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Abstract

Rice leaf disease (RLD) is one of the major factors that

cause the decline in production, and the automatic

recognition of such diseases under natural field

conditions is of great significance for timely targeted

rice management. Although many machine learning

approaches have been proposed for RLD recognition,

scale variation is still a challenging problem that affects

prediction accuracy, especially in uncontrolled envir-

onments, such as natural fields. Also, the existing RLD

data sets are collected in laboratory environments or

with a constant scale, which cannot be used to develop

the RLD classification algorithms under natural field

conditions. To tackle these particular challenges, we

propose a multiscale voting mechanism for RLD

recognition under natural field conditions. First, data

from 26 rice fields were collected to build a data set

containing 6046 images of RLD. Afterwards, a feature

pyramid was embedded into a mainstream classifica-

tion architecture (EfficientNet) with a bottom‐up and

top‐down pathway for feature fusion at different scales.

To further reduce the inconsistency among multiscaled

features, a multiscale voting strategy with regard to
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probability distribution was proposed to integrate the

decisions from various scales. Each proposed module

was carefully validated through an ablation study to

demonstrate its effectiveness, and the proposed method

was compared with a few state‐of‐the‐art algorithms,

including the Single Shot MultiBox Detector, Feature

Pyramid Networks, Path Aggregation Network, and

Bidirectional Feature Pyramid Network. Experimental

results have shown that the classification accuracy of

our model can reach 90.24%, which is 4.48% higher

than that of the original EfficientNet‐b0 model and

1.08% higher than that of existing multiscale networks.

Finally, we exploit and demonstrate a visualized

explanation for the boosted performance from the

proposed model. As an extra outcome, our data set and

codes are available at http://github.com/huanghsheng/

multiscale‐voting‐mechanism to benefit the whole

research community.

KEYWORD S
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1 | INTRODUCTION

Rice is a cereal crop widely planted around the world, and it is the staple food of more than half
of the world's population.1 The yield and quality of rice have a significant influence on human
life and food security. However, during rice planting, rice leaf disease (RLD) is one of the most
serious threats to rice agroecosystems worldwide, and the RLD‐caused yield reduction can be
up to 75%.2 Therefore, rapid and accurate identification of RLD categories is of great
significance for timely targeted management and to ensure the food security of most countries
in the world.3 Currently, the recognition of RLDs is mainly conducted by manual investigation
in real applications,4–6 which suffers from several limitations for accurate identification. On the
one hand, the manual investigation is time‐consuming, laborious, and unreliable.7,8 On the
other hand, due to the limited resources of professionals, it is difficult and costly for most
farmers to invite experts to identify such diseases in time, due to lack of agronomic knowledge,
leading to failure in timely identification and mitigation of such diseases.9 Therefore, it is of
great significance to develop an automatic RLD identification system for rice cultivation.10

Recently, with the development of computer vision and machine learning technologies, many
researchers have used machine vision and deep learning techniques to identify crop diseases. Xiao
et al.11 proposed integrating handcrafted features and the Principal Component Analysis method for
feature extraction and applied a backpropagation network for the classification of four rice blast
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spots. Sethy et al.12 introduced 5932 on‐field images of four types of RLDs and evaluated the
performance of 11 convolutional neural network (CNN) models with the transfer learning and deep
feature plus the support vector machine (SVM) methods. Experimental results showed that the deep
feature plus SVM method has better classification performance than other CNN counterparts.
However, during the construction of the RLD database, the diseased portion was manually extracted
from the original large images, which is different from the natural field conditions. Jiang et al.13

applied a CNN and SVM model to build a two‐step approach to classify and predict RLDs.
Experimental results showed that their method surpassed traditional algorithms with a recognition
rate of 96.8%. However, the images collected in this paper were almost the same scale and free from
the disturbance of the backgrounds, which is also different from the in‐field conditions. Lu et al.14

proposed an RLD identification approach by combining sparse automatic coding and stochastic
pooling, which achieved a recognition accuracy of 95.48% on a natural data set containing 10
categories of RLD, surpassing several conventional machine learning models. Also, the data set used
for evaluation only employed 500 images and is not collected in the natural field conditions, which is
not suitable for our research. Liang et al.15 proposed a CNN‐based method for rice blast identification
and established a data set of 2906 positive samples and 2902 negative samples. The experimental
results showed that the high‐level features extracted by the CNN were more discriminative and
effective than conventionally manual‐crafted features. The data set used in this paper only involved
the rice blast disease, and the recognition was the binary classification problem, which is not suitable
for our research. Picon et al.16 proposed to concatenate the contextual information with deep
representation for reducing the misclassification of mainstream models in the recognition of crop
diseases. Chen et al.17 studied the transfer learning of a deep cellular neural network for enhanced
learning of small lesions symptoms and proposed a new deep learning structure derived from the
Visual Geometry Group Network (VGGNet), Inc‐VGGN, for the recognition of plant disease images.
The results achieved had an accuracy of over 92.00% for the RLD classification. However, the
collected data set only contained 500 rice images, which is inadequate to test the generalization of the
recognition algorithms. Jiang et al.18 designed a multitask model for the recognition of three kinds of
RLDs and two kinds of wheat leaf diseases. The model took VGG as the backbone and used the
ImageNet pretrained weights for transfer learning and alternate learning. Though the RLD
classification had reached an accuracy of 98.75%, the rice images were collected in the laboratory
environments, which is different from the natural field conditions.

Although the aforementioned studies exploited deep learning in RLD recognition, few of them
considered the scale variation in natural fields. Currently, most of the RLD data sets are collected
with approximate scale, thus, the corresponding classification researches do not take the scale
variation into consideration. However, in the application of intelligent agricultural machinery,
the distance between the camera and the surrounding rice leaves varies inevitably, resulting in scale
variation for the rice leaves and their spots in the captured images.19 Under different scales, features
extracted by most CNN models demonstrate different salience at the same layer, which will affect
the accuracy of disease classification. At present, there are few studies dealing with this problem in
the field of classification. However, many studies have been conducted to solve the multiscale
problem in the domain of object detection, in a feature fusion framework even with a feature
pyramid as detailed below. The Single Shot MultiBox Detector (SSD)20 is the first attempt to embed a
feature pyramid into a convolutional network with a bottom‐up workflow and combines the feature
maps at different layers for region proposal. Leng and Liu21 proposed enhancing the conventional
SSD by fusing feature maps of different output layers and proposed a visual reasoning method for
small object detection. Zhang et al.22 integrated multiscale and feedback features from different
layers to better represent objects of various sizes and provide high‐level semantic information.
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Sehwag et al.23 proposed an SSD framework based on self‐supervised outlier detection, which used
self‐supervised representation learning followed by Mahalanobis distance‐based detection in the
feature space. The results showed that the performance of the detector was much better than most
existing detectors based on unlabeled data by a large margin. On the basis of SSD,20 Lin et al.24

further proposed to combine low‐resolution, semantically strong features with high‐resolution,
semantically weak features via a top‐down pathway and lateral connections. This study is known as
a Feature Pyramid Network (FPN) and builds a baseline for multiscale object detection. Hu et al.25

proposed multiscale feature learning, where the multilevel global context and the adjacent levels
were fused with content‐aware sampling and channelwise reweighting. The proposed model
outperformed an FPN with an increase of 2.1% Map. Xu et al.26 extended multiscale detections with
an architecture search framework, and the proposed model achieved a 5% improvement over an
FPN in terms of the mean Average Precision while reducing network parameters by 50%. Gong
et al.27 proposed a fusion factor to be configured in an FPN, which was demonstrated to improve the
performance of the baseline in tiny object detection. Liu et al.28 proposed a bottom‐up information
flow on the basis of an FPN, which was demonstrated to improve the detection capability for
multiscale objects. Liang et al.29 proposed the one‐shot path aggregation network architecture
search, which was effective and efficient in finding the optimal architecture for mainstream
detectors. The method showed superiority in localizing significantly smaller objects with reduced
searching costs than the neural architecture search‐FPN and Auto‐FPN methods.

Rice leaves have irregular shapes with different angles under natural field conditions and
cannot be easily detected by mainstream object detection approaches. Therefore, the problem
has been converted to a classification task, which is in accordance with most related
studies.17,18 However, scale variation is still a key problem that affects the classification
accuracy.19 Although an extensive study was conducted to address the multiscale issues in deep
learning, there are two main limitations in our research scenario. First, most research has
focused on object detection, and few have covered the scale issue in the classification domain.
Second, the mainstream solutions fused the multiscale representation for decision making, and
few of them considered the integration of decision making from the different scales. Also, the
existing RLD data sets are collected in the laboratory environments or with a constant scale,
which cannot be used to develop the RLD classification algorithms under natural field
conditions. To solve these issues, we propose a multiscale voting mechanism (MVM) for RLD
recognition, which focuses on the solution to address the negative influence of multiscale
factors on the classification accuracy. The major contributions of this paper are highlighted as
follows. (1) We introduce a data set that is designed towards the RLD recognition under natural
field conditions; (2) we embed a feature pyramid model in a classification network that
integrates the multiscale representation to boost the classification accuracy; and (3) we propose
an MVM with regard to the probability distribution to achieve more consistent prediction. The
objective of this study is to solve the negative influence of different scales on classification
accuracy, which is expected to lay a foundation for the automatic recognition of RLD and to
provide decision‐making information for management machines, such as agricultural robots.

2 | DATA COLLECTION

The data we used was collected in Zhu Village, Zengcheng District, Guangzhou, China. The
experimental sites consisted of 26 different rice fields under natural conditions, as illustrated in
Figure 1. For ease of operations for future deployment, data collection was conducted using a
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mobile phone (Mi 10s, Xiaomi Corp.). It was equipped with a rear four‐camera module,
including a 100‐megapixel ultra‐HD main camera, a 13‐megapixel ultrawide angle lens, a
2‐megapixel macro lens, and a 2‐megapixel depth of field lens. The camera's mode was set to
autoexposure and autofocus during data collection, and the lens was 10–50 cm away from the
canopy. The resolution of each image taken by the mobile phone was 5792 × 4344.

The image was collected from August 21, 2021, to September 30, 2021, and the daily
acquisition time periods were 7:00–11.30 a.m. and 16:00–18:30 p.m. The images were collected
under different weather conditions, such as sunny, cloudy, and rainy. A total of 6046 rice leaf
images were collected, including 1046 rice bacterial leaf blight images, 1053 rice blast images,
1542 rice brown spot images, 823 rice sheath blight images, and 1582 healthy leaf images. Some
examples of RLDs images are shown in Figure 2.

The details of the experimental data are shown in Table 1, namely, RiceDisease5, where
(A)–(E) represent the five categories of leaves. The experimental data are divided into a training
set and a testing set, as illustrated in Table 2. As seen in Table 2, the samples in the training and
testing sets were collected on different dates and fields, this is to ensure the generalization
capability of the developed models. Table 3 gives the statistical information on each RLD
category, where the samples are shown sufficient for this purpose.

The data set used in our experiment was collected in natural field environments, which is
challenging for classification models with various influential factors. One of the main
influential factors is spatial scales. Due to the spatial structures of the rice, the distance from

FIGURE 1 General location of the experimental sites. [Color figure can be viewed at wileyonlinelibrary.com]
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the camera to the rice leaves is inevitably different, leading to noticeable scale variation in the
collected images. From the first row and the last two rows in Figure 3, it is obvious that these
rice leaves are on different scales. Since most classification models cannot automatically focus
on leaf areas of interest, feature extraction on an entire image may involve irrelevant
information, which creates significant challenges for recognition. From the third row in
Figure 3, it can be seen that the RLD classification under natural field conditions also suffers
from other factors, such as illumination variation. However, it was proven that illumination
variation produces fewer negative effects on RLD recognition than scale variation. One of the
possible reasons is that the deep representation has strengthened the classifier's robustness
against the illumination variation. Therefore, this study only focused on the multiscale
problem, where the other factors will be left as our feature work.

3 | METHODOLOGY

In this study, an MVM was proposed for the automatic identification of RLDs under natural
field conditions. The overall framework of our proposed model is shown in Figure 4. Through
the comparison of the performance of different network architectures, EfficientNet‐b030 was
employed as the backbone, and a feature pyramid with a bottom‐up and top‐down flow is
embedded into the classification model, aiming to reduce the loss of details while preserving
the semantic information. Moreover, this feature pyramid can help pay attention to small lesion
spots during the feature extraction stage, which is a general drawback for the recognition of
early infection of rice diseases. After that, a multiscale voting strategy is adopted to further
refine the classification accuracy by reducing the variance from different scales. The details of
the backbone network, multiscale fusion embedding, and MVM are introduced in Sections 3.1,
3.2, and 3.3, respectively.

FIGURE 2 In‐field photos for each RLD. (A) Rice bacterial leaf blight, (B) rice blast, (C) rice brown spot,
(D) rice sheath blight, and (E) healthy rice. RLD, rice leaf disease. [Color figure can be viewed at
wileyonlinelibrary.com]
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TABLE 1 Details of the experimental data collection

Collection date Field code

Number of RLD images

Data set nameA B C D E

2021‐8‐21 F1 1 76 29 0 10 D1

2021‐8‐22 F2 2 94 18 3 83 D2

2021‐8‐28 F3 153 16 4 2 41 D3

2021‐8‐30 F4 0 98 64 46 133 D4

2021‐9‐5 F5 0 9 331 30 0 D5

2021‐9‐11 F6 105 12 109 104 1 D6

2021‐9‐11 F7 5 17 16 4 186 D7

2021‐9‐11 F8 0 2 0 0 159 D8

2021‐9‐12 F9 1 5 35 21 222 D9

2021‐9‐12 F10 150 6 4 0 0 D10

2021‐9‐13 F11 46 112 54 0 0 D11

2021‐9‐20 F12 91 59 108 54 61 D12

2021‐9‐21 F13 16 71 66 32 101 D13

2021‐9‐25 F14 25 36 48 7 54 D14

2021‐9‐25 F15 61 22 5 0 38 D15

2021‐9‐26 F16 0 17 116 0 4 D16

2021‐9‐26 F17 80 19 31 2 106 D17

2021‐9‐26 F18 2 4 0 132 1 D18

2021‐9‐26 F19 6 4 0 55 45 D19

2021‐9‐27 F20 15 4 20 238 73 D20

2021‐9‐27 F21 116 84 10 1 46 D21

2021‐9‐28 F22 8 44 69 78 105 D22

2021‐9‐28 F23 139 24 14 4 26 D23

2021‐9‐29 F24 2 28 293 2 0 D24

2021‐9‐30 F25 2 96 95 0 15 D25

2021‐9‐30 F26 20 94 3 8 72 D26

Abbreviation: RLD, rice leaf disease.

TABLE 2 Data split for the training and testing sets

Data set Data set allocation

Training data set D1, D2, D3, D4, D5, D6, D7, D10, D12, D14, D15, D17, D20, D22, D25, D26

Test data set D8, D9, D11, D13, D16, D18, D19, D21, D23, D24
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3.1 | Adaptation to the backbone network

In this study, the EfficientNet‐b0 is utilized as the basic model, and its network structure is shown
in Figure 5. Different from other network models, EfficientNet uniformly scales all dimensions of
depth, width, and resolution using a simple yet highly effective compound coefficient for improved
performance. With the difference in input sizes, we modified the final classifier to fit its input vector
and output categories. Table 4 lists the detailed parameters of EfficientNet‐b0, in which the network
was divided into nine stages. The general block structure was as follows. Before the depthwise
separable convolution of 3 × 3 or 5 × 5, a 1 × 1 convolution was used to increase the dimension.
After the depthwise separable convolution of 3 × 3 or 5 × 5, an attention mechanism about the
channel was added. Finally, a large residual edge was added after dimension reduction by a 1 × 1
convolution. Among them, compared with conventional convolution operations, deeply separable
convolution greatly reduces the number of parameters and operation cost of the network model.
An squeeze‐and‐excitation (SE) attention mechanism allows the model to pay more attention to the
channel features with the largest amount of information, which makes it possible to concentrate on
the lesion regions and reduces the disturbance from the background.

TABLE 3 Detailed information on each category of the data set

Disease Total Number of training images Number of test images

Rice bacterial leaf blight 1046 718 328

Rice blast 1053 702 351

Rice brown spot 1542 954 588

Rice sheath blight 823 576 247

Healthy sample 1582 978 604

Total 6046 3928 2118

(A) (B) (C) (D) (E)

FIGURE 3 Illustration of the scale factor in natural rice fields. (A) Rice bacterial leaf blight, (B) rice blast, (C) rice
brown spot, (D) rice sheath blight, and (E) healthy samples. [Color figure can be viewed at wileyonlinelibrary.com]
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3.2 | Multiscale embedding for effective classification

The feature pyramid structure has been widely used in the field of object detection, which
integrates the semantics of all layers for final decisions of region proposals. Several commonly
used feature pyramid models are shown in Figure 6. The SSD20 is one of the first attempts to
embed a feature pyramid into a convolutional network with a bottom‐up workflow and
combines the feature maps at different layers for prediction, as shown in Figure 6A. However,
this information flow fails to reuse the high‐resolution information at the prediction branch of
deep layers. To solve this problem, Faster R‐CNN24 proposed another top‐down workflow,
which seamlessly combines the deep representation with high‐resolution feature maps through
lateral connection, as shown in Figure 6B.

The rice leaves and their lesions were presented in varying sizes in the collected images,
which revealed that the effective representation may be identified in different layers. In this
case, we embedded the feature pyramid architecture in the classification models, as shown in
Figure 7. From Figure 7, it can be seen that only the first few representations (P5, P4, P3, and P2)

FIGURE 4 General framework of our proposed model. [Color figure can be viewed at wileyonlinelibrary.com]
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in the top‐down pathway are adopted, and the last representation (P1) is ignored. The reason
for this is due to the large spatial size in the last representation, which will consume too much
memory and computation in the multilayer perception during the forward and backward
processes. Different from object detection, we did not employ the feature pyramid for the region
proposal. Instead, we obtained the probability distribution for all categories in each scale. In
addition, we used concatenation for feature fusion instead of elementwise addition, which is
adopted by most studies.20,24,31 Compared with feature addition, feature concatenation
combines the position information of a high‐resolution feature map with deep features, which
reduces the loss of RLD features caused by the network in the downsampling and avoids the
bottleneck of feature representation. Under the backbone of EfficientNet, the feature
concatenation does not significantly increase the amount of calculation because of the use of

FIGURE 5 Structure of the EfficientNet‐b0 model. [Color figure can be viewed at wileyonlinelibrary.com]
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downsampling and depthwise separable convolution. After the softmax function, we sum up
the probability distribution for all categories and choose the maximum probability as the
predicted value, which can be expressed below:







prediction argmax p= ,

j c i

s

ij
=1,2, …, =1

(1)

where c denotes the number of categories, s represents the number of scales in the top‐down
pathway, and pij refers to the probability of category j predicted by the ith scale.

TABLE 4 Detailed specifications for each layer of the EfficientNet‐b0 model

Name Number of repetitions Kernel size/stride Output size

Stem 1 3 × 3/2 400 × 300 × 3

Block 1 1 3 × 3/1 200 × 150 × 16

Block 2 2 3 × 3/2 or 1 100 × 75 × 24

Block 3 2 5 × 5/2 or 1 50 × 37 × 40

Block 4 3 3 × 3/2 or 1 25 × 18 × 80

Block 5 3 5 × 5/1 25 × 18 × 112

Block 6 4 5 × 5/2 or 1 12 × 9 × 192

Block 7 1 3 × 3/1 12 × 9 × 320

Head 1 1 × 1/1 12 × 9 × 320

Fc ― ― 5

FIGURE 6 Commonly used feature pyramid models. (A) Single Shot MultiBox Detector (SSD) and
(B) Feature Pyramid Network (FPN). [Color figure can be viewed at wileyonlinelibrary.com]
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3.3 | Multiscale voting mechanism

With the hypothesis that the RLD can be detected at each scale with a reasonable accuracy,
a majority voting mechanism is adopted to reduce the bias of each scale for more consistent
classification. Therefore, we propose a voting strategy that is built on a multiscale
architecture with regard to the probability distribution, as shown in Figure 8. From
Figure 8, each feature level represents one decision branch, and its prediction is adopted for
voting. In the voting process, the relative majority principle was used, and the candidate
with the most votes is adopted as the final label. However, the counting process can be
infeasible when there is more than one winning candidate with the same votes. To solve
this problem, we propose three different strategies with regard to the probability
distribution output by all scales: (1) Voting with probability summation: The
probability for each category was added across all scales, and the class with the maximum
probability was selected as the final result. (2) Voting by finest level: Inspired by the fact that
the highest‐resolution, strongly semantic feature maps of P2 in the top‐down pathway are
most effective for prediction, its output was adopted as the final label when there is a
disagreement between different scales. (3) Voting with the largest probability: The
probabilities for all categories from all scales are compared, and the class with the largest
probability value is used as the final label.

FIGURE 7 Feature pyramid embedded in the classification model [Color figure can be viewed at
wileyonlinelibrary.com]
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4 | RESULTS AND DISCUSSIONS

The modeling and experimental implementation were conducted on an Intel Xeon Silver 4210R
processor × 2, an NVIDIA RTX3090 24GB graphics card × 4, and 32GB memory × 8. In this study,
precision, recall, F1 score, and accuracy were adopted as the metrics for quantitative evaluation.

4.1 | Implementation details

The original resolution of the collected images was 5792 × 4344 (4 : 3), which will easily cause
graphics processing unit exhaustion during the forward and backward processes. Therefore, the
image size is normalized to 400 × 300 × 3, which was validated to preserve the details of the rice
leaves and their lesions. The EfficientNet‐b0 network was divided into a total of nine stages. Each
stem block had a convolutional layer with two subsequent steps (containing batch normalization
[BN] and the Swish activation function). Block 1–Block 7 are repeatedly stacked mobile inverted
bottleneck convolution (MBconv) structures, as shown in Figure 9. As presented in Figure 9, the
MBConv structure consists of a 1 × 1 convolution (with BN and Swish), a 3 × 3 or 5 × 5 depthwise
convolution (with BN and Swish), an SE module, a 1 × 1 convolution (with BN) and a dropout
layer. The general design idea was an inverted residual structure and residual structure. First, a
1 × 1 convolution was used to raise the dimension before the 3 × 3 or 5 × 5 network structure, then
an attention mechanism for the channels was added after the 3 × 3 or 5 × 5 network structure, and
finally, a large residual edge was added after dimension reduction by a 1 × 1 convolution. BN is
used after each convolution and before activation. The initial learning rate was 0.01, and we
transferred the ImageNet pretrained weights and fine‐tuned our data set. The batch size was 180,
and the number of epochs was 500. The stochastic gradient descent optimizer was used to optimize
the model, and a weight decay of 0.001 and the cross entropy were used as the loss function.

4.2 | Comparison between the backbone networks

In this section, four representative backbone networks were selected to compare their
performance on our RiceDisease5 data set. The selected backbone networks included

FIGURE 8 Illustration of the multiscale voting mechanism [Color figure can be viewed at wileyonlinelibrary.com]
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EfficientNet‐b0,30 GoogLeNet‐V3,32 ResNet‐50,33 and DenseNet‐121,34 and the experimental
results are shown in Table 5. As seen in Table 5, DenseNet‐121 achieves the highest accuracy
rate of 86.07%, which is slightly better than that of EfficientNet‐b0. However, the computational
cost of DenseNet‐121 is too heavy because of the dense connection, and the floating‐point
operations per second (FLOPs) of the model are up to 6.74 billion. In comparison, the FLOPs of
the EfficientNet‐b0 is only 0.47 billion, which may reduce much computational cost. From the
computational complexity, EfficientNet generally uses an order of magnitude fewer FLOPs
than other baseline models. We conjecture that the proposed compound scaling method leads
to better architectures, better scaling, and better training settings. As a result, the EfficientNet‐
b0 model strikes the best trade‐off between accuracy and speed. Therefore, we applied the
EfficientNet‐b0 as our backbone structure for the following experiments.

4.3 | Ablation study

4.3.1 | Effect of multiscale embedding

As shown in Section 3.2, we embed a feature pyramid into the EfficientNet‐b0 with a top‐down
pathway and a lateral connection to different layers of the feature extractors. Table 6 shows that the
embedding of multiscale architecture can greatly improve the prediction accuracy in all metrics,
and the performance boosts are obvious in each category. Specifically, the overall accuracy for all
categories was boosted by a margin of 3.45%. For the efficiency, the embedding of multiscale
architecture consumes more than 0.14ms per image, where the extra computation comes from the
feature fusion. Generally, the classification accuracy for the Blast disease category is relatively low
with and without multiscale architecture. One possible reason is that the symptoms of Blast disease
are similar to the background, which makes it difficult to distinguish it from other categories.
However, the embedding of the multiscale architecture still raised the precision by 8.7%.

FIGURE 9 Structure of the MBConv module [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Recognition results of various CNN models

Backbone EfficientNet‐b0 GoogLeNet‐V3 DenseNet‐121 ResNet‐50

Accuracy (%) 85.79 84.84 86.07 85.55

Test time (ms) 3.91 4.46 4.33 4.70

Params (M) 15.60 23.83 7.98 25.56

FLOPs (B) 0.47 7.75 6.74 10.10

Note: Bold values indicate the best results.

Abbreviation: CNN, convolutional neural network.

14 |

http://wileyonlinelibrary.com


Figure 10 presents some cases at different scales, including the lesions that are not obvious
at a large distance between the camera and the rice, leading to the most incorrect results under
the backbone network. In contrast, by introducing the embedding of multiscale architecture to
well address the scale problem, our pyramid representation has greatly improved the
robustness of classification to the variation of object scales. Figure 10D also gives one failed
example of our approach, where the network misclassified the Sheath blight as Bacterial leaf
blight. The possible reason for this failure is that the rice leaf is under severe uneven
illumination conditions, which makes it difficult to extract the effective representation for
Sheath blight. However, it was proven that illumination variation produces less negative effects
on RLD recognition than scale variation. We argue that the robustness brought by the deep
representation has strengthened the classifier's capability against the illumination problem.
Therefore, this study only focused on the multiscale problem and did not consider the
illumination variation in the natural conditions, which will be part of our future work.

TABLE 6 Recognition results of various multiscale models

Model Rice diseases Precision Recall F1 score Accuracy (%)
Test
time (ms)

Backbone Bacterial leaf blight 0.895 0.912 0.903 85.79 3.91

Blast 0.727 0.621 0.670

Brown spot 0.822 0.830 0.826

Sheath blight 0.819 0.879 0.848

Health 0.950 0.983 0.966

With multiscale
embedding

Bacterial leaf blight 0.929 0.954 0.941 89.24 4.05

Blast 0.814 0.672 0.736

Brown spot 0.858 0.884 0.871

Sheath blight 0.851 0.903 0.876

Health 0.960 0.990 0.975

Note: Bold values indicate the best results.

(A) (B) (C) (D) (E)

FIGURE 10 Some classification results with and without the multiscale architecture (among them, the red
words represent misclassified samples, and the yellow words indicate correctly identified samples). (A) Bacterial
leaf blight, (B) blast, (C) brown spot, (D) sheath blight, and (E) health. [Color figure can be viewed at
wileyonlinelibrary.com]
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Different choices of network architectures with the embedded feature pyramid may affect
the final recognition performance, such as channel reduction, pool layer type, and dropout
layer. Therefore, we conducted further experiments on different design choices of multiscale
architecture, and the modules were tested as the feedforward process of the network. Table 7
shows performance comparisons for different architectural combinations. As shown in the first
two rows of Table 7, appending channel reduction after feature concatenation increases the
accuracy by 2.04% over the version without channel reduction. We conjecture that feature
concatenation without channel reduction has too much redundant information, which
increases the difficulty in automatic feature extraction and decreases the performance.
Additionally, the maxpooling operation slightly outperforms the average pooling, perhaps
because maxpooling can better retain texture features. Finally, the dropout strategy used in the
fully connected layers also decreases the prediction accuracy. One of the possible reasons for
this result is that the dropout layer loses some information in the representation, which causes
more prediction errors. Overall, the design choices with channel reduction, maxpooling, and
dropout strategy consistently outperform others in terms of accuracy and efficiency.

4.3.2 | Ablation study on the MVM

In this section, we propose the majority voting with regard to probability distribution to
integrate decisions from different scales. To address the problem with more than one winning
candidate, three voting strategies were proposed concerning the probability distribution: voting
with the probability summation, voting with the finest level (P2), and voting with the maximum
probability. Table 8 shows that voting with probability summation and the finest level can both
increase the accuracy, while voting with the maximum probability slightly decreases the
performance. We argue that voting with the maximum probability ignores most of the decisions
from different scales, leading to increased variance in the classifier. Overall, voting with the
finest level achieves the best performance in accuracy boost thanks to the highest‐resolution,
strongly semantic feature maps of P2. For the network efficiency, Table 8 shows that the voting
strategies have slightly improved the inference speed. We conjecture that most of the decisions
can be made through majority voting, which can actually save the probability summation of
different scales for decision making. Generally, the MVM with different probability strategies
can effectively improve the performance of the baseline in terms of accuracy and efficiency.

Figure 11 shows example images with and without the multiscale mechanism. As seen,
different voting strategies can correct the misclassification of the baseline network to some
extent. Overall, the strategy of voting with the finest level can obtain the correct result in most
cases. However, our proposed voting strategy still cannot effectively distinguish between the

TABLE 7 Performance of different design choices in the multiscale architecture

Channel reduction Maxpooling Avg‐pooling Dropout Accuracy (%) Test time (ms)

× ✓ × × 87.20 13.59

✓ ✓ × × 89.24 4.05

✓ × ✓ × 88.67 4.14

✓ ✓ × ✓ 88.62 4.10

Note: Bold values indicate the best results.
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Bacterial leaf blight and the Healthy category. We conjecture that healthy rice leaves at different
angles present different illumination reflections, which is similar to the symptoms of Bacterial
leaf blight disease, making it difficult to classify in between.

Finally, we compare the confusion matrix of the backbone network and the improved
version. As shown in Figure 12, our proposed model improves the accuracy in all categories.
Thanks to the proposed multiscale embedding and the MVM, the overall accuracy has achieved
90.27%, significantly outperforming the EfficientNet‐b0 baseline by 4.8%. We conjecture that
the appended top‐down pathway exploits the potential for different scales, and the MVM
integrates the decision information from different scales for further accuracy boost.

4.4 | Comparison with state of the art

In this section, we compare the performance of our proposed approach with several state‐of‐
the‐art multiscale frameworks, including SSD,20 FPN,24 Path Aggregation Network (PANet),28

TABLE 8 Ablation study on the multiscale voting mechanism

Model Rice diseases Precision Recall F1 score Accuracy (%)
Test
time (ms)

Without multiscale voting
mechanism

Bacterial leaf blight 0.929 0.954 0.941 89.24 4.05

Blast 0.814 0.672 0.736

Brown spot 0.858 0.884 0.871

Sheath blight 0.851 0.903 0.876

Health 0.960 0.990 0.975

Voting with probability
summation

Bacterial leaf blight 0.955 0.963 0.959 89.66 3.74

Blast 0.793 0.687 0.736

Brown spot 0.861 0.883 0.872

Sheath blight 0.857 0.899 0.877

Health 0.968 0.995 0.981

Voting with the finest level Bacterial leaf blight 0.952 0.960 0.956 90.27 3.69

Blast 0.817 0.698 0.753

Brown spot 0.859 0.891 0.875

Sheath blight 0.891 0.923 0.907

Health 0.966 0.993 0.979

Voting with the maximum
probability

Bacterial leaf
blight

0.946 0.960 0.953 88.67 3.60

Blast 0.804 0.632 0.708

Brown spot 0.842 0.879 0.860

Sheath blight 0.849 0.911 0.879

Health 0.951 0.992 0.971

Note: Bold values indicate the best results.
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and Bidirectional Feature Pyramid Network (BiFPN),31 which are not architecture specific and
can be used for both target detection and classification. In this section, these multiscale
strategies were embedded in the classification architecture for comparison. For a fair
evaluation, all these counterparts used the same backbone network (EfficientNet‐b0) and the
same hyperparameters as ours. Table 9 shows that our proposed method achieves the best
accuracy for most of the categories. On the test set of this study, our method increases over the
existing best results by 1.08% of the overall accuracy (90.27% vs. 89.19%). It can be seen that our
method outperforms the classical FPN with a 1.41% increase in accuracy. We argue that the
FPN only focused on feature‐level fusion, while our approach considered the integration of
decision information from different scales, which led to a performance boost. Additionally, it is

(A) (B) (C) (D) (E)

FIGURE 11 Multiscale voting with different probability strategies (among them, the red words represent
misclassified samples, and the yellow words indicate correctly identified samples). (A) Bacterial leaf blight,
(B) blast, (C) brown spot, (D) sheath blight, and (E) health. [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 12 Confusion matrix of the backbone network and the improved version. (A) EfficientNet‐b0 and
(B) our proposed model. [Color figure can be viewed at wileyonlinelibrary.com]
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worth noting that the accuracy of our proposed model is 1.22% higher than that of PANet and
1.08% higher than that of BiFPN. We conjecture that PANet and BiFPN add an extra bottom‐up
pyramid on the basis of FPN to convey location information, but this structure has little
influence on classification. Moreover, further information transmission may introduce
redundant information, which adversely affects recognition accuracy. For efficiency, our
approach outperformed others with a notable margin. Due to the voting strategy built on the
multiscale architecture and probability distribution, most samples can be directly identified
through majority voting, without the need to sum up the probability from different scales for
the final decision.

TABLE 9 Comparison of our proposed method with state‐of‐the‐art methods

Model Rice diseases Precision Recall F1 score Accuracy (%) Test time (ms)

SSD20 Bacterial leaf blight 0.878 0.918 0.898 86.31 4.27

Blast 0.745 0.667 0.704

Brown spot 0.858 0.820 0.839

Sheath blight 0.813 0.899 0.854

Health 0.941 0.975 0.958

FPN24 Bacterial leaf blight 0.932 0.954 0.943 88.86 4.02

Blast 0.779 0.692 0.733

Brown spot 0.880 0.861 0.870

Sheath blight 0.824 0.907 0.864

Health 0.957 0.987 0.972

PANet 28 Bacterial leaf blight 0.939 0.933 0.936 89.05 4.03

Blast 0.785 0.729 0.756

Brown spot 0.857 0.874 0.865

Sheath blight 0.862 0.862 0.862

Health 0.964 0.988 0.976

BiFPN31 Bacterial leaf blight 0.939 0.942 0.940 89.19 4.06

Blast 0.807 0.704 0.752

Brown spot 0.869 0.872 0.870

Sheath blight 0.824 0.907 0.864

Health 0.960 0.987 0.973

Ours Bacterial leaf blight 0.952 0.960 0.956 90.27 3.69

Blast 0.817 0.698 0.753

Brown spot 0.859 0.891 0.875

Sheath blight 0.891 0.923 0.907

Health 0.966 0.993 0.979

Note: Bold values indicate the best results.

Abbreviations: BiFPN, Bidirectional Feature Pyramid Network; FPN, Feature Pyramid Network; PANet, Path Aggregation
Network; SSD, Single Shot MultiBox Detector.
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We applied gradient‐weighted class activation mapping to produce a visual explanation for
decisions from different models. The localization map highlights the important regions in
the image, reflecting each model's capability to capture and concentrate on the discriminative
regions for classification. Figure 13A,D shows that most models can effectively localize the
discriminative regions when the rice leaves are at close range and the background is simple.
However, when the rice leaves are distant and the lesions are small, most mainstream models
fail to localize the effective regions, as shown in Figure 13B,C. In contrast, our proposed
multiscale architecture accurately localizes the discriminative regions despite the disturbance
from the complex backgrounds. Additionally, Figure 13E shows that our method can better
localize the rice leaves for the health class compared with other counterparts. Overall, our
approach can better localize the discriminative areas when the regions of interest are small and
the background is complex, which provides a visualization explanation for the accuracy boost
brought by our proposed modules.

FIGURE 13 Gradient‐weighted class activation maps generated using different models. (A) Bacterial leaf
blight, (B) blast, (C) brown spot, (D) sheath blight, and (E) health. BiFPN, Bidirectional Feature Pyramid
Network; FPN, Feature Pyramid Network; PANet, Path Aggregation Network; SSD, Single Shot MultiBox
Detector. [Color figure can be viewed at wileyonlinelibrary.com]
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5 | CONCLUSIONS

In this paper, we proposed an MVM for RLD recognition under natural field conditions. First, we
collected data from over 20 rice fields and built a data set containing 6046 images of different RLDs
under natural field conditions. After that, we embedded a feature pyramid into a mainstream
classification architecture with a bottom‐up and top‐down pathway to fuse the representations from
different scales. Later, we proposed multiscale voting with regard to probability distribution to
integrate the decision information from different scales. During the experimental process, each
proposed module was carefully validated through an ablation study to demonstrate its effectiveness,
and the proposed method was compared with state‐of‐the‐art methods, including SSD, FPN,
PANet, and BiFPN. Qualitative and quantitative results showed that the proposed modules can
effectively increase the model's robustness for scale variation, which improved the accuracy of the
baseline by 4.48%. Additionally, the comparison results showed that our proposed method
outperformed other state‐of‐the‐art algorithms in terms of accuracy and efficiency. However,
according to the experimental results, the network model proposed in this paper has difficulty
solving other influential factors under natural field conditions, such as varying illumination and
water droplets, which is the direction of our future work.
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