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Abstract. Wireless Medical Sensor Network (WMSN) offers innovative
solutions in the healthcare domain. It alleviates the patients’ everyday
life difficulties and supports the already overloaded medical staff with
continuous monitoring tools. However, widespread adoption of these
advancements is still restrained by security concerns and limitations of
existing routing protocols. Routing is challenging in WMSN owing to
the fact that some critical requirements, such as reliable delivery, have
been neglected. To address these challenges, this paper proposes DQR,
a double Q-learning routing protocol to meet WMSN requirements and
overcome the positive bias estimation problem of the Q-learning based
routing protocols. DQR uses a novel Reinforcement Learning (RL) model
to reduce computational and communication overheads. It is combined
with an effective trust management system to ensure a reliable data
transfer and defeat packet dropping attacks. The experimental results
demonstrate robust performance under various attacks with minimal
resource footprint and efficient energy consumption.

Keywords: Double Q-learning · Routing · Reinforcement Learning ·
Trust Management · Blackhole Attack · Selective Forwarding Attack ·
Sinkhole Attack.

1 Introduction

Wireless Medical Sensor Network (WMSN) has become a critical element in
the healthcare systems to monitor the physiological signs of the human body.
This revolutionized technology provides medical staff with continuous real-time
monitoring data without disturbing the patients. However, the widespread uptake
of WMSN applications is still suppressed by security concerns. Ensuring a secure
and reliable data transfer between the sensing units and the sink is still challenging
despite the abundant routing protocols proposed for Wireless Sensor Network
(WSN) [1, 2]. Although WMSN is regarded as a branch of WSN, routing protocols
and security countermeasures proposed for WSN do not necessarily fit WMSN
due to its resource limitations, critical applications, and operating conditions.
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Reinforcement Learning (RL) has been used recently to solve distributed
optimization problems, such as routing [3]. RL-based routing protocols rely on
an existence of a learning agent that acts with the environment and receives
rewards based on its actions. By interacting with the network environment,
the learning agents will be able to maximize their reward by making optimal
forwarding decisions. Q-learning, which is a model-free RL algorithm, is the
most used algorithm for both centralized and decentralized routing protocols [4].
Although this approach is able to produce an efficient routing protocol that can
outperform other algorithms, it still has drawbacks. First, as it works without prior
knowledge about the environment, it requires a series of randomly chosen actions
to explore the environment before converging on the optimal solution. WMSN
cannot tolerate a long learning period because of its sensitive applications. Second,
Q-learning has an inborn overestimation problem which has been overlooked for
a long time [5]. It uses the maximum value as an estimation for the maximum
expected value. The routing performance may be impacted negatively due to
this positive bias. Third, although different parameters have been considered in
protocol design, ensuring reliable data transfer is still challenging as senders cannot
predict the behaviour of other nodes in the path to the destination. Moreover,
taking into consideration more parameters may optimize the routing decisions,
but it involves a significant overhead increase, especially when information must
be exchanged between learning agents. Therefore, a suitable solution is needed
to overcome these aforementioned shortcomings.

The main contribution of this paper is threefold. First, the unique requirements
for an efficient, lightweight and reliable routing protocol for WMSN are specified.
Second, a double Q-learning trust-aware routing protocol for WMSN has been
proposed. Third, extensive analysis has been carried out to ensure the robustness
of our proposed protocol under different scenarios.

The rest of this article is organized into six sections as follows. Related work
is given in Section 2. Section 3 overviews WMSN. DQR routing protocol is
described in Section 4, followed by evaluation and performance results in Section
5. Finally, Section 6 concludes this article.

2 Related Work

Developing a secure, reliable and efficient routing protocol for WSN is still an
open area of research, and it is more challenging in WMSN due to its resource
scarcity and critical applications. Abundant research has been carried out to
propose an efficient routing protocol using different metrics and methods. Recently,
reinforcement learning has been widely used to find the optimal routing path with
minimal overhead. Q-learning, which uses temporal difference (TD) to estimate
the value of an action in a given state, is extensively used to build an efficient
routing policy. However, Q-leaning suffers from an overestimation problem, which
overlooks the optimal action in some cases [5]. Therefore, double Q-learning,
which is an off-policy RL algorithm, is introduced to solve the overestimation
problem by using double estimators to approximate the maximum expected value.



DQR 3

To the best of our knowledge, only a few works used double Q-learning to develop
a routing protocol. Authors in [6] proposed DQLR, a double Q-learning routing
protocol for Delay Tolerant Networks (DTN). However, DQLR only used the
number of hops between the source and the destination as a metric. It achieved
an acceptable delivery ratio under normal operation. However, considering the
hop count as the only metric is insufficient to deal with complicated scenarios.

On the other hand, researchers use various metrics to build the Q-learning
reward function in order to achieve an efficient routing protocol, such as delivery
delay, the number of hops, remaining energy and location information [3, 7–9].
Although this kind of metrics could produce an efficient forwarding method,
it cannot deal with malicious activities launched by insiders. Therefore, the
routing protocol needs a different source of information to make an informed
routing decision, such as Trust Management System (TMS). According to our
literature review, only two routing protocols proposed integrating a TMS with
Q-learning. Authors in [10] proposed a resource and security efficient routing
protocol combined with a trust mechanism for WSN. However, this protocol is
not reproducible due to missing some details. In [11], the authors integrate the
beta distribution based trust scheme with the Q-learning algorithm to achieve
a reliable routing protocol for WMSN. However, positioning information is to
be periodically provided in order to choose the optimal path, which could not
be practical for WMSN. Moreover, it needs further investigation under different
packet dropping attacks.

3 Wireless Medical Sensor Network

With the rapid advancement of the low power and intelligent biomedical SNs,
WMSN emerged as a special kind of WSN for healthcare applications. It consists
of a set of tiny SNs that are distributed inside or offside the body to monitor the
body’s biosignals. This revolutionized technology empowers physicians to timely
monitor their patients and intervene when necessary.

3.1 Network Model

This study assumes a WMSN of a ward in a field hospital as shown in Fig. 1.
Due to the ongoing COVID-19 pandemic, field hospitals have become prevalent,
especially in developing countries. The ward dimensions are 10m× 50m, where a
number of hospital beds are distributed efficiently to provide the necessary care
and save physical space. A network of 64 SNs was used to simulate the WMSN
conforming to IEEE 802.15.6 [12]. The SNs have been distributed randomly
across the hospital ward. The topology is star, with one SN acting as a sink. All
sensed data is transmitted to the sink, which in turn forwards it to the medical
server. The communication range is 5m. Thus, nodes need to cooperate and relay
packets for other adjacent nodes.
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3.2 Threat Model

The critical applications of WMSN necessitate a reliable routing protocol as
dropped packets may carry sensitive information. Dropping attacks, such as
blackhole and selective forwarding attacks, may not just disrupt the network
operation but endanger the patient’s life. This kind of attack is difficult to deal
with as malicious nodes are usually legitimate nodes that pass cryptographic
security countermeasures, such as authentication. Dropping attacks have various
patterns and may happen for different reasons. An SN could get compromised
and stop relaying packets for other nodes intentionally. Even benign nodes could
act selfishly to save resources or could get overloaded by an inefficient routing
protocol. Therefore, a reliable, efficient, lightweight routing protocol for WMSN
that ensures secure data delivery between the sensing units and the sink is
required. DQR assumes that all SNs nodes are mutually authenticated and have
a copy of the security keys to ensure a high level of secure communication.

Sink

Sensor Node

Communication 
Link

Nursing Station

Duty Doctors

U
til

ity

Fig. 1: Network Model

4 Protocol Design

In this section, the proposed routing protocol is presented. The design require-
ments are justified and the proposed algorithms are comprehensively discussed.

4.1 Reinforcement Learning and Double Q-Learning

Multi-Agent Reinforcement Learning (MARL) is a subfield in RL that focuses on
studying the behaviour of multiple agents co-existing in a shared environment.
The agents are motivated by reward functions and interact with the environment
and each other to compete or achieve a common goal. MARL is modeled using
the Markov Decision Process (MDP), where the environment has a set of states
st ∈ S and each agent takes action at ∈ A. In the network environment, each
learning agent solves a multi objectives routing problem to make optimal routing
decisions.
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Q-Learning is an off-policy, model-free temporal difference (TD) algorithm
to learn the value of an action in a particular state. However, due to its inborn
overestimation problem, Q-Learning could perform poorly in some stochastic
environments because the most optimal action could be obscured by overestima-
tion [5]. Therefore, double Q-learning is introduced as an alternative method to
approximate the maximum expected action-value by using double estimators.

4.2 Design Requirements

The unique characteristics of WMSN dictate rigorous requirements, which must
be kept in mind when designing any potential routing protocol. Therefore, the
proposed protocol must be efficient, lightweight, and attack-resistant.

The routing protocol must always choose the optimal path in order to achieve
a high delivery ratio and low energy consumption. However, Q-learning-based
routing protocols could suffer from poor performance due to the action-value
overestimation problem. This biased estimation leads to bad routing decisions
that negatively affect the packet delivery ratio. Moreover, increasing the number
of transmissions aggravates the energy consumption as transmission activities
account for around 80% of the total consumed energy [13]. Therefore, a new
approach to achieve an efficient routing protocol is required.

WMSN has stringent resource constraints that make the inherited WSN rout-
ing methods not necessarily fit. The traditional RL model necessitates updating
the Q table after each sent or forwarded packet, which is a resource depletion
process [6, 11]. Therefore, the routing engine of any proposed routing protocol
must have a minimal resource footprint in terms of processing and memory.

Dropping attacks, such as blackhole and selective forwarding attacks, degrade
the overall performance, and most importantly, it may endanger the patient’s life.
Moreover, the routing process itself could be prone to a specific kind of attack
based on the used method, such as poisoning attacks. Therefore, WMSN requires
a reliable and robust routing design. The delivery reliability allows the protocol to
predict the malicious paths and avoid them, while the design robustness ensures
high resiliency to routing attacks.

4.3 DQR Protocol

DQR is designed to fulfill all the above requirements. The reward function is
defined as punishment to ensure that the learning agent always chooses the
lowest-cost path. Moreover, in order to reduce the computational overhead of
the traditional RL model, DQR reformulated the RL model, assuming that the
network will be static for a short period, which is an acceptable assumption as
nodes could be regarded as stationary for a short interval. This assumption allows
the learning agent to perform the same action multiple times before receiving the
corresponding reward, as illustrated in Fig 2. Adopting this method reduces the
computational overhead significantly by updating the Q tables periodically, which
will be discussed comprehensively in section 4.4. Furthermore, DQR incorporates
an effective TMS to ensure reliable data transfer and avoid malicious paths.
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Agent

Environment

......

Fig. 2: Graphical representation of the proposed RL model

WMSN network represents the environment E, which contains a set of SNs,
one of which acts as a sink S. The learning agent in DQR is defined as the tuple
(S,A,R) where S represents a set of states, A is the set of actions the agent can
take, and R is the reward function. At time step t, an agent at state s ∈ S could
get a packet to send to destination d, and hence the agent takes action at ∈ A to
forward the packet to one of its neighbors. The learning agent keeps taking the
same action during the time window [t, t+ τ ]. At the end of the time window,
the learning agent receives rt+1 ∈ R from the environment and moves from state

st to st+1. DQR defines two Q functions Q
A(i)
t+1 (s

(i)
t , a

(i)
t ) and Q

B(i)
t+1 (s

(i)
t , a

(i)
t ) as

the estimated future reward of agent i at state st taking the action at as shown
in Eq. 2 and Eq. 4. Each one of these estimators is updated using a value from
the other estimator for the next state as shown in Eq. 1 and Eq. 2. Therefore,

the actions a∗t and b∗t are the maximum valued actions for Q
A(i)
t+1 (s

(i)
t , a

(i)
t ) and

Q
B(i)
t+1 (s

(i)
t , a

(i)
t ), respectively.

a
∗(i)
t = argmax

a
(i)
t ∈A

Q
A(i)
t (s

(i)
t+1, a

(i)
t ) (1)

Q
A(i)
t+1 (s

(i)
t , a

(i)
t )← (1−η)QA(i)

t (s
(i)
t , a

(i)
t )+η[r

(i)
t+1(s

(i)
t+1)+γQ

B(i)
t+1 (s

(i)
t+1, a

∗(i)
t )] (2)

b
∗(i)
t = argmax

a
(i)
t ∈A

Q
B(i)
t (s

(i)
t+1, a

(i)
t ) (3)

Q
B(i)
t+1 (s

(i)
t , a

(i)
t )← (1−η)QB(i)

t (s
(i)
t , a

(i)
t )+η[r

(i)
t+1(s

(i)
t+1)+γQ

A(i)
t+1 (s

(i)
t+1, b

∗(i)
t )] (4)

where η ∈ [0, 1] is the learning parameter where small values decelerate the
learning and large ones may prevent algorithm convergence, γ ∈ [0, 1] is the
future reward discount parameter where small values make the learning agent
nearsighted by considering the only immediate reward.

DQR is designed to always choose the most reliable shortest path by defining
the reward function as punishment, as shown in Eq. 5. The delivery reliability
is achieved by incorporating trust information, which is discussed in section
4.6, while the punishment design reduces the number of transmissions along the
path to the destination to ensure an energy-efficient protocol. Moreover, energy
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information from the agent itself is also considered to optimize the network
lifetime, which will be discussed further in section 4.5

r
(i)
t+1(s

(i)
t+1, j) =


−(1− T (ij)

t ).F
(i)
t if O

(ij)
t ̸= {ϕ}

−(1− T (ij)
t−δ ).F

(i)
t if O

(ij)
t = {ϕ} ∧ |O(ij)| > ϵ

0 Otherwise

(5)

where r
(i)
t+1(s

(i)
t+1, j) is the received reward by node i for taking the action

a
(i)
t = j forwarding the traffic to the neighbor j at time window [t, t+ τ ], T

(ij)
t

is the trust value of SN j that maintained by SN i at time window t and is

evaluated using algorithm 4, O
(ij)
t is the direct observations maintained by node

i for node j at time window t, δ is a time lag used to obtain the last trust value,
ϵ is a threshold to identify the minimum required evidence where higher values
means more historical data is required to use the evaluated trust value.

The learning process must be continual due to network dynamicity and
distributed as no agent has a full view of the network. DQR is a decentralized
protocol where the learning agents exchange their best estimations with their
neighbors, as illustrated in algorithm 1. The received estimations are then used
to update the QA and QB tables and specify the most optimal next hop. As the
goal of the learning agent is to maximize the received reward in the long run,
greedy action should not always be taken as routing task is a continual online
task and exploiting the greedy action all the time prevents the convergence to
the global optimum. Therefore, DQR uses ε-greedy method to balance between
exploration and exploitation. The learning agent explores the environment with a
probability of θ and exploits it with a probability of (1− θ). Initially, the learning
agents have no evidence from the network; hence their Q values are initialized to
zeros, which is more practical to motivate the agents to explore the environment
and does not require any hardware or positioning information like in [11, 14].

4.4 Synchronous and Asynchronous Updating

DQR adopted a synchronous Q tables updating method with a view to producing
a lightweight routing protocol. Each action-value function is updated with the
outcome of the other action-value function as shown in algorithm 2. The actions
a∗(i) and b∗(i) are the maximum value action in state st+1 for QA(i) and QB(i),
respectively. Therefore, both Q tables are updated for the same problem but with
a different set of evidence to produce an unbiased estimate for all action-value(s).
Although the obtained experience is divided between two action-value functions,
the algorithm is still data-efficient as selecting the optimal action is computed
based on the average Q tables as illustrated in algorithm 1. As the learning
agents collaborate with each other by broadcasting their best estimation to a
destination, this information is then used to keep the Q tables updated. However,
the learning agent forwards the traffic to only one adjacent node during the
time window t, and thus it can only calculate the reward for this action. For

instance, node i take the action a
(i)
t = j during the time window t and receives
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Algorithm 1: Routing Protocol
Input:

The reward: r
(i)
t+1(s

(i)
t+1, j)

The Q tables: QA
t & QB

t
The trust table: Tt

Output: Optimal next hop a
(i)
t

Initialization:

Q
A(i)
0 (n(i) ∈ N(i)

t ) = Q
B(i)
0 =

{
0 if n(i) ̸= S

1 if n(i) = S
// N

(i)
t is the adjacent nodes of i

T
(i)
0 (n(i) ∈ N(i)

t ) = E[uni(0, 1)] = 0.5

a
(i)
1 =

{
S if S ∈ N(i)

1

n(i) | n(i) ∈ N(i)
1

(6)

while TRUE do
Wait τ
Broadcast max(Q

A(i)
t ) & max(Q

B(i)
t )

if ε− greedy > θ then

a
(i)
t = argmax

a∈A
(
Q

A(i)
t (s,.)+Q

B(i)
t (s,.)

2 )

Calculate r
(i)
t+1(s

(i)
t+1, a

(i)
t ) as in Eq. 5

Q
A(i)
t+1 (s

(i)
t , a

(i)
t ) & Q

B(i)
t+1 (s

(i)
t , a

(i)
t ) Synchronous update as in algorithm 2

else

a
(i)
t ← n

(i)
t | n(i)

t ∈ N(i)
t

Calculate r
(i)
t+1(s

(i)
t+1, a

(i)
t ) as in Eq. 5

Q
A(i)
t+1 (s

(i)
t , a

(i)
t ) & Q

B(i)
t+1 (s

(i)
t , a

(i)
t ) Synchronous update as in algorithm 2

end

s
(i)
t ← s

(i)
t+1

end

two updates from nodes j and k. Consequently, DQR updates the action-value
of j with the calculated reward using double Q-learning, while it checks if there
is enough evidence about node k to update each action-value separately using
Q-learning or keep it unchanged in case of not enough evidence. This method
allows DQR to react quickly to any environment change, and at the same time,
it immunizes DQR against utilizing false updates from malicious nodes.

On the other hand, although the synchronous updating method is compu-
tationally efficient, it may decelerate the convergence as the learning agent,
especially in the exploration phase, may make wrong decisions, and thus keep
forwarding the traffic to the wrong next hop. In traditional RL model, the learn-
ing agent risks losing one packet each time to update the Q tables. However,
by using only synchronous updating, more packets may be lost before updating
the Q tables. This usually happens when loops occur. Therefore, DQR uses an
asynchronous updating method to step up the learning process and makes the
algorithm converge swiftly. Once a loop is detected or expected, such as when
forwarding the packet to its source again, the asynchronous updating method is
triggered to penalize both corresponding action-value(s) and allow the learning
agent to take the appropriate action accordingly, as detailed in algorithm 3.
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Algorithm 2: Synchronous Updating
Input:

The Q Table: Q
A(i)
t and Q

B(i)
t

The reward: r
(i)
t+1(s

(i)
t+1, j)

The trust table: Tt

Output: Q
A(i)
t+1 and Q

B(i)
t+1

while TRUE do
Wait τ
foreach j ∈ Ni

t do
if j == ait then

ρ← rand(0, 1)
if ρ > 0.5 then

Define a∗(i) = argmax
a∈A

Q
A(i)
t (s

(i)
t+1, a

(i)
t )

Q
A(i)
t+1 (s

(i)
t , a

(i)
t )←

(1− η)QA(i)
t (s

(i)
t , a

(i)
t ) + η[r

(i)
t+1(s

(i)
t+1) + γQ

B(i)
t+1 (s

(i)
t+1, a

∗(i)
t )]

else

Define b∗(i) = argmax
a∈A

Q
B(i)
t (s

(i)
t+1, a

(i)
t )

Q
B(i)
t+1 (s

(i)
t , a

(i)
t )←

(1− η)QB(i)
t (s

(i)
t , a

(i)
t ) + η[r

(i)
t+1(s

(i)
t+1) + γQ

A(i)
t+1 (s

(i)
t+1, b

∗(i)
t )]

end

else
if |Oij | > ϵ then

Q
A(i)
t+1 (s

(i)
t , j)←

(1− η)QA(i)
t (s

(i)
t , j) + η[r

(i)
t−δ(s

(i)
t−δ, j) + γ max

j∈N
(i)
t

Q
A(i)
t (s

(i)
t+1, j)]

Q
B(i)
t+1 (s

(i)
t , j)←

(1− η)QB(i)
t (s

(i)
t , j) + η[r

(i)
t−δ(s

(i)
t−δ, j) + γ max

j∈N
(i)
t

Q
B(i)
t (s

(i)
t+1, j)]

else

Q
A(ij)
t+1 ← Q

A(ij)
t

Q
B(bij)
t+1 ← Q

B(ij)
t

end

end

end

end

4.5 Energy Model

Optimizing the network lifetime is still a challenging concern in WSN and WMSN
in particular. Due to the critical applications of WMSN, dead nodes may have
catastrophic consequences. Moreover, in some cases, replacing the battery may
need surgical intervention. Considering the residual energy of the adjacent nodes is
widely used to maximize the overall network lifetime [15, 16]. However, exchanging
energy information between adjacent nodes is neither energy nor computational
efficient. In contrast, DQR only used local energy information with a view to
reducing the computational overhead and avoiding filtering out false second-hand
information. Moreover, it uses two sources of energy information with a view to
load balancing energy consumption across the network. When the residual energy
percentage is greater than a threshold ϑ, this parameter does not contribute in

evaluating the consumed energy ratio E
(i)
t ∈ [0, 1] as shown in Eq. 7. In that case,
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Algorithm 3: Asynchronous Updating

Input: A packet to forward: P
(sd)
t

Output: Updated Routing
while TRUE do

if ∀ i ∈ N receives P
(id)
t+δ then // P

(id)
t+δ is a packet from i to d after time lag δ

if η == 1 then

r
(i)
t+1(s

(i)
t+1, j) = −eη(1− T (ij)

t ).F
(i)
t

else

r
(i)
t+1(s

(i)
t+1, j) = −(1− T (ij)

t ).F
(i)
t

end

if RQ
A(i)
t−1 (s

(i)
t−1, j) ∧ RQ

B(i)
t−1 (s

(i)
t−1, j) then // RQ

A(i)
t−1 (s

(i)
t−1, j) is the last

expected future reward received from j

update Q
A(ij)
t and Q

B(ij)
t using r

(i)
t+1, RQ

A(i)
t−1 and RQ

B(i)
t−1

else // ζ is the loop penalising parameter

Q
(i)
t+1(s

(i)
t , a

(i)
t = nj)← Q

(ij)
t − ζ

end

a
(i)
t = argmax

n
(i)
t ∈N

(i)
t

(
Q

A(i)
t (s,.)+Q

B(i)
t (s,.)

2 )

Update P
(id)
t

Send P
(id)
t

end

if ∀ i ∈ N receives P
(jd)
t ∧ a(i)t = j then

if η == 1 then

r
(i)
t+1(s

(i)
t+1, j) = −eη(1− T (ij)

t ).F
(i)
t

else

r
(i)
t+1(s

(i)
t+1, j) = −(1− T (ij)

t ).F
(i)
t

end

if RQ
A(i)
t−1 (s

(i)
t−1, j) ∧ RQ

B(i)
t−1 (s

(i)
t−1, j) then

update Q
A(ij)
t and Q

B(ij)
t using r

(i)
t+1, RQ

A(i)
t−1 and RQ

B(i)
t−1

else

Q
(i)
t+1(s

(i)
t , a

(i)
t = nj)← Q

(ij)
t − ζ

end

a
(i)
t = argmax

n
(i)
t ∈N

(i)
t

(
Q

A(i)
t (s,.)+Q

B(i)
t (s,.)

2 )

Forward P
(jd)
t

end

end

SNs choose the most reliable shortest path, which in turn makes some nodes
overloaded due to their trustworthiness and positions. Therefore, DQR defines

the energy consumption ratio C
(i)
t to evaluate the extra burden incurred by the

node due to relaying activities, as shown in Eq. 8. The weighted average of E
(i)
t

and C
(i)
t is calculated in Eq. 9. As integrating the energy into the reward function

may influence the nodes routing decision to choose a malicious path, the energy
factor is bounded by λ ∈ [0, 1] as shown in Eq. 10.

E
(i)
t =

{
0 if eres(t)

einit
> ϑ

1− eres(t)
einit

Otherwise
(7)
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C
(i)
t = 1− cn(t)

ca(t)
(8)

ψ
(i)
t = ωE

(i)
t + (1− ω)C(i)

t (9)

F
(i)
t = eλψ

(i)
t (10)

where eres(t) is the remaining energy at time t, einit is the initial energy, ϑ is
the residual energy threshold, cn(t) is the node normal energy consumption rate,
ca(t) is the overall energy consumption rate, ω is the average weight, λ is the
bound parameter where λ = 0 is used to disable the energy module.

4.6 Trust Model

DQR evaluates the trust relationship between the SNs using the Lightweight Trust
Management System (LTMS) [17]. LTMS has been chosen for several reasons.
It is a lightweight distributed trust scheme designed to fit WMSN requirements.
The trust value is evaluated using a novel updating mechanism that can detect
packet dropping attacks with different dropping patterns thanks to integrating
the slopes bt and dt into the beta distribution shape parameters αt and βt, which
gives more weight to bad activities and makes it difficult to eliminate. As TMSs
can be manipulated by intelligent adversaries who launch on-off attacks, LTMS
is provided by a protection module that can detect complicated on-off attacks by
considering short and long-term trust values to detect repeated dropping patterns
as illustrated in algorithm 4.

5 Evaluation and Performance Results

In this section, our proposed DQR is analyzed under different conditions. Various
simulation scenarios have been run to prove the merit of DQR.

5.1 Experimental Setup

A WMSN for a ward in a field hospital has been adopted, as shown in Fig 1. The
SNs have been distributed randomly over an area of 50m× 10m. A total number
of 64 SNs has been used where one of them acts as a sink, which represents
the maximum number of SNs according to IEEE 802.15.6 [12]. The traffic is
randomly generated using an exponential distribution density function.

DQR is benchmarked with QRT [11] routing protocol, which has been designed
to handle non-cooperative and misbehaving SNs in WMSN. It has been proposed
as a trust-based extension to RL QRP [14], an RL-based routing protocol proposed
to fit WMSN. QRT has been chosen as a benchmark because it is the only
routing protocol proposed to deal with dropping attacks in WMSN. To ensure
fair comparisons, we adopted the reported parameters setting of QRT as shown
in table 1. The experiments have been run using a discrete event simulator based
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Algorithm 4: Secure Trust Evaluation
Input: Observations & beta shape parameters
Output: Trust value
initialization;
while TRUE do

if bt−1 ≤ 0 && dt−1 > 0 then
αt = λ(αt−1 + bt−1) + st;
βt = λ(βt−1 + dt−1) + ut;
bt = αt − αt−1;
dt = βt − βt−1;

else
αt = λ.αt−1 + st;
βt = λ.βt−1 + ut;
bt = αt − αt−1;
dt = βt − βt−1;

end
if αt ≤ 0 then

Repijt = 0;
else

Repijt =
αt

αt+βt
;

end

if T ij
t−1 ≥ thr1 && Repijt < thr1 then
if malicious > 0 then

cycle = t−malicious;
malicious = 0;

else
malicious = t;

end

end
if cycle > 0 && Trust(t− 1) < thr2 then

ShRepijt = mean(T ij
t−cycle:t);

T ij
t = min(ShRepijt , Rep

ij
t );

else

T ij
t = Repijt ;
cycle = 0;

end

end

on Simpy [18]. The simulation time is set to 200s where the first 50s represents
the learning time. The exploration-exploitation rate is controlled by ε-greedy
strategy and set to 10% as in QRT. Each experiment has been run 30 times to
ensure the Gaussian distribution. The results are then averaged out and reported
with one standard deviation.

5.2 Delivery Reliability Analysis

In these experiments, the delivery performance is evaluated under different
network conditions ranging from normal operation to under complicated attacks.
The packet delivery ratio and hop counts are considered to compare the optimality
of the routing decisions made by both protocols.

The first experiment studies the performance under normal operation with
variable traffic rates. Some SNs generate a low traffic rate of around 1p/s, such
as heart rate SNs [19]. Thus, four traffic rates have been chosen for simulation,
starting at 1p/s and doubling it each time. No malicious SNs are considered in
this experiment. Benign nodes may drop randomly 1% of the traffic. Fig. 3a
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Table 1: Simulation Parameters
Parameter Value

Application Poisson random traffic
Traffic rate µ 1, 2, 4, 8
Radio range 5m
Propagation loss model Range propagation loss
Number of SNs 64
Time unit 1s
Simulation time 200s
Learning period 50s
Learning rate η 0.5
Discount factor γ 0.5
ε−greedy 0.1
The average weight ω 0.5
Residual energy threshold ϑ 0.7

and 3d show the delivery ratio, and the hop counts for both protocols under
normal operation, respectively. DQR show superior data delivery performance
with optimum routing decision. QRT shows high variability in terms of delivery
ratio and hop count, which indicates that QRT does not converge to the optimum
action-value(s) all the time. Moreover, it finds difficulty working under low traffic
rates.

In the second experiment, blackhole and selective forwarding attacks are
launched during the simulation to study the robustness of both protocols. The
blackhole attack is a dropping attack where malicious nodes drop all received
traffic instead of relaying it. In the selective forwarding attack, the malicious
nodes selectively choose some sources to drop their traffic. Both attacks may
disrupt the network operation. Therefore, nodes should always choose the most
reliable path to destinations. The performance has been evaluated for a variable
number of malicious nodes, starting from 1 malicious nodes and up to 50% of
the total number of SNs. Fig. 3b, 3c, 3e and 3f shows the delivery ratio and the
hop counts under blackhole and selective forwarding attacks, respectively. Across
all scenarios, DQR chooses the most optimal reliable paths, as illustrated in the
hop counts results. When the number of malicious nodes increases, DQR avoids
malicious paths and tends to choose longer but reliable paths. On the other
hand, QRT is not able to detect malicious paths, as shown in the decreasing hop
counts when introducing more malicious nodes. This means that packets end up
in malicious nodes, which explains the low delivery ratio.

In the third scenario, sinkhole, which is a route poisoning attack, is launched
to study the impact of receiving dishonest updates from other agents on routing
decisions. Different levels of poisoning are evaluated starting by increasing the
updates by 25% and doubling it up to 100%, where the agents send the value
zero, which is the highest Q value in DQR. The delivery and hop counts ratios
are illustrated in Fig. 4a - Fig. 4f. The results show that DQR is robust under
different poisoning levels and can achieve a high delivery ratio. It is worth noting
that in the worst-case scenario when malicious SNs advertise zeros, DQR takes
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Fig. 3: Delivery and hop counts ratios under different conditions

slightly longer paths as the received false updates influence not only the SN itself
but also its neighbors. However, this behaviour does not affect the delivery ratio.

5.3 Convergence

Q-learning is proved to converge to the optimum action-value(s) [20], as is double
Q-learning [5]. However, convergence time is a crucial factor. A longer time to
converge implies risking more packets to lose and consuming extra resources.
In this experiment, the convergence time is evaluated in two scenarios, at the
beginning of the simulation and when patients change their locations. Fig. 5a
demonstrates the convergence time at the beginning of the simulation, where
SNs have no information about the environment and need to explore in order to
converge. DQR converges faster than QRT thanks to its asynchronous updating
algorithm. It took less than 50% time to converge compared to QRT. It is worth
noting that QRT performs well at the early start because it is provided by
positional information, while DQR works without any prior knowledge. In the
second scenario, patient mobility is considered within the hospital ward. The
patient could have up to three SNs. Thus the simulation is run for 1, 2 or 3
randomly chosen SNs at a time. Two movements have been considered at times
100s and 150s. The simulation has been run for a hostile environment where 50%
of the nodes are launching blackhole attacks. Fig. 5b shows mobility results for
only three SNs due to space constraints. The results show a fast convergence
without any noticeable performance degradation for DQR protocol, which proves
the robustness of our methods. On the other hand, QRT suffers from difficulty
in re-converging, especially after the second movement.
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Fig. 4: Delivery and hop counts ratios under sinkhole attack
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Fig. 5: The average convergence time

5.4 Energy Efficiency

The energy efficiency has been evaluated in two experiments. In the first, the
network lifetime has been compared between both protocols. The second scenario
shows the average consumed energy by a node for different traffic rates. Network
lifetime could be defined as the running time until the first node dies [7]. Both
simulation scenarios have been carried out under normal operation without
introducing any attack. Fig. 6a shows the percentage of alive nodes during the
simulation. QRT has a very short lifetime compared to DQR. The first node
dies after around 16s on average. This deficiency could be attributed to two
reasons. QRT does not take any energy-related factor into account to choose
the optimal path, and most importantly, the excessive information exchanging
increases the RF activities significantly, which is responsible for 80% of the
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consumed energy. On the other hand, DQR shows superior performance because
of its resource-conservative design, which is clearly reflected in consuming less
energy for all traffic rates, as obviously seen in Fig. 6b.
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Fig. 6: Energy efficiency results

5.5 Computational Overhead

In this experiment, the processing and memory overheads of both protocols are
evaluated. The experiment was carried out on an Intel Core i9-10885H at 2.4GHz
and 32GB RAM. The computational overhead has been evaluated for traffic rate
µ = 4p/s as QRT has converging difficulties for lower rates. No attacks were
launched during the simulation. The simulation was repeated 30 times, and then
the mean with one standard deviation was reported.

The average processing time of both protocols is illustrated in Fig. 7a. What
can be clearly seen in this result is the minimum processing overhead of DQR.
It saves around 50% processing overhead compared to QRT. Moreover, unlike
QRT, DQR has minimum variability. This proves that our novel RL model is
resource-efficient. Moreover, the low variability of DQR indicates that DQR is
always able to converge swiftly without any difficulties, proving its robustness.

Memory consumption is another crucial factor for constrained devices, such
as SNs. Fig. 7b depicts the average consumed memory of both protocols. During
the simulation, the memory allocations were traced using a memory allocation
module called tracemalloc [21]. The results show that DQR is able to save up to
80% of QRT consumed memory. Moreover, unlike QRT, DQR shows almost no
variability, which indicates its robustness.

The results of this experiment show that DQR has a minimum footprint in
terms of processing time and consumed memory. This lightweight computational
overhead could be attributed to its resource-efficient design represented in syn-
chronous and asynchronous Q tables updating algorithms. Furthermore, this
novel design is able to converge swiftly with minimum variability allowing the
packets to reach their destinations efficiently.
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Fig. 7: The average processing time and memory consumption

6 Conclusion and Future Work

The resource scarcity and the sensitive applications have brought enormous
challenges to WMSN routing protocols. The existing routing protocols for WSN
cannot be directly adopted for WMSN due to overlooking some imperative
requirements. In this paper, a lightweight, reliable and energy-efficient routing
protocol for WMSN has been proposed. DQR is a double Q-learning routing
protocol that uses a novel RL model. It uses two updating methods combined with
trust management and energy models to ensure lightweight, reliable and resource-
efficient data delivery. The experimental results show superior performance with
minimal resource footprint. The performance of DQR will be further optimized
by tuning the used hyper-parameters. Additionally, more experiments will be
carried out to ensure robustness under further complicated dropping attacks.
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