings must be equal to or 

greater than the forces resisting its movement (F% +	F' 	≥ 	 F& −	F$). From the force 

balance analysis, the velocity of the moving bed VP$ may be expressed as (Cho, 

et al., 2002): 

 

 

VP$ =	
É0.13g	

(ρ+ 		− 	ρ1) k
d60
d+

C60 sin βl a1 + 1.73 tan θ;	d sin β

ρ1[0.165C% + 	0.098C']
	 

 

5.83 

 

 

where d60 and C60, represent the diameter and cutting concentration of the 

moving bed layer respectively.  
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The wall and drillpipe shear stresses for both Newtonian and non-Newtonian fluid 

flow should be obtained from the knowledge of the friction geometry parameter 

of the annuli (Equation 4.68 to 4.76). The Interfacial friction factors may be 

determined from the following equations: 

 
 
 
 
 
Gas-liquid interface:   
 
 
1
�fE

= 			3.48 − 4 log Z
γ(VE −	VEG@)BfE

gD#E
+	

9.35
ReE�fE

[ 

 
γ = 0.1 − 0.5 

5.84 

 
 
 

 

 

Suspension-moving bed interface:  

 

1
�2fE

=		−0.86 ln ±

d;
D#E
3.7

+	
2.51

ReE�2fE
² 

 

5.85 

 

 

 

 

Moving bed-stationary bed interface: 

 

fE =			
0.046
ReEF.B

		 

 

5.86 
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The hydraulic diameters and Reynolds number for each of the layers formed in 

the annuli can be determined from the following equations: 

 

 

 
Layer1: 

 

D#@ =	
4A@

S@Q +	S@; +	S@B	
				Re@ =	

ρ@V@D#@
µ@

 

 

5.87 

 

 

 

Layer2: 

 

D#B =	
4AB

SBQ +	SB; +	SBH	
				ReB =	

ρBVBD#B
µB

 

 
 
 
 
 

5.88 

Layer3: 

 

D#H =	
4AH

SHQ +	SHI +	SH;	
				ReB =	

ρHVHD#H
µH

 

 
 

5.89 
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5.3 Chapter summary 

The current multi-layered cutting transport models presented in literature for two-

phase gas-liquid fluid flow applications considers the cutting transport mechanism 

but ignores transient gas-liquid fluid flow patterns. The ability of a two-phase 

drilling fluid to transport cuttings effectively during drilling operations is largely 

dependent on the fluid flow pattern and the prevailing cutting transport 

mechanism. The fluid flow pattern has to be adequately taken into consideration 

when evaluating the cuttings transport efficiency in order to avoid large prediction 

errors. In this chapter, the forces responsible for the movement of particles were 

analysed and the concept of the minimum transport velocity was applied to 

develop mathematical models to predicts the criteria required to transport the 

cuttings in the different particle transport mechanisms (Equation 5.12 to 5.15). 

New mathematical gas-liquid fluid flow pattern dependent multi-layered models 

were developed and presented for the different cuttings transport mechanisms in 

the bubble, dispersed bubble, stratified and slug gas-liquid flow patterns for the 

first time (Section 5.2).These models are valid for both Newtonian and non- 

Newtonian fluids and any level of pipe eccentricity.  

This provides a new and reliable method that can be implemented to evaluate 

cuttings transport efficiency and perform wellbore hydraulics calculations for UBD 

operations.    
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Numerical CFD methodology 
 
The technique of computational fluid dynamics CFD was applied to perform 

transient simulations of single-phase and multiphase fluid flow in a concentric and 

eccentric annulus with or without inner pipe rotation.  For an incompressible 

isothermal flow of a fluids whose effective viscosity is highly dependent on the strain 

rate tensor, the modelling of the fluid flow can be described using the continuity 

equations of mass and momentum. In other to obtain the velocity and pressure fields 

in the domain, a mathematical Finite-Volume approach was employed by dividing the 

flow domain into several control volumes and applying the conservation principles of 

mass and momentum to the cells of each control volume by numerically integrating 

the governing conservation equations across the faces bounding the control volume. 

For the simulation of multiphase (gas-liquid flows), the one fluid approach where 

a single set of equations for the entire flow domain is solved and the differences 

in the material properties of the different fluids and the interfacial phenomena is 

accounted for. The interface between the fluids was tracked by representing the 

boundaries between the fluids by marker points and constructed using a marker 

function onto a fixed grid. The methods of using marker points to represent the 

interface between the fluids is generally referred to as the front-tracking method. 

The standard way to integrate the governing momentum equations is by applying 

the projection method. This is done by obtaining a temporal velocity field that is 

non divergence-free and correcting the velocities by finding the pressure that 

ensures that the velocity fields are divergence-free. The governing momentum 

equation excluding other forces can be expressed as: 

 

 
∂𝐮
∂t
	+		∇. 𝐮𝐮 = −	

1
ρ
∇P	 +		

µ
ρ
∇B𝐮	 + 	𝐠 6.1 

 

 

Assuming that the flow is incompressible, the density of each fluid particle remains 

constant as the fluid particle moves with the flow hence the conservation of mass 

equation for the flow is expressed as follows: 
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Dρ
Dt
	= 	

∂ρ
∂t
		+ 			𝐮	. ∇ρ		 = 		0	 6.2 

 

 

∇. 𝐮 = 	0 6.3 

 

 

The integration in time of the Equation 6.1 using the projection method involves 

the splitting of the process into two major steps. In the first step which is referred 

to as the predictor step, a temporal velocity field 𝐮* is computed without the 

consideration of the pressure fields with the following equation:   

 

 

𝐮* −	𝐮!

∆t
	= 	−	∇. 𝐮!𝐮! 		+ 		

µ
ρ!
∇B𝐮! 		+ 		𝐠 6.4 

 

 

𝐮! is the velocity at the current time step. 

 

In the second step - the projection step, the correct velocity fields at the next time 

step 𝐮!G@ is obtained by including the pressure gradient. However, the required 

pressure gradient has to obtained in a manner that ensures that the corrected 

velocities are divergence-free. The projection equation may be expressed as: 

 

 

𝐮!G@ −	𝐮*

∆t
	= 	−

1
ρ!
∇P!G@	 6.5 

 

 

The addition of the Equation 6.4 and 6.5 yields a numerical approximation to the 

Equation 6.1, where the change in the velocity with time has been approximated 

using a method of first-order accuracy. The pressure gradient has no equation and 

has to be determined through an iterative approach. To ensure that the pressure 

obtained makes the final velocity divergence free at the end of a next time step, 

the divergence of the Equation 6.5 is taken and expressed as:    
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∇. 𝐮!G@ −	∇. 𝐮*

∆t
	= ∇. \−

1
ρ!
∇P!G@]	 6.6 

 

  

 

From the conservation of mass Equation 6.3, the final velocity at the next time 

step should be in such a way that 

 

∇. 𝐮!G@ = 	0 6.7 

 

 

Substituting the equation 6.7 into the Equation 6.6 yields the pressure gradient 

that can be used to project the final velocity at the next time 𝐮!G@ as: 

 

 

	∇. \
1
ρ!
∇P!G@] = 	

	∇. 𝐮*

∆t
		 6.8 

 

 

In this study a MATLAB code was developed to perform transient simulations of 

single-phase and multiphase Newtonian and non-Newtonian fluid flow through a 

concentric and eccentric annulus and to numerically investigate the effect of 

combined effect of the inner pipe rotation and eccentricity on the flow dynamics 

and wellbore hydraulics.  

 

 

6.1 Discretisation of governing equations  

This section presents the discretisation of the Equations 6.4 to 6.8 for a concentric 

and eccentric annular geometry with the aim of obtaining the pressure and velocity 

fields in the annuli while considering the combined effect of inner pipe rotation 

and eccentricity. The annuli geometry is divided into several small control volumes 

and the with the application of the Gauss-divergence theorem, the governing 

equations are integrated in time and space across the faces of a control volume 

to obtain general discretised equations that can be applied to all the control 

volumes existing within the flow domain. However, separate or special treatments 
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are required at the boundaries or walls of the domain where the inlet and boundary 

conditions are specified.   

 

6.1.1 Concentric annuli e = 0 

The Navier-Stokes equation for flow through the concentric annulus was 

discretized using the cylindrical coordinate system. One of the major problems 

involved in the design of numerical methods for the solution of the Navier-Stokes 

equation is the development of an appropriate discrete form of the 

incompressibility constraint. In order to avoid numerical instabilities, a numerical 

scheme that preserves the global conservation of mass, momentum and energy 

has to be developed. The numerical scheme developed in this study is based 

fundamentally on the projection method. This method basically involves the 

breakup of the partial differential in time of the velocity field into two halves where 

one part is driven by advection and diffusion and the other by the differential 

pressure. A structured and staggered mesh was used to obtain the numerical 

solution for the flow through the concentric annulus where all the spatial 

derivatives for the pressure, velocity and density fields are approximated on a 

staggered grid system. In the staggered grid system, the density and other 

material properties are stored at the pressure nodes while the velocities are stored 

at locations usually shifted by half of the grid size. The main advantage of using 

the staggered grid system is that it prevents the appearance of unphysical 

behaviors referred to as checkerboard solutions.  The control volumes are 

designed in such a way that the axial direction is referred to as the k-direction and 

Figure 6.1 Control volume in cylindrical coordinates 
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the radial and angular directions are referred to as the i and j directions 

respectively (Figure 6.1). 

Figure 6.2 shows an example of a three-dimensional control volume in the 

cylindrical coordinate system where the pressure and other material properties of 

the fluid is allocated to the center of the control volume and the velocities are 

assumed to exist at the boundaries of the control volume. The conservation of 

mass and momentum equations for fluid flow in the cylindrical coordinates may 

be expressed as: 

 

 
 
1
r
∂(rv,)
∂r

+	
1
r
∂(v-)
∂θ

+	
∂(v.)
∂z

= 0 6.9 

 
 
 
 
 

r:		ρ V
∂v,
∂t

+	v,
∂v,
∂r

+	
v-
r
∂v,
∂θ

−	
v-
B

r
+	v.

∂v,
∂z
Y 

 
 

= 	ρg, −	
∂P
∂r
	+ 		µ Z

1
r
∂
∂r \

r
∂v,
∂r ]

	+	
1
rB
∂Bv,
∂θB

	+ 		
∂Bv,
∂zB

	− 	
v,
rB
−	

2
rB
∂v-
∂θ

[ 

 

6.10 

 

 

 

θ:			ρ \
∂v-
∂t

+	v,
∂v-
∂r

+	
v-
r
∂v-
∂θ

+	
v,v-
r

+	v.
∂v-
∂z ]

 
 
 

= 	ρg- −	
1
r
∂P
∂θ
	+ 	µ Z	

1
r
∂
∂r \

r
∂v-
∂r ]

	+		
1
rB
∂Bv-
∂θB

	+ 	
∂Bv-
∂zB

	+ 		
2
rB
∂v,
∂θ

		−	
v-
rB
[ 

 

6.11 
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z:			ρ \
∂v.
∂t

+	v,
∂v.
∂r

+	
v-
r
∂v.
∂θ

	+	v.
∂v.
∂z ]

 
 
 

= 	ρg.	 −	
∂P
∂z
	+ 	µ Z	

1
r
∂
∂r \

r
∂v.
∂r ]

		+		
1
rB
∂Bv.
∂θB

		+ 			
∂Bv.
∂zB

	[ 

 

6.12 

 

 
Figure 6.2:Control volume showing the location of the pressure and velocity fields in    
cylindrical coordinates 

 

 

Figure 6.2 shows the positions where the velocity components and the pressure 

points are located.  The red points denote the pressure points at the center of 

each control volume while the green, blue and yellow points, represented by the 

symbols w, u and v denote the positions where the axial, radial and tangential 

velocities (u., u,, u-)	are located respectively.  

 

The divergence of a velocity field 𝐮 which is a measure of the rate at which the 

field diverges can be measured by considering the flux out of an enclosed surface. 

Where 𝐧 is the outward normal on the faces or boundaries of the volume V =

	rdrdθdz, approximating the Equation 6.7 by performing an integration over the 

edges of the control volume in the Figure 6.2 yields: 
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iu,	E,p,�
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rE∆r
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iu-	E,p,�
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r( =	
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2
(rE +	rE?@) 6.17 
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          Figure 6.4:Control volume staggered by half a mesh in the angular direction 
 
 
In the staggered grid mesh, separate control volumes are defined for the axial, 

tangential and radial components of the velocity. The axial velocity control volume 

is displaced by half a mesh in the axial direction while the control volumes for the 

Figure 6.3: Control volume staggered by half a mesh in the axial direction 
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tangential and radial velocities are displaced by half a mesh in the tangential and 

radial directions respectively.  

 

 

 

Figure 6.3 to 6.5 shows an example of the staggered grid system where the control 

volumes are staggered axial by half a mesh in the all the directions. The blue line 

represents the boundaries of the main control volume while the red line represents 

the boundaries of the staggered control volume in the axial, radial or tangential 

direction.  

 

 

Equations 6.4 and 6.5 are integrated across the faces of the staggered control 

volumes in order to obtain an approximation of the velocity fields in the annuli 

domain. The integration of the Equation 6.5 across the faces of each of the 

staggered control volumes yields the equations for the correction velocities that 

are required at the faces of the pressure control volume as shown in Figure 6.2. 

The equations for the radial, tangential and axial correction velocities may be 

expressed as:     

  

 
 

Figure 6.5:Control volume staggered by half a mesh in the radial direction 
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u,	E,p,�
!G@ =	u,	* E,p,� 		+ 			

∆t
ρ,@

	Z
pPEG@,p,�	rEG@ −		PE,p,�	rEq	
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	[ 6.18 
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u�	E,p,�
!G@ =	u.	* E,p,� 		+ 			

∆t
ρ.@

	
pPE,p,�G@ 	− 		PE,p,�	q	
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u�	E,p,�?@
!G@ =	u.	* E,p,�?@ 			+ 			

∆t
ρ.B

	
p		PE,p,� 	− 	PE,p,�?@	q	

∆z
 6.23 

 
 

The pressure in the Equations 6.18 to 6.23 has to be determined in such a way 

that the incompressibility constraint induced by the Equation 6.14 is satisfied. 

There is no equation for the pressure, so the pressure is determined using an 

iterative technique which is the most computationally expensive part of 

simulations regarding incompressible fluid flows. The pressure equation can be 

derived by substituting Equations 6.18 to 6.23 into the Equation 6.15 to obtain 

the pressure located in the centre of a control volume: 
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The local fluid densities in the centre of the staggered control volumes where the 

velocities are located is required in order to apply the Equations 6.14 to 6.20. 

since the fluid densities are not defined at location, the fluid density can be 

obtained using a linear interpolation of the densities located in the centre of the 

unstaggered or pressure control volume as: 

 
 

ρ.@ =	
1
2
pρ	E,p,�G@! +	ρ	E,p,�! q 6.26 

 
 

ρ.B =	
1
2
pρ	E,p,�! +	ρ	E,p,�?@! q 6.27 
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ρ-B =	
1
2
pρ	E,p,�! +	ρ	E,p?@,�! q 6.29 

 
 

ρ,@ =	
1
2
pρ	EG@,p,�! +	ρ	E,p,�! q 6.30 

 
 

ρ,B =	
1
2
pρ	E,p,�! +	ρ	E?@,p,�! q 6.31 

 
 
 
In order to improve the computational times for the iterative pressure solver the 

successive over relaxation SOR method was applied by taking a weighted average 

between the pressures obtained from the previous iteration P∝?@E,p,� and the 

pressure obtained from the current iteration P∝E,p,� to calculate the update pressure 

in the control volume yielding the following equation: 

 
 
 
P∝G@E,p,� =	∋; P∝E,p,� 			+ 			 p1 −	∋;qP∝?@E,p,� 6.32 

 

The term ∋; is referred to as the relaxation parameter. This parameter has to be 

chosen carefully to establish a compromise between an accelerated convergence 

and stability. The range of the relaxation parameter used in this study was 1.2-

1.5. 

 
 
The diffusion and advection term in the Navier-Stokes equation (Equation 6.10 to 

6.12) can be discretised in a similar manner by integrating the terms over the 

faces bounding the control volume. The numerical approximation to the advection 

term denoted by A and the diffusion term denoted by D can be obtained using the 

Gauss-divergence theorem by converting the volume integral into a surface 

integral where the contribution of each of the faces bounding the control volume 

are summed up. The axial, tangential and radial advection and diffusion equations 

were derived as follows: 
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where  	r!G@ =	 r! +	∆r	
 
 
 
 
 
 
 
6.1.2 Eccentric annuli e > 0 

In the eccentric annular geometry, a different approach was developed to solve 

the governing fluid flow equations due to the non-orthogonality of the generated 

mesh. If a structured grid is used to mesh the eccentric annuli geometry and one 

of the faces of the control volumes located near the boundaries is aligned to the 

walls of the domain, the radial position of the centroids and vertex nodes of the 

control volumes changes in the angular and radial direction of the domain. From 

Figure 6.6, where x = r cos θ and y = r sin θ, the point  rE,p,� ≠	 rEG@,p,� and rE,pG@,� ≠

	rEG@,pG@,� since the radial position of these nodes are functions of their angular 

position. Thus, the volume of a cell in the domain bounded by these points cannot 

be determined from the equation V = 	rdrdθdz and the equations discretised for the 

concentric annuli in cylindrical coordinates cannot be applied directly to obtain 

solutions in the eccentric annuli.  
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       Figure 6.6:x-y plane of the control volumes for a structured mesh in the annuli 

 

In order to obtain solutions for the governing equations in the eccentric annuli 

structured mesh, the cartesian velocity system was used where the axial 

tangential and radial components of the outward unit normal vector 𝐧 are non-

zero on majority of the faces bounding the control volumes. Since the control 

volumes are comprised of a set of discrete planar faces, the volume of each of the 

cells can be determined by performing a surface integral over the discrete faces 

using the following equations: 
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1
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	h z dA 
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In order to mitigate the numerical precision errors when determining the volume 

of a cell regardless of the shape or orientation, it is customary to take an average 

of the volumes obtained using the three components of the outward unit normal 

summed over the faces of the control volume. Thus, the volume of a cell in the 

domain may be expressed as:   
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1k@
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1k@

	𝑧1	A1� 6.47 

 
 
 
Where x1, y1 and z1 are the coordinates of the centroid of the faces of the control 

volume   

 
The collocated grid method was applied towards the discretisation of the governing 

equations for the eccentric annuli. In the method, unlike the staggered grid 

method, all the components of the velocity and the material properties of the flow 

are located at every node in the annuli domain. However, in order to avoid errors 

or instabilities due to checkerboard oscillations, a technique referred to as 

momentum interpolation is applied at the faces of control volumes in the domain.  

The solution of the Naiver-Stokes equation involves three major procedures in 

which are the calculation of a temporal velocity field, obtaining of the pressure 

fields using an iterative technique and the velocity correction step.    

 
The temporal velocity field is obtained from the Equation 6.4 as  

 
𝐮* 	= 	𝐮! +	∆t k−	∇. 𝐮!𝐮! 		+ 		

µ
ρ!
∇B𝐮! 		+ 		𝐠l 6.48 

 
 

While the pressure fields are obtained from the conservation of mass equation by 

performing an integration over the faces of the control volume and substituting 

the Equation 6.50 into the equation 6.49. 
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𝐮1 	= 𝐮1* 	−
∆t
ρ1
! ∇P!G@	 6.50 

 
 
 
The temporal velocities at the face centroid of a cell is obtained by interpolating 

between the cell centroid values and the neighbouring cell that share the face 

using the Equation 6.51. 

 
𝐮1* 	= 	𝐮*E	w1 +	(1 −	w1)𝐮*u+	 6.51 

 
where w1, is the cell to face interpolation function  

 
Each of the terms in the governing equations are integrated using the Gauss-

divergence theorem expressed by the following equations: 
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Even though this method has been described to be developed for fluid flow 

simulations in the eccentric annuli, it can also be applied directly for the fluid flow 

simulations in the concentric annuli. For non-Newtonian fluid flow simulations in 

the concentric and eccentric annuli, the viscosity of the fluid is not a constant and 

varies across the annuli domain as a function of local shear rate of the fluid. To 

account for the rheology of the non-Newtonian fluid, the viscosity of the fluid at 
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every cell or face in the flow domain is calculated according to the Equations 4.40 

and 4.46. 

 

The approximation of the spatial derivatives was second-order accurate and in 

order to keep the simulations stable, time-step limitations are required as a result 

of the algorithm being explicit. The criteria employed to ensure that the diffusion 

is large enough to keep the advection stable requires the step size ∆t, is bounded 

by the following relationship: 

 

∆t	 ≤ 	
2µ

ρ(𝐮. 𝐮)
 6.54 

 

A second-order time integration scheme was implemented by obtaining two first 

order time steps and taking the average between the current and the previous 

results to improve the accuracy and stability of the simulations. Thus, the fluid 

properties and velocities in the flow domain were obtained using a second order 

forward in time integration.  Assuming a function h exists in the flow domain, the 

time integration of h is given as: 

 

h∗ = h! 	+ 	∆t \
dh
dt]

!

 6.55 
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V\
dh
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+	\
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dt]

∗

Y 6.56 

 
 
 
 
6.2 Geometry and mesh generation  

A mesh generation algorithm was developed to map the annuli geometry as a 

function of the distance between the midpoint of the inner pipe and the outer pipe 

wall and the angular position. The coordinates of the grid points in the structured 

mesh within the domain of the annuli can be defined by the following functions: 
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rE,p,� = (rB −	r@)e cospθE,p,�q + ¬rBB − i(rB −	r@)e sinpθE,p,�qj
B
	 6.57 

 

 

xE,p,� = rE,p,� cospθE,p,�q 6.58 

 

yE,p,� = rE,p,� sinpθE,p,�q 6.59 

 

 
zE,p,� = dz(k − 1) 6.60 

 
 
 
 

 

 

 
 
 

 

Figure 6.7: Concentric and eccentric annuli geometry and mesh for fluid flow simulations   

 
 

Concentric, e = 0 
 

Eccentric, e = 0.7 
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The size of the inner and outer pipe diameter is 0.088m and 0.144m respectively. 

Adequate boundary conditions are required at the walls of the annuli to ensure 

that the simulations produce accurate and stable results. Dirichlet boundary 

conditions are applied to the inlet face and inner and outer walls of the geometry 

while Neumann boundary conditions are applied to the exit or outflow face of the 

geometry. The nodes that are located on the red face (left face) of the geometry 

are set to be equal to the inlet velocity while the on nodes that are located on the 

outflow face (right face), the condition ∇𝐮 = 0 is satisfied. Due to the no-slip effect 

on the walls, the axial, radial and tangential velocities at the walls are set to zero. 

In conditions where the inner pipe is rotating, the tangential velocity on the walls 

of the inner pipe is set according to the equation V- = 	ωr. However, the tangential 

velocity on the outer pipe is set equal to zero. Separate equations are however 

needed for the cells close to the boundaries of the domain in order to enforce of 

the boundary conditions and satisfy the governing equations.   

These equations were obtained using the same procedures outlined in the previous 

sections.  

 

6.2.1 Mesh independence study  

A mesh independence test was carried out to ensure that the numerical solution 

obtained was independent of the resolution of the mesh (Figure 6.8).  

 

 
                               Figure 6.8: Mesh independence test 
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This was done by monitoring the average velocity at the outlet face of the domain 

while ensuring convergence criteria is met. The simulation was run with an initial 

mesh size until a convergence of residual error of 10-4 is reached. The average 

velocity at the outlet face is obtained and the simulation is run again after the 

mesh has been refined. After the residual error of 10-4 is attained, the average 

velocity obtained is compared to that of the previous simulation. This procedure 

is repeated until the difference between the values are within a minimum tolerance 

of about 1%. Figure 6.8 presents the results of the mesh independence tests 

carried out for different pipe eccentricities.  

 

6.3 Single-phase flow simulations  

The results of the simulation of single-phase Newtonian and non-Newtonian fluid 

flow in the concentric and eccentric annuli are presented and analysed in this 

section. The rheological parameters used to characterise the non-Newtonian fluids 

is presented in Table 6.1.  

 

Table 6.1:Rheological parameters of the different fluid types 

Fluid type Rheology ∈, Pasn n 𝛕∈, Pa 

A Powerlaw 0.094 0.62 0 
B Herschel Bulkerly 0.154 0.75 0.55 
C Herschel Bulkerly 0.643 0.44 1.5 
D Newtonian 0.0054 1 0 

 
 

The velocity fields were extracted from certain positions in the axial direction of 

the flow domain. The distribution of the velocity fields across the annuli geometry 

is shown in the Figures 6.9 – 6.14. Figures 6.9 and 6.10 show the velocity fields 

for the Newtonian and non-Newtonian fluid in the concentric annuli respectively. 

When the flow is fully developed, the tangential velocity introduced by the inner 

pipe rotation had no influence on the distribution of the velocity in the concentric 

annuli for both the Newtonian and non-Newtonian fluids. However, for the non-

Newtonian fluid, the rotation of the inner pipe had a little but insignificant effect 

on the velocity fields. The inner pipe rotation when the flow is fully developed, led 

to a slight reduction in the axial pressure gradient in the concentric annulus for 

the non-Newtonian fluid. For a fully developed Newtonian fluid flow in the 



 
 

215 

concentric annuli, no significant influence on the axial pressure gradient was 

observed. 

 

 
Figure 6.9:Velocity fields in the concentric annulus (Q = 12m0/h	, ∈	= 0.0054	, n	 = 1	, τ∈ =
0)      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10:Velocity fields in the concentric annulus (Q = 7m0/h	, ∈	= 0.094	, n	 = 0.62	, τ∈ =
0) 
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The distribution of the velocity fields in the eccentric annulus is highly dependent 

on the degree of eccentricity of the annuli geometry. It can be seen from Figures 

6.11 - 6.13 that as the eccentricity increases, the velocity in the bottom region of 

the annuli reduces significantly. This reduction in the flow in the bottom region of 

the annuli increases the tendency for cuttings to settle and form a stationary bed 

during drilling activities. While the rotation of the inner pipe has no significant 

effect on the velocity fields for a fully developed Newtonian fluid flow in the 

eccentric annuli, the inner pipe rotation influences that of the non-Newtonian fluids 

and redistributes the velocity fields thereby improving the fluid velocity at the 

bottom region of the annuli (Figure 6.14). The reason for this is that the viscosity 

of the non-Newtonian fluid reduces with the effect of rotation due to its shear 

thinning properties. The distribution of the velocity fields is also highly dependent 

on the rheological properties of the fluid. The fluids that possess a yield stress 

tends to form a different shape with more areas in the annuli having a relatively 

higher velocity than that of power law fluids (Figure 6.13).    

 

 

 
Figure 6.11:Velocity fields in the eccentric annulus, e = 0.3 (Q = 7m0/h	, ∈	= 0.094	, n	 =
0.62	, τ∈ = 0) 
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Figure 6.12:Velocity fields in the eccentric annulus, e = 0.7 (Q = 7m0/h	, ∈	= 0.094	, n	 =
0.62	, τ∈ = 0) 
 

 
 
 
 

 
Figure 6.13:Velocity fields in the eccentric annulus, e = 0.7 (Q = 7m0/h	, ∈	= 0.643	, n	 =
0.44	, τ∈ = 1.5) 
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Figure 6.14:Improvement in fluid velocity in the bottom region of the eccentric annuli 
with inner pipe rotation 

 
 
 
 

 
             Figure 6.15:Tangential velocity field in the concentric annuli (e = 0, rpm =150) 
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           Figure 6.16:Tangential velocity field in the eccentric annuli (e = 0.7, rpm = 150) 

 
          Figure 6.17: Fluid viscosity field in the eccentric annuli (e = 0, rpm = 0) 
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                      Figure 6.18:Fluid viscosity in eccentric annuli (e = 0, rpm =150) 

 
 
 
 
 
 
The Tangential velocity produced due to the inner pipe rotation is seen to be 

maximum at the inner pipe wall and reduces in the radial direction in the annuli 

(Figure 6.15 and 6.16). Thus, the shear rate of the fluid is dependent on its local 

position in the annuli. The viscosity of the non-Newtonian fluid being shear 

dependent is highly dependent on the eccentricity of the inner pipe and the 

rotation speed of the inner pipe. Figures 6.17 and 6.18 shows that the when the 

inner pipe is rotated, the viscosity of the fluid reduces significantly with the 

viscosity of the fluid close to the inner pipe and the bottom region of the annuli 

showing a larger viscosity reduction that the other areas in the eccentric annuli. 

Thus, this is the reason why the inner pipe rotation redistributes the fluid velocity 

and improves the flow in the bottom region of the eccentric annuli.  

 
The axial pressure gradient was also seen to reduce with an increase in the inner 

pipe rotation in the eccentric annuli for a fully developed flow. This leads to the 

conclusion that under the flow conditions numerically investigated, when the flow 

rate of the fluid is held constant and the flow is fully developed, the axial pressure 

gradient decreases with inner pipe rotation. Table 6.2 presents the summary of 
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the results of the simulations carried out to investigate the effect of eccentricity 

and inner pipe rotation of the hydraulics of non-Newtonian fluid flow for an annular 

geometry with the inner and outer pipe diameter of 0.04m and 0.08m 

respectively. 

 
 
 
 
 
 
            Table 6.2:Results of numerical simulation for the different fluid types 

Fluid 
type  

Wellbore 
Eccentricity, E 

Drillpipe 
speed, Rpm 

Flowrate, 
m3/h 

Pressure 
gradient Pa/m 

A  

0 0 3 140.98 
0 60 3 139.55 
0 80 3 138.63 
0 120 3 136.44 

B 

0 0 7 803.29 
0 60 7 801.63 
0 80 7 800.47 
0 120 7 797.50 

A 

0.7 0 3 84.69 
0.7 60 3 83.67 
0.7 80 3 83.14 
0.7 120 3 81.96 
0.7 0 7 143.83 
0.7 60 7 142.72 
0.7 80 7 142.46 
0.7 120 7 141.84 

B 

0.7 0 7 479.49 
0.7 60 7 477.53 
0.7 80 7 476.59 
0.7 120 7 474.48 
0.7 0 3 279.12 
0.7 60 3 274.64 
0.7 80 3 272.67 
0.7 120 3 268.59 

C 

0 0 7 409.36 
0 60 7 369.20 
0 90 7 348.23 
0 150 7 318.03 

0.5 0 9 336.23 
0.5 60 9 315.45 
0.5 120 9 289.43 
0.7 0 7 260.05 
0.7 60 7 242.34 
0.7 90 7 231.04 
0.7 150 7 213.45 
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6.4 Two phase flow   

In this study, the main aim of the numerical simulation of two-phase (gas-liquid) 

fluid flow in the concentric and eccentric annuli is to investigate the combined 

effect of inner pipe rotation and eccentricity on the prevailing flow pattern for both 

Newtonian and non-Newtonian fluids. For the multiphase flow simulations using 

the one-fluid approach, when the governing equations are solved at every cell in 

the domain, the interface between different fluids is identified and tracked by a 

marker function. The front tracking method was applied to move the interface 

between the fluids and reconstruct the density of the fluids based on the location 

of the interface. In the one-fluid approach, a single-set of the governing equations 

are solved for the entire flow domain and the differences between the material 

properties of the fluids are accounted for. The boundary or interface of the fluids 

is represented by delta (δ) functions that are discretised and approximated along 

with the Navier-Stokes equations for fluid flow. The phases in the annuli are 

represented by a step function C which is equal to 1 in the cells where the liquid 

phase is located, equal to 0 where the gas phase is located and equal to a nonzero 

value of the gradient of the step function at the interface between the fluids.  

 
 
 
6.4.1 Fluid density field  

For gas-liquid flow through the concentric and eccentric annuli domain, the density 

of the fluid at every cell in the domain may be obtained from the following 

equation:   

 
 
 
ρ1(x, y, z) = ρ'C(x, y, z) +	ρ&(	1 − 	C(x, y, z)	)		 6.61 

 
The gradient of the density field can then be obtained from: 

 
 
∇ρ1 = ρ'∇C −	ρ&∇C = 	 (ρ' −	ρ&)	∇C = 	∆ρ1∇C	 6.62 

 
 
∇ρ1 =	∆ρ1δ(n)𝐧	 6.63 
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In order to transfer the quantity from the front element to the grid points, it is 

required that the transferred gradient is conserved. While the gradient of the 

density on the front element is expressed as a gradient per unit area, the gradient 

of the density in the cells is expressed as the gradient per unit volume. The 

discrete form of the gradient of the density at the cell centres in the flow domain 

may be obtained using the following equations: 

 
 

h∇ρ1

.

i�

	∂V = h∆ρ1δ(n)𝐧	
.

i7

∂s	 6.64 

 
 
 
 

(∇ρ1)E,p,� =¹∆ρ1

.

Z

𝐧	wE,p,� 	
∆sZ
VE
	 6.65 

 
 
The term ∆sZ represents the area of the front element at the interface of the fluids 

and wE,p,� is the weight that is used to determine the actual value of the gradient 

shared between the neighbouring cells. Other similar quantities such a surface 

tension that exist at the interface between the fluids can be added to the grid from 

the front using this same approach. It is required that the total number of the 

weights used must sum up to unity:  

 
 

¹wE,p,�

.

E

= 1 6.66 

 
 

 

6.4.2 Interface tracking  

The front that represents the interface between the fluids is moved with the flow 

by determining the velocity of the fluids at the local position where the front 

element exists with the domain. After the Navier-Stokes equation has been solved 

and the velocity fields have been obtained the interface or marker point velocities 

are obtained by interpolation from the grid points that surrounding the location 
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where each of the front elements are enclosed within the flow domain (Figure 

6.19).  

 
 

 
Figure 6.19:Interpretation of the location of the centroid of a front element within a fixed 
grid 

 

Considering Figure 6.19, if the grid points surrounding the front is known, the 

velocity of the front 𝐮1(x1, y1, z1) can be determined from the following equations: 

 

 

 
𝐮1 = 𝐮E,p,�wE,p,� 	+ 		𝐮EG@,p,�wEG@,p,� 	+ 		𝐮E,p,�G@wE,p,�G@ 	+ 	𝐮EG@,p,�G@wEG@,p,�G@ 
 
										+		𝐮E,pG@,�wE,pG@,� 	+ 		𝐮E,pG@,�G@wE,pG@,�G@ 	+ 		𝐮EG@,pG@,�wEG@,pG@,� 
 

+			𝐮EG@,pG@,�G@wEG@,pG@,�G@ 

6.67 

 
 
 
 
Here the weights are determined as volume fractions from the following 

equations: 
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wE,p,� =
pxEG@,p,� −	x1qpyE,pG@,� −	y1qpzE,p,�G@ −	z1q

∆x∆y∆z
 6.68 

 
 
 

wEG@,p,� =
p	x1 −	xE,p,�qpyE,pG@,� −	y1qpzE,p,�G@ −	z1q

∆x∆y∆z
 6.69 

 
 

wE,p,�G@ =
p	xEG@,p,� −	x1qpyE,pG@,� −	y1qp	z1 −	zE,p,�q

∆x∆y∆z
 6.70 

 
 
 

wEG@,p,�G@ =
p	x1 −	xE,p,�qpyE,pG@,� −	y1qp	z1 −	zE,p,�q

∆x∆y∆z
 6.71 

 
 

wE,pG@,� 	=
p	xEG@,p,� −	x1qp	y1 − yE,p,�qp	zE,p,�G@ −	z1q

∆x∆y∆z
 6.72 

 
 
 

wE,pG@,�G@ 	=
p	xEG@,p,� −	x1qp	y1 − yE,p,�qp	z1 −	zE,p,�q

∆x∆y∆z
 6.73 

 
 
 
 

wEG@,pG@,� 	=
p	x1 −	xE,p,�qp	y1 − yE,p,�qp	zE,p,�G@ −	z1q

∆x∆y∆z
 6.74 

 
 
 

wEG@,pG@,�G@ 	=
p	x1 −	xE,p,�qp	y1 − yE,p,�qp	z1 −	zE,p,�q

∆x∆y∆z
 6.75 
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After the velocity of the front has been calculated the new position of the interface 

at the next time step 𝐱1�G@ can be determined from its position at the current time 

step 𝐱1� using an explicit first-order integration in time: 

 

 

 x1!G@ 	= 		 x1! +	u1!∆t 6.76 

 
 
		y1!G@ 	= 		 y1! +	v1!∆t 6.77 

 
 
		z1!G@ 	= 		 z1! +	w1

!∆t 6.78 

 
 
 
Although there are other ways to determine the weights that are used for the 

smoothing of the front element unto the grid, the method derived here has been 

checked to be highly accurate and can be applied with confidence. In general, this 

concept does not just apply to solving for the density fields in a fixed grid for 

multiphase flow simulations. It can also be applied to solving for the volumetric 

fraction of the phases following the same procedures as described for the gradient 

of the density fields. The volumetric fraction in the cells where only liquid is 

present would be set equal to 1, the volumetric fraction in the cells where only 

gas is present would be set to 0 while the cells where the interface is present 

would receive a nonzero value obtained from the front element. 

 
 
 
 
A simple 2D simulation was developed for a pipe flow of single-phase water and 

two-phase air and water in the stratified flow pattern using the interface tracking 

mechanism. The marker function for the interface was modelled according to the 

Taitel and Dukler (1976) liquid height model for stratified gas-liquid flow 

(Equations 2.143 to 2.164). Figure 6.20 shows the transient tracking of the 

interface between the fluids through the pipe domain:     
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t = 0.5s 

 
 

 
 

t = 2.5s 

 
 

 
 

t = 3.5s 

Figure 6.20:Air-water stratified flow density field using the interface tracking method 

 
 
 

 
 

 
 

t = 2.0s 

 
 

 
 

t = 6.5s 

Figure 6.21:Air-water stratified flow velocity field using the interface tracking method 

 
 
 
 

 

   Figure 6.22:Velocity field for 2D single phase pipe flow simulation 
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It can be seen that while the velocity field has a symmetrical pattern in the pipe 

for the single-phase flow (Figure 6.22), the two-phase stratified flow results show 

that the velocity in the pipe is highly dependent on the flow pattern formed in a 

conduit. In the stratified flow pattern, the gas phase at the top flows faster than 

the liquid phase at the bottom due to the difference in fluid properties (Figure 

6.21). This sheds light on the reason why the velocity profile for single phase flow 

is not valid for performing cutting transport calculations for multiphase flow with 

the main reason being that the velocity distribution in the annuli is dependent on 

the prevailing flow pattern.  

 
 
 
6.4.3 Effect of rpm and eccentricity on flow pattern  
 
In order to investigate the effect of the inner pipe rotation and eccentricity on flow 

pattern dynamics, the marker function is first initialised based on theoretical 

modelling for two-phase flow through the annuli, then the interface is tracked in 

the flow at the proceeding time steps. The inner pipe speed used in this simulation 

varied from 0-150rpm and the inlet parameters were set based on the flow pattern 

being investigated.  

 

 
         Figure 6.23:Effect of drillpipe rotation on annular flow in the concentric annuli 
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        Figure 6.24: Effect of drillpipe rotation on annular flow in the eccentric annuli 

 
 
 

 
           Figure 6.25: Effect of drillpipe rotation on slug flow in the eccentric annuli 
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Under the range of inner pipe speeds investigated, the combined effect of inner 

pipe rotation and eccentricity influenced the phase distribution across the annuli 

domain. However, the rotation of the inner pipe did not alter the interface in a 

manner that will lead to a transition from one flow pattern to the other for both 

the Newtonian and non-Newtonian fluids. Some of the results showing the flow 

patterns are presented in Figures 6.23 - 6.25. The illustration shows that although 

the drillpipe rotation affects the flow pattern, the axial force is more dominant 

than the tangential force exerted on the flow hence the flow pattern transitions 

were not obtained for rotary speeds investigated (rpm <= 150). It is fair to 

conclude that the prevailing flow pattern for two-phase drilling fluid flow in a 

concentric and eccentric annulus with or without inner pipe rotation (rpm <= 150), 

is majorly dependent on the flowrates and properties of the drilling fluid. For the 

flow pattern transition to occur, the drillpipe speed would have to generate a force 

that dominates the axial force of the flow. However, it is important to note that in 

situations where the fluid properties are pressure/temperature dependent, the 

change in pressure gradient due to the inner pipe rotation can alter the fluid 

properties. This condition may alter the in-situ fluid flowrates at certain locations 

in the wellbore annuli which can lead to a transition from one flow pattern to the 

other.  

 

 
 
6.5 Validation of mathematical modelling  

For two-phase flow through the annuli, the distribution of the velocity fields like 

the single-phase flow is influenced by the degree of eccentricity of the annuli. For 

any flow pattern, the velocity of the fluids in the region with the reduced gap in 

the annuli will generally have a lower average velocity than the region with the 

increased gap. This is a factor that can largely affect the tendency of cuttings to 

be transported effectively with the drilling fluids out of the wellbore during drilling. 

Although inner pipe rotation can improve the velocity fields in the regions with low 

average velocities, for multiphase flow, this improvement is dependent on the flow 

pattern in the annuli. Generally, the impact of inner pipe rotation on the axial 

annuli velocity fields for single-phase flow is a lot more significant than that of 

two-phase. The reason for this is that some of the flow patterns that exist in two-

phase flow occur under highly turbulent conditions. Thus, the impact of the axial 
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force pushing the flow in the axial direction is a lot more dominant than the 

tangential force generated by the rotating inner pipe and like for single-phase 

flow, there is a maximum inner pipe rotation speed after which the influence of 

the tangential velocity on the axial flow becomes insignificant. Figures 6.21 and 

6.22 show that the velocity distribution for two-phase flow in conduit is flow 

pattern dependent so the impact of inner pipe rotation and eccentricity on the 

velocity fields and cutting transport must also be flow pattern dependent. In order 

to perform cutting transport simulations or theoretical calculations for two-phase 

flow conditions, it is required that the flow pattern is taken into consideration.  

 

The pressure gradient results obtained from the simulation for single-phase non-

Newtonian flow in concentric and eccentric annuli with or without the inner pipe 

rotation were compared to the pressure gradient values obtained using the 

theoretical model for friction factor derived in Chapter 4. Figures 6.26 and 6.27 

shows the comparison of the numerical and theoretical pressure gradient data 

obtained at several input flowrates for both the concentric and eccentric annulus 

with and without inner pipe rotation. 
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Figure 6.26:Comparison of the numerical and theoretical pressure gradient data 
(Fluid type A) 
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The input conditions for this simulation are as provided: Fluid flowrate ranged 

between 3m3/h to 10m3/h, inner pipe rotary speed varied from 0 to 150rpm and 

the eccentricity varied from 0 to 0.7. The comparison shows that the results 

obtained with both methods match closely, validating the theoretical model for 

determining the friction factor for the concentric and eccentric annuli with or 

without inner pipe rotation. Considering that the drillpipe rotation does not lead 

to a transition in the flow pattern under drilling conditions, the theoretical model 

can be used to determine the friction factor for the annuli when extensive 

numerical simulations cannot be performed. When the friction factor has been 

determined, the pressure gradient can be determined based on the flow pattern 

derived from the input conditions. However, when a detailed knowledge of the 

flow dynamics is required, the numerical CFD method should be applied.  

 
 
6.6 Chapter summary  

CFD simulations were performed for single-phase and two-phase fluid flow in the 

concentric and eccentric annuli to investigate the effect of the inner pipe rotation 

on the fluid dynamics and the resulting axial pressure gradient. The governing 
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Figure 6.27:Comparison of the numerical and theoretical pressure gradient data 

(Fluid type B) 
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equations for fluid flow were discretised using the finite volume method to obtain 

solutions for mesh grids in the cylindrical and cartesian coordinate systems. Mesh 

generation equations and algorithms were developed to enable the mapping of 

the concentric and eccentric annuli and presented in Equation 6.54 to 6.57. Two-

phase flow simulations were created using the one-fluid approach, when the 

governing equations are solved at every cell in the domain and the interface 

between the fluids is tracked by a marker function. Although the simulation results 

showed that the velocity, viscosity and pressure field distribution are influenced 

by the inner pipe rotation in the annuli, for the two-phase flow simulations, the 

inner pipe rotation of up to 150rpm did not generate enough force to cause a 

significant distortion that would signal a change in flow pattern. For this reason, 

the steady-state mathematical flow pattern dependent models can be used 

without considering the flow pattern transitions. The pressure gradient predicted 

from the friction factor models in section 4.2 to 4.4 were compared to that which 

was obtained from the numerical simulation of the flow of different fluid rheological 

characteristics (Figure 6.26 and 6.27) and maximum errors of about ±9% were 

seen. This chapter presented results that were used to validate the analytically 

developed models, as well as provide a new method in which the CFD simulations 

can be carried out for flow of Newtonian or non-Newtonian fluid flow through the 

concentric and eccentric annuli, with and without inner pipe rotation.    
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 Results and discussion 

The following sections present the detailed analysis of the results from the 

experimental study as well as the comparison of measured data to the data 

obtained from theoretical predictions.  

 

 

 

7.1 Effect of inner pipe rotation on flow pattern transitions  
The flow pattern existing in the annulus when operating with a multiphase drilling 

fluid is a major factor that influences the wellbore hydraulics during drilling. In 

order to predict the change in pressure through the wellbore annuli, it is important 

to have a knowledge of the possible gas-liquid flow patterns and be able to track 

these flow pattern transitions across the entire length of the wellbore. Gas-liquid 

fluid flow pattern transition boundaries have been established as a function of the 

fluid properties, flowrate or superficial velocities of the gas and liquid phases by 

previous researchers (Beggs and Brill, 1973; Taitel and Dukler, 1976; Barnea et 

al., 1980; Caetano et al.,1992; Petalas and Aziz, 2000; Ibarra et al., 2019 etc.). 

However, in a concentric or eccentric annulus, the impact of the drillpipe rotation 

on the flow pattern transitions needs to be investigated and defined, especially if 

the pressure gradient in a helical wellbore annulus is required. In this study, the 

effect of the inner pipe rotation on the flow pattern was investigated and details 

of the results are presented in this section. The flow patterns studied were set by 

adjusting the gas and liquid flowrate until the required flow pattern was achieved. 

After the flow was fully developed and the flow pattern was stabilised, the inner 

pipe speed was varied (0, 60, 90, 120 and 150 rpm) and the resulting impact on 

the gas-liquid fluid flow pattern behaviour was recorded. The Figures 7.1 to 7.3 

presents some of the images that capture the impact of the inner pipe rotation on 

the flow pattern transitions in both the horizontal and inclined annuli test sections.  
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:0 rpm 

 

 

 
 

:150 rpm 

 

       Figure 7.1:Bubble flow pattern in horizontal concentric annulus (Fluid type 2) 

 

 

 

 

 

:0 rpm 

 

 

 
 

:150 rpm 

 

     Figure 7.2:Stratified flow pattern in horizontal concentric annulus (Fluid type 2) 

 

 

The experimental results on the fluid flow pattern for all the fluid types showed 

that the inner pipe rotation had no significant influence on the flow pattern 

transitions in both the concentric and eccentric annuli. Once the flow pattern is 

stabilised, the inner pipe rotation of up to 150 rpm did not cause a transition from 

one fluid flow pattern to the other.  In the stratified flow pattern, the inner pipe 

rotation transformed the flow from having a smooth interface, to a wavy like 

interface (Figure 7.2). However, this phenomenon was not independent of the air-

Gas bubbles 

Gas phase Liquid phase 
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water input flowrates. For the inner pipe rotation to cause a transition in the fluid 

flow pattern, the forces generated by the rotary motion in the azimuthal direction 

has to overcome the pressure forces driving the flow in the axial direction. This 

claim is also backed by the results obtained from the numerical CFD simulation of 

the effect of drillpipe rotation on two-phase flow pattern, where a transition of 

flow pattern did not occur despite the disturbance created. Thus, it can be 

concluded that at standard conditions the prevailing flow pattern in the drilling 

annuli is mainly a function of the gas and liquid input flowrates and when these 

flowrates are held constant, the drillpipe rotation speed has to be high enough to 

overcome the axial forces in order to change the fluid flow pattern.  

 

 

 

:0 rpm 

 

 

 
 

:150 rpm 

 

     Figure 7.3:Slug flow pattern in inclined eccentric annulus (E = 0.7, Fluid type 4) 

 

It is important to note that even though the drillpipe rotation has a little or no 

impact on the flow pattern transitions at standard conditions, it can impact the 

flow pattern for the drilling hydraulics standpoint. The drillpipe rotation has been 

reported to have a significant effect on the pressure gradient especially in the 

eccentric annuli. In a wellbore operating with multiphase drilling fluids or under 

underbalanced drilling conditions where hydrocarbons (gas and oil) may flow into 

the wellbore, the liquid phase may contain dissolved gas. As pressures and 

temperatures change, mass transfer occurs continuously between the gas and the 
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liquid phases and the in-situ flowrates of the gas and liquid changes. Thus, if the 

combined effect of drillpipe rotation and eccentricity influences the annuli pressure 

gradient, the flow pattern downstream the drilling bit can be influenced 

significantly as this phenomenon is dependent on the in-situ flowrates of the gas 

and liquid phases. However, when the local pressure and temperature in the 

wellbore has determined the prevailing fluid properties, fluid flowrates and the 

corresponding flow pattern, the drillpipe rotation cannot transform the flow 

pattern. This means that in order to perform wellbore hydraulic calculations it is 

important to simultaneously apply PVT analysis to determine the fluid properties, 

in-situ gas and liquid flowrates and the resulting flow pattern in the annuli.  

 

 

 

7.2 Effect of inner pipe rotation on annuli pressure drop   

The experimental data of the differential pressure in the concentric and eccentric 

annuli, with and without inner pipe rotation was obtained and compared to the 

theoretical models developed and detailed in the previous chapters. This section 

presents the analysis of the effect of inner pipe rotation on the annuli pressure 

gradient for the single-phase and two-phase gas-liquid Newtonian and non-

Newtonian fluids.  

 

 

 

 

7.2.1 Annuli pressure gradient  

The results obtained from measuring the pressure difference across the concentric 

annuli test sections have been analysed based on the fluid type and the existing 

flow pattern in the annuli. For all the fluid types and flow patterns investigated in 

the concentric annuli at the different inclination angles, the inner pipe rotation had 

an insignificant effect on the pressure gradient. Figures 7.4 to 7.7 displays some 

of the flow pattern dependent results obtained from the experimental 

investigation.  

 



 
 

238 

 
Figure 7.4:Effect of inner pipe rotation on the pressure drop in the horizontal concentric 
annulus (Water) 

 

The pressure gradient measurement for the slug flow pattern at specific input 

liquid and gas flowrate was relatively more challenging than the other flow 

patterns due to its high turbulent and intermittent nature. The slug flow pattern 

occurs over a wide range of gas to liquid flowrates and is one of the most likely 

encountered flow patterns for two-phase fluid flows in annuli. The pressure 

gradient for the slug flow pattern is not constant due to its complex phase 

distribution and intermittent nature, making it more difficult to measure the effect 

of the inner pipe rotation on the annuli pressure gradient.  
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Figure 7.5:Effect of inner pipe rotation on the pressure drop in the horizontal concentric 
annulus(Water and air, stratified flow pattern) 

 

 
Figure 7.6:Effect of inner pipe rotation on the pressure drop in the 30o inclined 
concentric annulus (Water) 
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Figure 7.7:Effect of inner pipe rotation on the pressure drop in the 30o inclined 
concentric annulus (Polymer (0.1% XG) and air, slug flow pattern) 

 

 

 

In order to minimise the inaccuracy occasioned by the intermittent nature of the 

flow, the annuli pressure gradient was obtained by flowing the fluids in the flow 

loop for a specific period of about 3-5 mins and obtaining the average pressure 

difference measured within the flowing time. Figure 7.7 shows the effect of the 

inner pipe rotation on the slug flow pattern in the concentric and inclined annulus 

test sections. Despite the intermittent nature of the slug flow, there is no 

conclusive evidence that the inner pipe rotation has a significant effect on the 

pressure gradient in the horizontal or inclined concentric annulus under the 

conditions investigated. The pressure gradient predicted using the developed 

models in this study was tested against the experimental data obtained for the 

single phase, bubble, stratified and slug flow pattern. Figure 7.8 to Figure 7.10 

shows the mathematical model performance for the total pressure gradient 

prediction in the concentric annulus with or without inner pipe rotation.  
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              Figure 7.8:Model performance for annuli differential pressure (Water) 

 

 
           Figure 7.9:Model performance for annuli differential pressure (0.5% XG and air) 
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        Figure 7.10:Model performance for annuli differential pressure (0.1% XG and air) 

 
 
 
 
 
Statistical analysis show that the mathematical model has a very good agreement 

with the experimental results. The average of how large the errors are, is about 

3.8% with a low standard deviation value. The mathematical model for the single-

phase flow was found to be slightly more accurate than the two-phase flow models 

when compared to the experimental data. However, the bubble flow and stratified 

flow models closely matched the experimental results when compared to the slug 

flow model. This is due to the highly turbulent, intermittent and unsteady nature 

of the slug flow pattern which increases its degree of unpredictability. However, 

the errors margin for the prediction of the total pressure gradient in the concentric 

annulus, with and without the inner pipe rotation for all the flow patterns is about 

±23%.   
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7.2.2 Liquid film length  

The annuli pressure gradient for the slug flow pattern is dependent on the length 

of the liquid film. Under the conditions investigated it was observed that the liquid 

film length is dependent on the orientation of the annuli sections. In the horizontal 

flow, the liquid film length is longer than that of the inclined flow for the same 

input air-liquid flowrates (Figure 7.11 and Error! Reference source not found.). 

This is due to the gravitational force acting on the liquid in the liquid film region 

of the slug unit. The average liquid film length predicted by the mathematical 

model for slug flow was compared to that measured in the experiments, showing 

good agreement.  

 
 
 
 
 
 

     Figure 7.11:Liquid film length in the horizontal concentric annulus (air and water) 
 
 
 
 
 
 
 
The performance of the slug flow model in predicting the liquid film length is 

presented in Figure 7.13. This was obtained by conducting 20 tests with different 

air-liquid flowrates for the slug flow pattern, comparing the observed liquid film 

lengths and the measured pressure gradients to the liquid film length and the 

corresponding pressure gradients that has been predicted by the mathematical 

model. The average film length was obtained from the experimental runs and the 

average pressure difference in the annuli sections was noted. The prediction of 

the film length and the pressure gradient for the slug flow when compared to the 

experimental results shows good agreement.  
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   Figure 7.12:Liquid film length in the 30o inclined concentric annulus (air and water) 

 
 
 
 
 
 
 

 

              Figure 7.13:Model performance for length of the liquid film in the annuli 
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7.3 Cuttings transport  

One of the major requirements for a cost effective and productive wellbore drilling 

operation is having an effective cuttings transport system to optimise the hole 

cleaning operation. In this study a number of drilling parameters that influences 

the hole cleaning operation have been investigated in order to shed light on the 

effect of these parameters on both conventional and underbalanced drilling 

operations and also to validate the theoretically developed cutting transport 

models. Even though the major concern in hole cleaning is to establish the 

optimum drilling fluid flowrate that ensures an effective cuttings transport 

programme as a function of the major drilling parameters, for underbalanced 

drilling operations, this study shows that the gas-liquid fluid flow pattern is a major 

factor that influences the cuttings transport mechanism in the annuli and that 

there is a direct correlation between the flow pattern and cutting transport 

efficiency. The following sections presents detailed analysis of some of the drilling 

parameters that impact cuttings transport and how these parameters could be 

systematically used to optimise the hole cleaning during drilling activities.  

 
 
7.3.1 Effect of Fluid Flowrate 

The fluid circulation rate must be high enough to ensure that the particles are 

transported above the minimum transport velocity required to at least slide or 

drag the particles along the bottom of the annuli. However, for a multiphase fluid 

flow, this circulation rate is highly dependent on the fluid flow pattern. Several 

experiments showed that while certain gas-liquid mixture flowrates were 

favourable for particle transport in a given fluid flow pattern, other fluid flow 

patterns needed additional flowrate requirements to clean the annuli. In many 

cases an increase in the gas flowrate through the system led to an increase in the 

requirement to transport the particles effectively even though the mixture flowrate 

of the fluid is increased. Unlike single-phase flow the increase in the flowrate for 

two-phase flow mixtures does not always lead to a corresponding increase in the 

particle transport rate as this is dependent on the in-situ flowrate of each of the 

phases in the flow and the prevailing flow pattern. For instance, in the Figure 7.14 

the single-phase fluid flowing at a flowrate of about 30m3/hr had the cuttings 

sliding along the bottom of the annuli creating the moving bed transport 

mechanism, but the two-phase fluids formed a stationary bed at relatively higher 
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mixture flowrates. The stratified and slug flow patterns formed a stationary bed 

in the annuli at mixture flowrates of about 35m3/hr and 42m3/hr respectively. 

Thus, for UBD operations, the flow pattern must be considered along with the gas-

liquid flowrates in other to optimise hole cleaning. However, it should be noted 

that the type of the flow pattern formed in the annuli is also a function of the gas-

liquid in-situ flowrates. 
 
 

 

(a) Single-phase flow, Q = 30m3/hr 
 

 

(b) Stratified flow, Qm = 35m3/hr 

 

(c) Slug flow, Qm = 42m3/hr 
 
                     Qm = QL + QG 

Figure 7.14:Cutting transport mechanism in different fluid flow patterns and gas-liquid    
flowrates 

 
 
Generally, the experimental tests showed that unlike the single-phase fluid flow, 

the minimum transport velocity for the gas-liquid two-phase fluid flows are 

significantly dependent on the gas-liquid fluid flow pattern along with the other 

important parameters that influence the particle transport efficiency. If the fluid 

velocity falls below the critical or minimum transport velocity required to roll, drag 

or slide the particles at the bottom of the annuli, the particles would settle and 

form a stationary bed at the bottom of the annuli. The stationary bed height 

increases, which decreases the area of flow available for the fluids and oncoming 

particles, thereby leading to an increase in the fluid’s average velocity until the 

point is reached at which the minimum transport velocity required to keep the 

oncoming particles moving is attained. At this point the oncoming particles are 

transported above the stationary bed as a moving bed with some particles in 

suspension depending on the properties of the particles. Thus, the annuli pressure 

losses experienced by the flow of two-phase fluids with particles are not only 

dependent on the fluid flow pattern, but also dependent on the particle transport 

mechanism and different from that experienced by the flow of the fluids without 

the particles.  

 

Flow direction 
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Figure 7.15:Annuli differential pressure at different mixture velocities for two-phase air-
liquid flows with and without particles 

 
 
The pressure loss data obtained from some experimental tests of two-phase air-

liquid flow with and without particles in the 30o inclined annuli is presented in the 

Figure 7.15. The annuli pressure losses for the fluid flow with cuttings was 

observed to be significantly higher that without cuttings and dependent on the 

prevailing particle transport mechanism. At low mixture velocities or air-liquid 

flowrates where the flow is operating below the minimum transport velocity, a 

stationary bed is formed which significantly increases the pressure losses in the 

annuli for conditions with both the Newtonian and non-Newtonian liquids (Figure 

7.15). Increasing the fluid flowrate reduces the stationary bed height and 

eventually transforms the stationary bed to a moving bed or suspension 

mechanism which as a result leads to a decrease in the pressure losses in the 

annuli. The increase in the fluid flowrate to transport the cuttings influences the 

fluid flow pattern and produces a corresponding increase in the pressure losses in 

the annuli. Thus, the necessary analysis of the optimum fluid flowrate required to 

transport the cuttings and also control or maintain wellbore pressures is required 

especially for UBD operations.   
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7.3.2 Effect of eccentricity 

The average fluid velocity required to transport the particles and prevent the 

formation of a stationary bed at the bottom of the annuli, increases with an 

increase in the eccentricity of the inner pipe. Thus, the fluid flow requirement 

necessary to clean the eccentric annuli is higher than that required for the 

concentric annuli for flows involving both the single-phase and two-phase fluids 

with particles. In some experimental tests under fluid flowing conditions were no 

bed or a moving bed was formed in the concentric annulus, either a moving bed 

or a stationary bed was formed in the eccentric annulus. However, the effect of 

the eccentricity on the particle transport was a lot more significant for the two-

phase air-liquid fluids than that of the single-phase fluids. The average fluid 

velocity required to prevent the formation of a stationary bed when the particles 

are flowing with the single-phase and two-phase fluids were measured from 

experimental tests and compared in Figure 7.16 for the concentric (e=0), and 

eccentric (e=0.7) annuli. The minimum transport velocity MTV required to keep 

the particles at least rolling at the bottom wall of the annuli, increases with 

eccentricity.  
 
 
 
 

 
            Figure 7.16:Effect of pipe eccentricity on the minimum transport velocity 
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7.3.3 Effect of fluid rheology  

The fluid rheology has a significant influence on the transport efficiency of the 

particles in the concentric and eccentric annuli for fluid flow involving both the 

single-phase and two-phase fluids. The experimental tests showed that for all the 

fluid flow patterns investigated, the use of the fluids with the higher viscosity for 

the single-phase flow or mixture viscosity for the two-phase flow were more 

effective for the particle transport and the prevention of the formation of a 

stationary bed in the annuli. However, when a stationary bed is already formed in 

the annuli, the fluids with the lighter viscosity or the two-phase fluids are more 

effective in clearing or reducing the stationary bed thickness.   

 

 

 

(a) 

 

(b) 

Figure 7.17:Two-phase dispersed bubble flow pattern for the different fluid and particle 
mixtures at the same air-liquid flowrates. a) moving bed mechanism in air-water 
mixtures and (b) suspension mechanism in air-polymer mixtures 

 

 

Generally, the minimum transport velocity required to prevent the settling of the 

solid particles entrained in the fluid decreases with an increase in the fluid viscosity 

for both the single-phase and two-phase Newtonian and non-Newtonian fluids, 

irrespective of the fluid flow pattern. However, several studies have reported that 

there is a threshold after which a further increase in the fluid viscosity can lead to 

a corresponding increase in the minimum transport velocity (Penden, et al., 1990).  

Figure 7.17 displays the comparison of the particle transport mechanism for the 

two-phase flow of air and water to that of the air and XG polymer mixtures at the 

Flow direction 
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same air-liquid flowrates with the dispersed bubble flow pattern. Due to the higher 

mixture viscosity of the air and XG polymer mixtures, the particles are transported 

predominantly in suspension while a moving bed mechanism is formed for the air 

and water mixtures. The properties of the liquid phase are more important than 

that of the gas phase for particle transport and in two-phase flow conditions were 

the stratified and slug flow patterns exists in the annuli, the particles are generally 

transported in the liquid phase.   

 

 

 

7.3.4 Effect of cuttings properties (density and size)  
 
The density of the particles was more influential than the particle size for all the 

experimental tests performed using both the single phase and two-phase fluids. 

The magnitude of the gravitational or resistance force to the movement of the 

particles are largely dependent on the density and size of the particles and in order 

to ensure effective transport, the fluid would have to generate a sufficient drag, 

lift and buoyancy force to overcome the resistance forces acting on the particles 

in the annuli. The higher the density of the particles, the higher the resistance 

forces and thus, the higher the minimum requirements to ensure an effective 

transport.  Thus, the single-phase fluids are more likely to present lower transport 

requirements than the two-phase gas-liquid fluids due to the lower mixture 

density of the later. Tests involving the two-phase gas-liquid fluid flow with 

particles also showed that effect of the properties of the particles are highly 

dependent on the gas-liquid fluid flow pattern in the annuli. For instance, if the 

stratified flow exists in the annuli, the liquid properties and velocity would have to 

be sufficient enough to prevent the formation of a stationary bed. However, for 

the slug flow pattern, the fluid mixture properties and velocity must be sufficient 

to generate the required forces to prevent the formation of a stationary bed. 
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Figure 7.18:Minimum transport velocity versus the annuli inclination angle for different 
particle properties 

 

Figure 7.18 shows the results of experimental tests performed to measure the 

minimum transport velocity to ensure the movement of particles with different 

densities and size ranges. It was observed that the MTV required to transport the 

heavier particles were significantly higher than that required for the lighter 

particles even though the size ranges of the heavier particles were much less than 

the lighter particles. However, if the density of all the particles are the same, the 

influence of the particle sizes on the MTV becomes a lot more significant. Figure 

7.19 shows the phenomenon whereby the lighter red particles with a density of 

950Kg/m3 and a size range of 3.5-4.0mm are being transported in suspension 

while the heavier blue particles with a density of 1500Kg/m3 and a size range of 

2.20-2.40mm is being transported as a moving or stationary bed. This shows that 

the effect of the density of the particles on the particle transport mechanism is 

more dominant than its size and as the heavier particles settle, they in some cases 

collapse and trap some of the lighter particles in the stationary bed.  
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(a) 

 

(b) 

 

(c) 

Figure 7.19:Effect of the particle properties on particle transport mechanism. (a) Single-
phase water with the red and blue particles, (b) two-phase water and air with the red 
particles (b) two-phase water and air with the blue particles 

 
 
7.3.5 Effect of wellbore inclination 

The particle movement in the annuli is highly dependent on the angle of inclination 

of the wellbore. However, the effect of the wellbore inclination angle on the 

transport of particles is dependent on the particle transport mechanism and not 

independent of the drilling fluid flow pattern. Unlike the single-phase flow, the flow 

configuration or fluid distribution of two-phase flow in the annuli is affected by the 

angle of inclination of the flow and in some cases if the gas-liquid flowrate is 

constant, an increase in pipe angle may change the fluid flow pattern from one 

form to another. This angle effect on the fluid distribution or flow pattern is an 

additional effect that influences the annuli hydraulics and particle transport 

efficiency for two-phase flow. Figure 7.20 shows an example of a scenario where 

gas flowrate of 24m3/hr and a liquid flowrate of 21m3/hr is passed simultaneously 

into a horizontal and 20o inclined annuli test sections thereby generating the slug 

flow pattern without the presence of particles. It can be seen that the gas-liquid 

distribution of the flow in the horizontal annuli differs significantly from that of the 

inclined annuli even though the slug flow pattern exists in both cases. 

Experimental tests showed that while the horizontal case had a longer liquid film 

Flow direction 
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length, the liquid film length decreased with an increase in the inclination angle 

and the local mixture properties of the fluid was also influenced by the inclination 

angle (Figure 7.20). The effect of gravity on the liquid phase is a lot more than 

that on the gas phase. Thus, depending on the wellbore inclination angle, this 

effect tends to influence the fluid distribution in the annuli which will thereby 

influence the forces that are responsible for the cutting’s movement.   

 

 

 

 

(a) Horizontal 

 

(b) 200 inclined 

Figure 7.20:Comparison of the fluid distribution and mixture properties of slug flow in 
the horizontal and inclined annuli test sections 

 

Figure 7.23 and Figure 7.24 presents some of the experimental results for the 

effect of the wellbore angle on the cuttings transport efficiency in the concentric 

and eccentric annuli. These results were obtained by introducing the particles of 

a given concentration into the flow and recording the flowrate at which the 

particles are rolling at the bottom of the annuli and just below which a stationary 

bed is formed in the annuli. The flowrate required to transport the particles in the 

rolling mechanism was found to increase with an increase in the inclination angle 

and the gradient of this increase was greater for the two-phase flow than that of 

the single-phase flow. An example of the particle transport mechanism for the 

slug flow pattern in the horizontal and inclined annuli sections is shown in the 

Figure 7.21. It was observed that at a certain air-liquid flowrate, the particles in 

the horizontal test sections were being transported predominantly as a moving 

bed at the bottom of the annuli while a relatively higher stationary bed is formed 

is formed at the bottom of the inclined annuli test sections and increased over 

time. 
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(a)  (b)  

Figure 7.21:Comparison of particle transport in the horizontal and inclined annuli for (a) 
Moving bed with slug flow pattern in the horizontal annulus (Fluid type 2) and (b) 
Stationary bed for the slug flow pattern in 30o inclined annulus (Fluid type 2) 

 

One of the main reasons for the formation of a stationary bed in the inclined 

annulus is the change in the local mixture properties of the fluid in the annulus 

which alters the forces acting on the particles. This makes it harder to transport 

cuttings in an upward inclined flow when the slug flow pattern is existing in the 

wellbore annuli. The flow requirement to achieve particle suspension in the annuli 

increased with an increase in the inclination angle for all the fluid types and flow 

patterns investigated. This was observed from experimental test where the fluid-

particle mixtures at a given particle concentration was introduced to the test 

sections at a constant fluid flowrate while the angle of inclination was varied.  

 

 

(a) 

 

(b) 

Figure 7.22: Change in cutting transport mechanism from suspension to a moving bed 
with increase in inclination angle from (a) 20o to (b) 30o 

Flow direction 
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Figure 7.22 shows one of the experimental tests where the suspension 

mechanism was observed predominantly in the 20o inclined annuli test 

sections in comparison to the moving bed mechanism that was observed when 

the inclination angle was increase to 30o. As the inclination angle was increased 

within the range of 0-30o, most of the particles fell towards the bottom of the 

annuli showing that it is harder to suspend the particles with increase in inclination 

angle. It was also noted that the effect of the inclination angle appeared to have 

more influence on particles in the two-phase flow mixtures than that of the single-

phase flow.   

 

 

 
Figure 7.23:Effect of inclination angle on the MTV for rolling in the concentric annuli 
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Figure 7.24:Effect of inclination angle on the MTV for rolling in the eccentric annuli 

   
 
 

7.3.6 Effect of fluid viscosity  

The effect of the fluid viscosity on the cutting’s movement has been analysed and 

presented graphically in the Figure 7.25. These tests were carried out using an 

annular fluid velocity of 0.82m/s. The increase in the viscosity of the fluid 

corresponds to a decrease in the size or height of the stationary bed formed at 

the bottom of the horizontal annuli sections. These analyses were only performed 

for the single-phase fluid types because for the two-phase fluid types, the 

stationary bed height is not only dependent on the angle of inclination of the pipe 

but also highly dependent on the fluid flow pattern. For different flow patterns, 

the local viscosity at the bottom of the annulus, where the particles are likely to 

settle, varies. However, in general, the higher the mixture viscosity of the two-

phase fluid at the low side of the annulus, the higher the tendency for the cuttings 

to clear from the wellbore. The tests showed that once a stationary bed has been 

formed, the lighter fluid or two-phase fluid mixtures is of a greater advantage than 

the heavier fluid towards the clearing of the stationary bed in the horizontal 

annulus. In the upward inclined annulus, the heavier fluid possesses the cleaning 

advantage.  
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         Figure 7.25:Effect of single-phase fluid viscosity on stationary bed thickness 

 
 
7.3.7 Effect of inner pipe rotation  

From the experimental study of the effect of inner pipe rotation on the movement 

of the particles, it was observed that the effect of the inner pipe rotation on the 

cuttings transport mechanism was dependent on the fluid, the flow pattern and 

the angle of inclination of the annulus. In the horizontal concentric annuli sections, 

the increase in the rotary speed of the inner pipe produced a little to no decrease 

in the height or area of the stationary bed for both the single-phase and two-

phase fluids. The height of the bed formed in the annulus was not reduced by the 

rotation of the inner pipe for all the investigated flow patterns in the horizontal 

concentric annuli test section (Figure 7.26).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

0.002

0.004

0.006

0.008

0.01

0.00 0.02 0.04 0.06

S
ta

tio
na

ry
 b

ed
 h

ei
gh

t,
 m

Effective viscosity, Pa-s

Fluid type 1

Fluid type 3

Fluid type 5



 
 

258 

 
Figure 7.26:Effect of inner pipe rotation on bed thickness in horizontal concentric annuli 

 
 
 

 
Figure 7.27:Effect of inner pipe rotation on bed thickness in 20o inclined concentric 
annuli 
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The effect of the inner pipe rotation on the particle transport for the flow of the 

different fluid types in the inclined annulus is shown in Figure 7.27. It was 

observed that while the inner pipe rotation had little or no influence on the area 

or thickness of the stationary bed formed in the inclined annuli test sections for 

the two-phase flow fluid types, for the single-phase fluids, the increase in the inner 

pipe rotary speed leads to a significant decrease in the thickness of the stationary 

bed. Figure 7.28 shows the effect of inner pipe rotation on the clearing of a 

stationary bed formed in the 20o inclined annulus test section flowing with a single-

phase fluid. It can be seen that with change in time, the transport mechanism of 

the particles was transformed from the stationary bed regime and the particles 

were transported in the suspension and moving bed mechanism.   

 
 
 

 

t = 2s 

 

t = 5s  

 

t = 9s 

 

t = 14s 

 
Figure 7.28: The effect of inner pipe rotation (150rpm) on a stationary bed formed in the 

20o inclined concentric annulus (water and particles) 
 

Flow direction 
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t = 3s 

 

t = 60s 

 
Figure 7.29:The effect of inner pipe rotation (150rpm) on a stationary bed formed in the 

inclined annulus (Fluid type 2 ) 
 
 
 
 
Figure 7.29 shows the effect of the inner pipe rotation on the particles in the two-

phase flow with the slug flow pattern in the inclined annulus. The increase in the 

inner pipe rotary speed had little or no significant influence on the size or thickness 

of the stationary bed formed in the annulus. The effect of the inner pipe rotation 

on the transport of the particles is a lot more significant in the eccentric annulus. 

However, the degree of the effect of rotation is highly dependent on the fluid 

rheology, fluid flow pattern and the angle of inclination of the annuli. For the 

horizontal eccentric annuli Figure 7.30, the height of the stationary bed reduced 

significantly with the increase in the rotary speed of the inner pipe. The particles 

in the single-phase flow responded a lot better to the inner pipe rotation than the 

particles in the two-phase flow and the fluids with the non-Newtonian rheology 

generally performed better than the Newtonian fluids especially for the single-

phase flows. The Figure 7.31 shows the impact of the inner pipe rotation on the 

particles in the inclined eccentric annuli. It can be seen that the impact of the 

inner pipe rotation is a lot more significant in terms of the reduction of the 

stationary bed for the single-phase fluids. However, for the two-phase fluids the 

stationary bed is just slightly reduced with the increase in inner pipe rotation. 

Flow direction 
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  Figure 7.30:Effect of inner pipe rotation on bed thickness in horizontal eccentric annuli 

 

 
Figure 7.31:Effect of inner pipe rotation on bed thickness in inclined eccentric annuli 
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7.4 Pressure gradient due to particle transport  

The annuli pressure gradient of fluid flow with entrained solid particles is 

significantly higher than the pressure gradient when no solid particles are 

transported in the flow. The prevailing cuttings transport mechanism and the 

properties of the particles and the fluid have a significant influence on the pressure 

gradient in the annuli. If the fluid flowrate generates an annuli average velocity 

that is below the minimum transport velocity required to keep the particles in 

suspension, the particle would fall to the bottom of the annuli and be transported 

as a moving bed. A stationary bed is formed if the average fluid velocity falls below 

the minimum transport velocity required for the particles to roll or slide at the 

bottom wall of the annuli.  

 

 

  

(a) (b) 
Figure 7.32:Real-time annuli differential pressure for (a) single-phase flow (water) and 
(b) two-phase slug flow (water and air) 

 
 
 
If a stationary bed exists in the annuli, the flow area is reduced, and the fluid is 

forced to flow in the reduced flow area above the bed. With the flowrate being 

constant, this leads to an increase in the average velocity of the fluid, increased 

wall and fluid to bed interfacial shear stresses and a corresponding increase in the 

annuli pressure gradient. Figure 7.32 shows the difference between the differential 

pressure measured when a stationary bed is present and when no bed is present 

in the annulus. It can be seen that the pressure transducer voltage outputs when 

a stationary bed is present in the annulus is significantly higher than that obtained 

when no stationary bed is present in the annulus. Even though the stationary bed 
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increases the annuli pressure gradient, the pressure gradient is still highly 

dependent on the fluid flow pattern and the existing particle transport mechanism 

in the annuli.  

 
 

 

 
(a)Single-phase flow, 
     stationary bed  
 

 

 
(b) Dispersed bubble flow, 
      moving bed  
 

 

(c) Stratified flow, 
     stationary bed 

 

(d) Slug flow horizontal, 
      stationary bed 

 
  Figure 7.33: Examples of different cutting transport mechanisms and fluid flow patterns 
 

 

The suspension, moving bed and the stationary bed particle transport mechanism 

can exist either individually or simultaneously in the annuli irrespective of the fluid 

flow pattern. However, the particle vertical concentration is highly dependent on 

the fluid flow pattern. Figure 7.33 shows some of examples of the fluid flow pattern 

and particle transport configuration experimental investigated in this study. The 

output of this study is to validate the cuttings transport models developed in 

chapter 5.  
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In the development of the multi-layered cutting transport model for the stratified 

and slug flow pattern, a theory was formulated based on the idea that the cuttings 

were only entrained in the liquid phase for the stratified flow and for the slug flow, 

the cuttings were only entrained in the liquid phase of the liquid film/gas pocket 

region and the slug body region of the entire slug unit. This proposed concept was 

validated by introducing particles into the two-phase annuli fluid flow under the 

slug flow pattern conditions and recording the collective movement of the particles 

in the flowing stream. 

 

 

 

 

t = 20s 

 

t = 60s 

 

t = 80s 

Figure 7.34: Particle transport dynamics with time in the slug flow pattern(Particle1: 3-
4mm, 950Kg/m3) 

 

 

Figure 7.34 validates the theory that at all times the particles are only traveling 

in the liquid phase of the liquid film/gas pocket region and the slug body and as 

shown in the figure, there is no particle entrained in the gas pocket due to 

significant density differences and the particles in the liquid film are accelerated 

with the liquid film to the slug body region. Figure 7.33c and Figure 7.33d also 

show that for the stratified and slug flow in the horizontal annuli, the particles are 

Gas pockets 
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only entrained in the liquid phase and the particle concentration in the gas 

phase/gas pocket region is zero.  

 

 

7.4.1 Cutting transport model validation 

The model predicted stationary bed height was compared to the measured 

stationary bed height data from the experimental tests involving the flow of single-

phase and two-phase fluids with solid particles in the annuli. and presents the 

results which show a good agreement between the predicted and measured 

stationary bed height with a maximum error of about ±16%. 

 
 

 
Figure 7.35:Stationary bed height model performance for the annuli flow of water and 
water and air 
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Figure 7.36:Stationary bed height model performance for the annuli flow of 
polymer(0.5% XG) and polymer and air 

 

The comparison of the pressure gradient obtained from the experimental tests and 

the pressure gradient calculated from the multi-layered cutting transport model 

for all the investigated flow patterns and the different particle transport 

mechanisms in both the concentric and eccentric annuli are presented in Figure 

7.37 to Figure 7.39  

 
Figure 7.37:Model performance for the annuli differential pressure with the particles in 
the suspension mechanism (Particle1: 3-4mm, 950Kg/m3) 
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Figure 7.38:Model performance for the annuli differential pressure with the particles in 
the suspension, moving bed and stationary bed mechanism(Particle3: 2.5-3.7mm, 
2100Kg/m3) 

 

 
Figure 7.39:Model performance of the total pressure gradient with the particles in the 
suspension and moving bed mechanism(Particle3: 1.25-1.65mm, 2000Kg/m3) 
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From the plots showing the comparison of the predicted pressure gradient to the 

measured pressure gradient it can be concluded that the experimental results 

validate the developed cutting transport multi-layered model. The maximum error 

margin is about ±22% with the results for the suspension mechanism showing 

the least error of about ±10% and a very low standard deviation.  
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Conclusions and recommendations 
 
 
8.1 Conclusions  

Effective cuttings transport and accurate drilling hydraulics prediction are issues 

of concern during drilling operations of horizontal, extended reach and multilateral 

wells. Unlike the conventional drilling approach, underbalanced drilling operations 

which allows the flow of multiphase fluids through the wellbore annuli adds more 

complexity to the system due to the highly transient nature, relatively 

unpredictable flow dynamics and the need for wellbore fluid control for bottom 

hole pressure management.  The flow of both Newtonian and non-Newtonian, 

single-phase and two-phase fluids with or without solid particles through the 

annuli have been studied theoretically, numerically and experimentally. This was 

done in order to investigate the effect of some of the major or important drilling 

parameters on the flow hydraulics and cuttings transport mechanism in horizontal 

and inclined concentric or eccentric wellbore annuli. For this purpose, an 

experimental unit was designed and constructed at RGU to perform extensive 

experiments and data acquisition for conditions at various particle concentrations, 

inner pipe rotary speed, different inclination angles and gas-liquid flowrates.  

Several mathematical models were developed to enable the accurate 

determination of the friction factor for both Newtonian and non-Newtonian flow in 

the concentric and eccentric annulus. Additionally, a numerical CFD technique was 

applied to discretise the governing equations of motion and obtain numerical data 

that was favourably compared to the theoretically developed friction factor model. 

New flow pattern dependent mechanistic models that can be applied to perform 

predictive wellbore hydraulics calculations were developed and new flow pattern 

dependent multi-layered cutting transport along with minimum transport velocity 

models were also developed and validated with experimental data. These models 

can be applied in the field for a wellbore of any level of eccentricity to determine 

the pressure gradient during drilling operations, evaluate cuttings transport 

performance, determine the stationary bed size and establish the required 

threshold that ensures that the wellbore is maintained at the optimum pressure 

and the drilled cuttings are transported effectively out of the wellbore. The 

following are the main conclusions drawn from this study: 
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1. The friction geometry parameter and consequent friction factor for the flow of 

non-Newtonian shear thinning fluids through the annuli is significantly 

dependent on the level of eccentricity, annuli pipe diameter ratio, the 

rheological properties of the fluid, inner pipe rotary speed and flowrate of the 

fluid. For this reason, the friction geometry parameter equations developed for 

Newtonian annuli flow cannot be used to determine the friction factor for 

drilling fluid flow in wellbores. A friction geometry parameter, equation 

validated with numerical and experimental data has been proposed in this 

study (Chapter 4) to determine the friction factor for generalised fluid flows in 

a concentric and eccentric annulus with and without drillpipe rotation.  

 

 

2. The use of numerical computational fluid dynamics CFD techniques to map the 

wellbore annuli and discretise the fundamental governing fluid flow equations 

was proved to be reliable. This approach was used in this study to obtain 

velocity fields in the concentric and eccentric annuli, investigate the effect of 

inner pipe rotation on the distribution of the velocity fields and the pressure 

gradient. The data obtained from the numerical study was compared to the 

theoretical study in other to validate the mathematical models, showing good 

agreement in a range of ±5%.  The CFD approach established in this study can 

be applied used to obtain detailed information of the flow fields in the 

concentric and eccentric annuli were experimental work is not feasible.  

 

3. The impact of the drillpipe rotation on the velocity fields in the annuli is 

dependent on the level of eccentricity of the wellbore. While there no significant 

influence of pipe rotation on the velocity fields in the concentric annuli, the 

rotation of the drillpipe in the eccentric annuli leads to a redistribution of the 

velocity fields and the improvement of flow in the region of relatively lower or 

no flow. Thus, the rotation of the drillpipe may be favourable for improving the 

flow in the bottom region of the wellbore annulus and thereby improving the 

cuttings transport efficiency while drilling.  
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4. When the flowrate is kept constant and the flow is fully developed, the increase 

in the drillpipe rotation has little or no impact on the pressure gradient for the 

flow of shear thinning non-Newtonian fluids in the concentric annulus. 

However, for the eccentric annulus, the increase in drillpipe rotation leads to a 

decrease in the pressure gradient and the rate at which this occurs is 

dependent on the rheological properties of the fluid. The effect of pipe rotation 

on the frictional pressure losses diminishes with an increase in the fluid 

flowrate and after a certain pipe rotation speed, the effect of the pipe rotation 

on the pressure gradient becomes negligible.  

 

 

 

5. Although the fluid flowrate is the most important parameter that influences the 

transport of cuttings in the annuli, unlike the conventional drilling operations, 

the optimum flowrate to ensure that the cuttings are effectively transported in 

the wellbore with underbalance drilling conditions is highly dependent on the 

prevailing flow pattern existing in the wellbore annuli. To ensure effective hole 

cleaning for UBD operations, the minimum fluid circulation rate or transport 

velocity must be determined according to the wellbore gas-liquid fluid 

properties and the flow pattern. 

 

6. Under the flow conditions investigated for two-phase horizontal and inclined 

flow, numerical and experimental study proved that the rotation of the drillpipe 

within the range of 0-150rpm did not influence the transition of the gas-liquid 

flow pattern in the flow. The flow pattern formed in the annuli is mainly a 

function of the gas-liquid properties and the in-situ flowrate of each of the 

phases. Thus, when performing predictive wellbore hydraulics calculations, the 

impact of the pipe rotation(0-150rpm) on the gas-liquid flow pattern transition 

can be neglected.    

 
7. The wellbore inclination has a strong influence on the pressure gradient and 

cutting transport efficiency for annuli flows. Unlike the single-phase flows, the 

change in the inclination angle can lead to a change in the gas-liquid fluid 

distribution and the fluid flow pattern for two-phase flows. This means that 

apart from the gravitational effects, the inclination angle has a huge effect on 
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the pressure gradient for two-phase flow because the pressure gradient is 

strongly dependent on the flow pattern and the in-situ mixture properties of 

the fluids. For instance, for the slug flow pattern at the same gas-liquid input 

flowrates, the liquid film length for horizontal flow is always larger than that of 

the upward inclined flow. Although it has been established that the effect of 

the wellbore inclination angle on cutting transport is dependent on the cutting 

transport mechanism, the change in the annuli fluid distribution and possible 

change in the flow pattern influences the cuttings transport efficiency. Under 

the range of conditions investigated, the optimum flowrate or minimum 

transport velocity required to transport the cuttings in suspension or as a 

moving bed increases with an increase in inclination angle for both single-

phase and two-phase flows. However, it was also observed that the effect of 

the inclination angle on cuttings transport for two-phase flow is higher than 

that of the single-phase flow.  

 

 

8. The fluid viscosity plays an important role in the effective transportation of 

cuttings for both conventional and underbalanced drilling operations. The 

higher the viscosity of the fluid, the lower the tendency for the formation of a 

stationary bed at the bottom of the wellbore annuli. Once a stationary bed has 

been formed in the annuli, the lighter fluid or two-phase fluid mixtures has a 

more advantage in the clearing of the stationary bed than the heavier fluid in 

the horizontal annulus. However, in the upward inclined annulus, the heavier 

fluids have more advantage than the lighter fluids.   

 

 

 

9. Pipe rotation has little or no influence on the cutting transport for both the 

single-phase and two-phase flows in the horizontal concentric annuli. However, 

in the inclined concentric annuli, pipe rotation can improve the cuttings 

transport for single-phase annuli flows. For the eccentric horizontal and inclined 

annuli, an increase in the pipe rotation speed can significantly improve the 

cutting transport efficiency for both the single-phase and two-phase flows. 

However, in terms of improving the cuttings transport efficiency, the influence 

of the pipe rotation on the single-phase non-Newtonian fluids at relatively 
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lower flowrates is a lot more significant than that of the single-phase 

Newtonian and two-phase flows in both the horizontal and inclined 

orientations. 

 

10. In general, for the single-phase and two-phase fluids, the critical circulation 

rate or the minimum transport velocity required to transport the cuttings in 

the eccentric annulus is always higher than that which is required for the 

facilitation of cutting movement in the concentric annulus.  

 
 

11. When a stationary bed is formed in the annuli, the pressure gradient is 

increased due to the reduced area of the flow. For this reason, if an increase 

in the pipe rotation speed reduces the thickness of the stationary bed, it will 

correspondingly lead to a decrease in the annuli pressure gradient.   

 

 

 
 
12. Generally, when operating at UBD conditions, unlike the conventional drilling, 

the influence of the important drilling parameters on the wellbore hydraulics 

and cutting transport efficiency are largely dependent on the gas-liquid flow 

pattern. Thus, for UBD operations, it is important to track the flow pattern 

throughout the length of the wellbore and perform wellbore predictive or real-

time calculations as a function of the local fluid flow pattern in the annuli. 

 

 

 

13. New flow pattern dependent wellbore hydraulics and cutting transport 

mechanistic models have been developed with a novel approach and proposed 

for the carrying out predictive and real-time calculations for underbalanced 

drilling operations in a wellbore annulus with any level of eccentricity and with 

or without drillpipe rotation. New flow pattern dependent wellbore hydraulics 

and multi-layered cutting transport model has been developed with a 

maximum error of ±12% when compared to experimental data. These models 

can be used to determine the wellbore pressure profile and evaluate the cutting 

transport efficiency during drilling or at the designing phase of a project to help 



 
 

274 

save costs, mitigate the issues of wellbore instability and prevent non-

productive time.  

 

 

 
8.2Contribution to knowledge 

The outcome of this study presents the following contributions to existing 

knowledge: 

 

1. In order to determine the frictional pressure loss in a wellbore annulus, it is 

important that the method for the calculation of the friction factor takes into 

account the rheological properties of the drilling fluid. While previous 

researchers have used methods derived solely for the Newtonian annuli flow 

of fluids, this study has shown that these methods are largely inaccurate when 

applied to shear thinning non-Newtonian drilling fluids. Apart from the 

rheological properties of the fluid, the friction factor for non-Newtonian annuli 

flows are also dependent on the pipe diameter ratio, level of eccentricity, 

drillpipe rotary speed and the circulation rate of the drilling fluid.  Thus, all 

these factors must be taken into account when selecting a method to determine 

the frictional pressure loss in a wellbore annulus. In this study a new method 

has been proposed and several analytical and mechanistic equations have been 

developed for the accurate determination of the friction geometry parameter 

and factor for laminar and turbulent annuli flows. These equations are valid for 

fluids with Newtonian, Power law, Bingham plastic and Herschel-Bulkley 

rheological properties.  

 
 
 
 
 

2. This research presents a novel approach for the determination of the liquid 

area and liquid height in the annuli with any level of eccentricity, which is 

important and required for the preforming the hydraulics or cutting transport 

calculations involving the stratified and slug flow pattern. The equation 

developed for this purpose can also be applied for the determination of the 

stationary bed thickness/height in the annuli for any level of eccentricity. This 
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is important because if the area or volume of fluid in the annulus is held 

constant, a change in eccentricity may lead to a change in the liquid height 

depending on the initial height of the liquid in the annulus. It is required that 

this phenomenon is taking into account when determining either the liquid area 

or the stationary bed height, especially when performing a multi-layered flow 

modelling.  

 
 
 

3. While the methods applied to perform wellbore hydraulics and cutting transport 

calculations for underbalanced drilling UBD conditions have neglected the 

effect of the gas-liquid flow pattern, this research showed the importance of 

the gas-liquid flow pattern by shedding light on the effect of the gas-liquid flow 

pattern on wellbore hydraulics and how it can influence the important drilling 

parameters to either the benefit or detriment of the cutting transport efficiency. 

Taking the gas-liquid flow pattern into consideration goes a long way in 

preventing wellbore instability issues during UBD operations.  

 
 
 
 
 
4. New flow pattern dependent models have been developed and presented in 

this study for the calculation of the pressure gradient for underbalanced drilling 

UBD operations in wellbores of any level of eccentricity and with or without 

drillpipe rotation. As the flow pattern is an important factor to be considered 

when performing UBD calculations, these proposed mathematical hydraulic 

models have been tested with experimental data obtained from tests with 

several flow patterns and proved to be reliable for performing flow pattern 

dependent calculations.  

 

 

5. When a detailed solution of the annuli fluid flow fields is required, the 

computational fluid dynamics CFD approach offers a great advantage. This 

offers the benefit of generating useful numerical results that are not feasible 

to obtain from physical experiments. For a detailed wellbore hydraulics and 

cutting transport modelling, the annuli velocity fields, pressure fields and fields 
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of other material properties of the flow may be required which brings the need 

for a CFD technique. In this study, a method for the solution for fluid flow 

through the annuli was developed by discretising the governing equations for 

fluid flow in both the cylindrical and cartesian co-ordinate system, developing 

a new method in which the wellbore geometry can be generated and meshed 

and providing detailed information on how both single-phase and two-phase 

flow CFD simulations can be accomplished. The method formulated can be 

applied for both Newtonian and non-Newtonian annuli flow at level of 

eccentricity and also takes into account the drillpipe rotation speed. This 

provides CFD method that can be applied to perform numerical simulations in 

other to investigate the effect of the important drilling parameters on the 

wellbore hydraulics and cutting transport efficiency.  

 
 
 
 
6. The different cutting transport mechanisms and the fluid flow pattern have not 

till date been considered simultaneously when performing the two or three-

layered cutting transport modelling for annuli flows. Due to the importance of 

the flow pattern for cutting transport modelling, several mechanistic flow 

pattern dependent multi-layered models were developed for calculations 

involving fluid flows in underbalanced drilling operations in wellbores of any 

level of eccentricity any fluid rheology and with or without inner pipe rotation. 

This came along with formulation of a systematic technique in which the 

wellbore annulus is divided into the required number of layers and the 

formulation of new equations for the calculation of the wetted perimeters of 

each of the layers as well as the interface between each of the layers or fluids. 

This is a novel concept which can be applied to evaluate the sensitivity of the 

major drilling parameters on wellbore hydraulics, thereby saving costs and 

mitigating wellbore instability issues.  

7. A significant deliverable in this research was the design and construction of an 

experimental rig that replicates the fluid-cuttings flow dynamics of either the 

conventional or underbalanced drilling process. Data acquisition systems was 

installed on the rig to enable the systematic collection of real-time information 

from the experimental test in other to validate the empirical and mechanistic 

models developed in this study.  



 
 

277 

 
 
 
 
 
8.3Recommendations  

The following are the recommendations for future research:  

 
1. The wellbore inclination angle is one of the key parameters that influence the 

cutting transport efficiency. Previous researchers that investigated the effect 

of the wellbore angle on cutting transport using single-phase fluids concluded 

that while the minimum transport velocity required to transport the cuttings in 

suspension increased with an increase in the wellbore angle, the minimum 

transport velocity required to transport the cuttings as moving bed increased 

with an increase in angle until a certain angle is reached after which the 

minimum transport velocity for the moving bed decreases. In this study, from 

experiments conducted using the two-phase fluids, it was observed that the 

minimum transport velocity for both the suspension and moving bed 

mechanism increased with an increase in inclination angle. However, the range 

of the angles considered were between 0 to 30o within the pipe axis and the 

horizontal. It would be interesting to perform more two-phase flow 

experiments using a wider range of inclination angles to establish the angle at 

which the minimum transport velocity for the moving bed climaxes as this is 

dependent on the fluid flow pattern. 

 

2. In this study, the effect of the drillpipe rotation on the pressure gradient and 

particle transport was investigated for both single phase and two-phase fluids 

in both the horizontal and inclined annuli. There are cases where during drilling, 

the drillpipe rotates in an orbital manner instead of rotating about its axis. It 

is obvious that the effect of the orbital motion of the drillpipe on the pressure 

losses and cutting transport would be different to that of the rotational motion. 

The performance of numerical CFD simulations to imitate this process is highly 

complex and may in many cases generate unrealistic solutions if not set-up 

properly. The experimental rig setup developed in this study can be modified 

in a manner that allows the inner pipe rotate in an orbital manner, to 

investigate the key differences from the results obtained from the rotational 

motion of the inner pipe.  
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Appendix A: MATLAB code for the determination of the rheological 
parameters of fluids  
 
The following function is a subroutine function to be called in main script. This 

function performs a non-linear regression analysis on the input data   

 
function r1 = lin_Reg(a0) 
  
% Performs linear regression on matrix input data and generates a column 
vector of the following respectively: 
% -Observations 
% -Gradient 
% -Intercept 
% -R 
% -R Square 
  
  
T2 = a0; 
  
[ii, jj] = find(isnan(T2)| isinf(T2)); 
  
T2(ii,:)=[]; 
  
n = size(T2,1); 
  
%% Determine slope and intercept of the data 
=============================== 
  
no = mean(T2,1); % mean of x and y sample  
   
A1 = T2(:,1) - no(1); 
  
A2 = T2(:,2) - no(2); 
  
A1_A2 = A1 .* A2;    A1x = A1.^2;     A2x = A2.^2; 
  
A1_A2_s = sum(A1_A2);  A1x_s = sum(A1x); A2x_s = sum(A2x); 
   
rho = A1_A2_s/sqrt(A1x_s * A2x_s) ; % Pearson coefficient  
  
Sy = sqrt(A2x_s/(n-1)); 
  
Sx = sqrt(A1x_s/(n-1)); 
   
m = rho * Sy/Sx; %Gradient of regression slope  
   
c = no(2) - m*no(1); 
   
%% Determine R and R^2 values =========================================== 
  
B1 = T2(:,1).^2; B2 = T2(:,2).^2; 
  
Bx = T2(:,1) .* T2(:,2); 
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Bx1 = sum(T2(:,1));  Bx2 = sum(T2(:,2)); 
   
B1_s = sum(B1);  B2_s = sum(B2); Bx_s = sum(Bx); 
   
R = (n*Bx_s - Bx1*Bx2)/(sqrt(n*B1_s - Bx1^2) * sqrt(n*B2_s - Bx2^2)); 
  
Rs = R^2; 
  
  
  
r1 = [n; m; c; R; Rs]; 
 
end  
 
 
Prior to the use of this MATLAB program, the shear stress to shear rate data 

obtained from rheological measurements using a viscometer is saved in Microsoft 

Excel and ready to be called into the program for processing. The shear rate vales 

are stored in the left column while the shear stress values are stored in the right 

column in Microsoft Excel. The main MATLAB script to be run to determine the 

rheological parameters of fluids from the shear stress to shear rate data is given 

below: 

 
clear 
clc 
  
T = xlsread('Rheology2.xlsx'); 
  
n = size(T,1); 
  
tmin = T(n,2); % minimum shear stress value  
  
GR = (sqrt(5) - 1)/2; 
  
lower_limit = 0.00;   upper_limit = tmin; % initial guess of lower and 
upper bound yield stress values.  
   
es = 1e-4; % convergence criterion  
  
ea = 1; 
  
count = 0; 
  
   
while ea>es 
  
     
count = count + 1; 
      
ty1 = lower_limit + GR*(upper_limit - lower_limit); 
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ty2 = upper_limit - GR*(upper_limit - lower_limit); 
  
ty1 = round(ty1,4);   ty2 = round(ty2,4); 
  
  
T1 = T; T1(:,2) = T1(:,2) - ty1; 
  
T2 = T; T2(:,2) = T2(:,2) - ty2; 
  
T1x = log10(T1); T2x = log10(T2); 
  
  
a1 = lin_Reg(T1x); a2 = lin_Reg(T2x); 
  
Rc1 = a1(5); Rc2 = a2(5); 
  
   
%Compare error to tolerance and stop   
  
% ea = 100 * abs(Rc2 - Rc1)/Rc2; 
  
ea = 100 * abs(ty2 - ty1)/ty2; 
  
ea(isnan(ea))=0; 
  
if Rc1<Rc2, upper_limit = ty1; 
     
elseif Rc1>Rc2, lower_limit = ty2; 
     
     
end 
    
end 
  
ns = a1(1); m = a1(2); int = a1(3);  R = a1(4); Rs = a1(5); 
  
K = round(10^(int),3); yield = round(ty1,2);  
  
m = round(m,2); 
  
yx = 0:1:1200;  
fx = yield + K.*yx.^m; 
  
  
plot(yx,fx,'bo-','linewidth',0.01) 
xlabel('Shear rate (s^-1)') 
ylabel('Shear rate (Pa)') 
grid on 
hold on 
shg 
  
% Rheology characterisation  
  
if m < 1 && m > 0 && yield == 0, Fluid_type = 'Powerlaw fluid';  
  
elseif m<1 && m>0 && yield >0, Fluid_type = 'Herschel Bulkerly fluid'; 



 
 

286 

  
elseif m == 1 && yield == 0, Fluid_type = 'Newtonian fluid';  
  
elseif m==1 && yield>0, Fluid_type = 'Bingham plastic fluid'; 
else 
     
    Fluid_type = 'Not found';  
   
end  
  
% Display of results  
  
Result1 = ['Gradient :  ',num2str(m)]; 
Result2 = ['Intercept :  ',num2str(int)]; 
Result3 = ['R :  ',num2str(R)]; 
Result4 = ['R Square :  ',num2str(Rs)]; 
Result5 = ['Observations :  ',num2str(ns)]; 
  
  
Result6 = sprintf ('Fluid rheology - %s',Fluid_type); 
Result7 = ['Consistency K :    ',num2str(K)]; 
Result8 = ['Power law index n :   ',num2str(m)]; 
Result9 = ['Yield stress  to :  ',num2str(yield)]; 
  
disp('Regression Result Summary ====================================') 
disp(Result1) 
disp(Result2) 
disp(Result3) 
disp(Result4) 
disp(Result5) 
disp('                  ') 
disp('RHEOLOGY PARAMETERS ==========================================') 
disp('______________________________________________________________') 
disp(Result6) 
disp('______________________________________________________________') 
disp(Result7) 
disp('______________________________________________________________') 
disp(Result8) 
disp('______________________________________________________________') 
disp(Result9) 
disp('______________________________________________________________') 
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            Figure B.2: Calibration of absolute pressure transducer No.1 

Figure B.1: Druck pressure calibrator 
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          Figure B.3: Calibration of differential pressure transducer No.5 
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Figure B.4: Comparison of liquid flowmeter readings to manually measured values 
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                  Figure B.5: LabVIEW front panel design for data acquisition 
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