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MXene composites have emerged as a promising class of materials due to their exceptional properties
and versatility in various applications. In recent years, researchers have made significant progress in
the development and characterization of MXene composites, paving the way for new opportunities in
various fields, including energy storage, environmental remediation, and catalysis. The incorporation of
MXenes into polymers has led to enhanced mechanical, electrical, and thermal properties.
Additionally, advances in MXene synthesis and functionalization have expanded the scope of their appli-
cations. This review summarizes recent research progress in MXene composites, highlights the chal-
lenges, and discusses potential opportunities for future development.
Copyright � 2023 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the Composite Sciences and
Technology International Conference. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

MXene as a new group of 2D materials has gained a lot of atten-
tion since being discovered in 2011 [1–3]. Through acid etching
and delamination, layered 2D sheets of MXene were obtained by
eliminating the A atoms from Mn + 1AXn phases. Fig. 1 shows
some potential applications of MXenes in many fields such as com-
posites, energy, electronics, optical, biomedical, environmental,
electrochemical capacitors, and sensors [4–7]. Numerous investi-
gations have shed light on the thermal uses of MXene and
improved our understanding of its heat transfer properties. Inter-
estingly, MXene with a graphene-like shape, a 2D nanosheet mate-
rial synthesised using MAX phases, appears to be highly fascinating
[8–11]. The number of publications is significantly increasing since
2012 as shown in Fig. 2.
2. Synthesis of mxenes

To date, more than 40 types of MXene exist and they can be
more popular than other 2D materials such as graphene [9].
Hydrofluoric acid was used to selectively etch layers of transition
metal carbides and carbonitrides from the MAX phases to create
the first MXene generation. Ever since, a variety of synthesis tech-
niques have been created, such as selective etching in a solution
of fluoride salts, non-aqueous etchants, halogens, and molten
salts, enabling the synthesis of novel MXenes with improved con-
trol on the surface chemistries [11]. Since M�A bonds are stron-
ger than graphite layers, the usual stripping process fails to
produce MXene materials, according to Zhang et al. in their study.
In a nutshell, MXene can be prepared by applying the etching
technique [17–19]. Fig. 3 shows the image of MAX phase treat-
ment by hydrofluoric acid and delamination of MXene layers.
Etching-assisted exfoliation is nowadays the main method for
the massive production of monolayer and multilayer MXenes.
Additionally, this method is employed to create MXenes for elec-
tromagnetic studies. [20–22].

Table 1 shows the properties enhancement of MXenes polymer
composites obtained from available articles from 2019 to 2022. It
can be observed that hydrofluoric acid, hydrochloric acid and
lithium fluoride are commonly used in the processing of MXenes.
Coating, film and packaging are some of the applications which
can be seen in many research articles. In general, the incorporation
of MXenes into the polymer can significantly increase the mechan-
ical and electrical properties of the composites.
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Fig. 1. General applications of MXenes [12–16].

Fig. 2. Number of publications and citations from 2012 to 2022 on MXenes indexed by Web of Science (Clarivate).
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3. Other important properties of MXene polymer
nanocomposites

Fig. 4 shows the recent studies on tensile properties of MXene/
epoxy composites from 2019 to 2022. In general, researchers agree
that the presence of MXene in polymer matrix shows significant
increase of mechanical properties over neat polymer [26,28–30].
From previous studies, the incorporation of MXenes increased
the tensile strength up to 155% compared to neat polymer. A sim-
ilar trend can be observed for tensile modulus, where MXene rein-
forcement can significantly improve modulus up to 102% Fig. 5.
The enhancement of tensile properties is due to the microcracks
bridging effect of evenly dispersed MXene particles in polymer
matrix [31].
2

3.1. Thermal properties

According to studies, composites have better thermal charac-
teristics than pristine epoxy. Epoxy composite with only 1.0 wt
% Ti3C2 MXene fillers has a thermal conductivity value
(0.587 W.m�1.K�1) that is 141.3% higher than neat epoxy. [12].
It was found that the composite has an improved glass transition
temperature, is thermally stable, and has less thermal expansion.
MXene particles could restrict the polymer chain movement thus
improving storage modulus [33]. Yong Cao et al. studied the ther-
mal properties of PVDF/MXene composites produced by solution
mixing [34]. They reported that the thermal conductivity
increased to 0.363 WmK-1 when a loading of 5 wt% was attained
which is about 1-fold enhancement compared to a pristine poly-



Fig. 3. SEM of MAX phase (A), TEM image (B) and AFM image with line profile of MXene paticles. . Reproduced with permission from [23]

Table 1
Properties enhancement of MXenes composites.

Ref. Year Polymer Etching Solvents Preparation % Increase Application Wt%

[12] 2022 Epoxy Hydrofluoric acid Sonication + mechanical mix K1c and G1c improved 70% and 140% Coating 0.5 wt%
[24] 2022 PP Hydrochloric acid Hot pressing and vacuum drying The final composite exhibits an EMI

shielding performance of �90 dB (8–12 GHz,
thickness �400 lm).

Electronic device
protection

25 wt%

[25] 2022 PVDF Hydrochloric acid Sonication + planetary mixing MXene/GNP-PVDF film reveals the
outstanding electrical conductivity (7423 S/
m) and excellent in-plane TC (36.9 W/mK).

Composite film 100 mg/
mL

[13] 2021 Epoxy Lithium
fluoride + hydrochloric
acid

Vacuum
drying + sonication + mechanical
mix

Flexural strength increased by 32% Coating,
supercapacitor
packaging and 3D
printing

0.2 wt%

[5] 2021 Epoxy Lithium
fluoride + hydrochloric
acid

Hand layup + vacuum bagging Electrical permanent resistance increased
16.25%

Sensing coating 3.3 mg/
mL

[26] 2021 Epoxy Nitric acid Mechanical mix + ultrasonication Flexural strength and stress intensity factor
increased by 67% and 216%

Composites 1 mg/
mL

[3] 2020 Epoxy Lithium
fluoride + hydrochloric
acid

Mechanical mix Limiting oxygen index value of 38% and high
thermal stability

Coating 3 wt%

[27] 2020 Epoxy Hydrogen fluoride Stirring in DI water + cellulose Thermal conductivity improved 3609% Electronic
packaging

30.2 wt
%
MXene-
CF

[15] 2020 Epoxy Hydrochloric acid Mechanical mix + ball milling Impact strength increased 100%, electrical
conductivity improved 10 orders of
magnitude higher

Composites 1.2 wt%

[23] 2019 CoPA Hydrofluoric acid Sonication + mechanical
mix + casting

Reasonable enhancement of electrical
conductivity up to 1.4 x10-2S.cm�1

Flexible
electronics

5 wt%

[6] 2019 Epoxy Hydrofluoric
acid + Lithium chloride

Vacuum degass + mechanical mix Permeability of epoxy was reduced up to
90% with a loading of 5 wt% filler

Coating 5 wt%
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mer. Lee and Kim [35] demonstrated through-plane and in-plane
conductivities of 1.51 and 4.28 W.m�1.K�1. Thus, proving that
incorporation of MXene enhanced the thermal properties of the
composites film (see Fig. 6).
3.2. Electrical conductivity

The exceptional electrical properties of MXene make it an excel-
lent choice for electrocatalytic processes. Numerous researchers
3

have investigated the effects of various M, X, and surface functions
on the electrical properties of MXene. As MXene loading increases,
electrical conductivity likewise rise [1,39]. The superior conductiv-
ity of MXenes is due to the conductive carbide core, which is
affected by surface groups, particle size, defect concentration and
contact resistance between flakes [40]. Fig. 6 below shows electri-
cal conductivity of epoxy/Ti3C2Tx at different loading. It can be
observed that more weight percent of MXene nanosheets signifi-
cantly increased electrical conductivity.



Fig. 4. Tensile strength of MXene/epoxy composites from literature review
[2,4,13,14,32].

Fig. 5. Tensile modulus of MXene/epoxy composites from literature [13,31,32,36–
38].

Fig. 6. Electrical conductivity of epoxy/Ti3C2Tx at different loading. . Reproduced
with permission from [15]
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4. Conclusions

MXenes have substantial benefits over traditional materials in
terms of competitiveness. MXenes have produced excellent or at
least notable improvements over present technologies, ushering
in a new paradigm. Even though MXenes have been lauded for
their mechanical and electrical properties, their dispersion quali-
ties have not been adequately examined in most publications.
Computational investigation of MXenes’ electronic density and
orbital interaction will aid in the discovery of a new combination
of basic elements. The processing, particularly the dispersion qual-
ity, is one of the critical barriers to extensive industrial substitution
and expansion of commercial MXenes. It is still anticipated that
researchers will overcome these obstacles, which will contribute
to the advancement of nanotechnology and the commercial prod-
ucts associated with it for a number of years to come.
5. Future prospects and opportunities

Among the results produced by researchers, the current trend
indicates an improvement in all aspects of technology such as
mechanical performance of composites, energy storage capacity,
electrical conductivity and thermal properties. MXene has been
used in numerous scientific applications, from wastewater treat-
ment to life-saving medicinal and biological applications, despite
still being in the testing phase. High power densities have been
demonstrated for this novel 2D material, but when paired with
polymers, these power storage options also include flexibility and
biocompatibility. Recent advances in MXene composites have
focused on enhancing their performance and stability by introduc-
ing new materials and modifying their synthesis methods. Overall,
the recent advances in MXene composites have shown that they
have great potential for various applications, and ongoing research
in this field is expected to lead to further improvements and new
discoveries. Despite numerous studies that have been reported,
there is no single publication which mentioned machinability
properties for MXene polymer composites. The machinability
properties are useful because MXene polymer composites can be
applied in mobile phone and power sectors [41,42]. It is hoped that
there will be more reports on the influence of the addition MXene
particles on the morphology of machined surfaces, chip formation,
cutting forces, and tool wear in the near future.
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