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Mutation based Improved Dragonfly Optimization Algorithm for a Neuro-Fuzzy System in
Short Term Wind Speed Forecasting

Huseyin Parmaksiz,Ugur Yuzgec,Emrah Dokur,Nuh Erdogan

A mutation-based dragonfly optimization algorithm (MIDA) is developed.

The dragonfly algorithm is improved by incorporating three mechanisms.

The proposed MIDA is evaluated using CEC2014 and CEC2020 benchmarks.

e MIDA was applied to optimize the parameters of a neuro-fuzzy model (ANFIS).

A hybrid ANFIS-MIDA model is presented for short term wind speed forecasting.
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ARTICLE INFO ABSTRACT

Keywords: The Dragonfly algorithm (DA) is a heuristic optimization algorithm that is commonly used for
Dragonfly algorithm complex optimization problems. Despite its widespread application, the abundance of social
Meta-heuristic behaviors in its construct can lead to poor accuracy in solutions and an imbalance between
ANFIS exploration and exploitation phases. To overcome these issues, this paper proposes a mutation-
Forecasting based Dragonfly optimization algorithm (MIDA). In order to increase the solution accuracy
Wind speed of the original DA and reduce its handicaps, the proposed model includes three procedures,

namely, mutation operation, boundary control, and greedy selection mechanisms. The mutation
operator helps to find global optima by avoiding getting stuck at the local optimum point,
while the boundary control and greedy selection mechanisms update the dragonflies at each
iteration and thus use the better fitness value of the updated ones. The performance of the
proposed MIDA is tested and shown to be superior to the original DA using several analyses
such as convergence, search history, trajectory, average distance, computational complexity,
diversity and balance. To validate the MIDA algorithm, it is tested on the 10, 30, 50 and 100
dimensions of the CEC2014 benchmark functions. Furthermore, a comparison against twelve
state-of-the-art (SOTA) meta-heuristic optimization algorithms is performed. The performance
of the proposed MIDA is also compared with the performances of some improved dragonfly
algorithms taken from the literature. The statistical results obtained by the original DA and
MIDA for ten minimization problems with 5, 10, 15 and 20 dimensions from the CEC2020
test suite are presented. Finally, the proposed algorithm is applied to optimize the ANFIS model
parameters in order to be used for short-term wind forecasting as a real-world problem. The
results obtained for the different dimensions of CEC2014 and CEC2020 test problems in the
study show that the search performance of proposed MIDA is better than that of the original
DA. MIDA outperformed the original DA by 91.33% for CEC2014 benchmarks and 94.25% for
CEC2020 benchmarks. In addition, MIDA came first in comparison with twelve different SOTAs
from the literature. In comparisons with different DA versions, MIDA took the second place
in terms of statistical performance. Computational complexity was examined in the CEC2020
benchmarks and it was seen that MIDA has a more effective run time than DA. Finally, the short-
term wind speed forecasting results of the ANFIS-DA hybrid model according to four different
error metrics are more successful than those of the ANFIS-DA hybrid model.

1. Introduction

Meta-heuristic techniques are optimization algorithms that have been of interest to many researchers across a wide
range of disciplines, including engineering, design optimization, business, and economics. They are now widely used
to solve engineering problems for genuine reasons such as simplicity, flexibility, and robustness [1]. In terms of models,
the meta-heuristic studies in the literature can be classified as non-nature-inspired meta-heuristics and nature-inspired
meta-heuristics [2]. The first group algorithms include physics and/or chemical process-based, evolutionary-based,
human-based, and swarm intelligence-based approaches.

Thanks to their flexibility, robustness, scalability, decentralised, self-organization, adaptation, and fast response,
swarm intelligence (SI) based algorithms are becoming widely attractive in engineering fields in recent years [3], [4],
[5], [6], [7]. These algorithms are essentially bio-inspired by the collective social behavior of swarms, systems, or
communities, such as herds of animals, colonies of insects. The SI has been deemed an emerging field and an integral
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part of artificial intelligence (AI). Some of the most well-known SI based algorithms are: Particle Swarm Optimizer
(PSO) [8], Ant Colony Optimization algorithm (ACO) [9], Artificial Fish Swarm algorithm (AFS) [10], Bacterial
Foraging Optimizer (BFO) [11], Artificial Bee Colony algorithm (ABC) [12], Firefly Algorithm (FA) [13], Ant Lion
Optimizer (ALO) [14], Salp Swarm Algorithm (SWA) [15], Harris Hawks Optimizer (HHO) [16, 17], Tunicate Swarm
Algorithm (TSA) [18, 19], Tree Seed Algorithm (TSA) [20, 21], Spotted Hyena Optimizer (SHO) [22, 23], African
Vultures Optimization Algorithm (AVOA) [24], Artificial Gorilla Troops Optimizer (GTO) [25], Farmland Fertility
Algorithm (FFA) [26, 27], and many others.

In 2016, Mirjalili proposed one of the most recent SI meta-heuristic techniques inspired by the dynamic and
static swarming behaviors of dragonfly, called the Dragonfly Algorithm (DA) [28]. It is shown that the proposed
DA algorithm in [28] can improve the initial random population, converge towards the global optimum, and provide
very competitive results as compared to state-of-the-art algorithms. The DA has been applied to solve various
optimization problems, including multi-objective problems. Thanks to its greater effectiveness and efficiency, the DA
has been successfully applied to various applications, such as signal processing [29], robotics [30], power systems
[31], biomedical [32], and many others. Compared to other optimization methods, the most significant advantages of
DA are its simple, flexible and easily applicable structure and use of few control parameters [33]. However, the large
number of social behavior models in the structure of DA can lead to decreased solution accuracy and an imbalance
between the exploration and exploitation phases. Furthermore, the Levy flight model, which is used to increase the
exploration capabilities of dragonflies in the search space, raises the risk that the updated positions of the dragonflies
will go beyond the search space’s boundaries. As a result, DA may fail to find global optima due to poor tuning of its
control parameters [34].

There are four main techniques in the literature to improve the performance of DA. These are to improve the use
of DA, improve local search capability, improve both the exploitation and exploration phases, and find better initial
positions for dragonflies [35]. Yu et al.[36] presented an improved dragonfly algorithm based on two strategies, which is
named QGDA. These strategies are Gaussian mutation (GM) and quantum rotation gate. The performance of QGDA
was tested using CEC 2014 benchmark, feature selection, and several engineering design problems. In the study of
Yuan et al. [37], the Gaussian mutation and the Gaussian bare-bone are integrated into the DA structure, which is
called GGBDA. The benchmark result shows that the Gaussian mutation and Gaussian barebone structures effectively
improved the performance of DA. Song et al. [38] proposed an improved dragonfly algorithm using elite opposition
learning and exponential function, which is named EOEDA. The performance results of EOEDA are presented for
15 different benchmark problems. Yuan et al. [39] implemented an adaptive resistance and stamina strategy into the
original dragonfly algorithm. The authors, calling their new algorithm ARSSDA, performed performance tests on
30 CEC2014 benchmarks and 3 well-known engineering problems. ARSSDA was inspired by the air resistance and
physical endurance of insects in flight. In [40], a chaotic dragonfly optimizer (CDA) is presented for feature selection
problems. The objective in the these problems is to minimize the size of the selected features, and so to maximize
the performance of the classifiers. The results showed that the CDA outperformed the particle swarm optimization
(PSO), cat swarm optimization (CSO), grey wolf optimization (GWO), and artificial bee colony (ABC) algorithms.
Aci et al. [41] proposed a Brownian motion based DA for single and multi objective optimization problems. Brownian
motion was used instead of Levy flight mechanism of the original DA. Bao et al. [42] improved a DA version using
opposition-based learning, which is called OBLDA, to optimize the threshold value in multilevel threshold colour
image segmentation. In the study of Sambandam et al. [43], a self adaptive scheme for tuning the parameters of
DA was evaluated on the multilevel image segmentation problem. Salgotra et al. [44] considered different mutation
operators (Lévy, trigonometric, Cauchy, diversity, Gaussian, neighbourhood-based, and clock mutations) to adapt it
to the dragonfly algorithm. The experimental results (CEC2005, CEC2015, and CEC2011 benchmarks) show the
mutation clock-based DA has the best performance among the other mutation-adapted DA versions.

In the literature, there are studies regarding hybrid structures that increase the optimization performance by using
the dragonfly algorithm together with different meta-heuristic algorithms. Some of these are those: Abedi et al.
[45] presented a hybrid algorithm consisting three different approaches. This hybrid structure is based on dragonfly
algorithm, firefly algorithm, and opposition learning mechanism. In another study, Duan et al. [46] proposed a
hybrid dragonfly algorithm with differential evolution algorithm for single objective optimization problems. In [47],
a hybrid algorithm combining dragonfly and simulated annealing algorithms was developed for the flexible flow-shop
scheduling problem. Ghanem et al. [48] presented a hybrid approach to optimize the weights of a multilayer perceptron
model. This approach consists of dragonfly and artificial bee colony algorithms, which is called DA-ABC. Shilaja et al.
[49] proposed a hybrid algorithm based on improved grey wolf optimizer and dragonfly algorithm for minimizing the
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energy cost, power loss and voltage deviation. The proposed hybrid algorithm was applied on IEEE 30 bus system and
it was compared with some methods. In the study of Tawhid and Dsouza [50], a hybrid algorithm was introduced by
combining dragonfly and particle swarm algorithms for the feature selection problems. The authors used UCI datasets
to test the performance of hybrid DA-PSO. The results show that the proposed hybrid structure is more successful than
other algorithms. Veeramsetty et al. [51] presented an approach based on hybridizing genetic and dragonfly algorithms.
This hybrid algorithm was applied to the the 69 bus radial distribution system of a electric company.

In binary optimization problems, the search mechanisms of the dragonfly algorithm are adapted for such
optimization problems. Some studies on the binary dragonfly algorithm are as follows: For solving the 0-1 knapsack
problem, the binary dragonfly algorithm (BDA) was presented in [52]. The BDA was shown to be more accurate than
the standard DA and other SI algorithms. Mafarja et al. [53] proposed a binary dragonfly algorithm (BDA) to minimize
the number of features and increase the classification accuracy. Results with 18 UCI datasets show the superiority of
BDA. In the study of Chen et al. [54], the single and multi binary dragonfly algorithms were presented for wavelength
selection in the near-infrared spectroscopy analysis.

DA has recently been used in several machine learning (ML) models to specify the parameter’s values of
the predictors [55], [56], [57]. Among the ML models, the Adaptive Neuro-Fuzzy Inference System (ANFIS), a
combination of artificial neural network (ANN) and fuzzy logic approaches regarded as one of the effective modeling
methods [58]. Despite its widespread use, the ANFIS suffers from a significant computational complexity disadvantage.
When the number of inputs increases, so does the number of tunable parameters. The main concern of researchers in
designing the ANFIS model is how to update its parameters for effective forecasting. The meta-heuristic algorithms
were used to tune the parameters of ANFIS in [59],[60],[61]. The hybrid meta-heuristic based ANFIS model has shown
higher efficiency in several studies. PSO, GA and DE based ANFIS models were proposed to predict global solar
radiation in [62]. Among the hybrid models considered, the hybrid ANFIS-PSO outperformed. Therefore, when the
model is applied to real-world problems, determining ANFIS model parameters is one of the main issues encountered.
Although the performance of the existing hybrid ANFIS models is promising, the forecasting capability still needs to be
improved for practical implementations. As a result, an effective meta-heuristic method such as DA can be contributed
to nonlinear dynamic systems.

One typical nonlinear dynamic system is a power system with a penetration of renewable energy sources such as
wind. To enable adequate stability and reliability in such systems, fast and accurate wind forecasting tools are critical
[63]. In recent years, meta-heuristic based Al models have grown in popularity in wind energy forecasting due to
their high accuracy [64, 65, 66, 67]. The superiority of hybrid approaches using Al-based hybrid methods in terms of
higher accuracy in wind speed estimation is demonstrated in [64]. Based on Al and decomposition methods with the
GWO, a hybrid model was proposed in [68]. It is shown that the GWO based Al model outperforms its counterparts.
Fuzzy system with Particle Swarm Optimization achieved higher accuracy and less uncertainty in the short-term wind
speed predictions while having a low computation load in [69]. Zhang et al. in [70] proposed the multi-objective
dragonfly algorithm (MODA) and decomposition with Al techniques for wind speed forecasting. The MODA based
hybrid model demonstrated superior performance with higher accuracy over non meta-heuristic-based models. Based
on location, the wind speed characteristics might differ, which cannot be captured by certain forecasting models. While
meta-heuristic-based models have shown successful applicability to wind speed forecasting, some challenges such as
premature convergence, being stuck at the local minima, overfitting, etc. are mostly encountered in the implementation.
Therefore, novel meta-heuristic algorithms need to be explored to overcome these challenges.

Dragonfly optimization algorithm has the ability of superior exploration to explore the search region and to find
promising areas. Nevertheless, the dragonfly algorithm has some drawbacks as given below:

e Nevertheless, the solutions found for the optimization problem may have low accuracy due to DA’s low
exploitation ability.

o At the same time, although DA has good global search capability for avoiding local optimal points in the search
space, it is likely to still get stuck at local optima.

e The five different models of social behavior in DA code can lead to an imbalance between the exploration and
exploitation stages, resulting in decreased solution accuracy.

In this study, a Mutation-based Improved Dragonfly optimization Algorithm (MIDA) is proposed to eliminate the
handicaps of the dragonfly algorithm given above and to highlight the algorithm’s ability, especially in the exploitation
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phase, and to increase the search capability in general. The proposed MIDA consists of three methods, namely, mutation
operator, boundary control mechanism, and greedy selection mechanism. The mutation operator helps dragonflies find
the global optimum by avoiding being stuck at the local optimum in the search space. The boundary control method
has been added to provide a solution to the exceeding of the limit values of mechanisms such as Levy flight in the
original DA, especially in the exploration phase. Finally, the greedy selection mechanism updates the dragonflies at
the end of each iteration, thus using the better fitness value of the updated ones.

The MIDA was first evaluated using several analyses, such as convergence, complexity, trajectory, diversity, etc.
The algorithm is then tested on some numerical optimization problems, also named the CEC 2014 test package in order
to validate its performance. The original DA and proposed MIDA algorithms are used to solve benchmark test problems
in 10, 30, 50, and 100 dimensions for 51 independent runs. Wilcoxon rank-sum tests are used to determine whether
there is a statistically significant difference between the iterative optimization results of the original DA and MIDA.
Furthermore, the MIDA is validated against state-of-the-art (SOTA) meta-heuristic algorithms, such as Particle Swarm
Optimizer (PSO), Moth-Flame Optimizer (MFO), Sine-Cosine Algorithm (SCA), Whale Optimization Algorithm
(WOA),Chaotic Cuckoo Search optimizer (CCS), Coyote Optimization Algorithm (COA), Elephant Herding Optimizer
(EHO), Ageist Spider Monkey Optimizer (ASMO), Variable Neighborhood Bat Algorithm (VNBA), Red Fox
Optimizer (RFO), and Human Felicity Algorithm (HFA). The performance of the proposed MIDA is also compared
with the performances of some improved dragonfly algorithms taken from the literature, such as Quantum-behaved
and Gaussian mutational Dragonfly Algorithm (QGDA), Adaptive Resistance and Stamina Strategy-based Dragonfly
Algorithm (ARSSDA), Elite Opposition learning and Exponential function adaptive steps based Dragonfly Algorithm
(EOEDA), and Gaussian Mutational Bare-bone Dragonfly Algorithm (GGBDA). For CEC2020, one of the latest
single-objective optimization tests, the original DA and MIDA were run 30 times for 10 minimization problems with
5, 10, 15, and 20 dimensions. In addition, the computational complexity of both algorithms is examined for the 5, 10,
and 15 dimensional F1 function. All comparative results show that the proposed MIDA can be used as an alternative
to other algorithms in real optimization problems in many different fields. Finally, the MIDA is adapted to optimize
the parameters of the ANFIS model utilized in the wind speed forecasting problem. Model parameters were optimized
using the proposed MIDA and original DA structures in the training of the ANFIS model, then short-term wind speed
forecasting test results of ANFIS-DA and ANFIS-MIDA hybrid models were compared according to different error
metrics (MSE, RMSE, MAE, and MAPE). All the error metric results show the superiority of the ANFIS-MIDA hybrid
model over the ANFIS-DA model.

In the remainder of this paper, Section 2 presents the development of the proposed mutation based improved DA
along with detailing the conventional DA and ANFIS models. The some analysis for MIDA, the benchmark results
for CEC2014 and CEC2020, the performance of ANFIS-MIDA hybrid model for wind speed forecasting are given in
Section 3. In Section 4, all the results obtained in this study are examined and the advantages and limitations of MIDA
are discussed. Finally, Section 5 presents conclusions and future studies.

2. Material and methods

In this section, the model equations and Pseudo codes for the proposed method are developed. The dragonfly
optimization algorithm is first introduced. The DA structure is then improved by incorporating a mutation operator.
Finally, the model equations for ANFIS are presented.

2.1. Dragonfly optimization algorithm

The DA is a swarm-based meta-heuristic optimization algorithm that mimics the hunting and migration mech-
anisms of the dragonflies, proposed by Mirjalili in [28]. Dragonflies have two main purposes as swarm behaviour:
hunting and migration. Dragonflies that collect to hunt represent a static swarm, and those that collect to migrate
represent a dynamic swarm. Static and dynamic swarm behaviors correspond to exploration and exploitation phases
in meta-heuristic optimization algorithms. A total of five basic swarm behavior models are used in the dragonfly
algorithm. These are separation, alignment, cohesion, attraction to food, and distraction from enemies, respectively.
Fig. 1 shows the swarm behaviour models of the dragonflies.

The mathematical models of the swarm behaviors can be given as follow:

N

S;=-Y (Xx-X;) ey

Jj=1
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Where X; represents the position of the j'" neighbouring dragonfly, X represents the current dragonfly’s position,

N is the number of neighbouring dragonflies, V; represents the velocity of the neighbouring dragonfly, X *and X~

represent the position of the food source (best dragonfly) and the position of the enemy (worst dragonfly), respectively.
At each iteration, the positions of the dragonflies are updated by the step vector (AX,, ;) as given below:

X =X+ AX, 4, (6)

AX; = (sS;+aA; +cC; + [F, + eE;) + wAX, (7

where s represents the weight value for separation, a is the weight value of the alignment process, ¢ denotes the cohesion
weight value, f is the food factor, e is the enemy factor, and w is the inertia weight. In the absence of neighboring
solutions, a Lévy flight is used in the algorithm structure to improve the stochastic behavior and search discovery of
the DA mechanism. The position of the dragonfly is updated by

X1 =X, + L(D) x X, (®)
where D is the dimension, L is the Lévy flight function. The Pseudo code of the DA is given in Algorithm 1.
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Algorithm 1 Pseudo code of Dragonfly Algorithm

procedure DRAGONFLY (X, N, D, ity 4, Uy, L)

X; < rand;(N,, D) B> initialize dragonflies
while it < it,,,, do
Fit; « f(X;) > Calculate fitness values

Xt, X~ « best(X;), worst(X;)
update weight parameters (s, a, c, f, e, w)
calculate S;, A;,C;, F;, E;
if N > 1 then > any neighbours
AX 1 < S8, A, CLFLE,
Xy < X +AX
else
X4 < X, +Lévy(D) X X,
end if
check X, based on boundary conditions
end while
return X+
end procedure

2.2. Proposed mutation based improved Dragonfly algorithm (MIDA)

In the proposed method, first, a mutation operator was added to the original DA structure to avoid getting stuck
in the local optimum after updating the positions of the dragonflies in each iteration. The equation for the mutation
operator is as follow:

X=X, +0ox(Uy—Ly) xr, )

where o denotes the scale factor, U, L, denote upper and lower boundaries, and r,, is the random number with normal
distribution. The Pseudo code regarding the mutation procedure is given in Algorithm 2.

Algorithm 2 Pseudo code of the mutation procedure
if rand(0, 1) < f then
Jj < randsample(D, n,) > select index from D
Xi11G.J) < X, (i, )+ 0 x (Uy = Ly) xr,,
end if

In Algorithm 2, § denotes the mutation probability (typically a value less than 0.01 is chosen), D is the problem
dimension, n, represents the mutation length, which is less than the problem dimension, and ¢ is the sigma coefficient
(i.e., 0.1). After updating meta-heuristic search agents, their new positions may exceed search space boundaries. If
the search agent’s updated position exceeds the search space boundary, the search agent is moved above the boundary
value. This is a fairly common method in meta-heuristic algorithms, particularly in the exploration phase, and as a
result, many search agents become stuck at the search space’s boundaries in some problems. To avoid this situation,
the DA structure is given a new boundary control mechanism. In this boundary control mechanism, the positions of the
dragonflies are controlled if they are outside the search space areas. While updated position of the dragonfly is outside
of the limit values, the dragonfly is randomized to a position within a maximum of 25% of the boundary values of the
search space. The proposed boundary control mechanism equations are as follow:

U,—025x(Uy— L) Xry, X,11 > U,
Xt+l={ b ( b b) b t+1 b (10)

Ly+025x (Uy— Ly) X1y, X1 < Ly

where r, denotes the random number between 0-1. The original DA structure does not include any selection mechanism.
The updated dragonflies are used directly in the next generation. Finally, a greedy selection mechanism is added to
the DA structure. Thus, if the fitness values of the updated dragonflies at the end of each iteration are better, their
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new positions are used, otherwise the search continues with their old positions. This selection mechanism is given in
Algorithm 3.

Algorithm 3 Pseudo code of selection procedure
if f(X,) < f(X,,) then
X1 < X,

f(XH-]) A f(Xt)
end if

There are three basic mechanisms (mutation operator, boundary control mechanism, and greedy selection
mechanism) integrated in the structure of the proposed MIDA. The Pseudo code of MIDA is given in Algorithm
4. The flowchart of the MIDA is shown in Fig.2.

Algorithm 4 Pseudo code of the mutation based improved Dragonfly algorithm (MIDA)

procedure MIDA(X;, N, D, it,,,,, Uy, L)
X; < rand;(N,, D)
while it < it,,,. do
Fit; « f(X;)
X, X~ « best(X,), worst(X;)
update weight parameters (s, a,c, f, e, w)
calculate S;, A;,C;, F}, E;
if N > 1 then
AX, < S ALCLFLE;
X <= Xp +AX
else
X < X +Lévy(D) X X,
end if
if rand(0, 1) < p then > Mutation operator
J < randsample(D, n,,)
X1G ) < X,(i, )+ 0 X (Uy— Ly) Xr,,
end if
if X, ; > U, then > Boundary control
X1 =U,=025%x (Uy— Ly) Xr,
elseif X, ;| < L, then
X1 =Ly +025% (U, — L) X1
end if
if f(X,) < f(X,41) then > Selection mechanism
X < X,
f(Xt+1) <« f(Xr)
end if
end while
return X+
end procedure
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Figure 2: Flowchart of MIDA

2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS) model

ANFIS was developed by Jang [71] in the early 1990s as a type of artificial neural network method based on
the Takagi-Sugeno fuzzy inference system. This model is a hybrid neuro-fuzzy structure that is primarily used for
modelling and controlling uncertain systems. The ANFIS model structure, in general, consists of five distinct layers,
which can also be defined as a multilayer neural network. An ANFIS model structure with two inputs and one output
is shown in Fig. 3. Based on the model architecture in Fig. 3, the general mathematical equations of the ANFIS model

can be expressed as follows:

(x_ai)2 .
Op;=ps(x)=exp| ———— |zi=12

—a)\ .
Oy, =up,_,(y) =exp <——’ ;i=3,4

Oy =w; = py, ) up, (y),i=1,2

w:
——i=12
I/U1+LU2

S

i
gl
I
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Figure 3: General ANFIS model architecture [72]

There are Gauss functions for each input in the first layer (Eq. 11-Eq. 12), and q; and b; in the Gauss function
are called antecedent parameters.Eq. 13 shows the output of the second layer. Here, membership function values are
multiplied using the algebraic product T-norm operator. Eq. 14 gives the output expression of the third layer and it is
called normalized firing strengths. Here, the average of each node’s firing strength is found. For each input, the node
functions are calculated, and the output of this layer is found by multiplying it by the average rule firing strength,
which is the output of the 3rd layer, as given in Eq. 15. The parameters in this layer (p;, g;, and r;) are referred to as the
consequent parameters. Eq. 17 gives the output calculation of the last layer. In this layer, a single output is obtained
from the sum of the outputs from the previous layer.

The ANFIS model used for estimating the short-term wind speed in this study is a model with 4 inputs and 1 output.
The inputs consist of the hourly wind speed instantaneous and its values one hour, two hours, and three hours ago.
Again, two Gaussian functions are used for each input and output in the ANFIS model, and there are two polynomials
in the defuzzification layer. This model with 4 inputs and 1 output used here is the one with the best result we obtained
from different ANFIS models in our previous studies [60]. In the training of ANFIS model, a; and b; coefficients
of Gaussian functions (antecedent parameters given in Eq. 11), and p;, g;, and r; coefficients in defuzzification layer
(consequent parameters given in Eq. 15) is being optimized. Since there are two Gaussian functions at each input in
the model, a total of 4 X 2 = 8 Gaussian functions and 8 X 2 = 16 antecedent parameters from two parameters in each
function, should be optimized. Likewise, since there are five consequent parameters for 4 inputs in 2 polynomials, the
2 X 5 = 10 consequent parameters are used in training. As a result, 26 ANFIS parameters, including 16 antecedent
parameters and 10 consequent parameters, are optimized during the training phase. With the MIDA structure proposed
in the ANFIS training, it is aimed to optimize these 26-dimensional parameters. Each of the dragonflies in MIDA is
initialized with 26-dimensional random values for the 26 parameters of the ANFIS model. Each of the dragonflies
in MIDA is initialized with 26-dimensional random values for the 26 parameters of the ANFIS model. The fitness
value for each dragonfly is calculated with the RMSE value of the ANFIS model. With the help of updates and other
mechanisms in MIDA, the 26-dimensional parameters of the best dragonfly in the population obtained after 1000
iterations are set to the ANFIS model. Then, the ANFIS model, which is set with the best parameters found by MIDA,
is evaluated with the test data set.
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Table 1

Summary of the CEC 2014 Test Functions [73]

No Functions Solution  No Functions Solution
FN1 High Cond. Elliptic with rotated 100 FN16 Shifted and Rotated Expanded Scaffer's F6 1600
FN2 Bent Cigar with rotated 200 FN17  Hybrid Func. 1 (N— 3) 1700
FN3 Discus with rotated 300 FN18  Hybrid Func. 2 (N — 3) 1800
FN4  Rosenbrock with shifted & rotated 400 FN19  Hybrid Func. 3 (N — 4) 1900
FN5 Ackley with shifted & rotated 500 FN20  Hybrid Func. 4 (N — 4) 2000
FN6  Weierstrass with shifted & rotated 600 FN21  Hybrid Func. 5 (N —5) 2100
FN7  Griewank with shifted & rotated 700 FN22  Hybrid Func. 6 (N — 5) 2200
FN8 Rastrigin with shifted 800 FN23  Composition Func. 1 (N — 5) 2300
FN9 Rastrigin with shifted & rotated 900 FN24  Composition Func. 2 (N — 3) 2400
FN10  Schwefel with shifted 1000 FN25  Composition Func. 3 (N — 3) 2500
FN11  Schwefel with shifted & rotated 1100 FN26  Composition Func. 4 (N — 5) 2600
FN12  Katsuura with shifted & rotated 1200 FN27  Composition Func. 5 (N — 5) 2700
FN13  HappyCat with shifted & rotated 1300 FN28  Composition Func. 6 (N — 5) 2800
FN14 HGBat with shifted & rotated 1400 FN29  Composition Func. 7 (N — 3) 2900
FN15 F4 with expanded plus F7 1500 FN30 Composition Func. 8 (N — 3) 3000

3. Analysis results

In this section, the search capability of the proposed MIDA is compared to the original DA in terms of
(i) convergence analysis, (ii) search history analysis, (iii) trajectory analysis, (iv) average distance analysis, (V)
computational complexity analysis, (vi) balance analysis, and (vii) diversity analysis. The main purpose of these
analyzes is to compare the search behaviours of the proposed MIDA and the original DA while seeking the global
optimum in the search space. In the convergence analysis, the fitness value of the best dragonfly obtained during the
optimization, the positions of all dragonflies in the search history analysis, the position of the elite dragonfly in the
trajectory analysis, the average distance of the first dragonfly with the others in the average distance analysis are used.
In computational complexity analysis, the amount of time the algorithm consumes when running is found with the O(.)
notation. Balance analysis presents the search performance of algorithms in the exploration and exploitation stages. In
diversity analysis, the average distance between dragonflies during the search for the global solution is used.

Second, the benchmark functions, known as IEEE Congress on Evolutionary Computation (CEC) 2014 in the
literature, are used to test the performance of the proposed MIDA. The CEC2014 test suite consists of thirty benchmark
problems with different features [73]. This test suite consists of different types of issues: simple multimodal, unimodal,
composition, and hybrid structure. In Table 1, the benchmark functions and solutions in the test suite are summarized.
The report by Liang et al.[73] contains detailed information about the CEC2014 test suite.

The original DA and MIDA solutions of the 10, 30, 50, and 100 dimensional benchmark problems were obtained
with 51 runs, and these results were compared statistically. The CEC2014 results obtained by the proposed MIDA and
the original DA were compared by using the Wilcoxon rank sum test, one of the non-parametric tests, for statistical
significance. In addition, 30 dimensional CEC2014 test problems were compared with some up-to-date meta-heuristic
algorithms from the literature to demonstrate the superiority of the proposed MIDA algorithm. The 30D CEC2014
results of the MIDA were also compared with the results of some improved versions of dragonfly algorithm from
the literature. In addition to the CEC2014 benchmark results of the proposed MIDA and the original DA, the both
algorithms are compared for 10 minimization problems in the CEC2020 benchmark package, one of the latest test
problems in the field of numerical optimization. Here, the computational complexity of both algorithms were presented
for F1 function from CEC2020 benchmarks. Finally, a real-world problem is discussed, and the proposed MIDA
structure optimizes the model parameters in the training phase of an ANFIS model used in short-term wind speed
forecasting. Wind speed estimation results from the training and testing phases are compared to the ANFIS-DA hybrid
structure using various error metrics.

For the MIDA’s analysis, four different benchmark functions from the CEC 2014 benchmark problems were
selected. These functions are as follows: rotated high conditioned elliptic function (FN1) from Rastrigin’s function
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(FN9) and Griewank’s plus Rosenbrock’s function (FN15) and composition function 3 (N=3) (FN25). The 3D maps
and contour plots of the benchmark functions selected for analysis of the MIDA are shown in Fig. 4.

FN1 FN9 .
- u\wc\l&:(\j 0
SO NAEANS
(VAW A \0 0)
w0000
« \
b

Fécyny)

o] 100

X 10 100 X -100 0

Figure 4: Unimodal, multimodal and composition benchmark functions used for performance analysis of the proposed
MIDA

3.1. Convergence analysis

The convergence characteristic of an optimization algorithm gives us information about the rate of searching for
the global optimum point of the algorithm. Thus, the performance of heuristic algorithms is highly dependent on the
convergence behavior during solving optimization problems. In this context, four different comparison problems were
taken from the CEC2014 test package, and convergence curves were obtained from the solutions of these problems
with the proposed MIDA and original DA. In this analysis, the initial positions of the dragonflies were the same for
both algorithms. Again, in this analysis, the problem size was chosen as two. Fig. 5 shows the convergence curves
obtained by both algorithms on a logarithmic scale for the four benchmark functions.

These convergence curves display the residue values of the best dragonflies found by both algorithms (e.g., MIDA
and DA) during the solution of optimization problems. The error value is found by taking the difference between the
benchmark function and the best solution found by the meta-heuristic algorithm. Looking at the convergence curves
obtained for the benchmark functions, it is clear that the proposed MIDA has a faster convergence capability than the
original DA for the selected unimodal, multimodal and composition benchmark functions. It is shown that thanks to
the effective mechanisms proposed in the structure of MIDA, the dragonflies in the swarm have fast and successful
search performance in the exploration and exploitation stages while seeking the global solution point of the benchmark
problem in the search space. It can also be seen from the convergence curves that, except for the FN1 benchmark
function, the proposed MIDA has found the global solution to the other three benchmark functions (FN9, FN15, and
FN25). Since the error values are zero for these three functions, the iteration is terminated so that there is no undefined
situation in the logarithmic scale. This shows that MIDA reaches the real solution faster than the original DA structure
with zero error. The convergence curve of the FN1 benchmark function, which has a more flat surface, shows that MIDA
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Figure 5: Convergence analysis results of the proposed MIDA and DA.

has a better convergence ability than the original DA in the exploitation phase, although worse than the convergence
performance of DA in the exploration phase. At the end of the optimization for the FN1 function, MIDA has a lower
error value than DA. The convergence analysis results demonstrate the capability of the MIDA to explore an answer
faster and nearer to the global optimum. This is because of the mutation, boundary control, and greedy selection
mechanisms proposed by the MIDA.

3.2. Search history analysis

The search history shows the position changes of dragonflies in the search space during the solution of MIDA’s
problem. This analysis provides information on how the positions of search agents (dragonflies) in the search space
have changed. In Fig. 6, the search history results for the movements of the dragonfly swarm used in MIDA and DA
are shown for selected benchmarks from the CEC2014 test suite. Search history analyzes were realized by taking into
the same primary dragonfly positions for both algorithms. The updated positions of the dragonflies are indicated by
different colors on the contour surfaces of the selected CEC2014 functions.

The search analysis reveals that the dragonfly positions round the global solution is greater than that of the
positions updated by the DA during the exploration and exploitation stages of the optimization process. Because of
the movements of dragonflies in the most promising areas of search space , it is clear that MIDA’s search capability
is high. Looking at the search history analysis results in Fig. 6, it is seen that there are some dragonflies that exceed
the boundary values in the original DA, especially for the FN1, FN9, and FN25 functions, and they are located on
the boundary value. This situation causes the dragonflies to get stuck at the boundary value while finding the global
optimal point and reduces the success of the original DA in finding the global solution. Note that, thanks to the new
boundary control mechanism proposed in the MIDA structure, there is no situation like this in MIDA’s search analysis
results.
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Figure 6: Search history analysis results of the MIDA and DA.

3.3. Trajectory analysis

In the trajectory analysis, while the global optima of the benchmark function are searched by the optimization
algorithm, the changes in the position of the elite search agent (the best dragonfly) are examined. In this analysis, the
initial positions of the dragonflies in both algorithms are the same. Two graphs are used in the trajectory analysis results
(Fig. 7). The first (left) shows the position changes of the best dragonfly (elite) in the search space during optimization.
In the first graph, {) represents the position of the elite dragonfly in DA, and [] represents the position of the elite
dragonfly in MIDA. The positions of the elite dragonflies at the end of the optimization for both algorithms are shown
in red. The second graph (right) gives the position changes of the elite dragonfly for both dimensions separately.

The trajectory analysis results of both algorithms for the FN1 benchmark function are shown in Fig. 7. FN1, which
has a more flat surface, is a function of the unimodal group. It is seen from result of FN1, the position of the elite
dragonfly found by DA gets stuck at a local minimum towards the end of the exploration phase whereas the position
of the elite dragonfly found by MIDA changes during both phases. The most important reason for this is the mutation
operator and greedy selection mechanism added to the original DA.

In Fig. 8, the FN9 benchmark function with the trajectory analysis results are shown for MIDA and DA structures.
The results for final process show that the elite dragonfly positions obtained by both algorithms are not the same. The
elite dragonfly position in MIDA is almost the global solution point of the FN9 function. In solving the optimization
problem, in some cases, algorithms can find the global fitness value at different solution points. That is, while the f(x)
value obtained at the end of the optimization represents the true fitness value of the problem, the solution point x may
differ.This is more common in situations where the problem surface consists of many pits and hills like FNO.

Fig. 9 shows the trajectory analysis results of both algorithms for the FN15 benchmark. The results clearly show
that MIDA's elite dragonfly approaches a global solution faster than DA’s elite. Finally, the trajectory analysis results
of the FN25 benchmark function are shown in Fig. 10. The position change of the elite dragonfly in the search space
shows that both algorithms find almost the same global solution point, but MIDA reaches the solution point faster.

3.4. Average distance analysis

In this section, the variation of the distances between dragonflies in the swarm during optimization is examined.
To do so, the average distance of the first dragonfly to the other dragonflies in the group during the optimization is
taken according to the formula below:

N
-1
d= ﬁg;p(“ ~ X4 (17)

where d denotes the average distance, N represents the number of the dragonflies, X 1,1 1s the first dimension of the
first dragonfly, and X ; is the first dimension of ith dragonfly.
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Figure 8: Trajectory of elite dragonfly for the FN9 benchmark function ({: DA, [ : MIDA).

The results of the average distance analysis of MIDA and original DA for benchmark functions selected from
CEC2014 test suite are shown in Fig. 11. It is clear that for the four benchmark functions, especially in the exploration
phase, the average distance of the dragonfly swarm in the original DA has more fluctuations and oscillations than that
of the dragonfly swarm of MIDA. This is because there is no selection method in the DA structure. However, thanks
to the greedy selection mechanism added to the MIDA structure, it was observed that the oscillation and fluctuation
decreased in the average distance analysis results of MIDA. When the analysis results of MIDA are examined, the peak
values on the average distance curves formed in the exploitation phase show that the mutation operator implemented
in the algorithm works.
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Figure 9: Trajectory of elite dragonfly for the FN15 benchmark function (: DA, [ : MIDA).
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Figure 10: Trajectory of elite dragonfly for the FN25 benchmark function ({: DA, [ : MIDA).

3.5. Computational complexity of MIDA
This section provides information on the computational complexity of the proposed MIDA.The computational
complexity for the proposed MIDA was found as follows:

e For a population size of n and a problem dimension of d, the computational complexity for randomizing the
positions of dragonflies is given in O(n X d).

o The fitness values for random positions of dragonflies are found, and the complexity of this process is O(n X d).

¢ In the main loop of the algorithm, the computational complexity is O(z,, X(2n*+4n)x d) for updating dragonflies’
positions, mutation, boundary control, and greedy selection procedures. Here, #,, denotes the maximum iteration.
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Figure 11: Average distance analysis of dragonflies

As aresult, the total time complexity of MIDA is O(2nxd)+O(¢,, X (2n% +4n)xd) as the sum of the above expressions.
From here, the computational complexity for MIDA is O(t,, X n*> X d) and is almost the same as the complexity of the
original dragonfly algorithm.

3.6. Diversity analysis

In this section, diversity analyzes of both algorithms are performed. The diversity analysis results for F1, F9, F15,
and F25 selected from the CEC2014 benchmarks are shown in Fig. 12. In the analysis, the diversity metric in the
dragonfly population was normalized.

Initially, the diversity of both algorithms for each benchmark function is very high. This is because these algorithms
start searching with random dragonfly positions. In the exploration and exploitation phases of the optimization process,
the search regions of both algorithms are constantly narrowed, thus reducing the diversity in the dragonfly population.
At the end of the optimization, the diversity curves for MIDA and DA were almost at the lowest level, indicating
that the dragonflies in the population were in approximately the same place in the search space. However, decreasing
trends in diversity curves are different for both algorithms. Except for F1, the MIDA’s diversity curve for the other
benchmarks decreases more rapidly than that of DA. In the F1 benchmark, the diversity curve of MIDA again showed
a faster decrease than that of DA in the first 30% of the total iteration, but it is seen that the decrease in the curve of
MIDA stopped in the next 20%. MIDA quickly recaptured the decrease in the diversity curve almost halfway through
the optimization process and eventually reached the same result as DA, albeit with a slight delay. In conclusion, three

mechanisms within the proposed MIDA have been demonstrated to have a visible effect on the diversity of the original
DA.
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Figure 12: Diversity analysis results of the MIDA and DA.

3.7. Balance analysis

Balance analysis examines the search performance of meta-heuristic algorithms in terms of exploration and
exploitation phases during optimization. In Fig. 13, the balance analysis results of MIDA and DA are shown for four
benchmarks selected from the CEC2014 test suite. In each subfigure, the exploration and exploitation percentages
throughout the optimization are shown in different colors. Larger values in the curves mean that the corresponding
behavior (exploration or exploitation) dominates the algorithm. The curves obtained from the balance analysis results
of the MIDA and DA show that the exploration behavior is dominant for both algorithms at the early stage. Although the
balance analysis curves of DA have a lot of oscillations, it is generally understood that the exploration phase dominates
in the early stage and the exploitation phase dominates the majority of the optimization process. MIDA’s analysis results
show that the dominant behavior pattern for other benchmarks, with the exception of F1, is exploitation. In addition, it
is understood that there are no oscillations compared to the DA curves. This is due to the greedy selection mechanism
in the MIDA structure. Looking at the results in general, it is clear that DA spends more time on exploration behavior
than MIDA. However, the exploitative behavior of MIDA is more dominant, indicating that it spends more time in the
search space to reach the solution. It is possible to say that the three different mechanisms (mutation operator, boundary
control mechanism, and greedy selection mechanism) in the proposed MIDA structure cause the exploitation phase to
have a greater effect on the search than the exploration and exploitation phases.
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Figure 13: Balance analysis results of the MIDA and DA.

3.8. Comparison results for the CEC2014 benchmark problems

Statistical results for all benchmarks with different problem sizes (10D, 30D, 50D, and 100D) were found for
fifty one iteration using the original DA and the MIDA. In solving the optimization problems, the parameters of both
algorithms are taken to be the same. The size of the dragonfly swarm is 10 times the problem size, and the maximum
number of iterations is 1000. The search termination criterion in the optimization process of both algorithms is to
reach the maximum number of iterations. The codes of both algorithms were run on a PC with Intel(R) Core(TM)
i7-6500U CPU@2.50 GHz with 8 GB RAM. A total of 14 error values were recorded at each run for each function in
the CEC2014 test suite. Fig. 14 shows the best convergence curves of the F1 through the F15 benchmark functions
with 10D for both algorithms. The best convergence curves obtained for the first 15 benchmark functions clearly show
that MIDA achieves better results in 11 out of the 15 functions except for the F2, F5, F11, and F12. In Fig. 15, the
best convergence curves obtained for the 10-dimensional F16-F30 comparison functions are shown. It can be seen that
DA converges to the global solution better than MIDA for the four benchmarks (F23, F27, F28, and F29) while the
proposed MIDA has a better convergence for the remaining convergence curves. In summary, MIDA is more successful
in 22 out of 30 functions, while DA is only successful in 8 out of 30 functions, according to the best convergence curves
presented for 10-dimensional benchmark functions.

In order to better understand the comparison results between the MIDA and DA, statistical metrics were calculated
from the results using 51 runs of each benchmark function. In the comparison results of both algorithms, five metrics
were evaluated, such as mean, worst, best, median, and standard deviation. The statistical results of both algorithms
for the 10D and 30D CEC2014 benchmarks are summarised in Table 2 and Table 3, respectively. From the tables,
the best results across all metrics are highlighted in bold. Looking at the table results obtained for the 10D benchmark
functions, it is clearly evident that MIDA has better results than the original DA by 73.33% for the best metric, 100.00%
for the worst metric, 93.33% for the median metric, 93.33% for the mean metric, and 86.67% for the standard deviation
metric. In the statistical results for the 30-dimensional CEC2014 benchmark functions, it is seen that MIDA has better
results than those of the original DA by 80.00% for the best metric, 96.67% for the worst metric, 93.33% for the median
metric, 93.33% for the mean metric, and 93.33% for the standard deviation metric.

Table 4 and Table 5 summarizes the statistical results of MIDA and DA for CEC2014 benchmarks with 50D and
100D. The 50-dimensional test problem results show that MIDA'’s performance is better than that of the original DA by
86.67% for the best metric, 96.67% for the worst metric, 90.00% for the median metric, 90.00% for the average metric,
and 93.33% for the standard deviation metric. From the optimization results of 100D benchmarks, The proposed MIDA
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Figure 14: Convergence curves of the MIDA and DA for F1-F15 functions.
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Figure 15: Convergence curves of the MIDA and DA for F16-F30 functions.
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Table 2
10D CEC2014 Benchmark Results for DA and MIDA.
DA MIDA

No Best Worst Median Mean Std Best Worst Median Mean Std
1 260E+5 1.31E4+8 1.27E+4+7 2.71E+7 3.61E+7 4.65E4+2 1.98E+6 1.23E+5 1.52E+5 2.76E45
2  1.42E+2 5.21E+9 2.56E+4+8 1.04E+9 1.31E4+9 2.78E+3 2.38E+5 3.00E+4 4.38E+4 4.61E+4
3 431E+3 1.16E+5 3.06E+4 3.61E+4 2.79E+4 1.37E+0 1.30E+4 1.11E4+3 2.06E+3 3.15E+3
4 1.80E+1 1.18E+3 7.79E+1 1.33E+2 2.03E42 2.07E-2 3.64E+1 3.49E+1 2.10E+1 1.66E+1
5 2.01E+1 2.07E+1 2.03E4+1 2.03E+1 1.44E-1 2.02E+1 2.05E+1 2.04E+4+1 2.04E+1 8.17E-2
6 28lE+0 1.19E+1 9.01E+0 8.79E4+0 1.71E+0 2.03E+0 9.57E+0 6.59E4+0 6.30E+0 1.89E+0
7 1.86E-1 1.61E+2 1.90E+1 2.32E+4+1 3.24E+41 1.47E-1 1.05E+0 5.12E-1 5.25E-1 2.18E-1
8 9.81E+0 9.95E+1 4.71E4+1 4.67E+1 1.84E+1 8.02E-6 5.65E-2  5.44E-3  1.04E-2  1.34E-2
9 1.89E+1 8.26E+1 4.60E+1 4.85E+1 1.86E+1 6.32E+0 4.58E+1 1.70E+1 2.01E4+1 9.04E+0
10 5.25E+2 1.63E+3 1.11E4+3 1.07E+3 2.51E+2 2.59E+1 7.68E+2 2.61E+2 2.88E+2 1.85E+2
11 5.88E+2 1.99E+3 1.45E+3 1.42E+3 3.15E+2 7.21E+2 1.90E+3 1.45E+3 1.37E+3 3.17E+2
12 2.21E-1 2.14E+0 9.99E-1 9.93E-1 4.45E-1 3.57E-1 1.52E4+0 1.06E+0 1.07E+0 3.07E-1
13 1.87E-1 3.80E+0  6.01E-1 1.20E+0 1.10E+0 6.39E-2  7.45E-1  2.65E-1 3.17E-1  1.58E-1
14 9.66E-2 1.79E+1 5.13E4+0 5.10E4+0 4.41E+0 6.87E-2  9.75E-1  2.46E-1  3.00E-1  2.14E-1
15 1.48E+0 5.82E+4 256E+1 1.73E+3 8.23E4+3  4.62E-1 5.35E4+0 1.80E4+0 1.86E+0  8.69E-1
16 252E+0 4.18E+0 3.86E+0 3.75E+0  3.71E-1 2.18E+0 3.75E+0 3.07E+0 3.00E4+0  3.80E-1
17 1.87E+4+3 3.24E+6 4.39E+4 3.67E+5 8.34E+5 1.58E+2 4.17E+4 1.23E4+3 4.08E+3 6.87E+3
18 1.86E+2 3.80E+4 1.59E+3 1.58E+4 1.72E+4 2.11E+0 9.53E+3 4.28E+1 7.21E+2 1.76E+3
19 3.96E+0 1.23E+1 7.90E4+0 7.76E+0 1.43E+0 3.25E-1 3.88E+0 1.80E+0 2.13E+0 9.29E-1
20 222E+2 2.12E+5 5.38E+3 2.02E+4 4.20E+4 1.65E4+0 2.72E+3 1.07E+1 7.34E+1 3.80E+2
21 8.12E+2 3.53E+6 3.19E+3 1.43E+5 6.80E+5 1.52E4+0 2.83E+3 1.42E+2 4.15E+2 6.07E+2
22  249E+1 4.09E+2 233E+2 2.15E+2 1.10E4+2 2.60E4+0 2.12E+2 2.12E+1 3.26E+1 3.73E+1
23  2.00E+2 4.43E+2 3.65E+2 3.53E+2 5.47E+1 3.29E4+2 3.30E+2 3.29E+2 3.29E+2 3.13E-2
24  1.16E+2 2.23E+2 1.74E+2 1.73E4+2 248E+1 1.10E4+2 1.53E+2 1.29E+2 1.31E+2 1.03E+1
25 1.62E+2 2.09E+2 2.03E+2 2.02E+2 7.63E4+0 1.17E4+2 2.03E+2 1.74E+2 1.72E+2 3.16E+1
26 1.00E4+2 1.02E4+2 1.01E4+2 1.01E+2 4.46E-1 1.00E4+2 1.01E+2 1.00E+2 1.00E+2  2.22E-1
27 3.51E4+0 6.37E+2 4.18E+2 3.73E+2 2.04E+2 4.54E40 4.03E4+2 4.00E+2 2.31E+2 1.95E+2
28 2.00E+2 7.82E+2 4.68E+2 4.99E+2 1.24E+2 3.58E+2 5.4TE+2 4.01E+2 4.21E+2 5.14E+1
29 2.00E+2 1.96E+6 2.54E+3 1.16E+5 4.47E+5 2.30E+2 1.10E4+3 5.55E4+2 5.82E+2 2.25E+2
30 957E+2 5.24E+4 3.34E+3 5.61E+3 9.17E+3 5.54E+4+2 2.74E+3 8.11E+2 1.01E+4+3 4.57E+2

is better than DA in 83.33% of all test problems for the best metric values, better than DA in 100% of all test problems
for the worst metric values, and DA in 96.67% of all test problems for mean values. It has better results than DA in
93.33% of all test problems for median values, better than DA in 93.33% of all test problems for standard deviation
values. As a result, the proposed MIDA is found to be more successful than the DA structure in terms of all statistical
metrics, with 89.33% for 10D, 91.33% for 30D, 91.33% for 50D, and 93.33% for 100D in the optimization of CEC2014
benchmark functions.

The results of the proposed MIDA and the original DA were compared using the Wilcoxon rank-sum test, that is one
of the non-parametric tests for statistical significance for all problem dimensions. Usually, this test is a statistical method
often preferred to compare repeated measurements on a single sample or to compare two samples. Table 6 presents the
p-value scores obtained by Wilcoxon rank-sum test with 5% accuracy from a pair of samples for 51 independent runs
of MIDA and DA structures to test the null hypothesis. A confidence level of 0.95 was used for statistical analysis in
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Table 3
30D CEC2014 Benchmark Results for DA and MIDA.
DA MIDA

No Best Worst Median Mean Std Best Worst  Median Mean Std
1 6.79E+7 1.93E+9 3.35E+8 4.49E+8 3.88E+8 2.51E+6 2.95E4+7 8.72E4+6 1.07E4+7 6.70E46
2 8.81E+9 7.00E+10 3.83E+10 3.67E4+10 1.55E4+10 2.17E+7 1.51E+8 4.63E+7 4.93E4+7 2.10E+7
3 6.34E+4 491E+5 1.64E+5 1.8l1E+5 9.61E+4 7.12E+1 1.13E+4 1.71E+3 2.50E+3 2.63E+3
4  3.15E42 1.55E+4 3.43E+3 4.86E+3 3.72E+3 9.38E+4+1 3.19E+2 1.59E+2 1.71E+2 5.04E+1
5 2.05E+1 2.10E+1 2.09E+1 2.08E+1 1.17E-1 2.08E+1 2.11E+4+1 2.09E+1 2.09E+1 7.07E-2
6 28lE+1 4.37E+1 3.77E+1 3.72E4+1 3.71E+0 1.50E+1 3.49E+1 2.38E+1 2.46E+1 4.38E+0
7 8.18E+1 7.37TE+2 3.74E+2 3.54E+2 1.59E+2 1.21E4+0 1.81E+0 1.42E4+0 1.45E+0 1.44E-1
8 1.82E+2 3.74E4+2 2.89E+2 2.89E+2 4.77E4+1 1.31E4+1 3.66E+1 2.03E+1 2.07E4+1 4.59E+0
9 155E+2 4.30E+2 297E+2 3.01E+2 6.73E+1 6.02E4+1 2.06E+2 1.13E+2 1.15E+2 3.14E+1
10 4.82E+3 8.10E4+3 6.67TE+3 6.57E+3 6.79E+2 9.62E+1 2.41E+3 1.16E+3 1.28E+3 5.48E+2
11 4.93E+3 8.17E+3 7.10E+3 6.92E+3 7.41E+2 5.39E+3 7.86E4+3 7.16E+3 7.03E+3 5.53E+2
12 9.11E-1 3.18E4+0 2.26E+0 2.21E+0 5.26E-1 9.66E-1 3.12E4+0 2.14E4+0 2.19E40 4.75E-1
13 5.77E-1 7.99E4+0 4.96E+0 5.14E4+0 1.65E4+0 3.40E-1 8.27E-1 5.46E-1 5.57E-1 1.15E-1
14 4.66E+1 2.84E+2 1.20E+2 1.31E4+2 5.52E+1 1.75E-1 1.03E4+0 3.10E-1 3.34E-1 1.45E-1
15 1.68E4+3 2.21E+6 1.40E+5 2.85E+5 4.25E+5 1.36E4+1 3.53E4+1 2.24E+1 2.31E+1 4.90E+0
16 1.23E4+1 1.36E+1 1.32E+1 1.32E+1 3.23E-1 1.09E+1 1.32E+1 1.24E+1 1.23E+1 5.70E-1
17 2.02E4+6  6.45E+7 1.23E+7 1.61E+7 1.36E+7 1.74E4+4 2.83E+6 2.97E+5 5.35E+5 6.14E+5
18 4.10E+4 3.04E4+9 2.58E+8 6.11E+8 8.31E+8 8.34E+1 1.06E+5 1.00E+4 1.65E+4 1.83E+4
19 7.89E+1 5.20E+2 251E+2 2.68E+2 1.08E+2 7.75E4+0 8.49E+1 1.25E+1 2.12E+1 2.27E+1
20 2.18E+4  3.48E+6 1.06E+5 2.78E+5 5.77E+5 1.57E+2 3.03E+3 5.46E+2 8.13E+2 7.12E+2
21 2.38E+5 3.23E+7 4.21E+6 8.23E+6 8.77E+6 5.69E+3 6.16E+5 5.07E+4 8.45E+4 1.01E+5
22 450E4+2 2.16E+43 1.12E43 1.12E+3  4.04E+4+2 4.38E+1 8.49E+2 4.35E+2 4.39E+2 1.97E+2
23  2.00E+2 1.25E4+3 5.39E+4+2  5.76E42 1.98E+2 3.15E+2 3.17E+2 3.16E4+2 3.16E+2 3.66E-1
24 2.04E+2 4.19E+2 2.78E+2 2.81E+2 4.14E+1 2.27E+4+2 2.45E+2 2.33E+2 2.34E+2 4.51E+0
25 2.00E+4+2 3.18E+2 2.36E+2 2.40E+4+2 2.28E+1 2.05E+4+2 2.17E+2 2.10E+4+2 2.10E+2 3.23E40
26 1.00E+2 1.08E+2 1.04E+2 1.04E+2 1.69E+0 1.00E+2 1.01E4+2 1.01E4+2 1.01E4+2 1.35E-1
27 4.50E+42 1.64E+3 1.24E+3 1.09E+3 3.58E+4+2 4.04E+2 9.63E+2 4.08E+2 4.93E+2 1.75E+2
28 1.40E+3 3.77E+3 2.29E+3 2.24E4+3 5.47E+2 9.21E4+2 2.49E4+3 1.54E4+3 1.59E4+3 4.08E+42
29 7097E+4 6.87E4+7 1.92E4+7 2.15E+7 1.09E4+7 1.25E+3 2.36E+7 1.79E+3 1.64E+6 5.19E+6
30 5.83E+4 1.63E+6 3.20E+5 4.79E+5 3.77E+5 2.14E+3 5.05E+4 7.97E+3 1.14E4+4 1.01E+4

this table, and p values less than 0.05 are shown in bold. Wilcoxon rank-sum test results show that there are significant
differences between the repetitive optimization results, obtained by the original DA and the proposed MIDA, for all
benchmark problems in four different dimensions. It is only understood that there is not a very significant difference in
the F12 results for all problem dimensions. Similarly, statistically, there is no significant difference between the results
of both algorithms for F15 in all dimensions except 30D and for F11 in all dimensions except 50D.

Secondly, the proposed MIDA was statistically compared with several state-of-the-art meta-heuristic algorithms
for the 30-dimensional CEC2014 benchmark functions. The meta-heuristic algorithms considered are Particle Swarm
Optimizer (PSO) [8], Moth-Flame Optimizer [74], Sine Cosine Algorithm (SCA) [75], Dragonfly Algorithm (DA)
[28], Whale Optimization Algorithm (WOA) [76], Chaotic Cuckoo Search optimizer (CCS) [77], Coyote Optimization
Algorithm (COA) [78], Elephant Herding Optimizer (EHO) [79], Ageist Spider Monkey Optimizer (ASMO) [80],
Variable Neighborhood Bat Algorithm (VNBA) [81], Red Fox Optimizer (RFO) [82], and Human Felicity Algorithm
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Table 4
50D CEC2014 Benchmark Results for DA and MIDA.
DA MIDA
No Best Worst Median Mean Std Best Worst  Median Mean Std

1 7.56E4+8 2.73E4+9 1.27E+9 1.43E+9 6.96E+8 4.48E+7 1.17E48 6.79E+47 6.94E47 2.28E+47
2 192E+10 1.38E4+11 4.95E410 5.61E4+10 3.03E4+10 8.75E+8 1.49E4+9 1.16E+9 1.18E49 2.15E48
3 2.07E4+5 4.83E+5 3.25E+5 3.20E+5 8.44E+4 1.22E+4 5.00E4+4 2.36E+4 2.39E4+4 9.84E+43
4 297E+3 1.78E4+4 8.61E+3 851E+3 4.16E4+3 2.83E4+2 6.32E+2 4.28E42 4.30E4+2 1.00E+2
5 2.09E+1 2.13E+1 2.12E+1 2.11E+1 1.49E-1 2.11E+4+1 2.12E+1 2.12E+1 2.12E4+1 5.16E-2
6 6.11E4+1 7.70E4+1 7.04E+1 6.92E+1 5.71E40 4.89E+1 6.71E41 6.03E+1 6.05E4+1 4.80E40
7 2.56E4+2 1.26E4+3 5.39E+2 6.56E+2 3.39E+2 8.73E+0 1.54E41 1.19E+1 1.21E41 1.82E40
8 458E+2 6.84E4+2 539E+42 563E4+2 7.50E+1 1.73E4+2 2.63E+2 2.18E+4+2 2.21E+2 2.60E+1
9 3.90E4+2 8.19E+2 7.00E+2 6.57E+2 1.25E+2 4.06E+2 5.59E4+2 4.67E+2 4.65E42 4.55E+1
10 1.13E4+4 150E+4 1.38E+4 1.35E+4 1.20E+3 4.98E+3 8.11E4+3 6.15E+3 6.32E+3 1.05E+3
11  9.62E+3 1.46E+4 1.32E4+4 1.28E+4 1.44E+3 1.33E+4 1.48E+4 1.39E+4 1.39E+4 3.96E+2
12 1.75E+0 4.33E4+0 3.42E+0 3.43E+0 7.77E-1 2.87E+0 4.14E40 3.48E+4+0 3.49E4+0 3.80E-1
13 3.35E4+0 6.97E4+0 4.40E+0 4.87E+0 1.17E+0 3.41E-1 8.37E-1 6.27E-1 6.25E-1  1.46E-1
14 588E+4+1 2.35E+2 1.26E+2 1.33E+2 5.06E+1 3.06E-1 8.72E-1 3.39E-1 4.63E-1 2.22E-1
15 1.17E45 2.21E4+6 2.45E+5 5.87E+5 6.74E+5 6.52E+1 1.68E42 9.81E+1 1.05E42 3.24E+1
16 2.24E41 2.38E+4+1 2.30E+1 231E+1 4.16E-1 2.20E4+1 2.34E+1 2.28E+1 2.28E+1  4.75E-1
17 2.88E+4+7 1.63E48 6.81E+7 9.07E+7 4.46E+7 2.35E+6 1.91E47 8.56E+6 9.66E46 5.48E46
18 1.11E48 3.81E49 5.33E+8 9.60E+8 1.09E+9 6.45E+4 3.17E46 1.86E+5 5.56E4+5 9.09E+5
19 1.17E42 8.20E4+2 3.55E+2 3.99E+2 2.06E+2 3.38E4+1 9.65E+1 7.75E+1 7.27E4+1 2.15E+1
20 8.16E+4 1.63E4+6 3.27E4+5 5.16E4+5 5.11E4+5 6.14E43 3.87E+4 2.26E4+4 2.40E+4 1.15E44
21  6.72E+6  7.82E4+7 4.12E4+7 4.02E4+7 2.66E4+7 5.88E4+5 5.63E4+6 2.89E+6 3.13E4+6 1.51E+6
22 181E+3 3.65E+3 2.43E4+3 2.63E4+3 5.92E4+2 7.90E4+2 2.05E+4+3 1.30E+3 1.29E+43 3.64E+2
23 490E+2 1.16E4+3 8.01E4+2 8.09E4+2 1.84E+2 3.47E4+2 3.55E+2 3.50E+2 3.50E+2 2.44E40
24  3.07E4+2 5.09E+2 3.99E4+2 4.17E4+2 6.06E+1 2.84E4+2 3.06E+2 2.98E+2 2.97E+2 6.80E40
25 2.73E42 356E+2 3.10E42 3.08E4+2 2.30E4+1 2.26E+42 2.50E42 2.39E+42 2.40E+2 7.71E4-0
26 1.04E4+2 4.79E4+2 1.05E4+2 1.40E4+2 1.12E+2 1.00E42 2.07E+2 1.01E4+2 1.38E+2 5.23E+1
27 1.95E43 2.54E4+3 2.20E43 2.19E43 1.56E+2 1.61E4+3 1.93E+3 1.82E4+3 1.78E+3 1.03E4-2
28 4.68E4+3 8.18E4+3 5.90E+4+3 6.01E4+3 1.09E+3 4.39E4+3 6.28E+3 5.16E4+3 5.25E+3 5.83E4-2
29  1.13E+8 4.26E4+8 3.24E48 2.97E4+8 9.29E4+7 3.95E45 3.85E48 1.75E4+8 1.42E48 1.27E48
30 1.10E+6 4.73E4+7 4.73E46 8.94E4+6 1.31E4+7 2.82E4+4 1.99E+5 5.65E4+4 6.82E+4 4.76E44

(HFA) [83] . The parameter values of the selected meta-heuristic algorithms were taken as in the original articles.
Table 7 and Table 8 give the comparison results between the proposed MIDA and the other twelve meta-heuristic
algorithms for the 30D CEC2014 benchmarks. This table contains the mean and standard deviation metrics for 51 runs
of all algorithms. The last row of each comparison function is the ranking of the algorithms according to their mean
error values. The average rank in the table refers to the average of the rankings obtained for all benchmark functions
of each algorithm while the overall rank is the average rank values of the MIDA and the meta-heuristic algorithms
considered. As can be seen from both tables, the proposed MIDA for the 30-dimensional CEC2014 benchmark
functions outperforms other implemented algorithms. The overall ranking obtained from the average rankings in the
last row of the tables clearly shows that MIDA is the first algorithm among the other algorithms. With the effect of
three different mechanisms applied to the original dragonfly algorithm, MIDA can be said to have a more effective
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Table 5
100D CEC2014 Benchmark Results for DA and MIDA.
DA MIDA
No Best Worst Median Mean Std Best Worst  Median Mean Std

1 191E4+9 8.55E4+9 3.61E4+9 4.13E4+9 1.91E4+9 2.16E4+8 4.78E+8 3.74E48 3.70E+8 8.57E47
2 1.27E+11 259E+411 1.69E4+11 1.75E4+11 3.97E4+10 4.45E4+9 7.17E49 5.52E4+9 b5.59E49 7.83E48
3 3.33E+5 1.14E+6 7.09E4+5 7.09E4+5 2.26E4+5 1.77E+4 4.61E4+4 2.86E+4 3.05E+4 8.85E43
4 1.85E+4 5.79E+4 4.39E+4 3.89E+4 1.51E+4 8.77E4+2 1.44E+3 1.08E4+3 1.12E43 2.21E+42
5 2.10E+1 2.14E+1 2.13E+1 2.13E+1 1.50E-1 2.13E+1 2.14E+1 2.14E+1 2.13E4+1  3.04E-2
6 1.47E4+2 1.69E+2 1.53E4+2 155E+2 6.66E+0 1.21E4+2 1.45E+2 1.30E4+2 1.30E4+2 7.22E+40
7 1.33E4+3 2.88E4+3 1.99E4+3 1.99E4+3 552E+42 4.05E4+1 5.66E+1 4.77E4+1 4.84E+1 4.54E40
8 1.25E4+3 1.48E+3 1.36E+3 1.36E4+3 7.85E4+1 4.58E4+2 6.88E+2 6.11E4+2 5.98E+2 5.81E+1
9 1.16E+3 1.62E+3 1.47E4+3 1.45E4+3 1.37E+2 1.10E4+3 1.41E+3 1.30E4+3 1.28E+3 9.31E+1
10 2.54E+4+4 3.38E+4 3.00E+4 3.01E+4 2.35E+3 1.31E+4 1.88E+4 1.54E+4 1.52E+4 1.63E+3
11 2.89E+4 3.33E+4 3.06E+4 3.10E+4 1.44E4+3 2.64E+4 3.12E+4 2.98E+4 2.93E+4 1.75E+3
12 352E4+0 4.66E4+0 4.09E+0 4.04E+0 3.48E-1 3.36E4+0 4.49E40 3.99E+4+0 4.00E+0 3.47E-1
13 5.92E40 8.72E40 7.93E+0 7.57E+0 9.61E-1 4.84E-1 7.91E-1 6.43E-1 6.38E-1 9.24E-2
14 3.95E42 7.17E4+2 594E+2 6.00E+2 1.09E+2 2.86E-1 7.33E40 3.58E-1 9.89E-1 2.10E40
15 228E4+6 1.18E47 4.85E+6 5.88E+6 3.25E+6 3.43E42 1.32E4+3 6.90E+2 7.54E42 3.40E+-2
16 4.63E+1 481E+1 4.76E+1 4.75E+1 5.22E-1 4.63E+1 4.74E4+1 4.69E+1 4.68E+1  3.88E-1
17 2.99E48 854E+4+8 4.98E+8 5.14E+8 1.74E4+8 8.67E+6 5.91E47 3.36E+4+7 3.33E47 1.59E+47
18 6.44E48 1.77E+10 7.41E+9 9.10E+9 6.70E4+9 3.24E+5 5.55E46 8.28E+5 1.35E46 1.48E+6
19 7.46E+4+2 275E4+3 155E+3 1.61E+3 6.07E+2 1.57E4+2 2.28E+4+2 1.77E+2 1.83E4+2 2.25E+1
20 3.49E+5 4.02E4+6 1.93E4+6 2.00E4+6 1.44E4+6 1.26E4+4 4.96E4+4 2.68E+4 2.74E4+4 9.14E+43
21  6.40E+7 451E4+8 1.92E4+8 1.92E4+8 1.11E4+8 7.06E+6 3.15E47 1.68E+7 1.61E47 6.64E+6
22 3.43E+3 1.38E+4 7.55E4+3 7.70E4+3 3.14E4+3 1.15E4+3 4.36E+43 2.78E+3 2.78E+43 8.02E+2
23  1.13E4+3 3.09E4+3 191E+4+3 1.84E4+3 5.73E+2 3.63E+2 3.74E+2 3.68E+2 3.69E+2 2.81E40
24  2.21E42 1.15E+3 6.11E4+2 6.20E4+2 2.43E+2 4.41E+2 4.70E4+2 4.52E+2 4.53E+2 8.55E40
25  2.37E+2 5.89E+2 3.37E+4+2 3.90E+2 1.25E+2 3.12E+2 3.70E4+2 3.32E4+2 3.35E4+2 1.70E+1
26 1.16E4+2 831E+4+2 4.22E42 5.00E4+2 2.75E+4+2 2.11E42 2.31E+2 2.17E42 2.20E+2 6.86E4-0
27  4.09E43 5.02E4+3 4.75E4+3 4.73E43  2.66E+2 3.28E4+3 3.96E+3 3.48E43 3.54E+3 2.10E4-2
28 1.20E+4 1.93E+4 1.42E+4 1.49E+4 2.63E4+3 1.10E+4 1.64E4+4 1.44E4+4 1.37E+4 2.02E43
29 5.68E+8 2.15E4+9 1.32E49 1.34E4+9 4.50E4+8 2.99E45 2.33E46 8.89E4+5 1.09E4+6 6.38E+5
30 1.08E+7 9.37E4+7 3.56E4+7 4.07E4+7 2.35E4+7 1.33E45 b5.40E45 2.98E4+5 2.80E45 1.28E+45

search capability than DA in the exploration and exploitation phases of optimization problems of different types and
dimensions.

Finally, the performance of the proposed MIDA was compared with the performance of some improved dragonfly
algorithms in the literature. These DA versions are Adaptive Resistance and Stamina Strategy-based Dragonfly
Algorithm (ARSSDA) [39], Elite Opposition learning and Exponential function adaptive steps based Dragonfly
Algorithm (EOEDA) [38], Gaussian Mutational Bare-bone Dragonfly Algorithm (GGBDA) [37], and Quantum-
behaved and Gaussian mutational Dragonfly Algorithm (QGDA) [36]. In Table 9, the MIDA and the other DA versions
are compared for CEC2014 benchmarks with 30D. The table gives the mean and standard deviation values of the
optimization results with 51 runs of MIDA and other DA versions. The ranking results of all algorithms are given at
the end of each benchmark, and the average ranking results of the MIDA and DA versions for all benchmarks are in the
last row of the table. The results of the DA versions in the comparison table are taken from the literature. For QGDA,
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Table 6
Results of the Wilcoxon rank-sum test with 5% significance between MIDA and DA for CEC2014 benchmarks
D D

No 10 30 50 100 No 10 30 50 100
1 8.44E-18 3.30E-18 8.15E-5 8.15E-5 16 2.99E-13 1.04E-13 2.12E-1 3.86E-3
2 1.58E-12 3.30E-18 8.15E-5 8.15E-5 17 1.34E-15 4.70E-18 8.15E-5 8.15E-5
3 7.48E-17 3.30E-18 8.15E-5 8.15E-5 18 2.32E-12 4.43E-18 8.15E-5 8.15E-5
4 6.49E-11 3.50E-18 8.15E-5 8.15E-5 19 3.30E-18 4.70E-18 8.15E-5 8.15E-5
5 5.60E-2 2.75E-5 7.43E-1 1.00E+0 20 1.01E-17 3.30E-18 8.15E-5 8.15E-5
6 2.58E-9 4.01E-17 2.03E-3 8.15E-5 21 1.74E-16 4.99E-18 8.15E-5 8.15E-5
7 6.23E-16 3.30E-18 8.15E-5 8.15E-5 22 3.04E-16 3.53E-15 1.07E-4 1.07E-4
8 3.30E-18 3.30E-18 8.15E-5 8.15E-5 23 2.73E-10 1.08E-15 8.15E-5 8.15E-5
9 2.21E-13 7.51E-18 1.62E-3 7.10E-3 24 2.01E-14 1.44E-8 8.15E-5 1.51E-2
10 1.13E-17 3.30E-18 8.15E-5 8.15E-5 25 2.94E-11 5.65E-14 8.15E-5 8.44E-1
11 4.91E-1 6.88E-1 1.81E-2 7.62E-2 26 1.07E-1 4.23E-16 1.89E-1 5.82E-3
12 2.39E-1 8.46E-1 7.43E-1 8.96E-1 27 6.63E-8 1.47E-14 8.15E-5 8.15E-5
13 3.43E-10 2.01E-17 8.15E-5 8.15E-5 28 6.87E-6 1.01E-8 1.15E-1 3.93E-1
14 7.21E-12 3.30E-18 8.15E-5 8.15E-5 29 1.39E-14 5.89E-16 1.26E-2 8.15E-5
15 1.07E-14 3.30E-18 8.15E-5 8.15E-5 30 6.01E-15 3.30E-18 8.15E-5 8.15E-5

only the results of the F13-F19 problems were included in the [36] study, so results for the other problems were not
given. According to the mean value metric results among DA versions, the proposed MIDA is in second rank. From
the comparison results, the average ranking result of ARSSDA, which is in the first place, was 1.90 and that of MIDA
was 2.23. These values indicate that MIDA performs close to that of ARSSDA.

3.9. Comparison results for the CEC2020 benchmark problems

In this subsection, the proposed MIDA and the original DA were evaluated for the CEC2020 benchmark suite, one
of the most recently introduced datasets in the field of numerical optimization. This test suite consists of ten extremely
difficult optimization problems. One of these problems is a unimodal function, three of them are multi-modal functions,
three are hybrid functions, and the other three are composite functions. All optimization benchmarks are minimization
problems [84]. In searching for the global solution points of these minimization problems, the algorithms are run 30
times for different dimensions (D=5, 10, 15, and 20). The search space for all problems is in the range of -100 to 100. In
the search for the global solution point, reaching the maximum number of function evaluations was used as the stopping
criterion of the algorithms. The maximum number of function evaluations is selected as 5e4 for all dimensions of the
problems. The population size (the number of dragonflies) is determined as 100 for all dimensions. The evaluation
results of MIDA and DA exclude F6 and F7 in the 5D case.

Table 10 summarizes the statistical results of MIDA and original DA for CEC2020 benchmarks with 5D, 10D,
15D, and 20D. The statistical metrics in this table are best, worst, median, mean, and standard deviation (std) metrics.
In the table, better results are shown in bold in the evaluation of both algorithms. Looking at the results of the test
suit with 5D, the proposed MIDA outperforms the original DA in all metrics except best metric. In the best metric
results of the benchmarks with 5D, the MIDA is better than DA for all test problems except for F2 and F8. In the
10-dimensional CEC2020 results, among all benchmarks, MIDA outperforms DA by 100% for the best metric, 90%
for the worst, mean, and median metrics, and 80% for the standard deviation metric. The 15D benchmark results of
the table show the superiority of MIDA over DA in all benchmarks and all metrics, except for the worst and std metric
results of the F2. Finally, from the 20-dimensional CEC 2020 benchmark results, it is understood that the proposed
MIDA structure is 100% more successful than the original DA in all test problems for all metrics except the standard
deviation metric. To summarize, in the CEC2020 results, MIDA achieved a success rate of 95% for 5D benchmarks,
90% for 10D benchmarks, and 96% for 15D and 20D benchmarks.
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Table 7
Comparison Results | of MIDA and other Meta-heuristics for CEC2014 benchmarks of 30D.
MFO PSO DA SCA WOA CCs MIDA
Mean 7.59E+7 8.19E+7 4.49E+8 2.24E+8 3.24E+7 2.93E+9 1.07E+7
FN1 Std 9.77E+7 8.27E+9 3.88E+8 7.18E+7 1.42E+7 8.68E+8 6.70E+6
Rank 3 4 6 5 2 7 1
Mean 1.36E+10 2.81E+4 3.67E+10 1.60E+10 5.05E+6 9.48E+10 4.93E+7
FN2 Std 8.42E+9 5.30E+2 1.55E+410 3.12E+49 4.79E+6 6.53E+9 2.10E+7
Rank 4 1 6 5 2 7 3
Mean 8.99E+4 2.09E+1 1.81E+5 3.79E+4 2.97E+4 1.01E+7 2.50E+3
FN3 Std 4.98E+4 2.77E+1 9.61E+4 7.28E+3 2.10E+4 1.32E+7 2.63E+3
Rank 5 1 6 4 3 7 2
Mean 1.14E+3 9.01E+3 4.86E+3 1.02E+3 1.76E+2 2.43E+4 1.71E+2
FN4 Std 1.13E+3 1.85E+42 3.72E+3 2.04E+2 4.70E+1 3.94E+3 5.04E+1
Rank 4 6 5 3 2 7 1
Mean 2.04E+1 2.19E+42 2.08E+1 2.09E+1 2.04E+1 5.03E+2 2.09E+1
FN5 Std 1.75E-1 6.01E+3 1.17E-1 5.00E-2 1.80E-1 6.33E-2 7.07E-2
Rank 1 5 2 3 1 7 3
Mean 2.40E+1 6.78E+3 3.72E+1 3.44E+1 3.48E+1 6.04E+2 2.46E+1
FN6 Std 3.33E40 2.46E+0 3.71E+0 2.61E+0 3.61E+0 2.00E+0 4.38E+0
Rank 1 7 5 3 4 6 2
Mean 1.17E42 1.61E+0 3.54E+2 1.33E+2 1.03E4+0 1.66E+3 1.45E+40
FN7 Std 6.91E+1 2.67E+1 1.59E+4-2 2.91E+1 5.00E-2 1.28E+2 1.44E-1
Rank 4 3 6 5 1 7 2
Mean 1.43E+2 1.10E+3 2.89E+2 2.36E+2 1.76E+2 1.16E+3 2.07E+1
FN8 Std 3.81E+1 1.24E+1 4.77E42 2.08E+1 3.73E+1 2.51E+1 4.59E+0
Rank 2 6 5 4 3 7 1
Mean 2.23E+42 2.30E+6 3.01E+2 2.67E+2 2.13E+2 1.33E+3 1.15E+2
FN9 Std 6.06E+1 8.06E+7 6.73E+1 2.04E+1 5.22E+1 3.95E+1 3.14E+1
Rank 3 7 5 4 2 6 1
Mean 3.47E43 4.43E+1 6.57E+3 5.88E+3 3.77E+3 8.06E+3 1.28E+3
FN10 Std 8.85E+2 7.82E+3 6.79E+2 451E+42 5.30E+2 3.28E+2 5.48E+2
Rank 3 1 6 5 4 7 2
Mean 4.15E+3 6.50E+5 6.92E+3 7.04E+3 4.50E+3 8.83E+3 7.03E+3
FN11 Std 6.90E+42 6.35E+42 7.41E42 2.77TE+42 7.58E42 5.25E42 5.53E42
Rank 1 7 3 5 2 6 4
Mean 4.30E-1 3.73E+2 2.21E+40 2.45E40 1.67E+0 1.21E+3 2.19E+0
FN12 Std 2.60E-1 2.76E+42 5.26E-1 2.30E-1 3.60E-1 3.95E-1 4.75E-1
Rank 1 6 4 5 2 7 3
Mean 2.21E40 2.14E+42 5.14E+40 2.89E+0 5.00E-1 1.31E+3 5.57E-1
FN13 Std 1.34E+0 1.58E+2 1.65E+0 3.30E-1 1.20E-1 1.57E+0 1.15E-1
Rank 3 6 5 4 1 7 2
Mean 3.54E+1 9.05E+2 1.31E+2 411E+1 2.80E-1 1.67E+3 3.34E-1
FN14 Std 2.47E+1 1.92E+3 5.52E+1 5.51E40 4.00E-2 4.59E+1 1.45E-1
Rank 3 6 5 4 1 7 2
Mean 2.23E+5 1.04E+7 2.85E+5 2.82E+3 7.00E+1 1.81E+6 2.31E+1
FN15 Std 5.77E+5 6.54E+4 4.25E+5 3.62E+3 2.52E+1 8.34E+5 4.90E+40
Rank 4 7 5 3 2 6 1
Mean 1.27E+1 2.49E+7 1.32E+1 1.28E+1 1.26E+1 1.61E+3 1.23E+1
FN16 Std 5.30E-1 2.21E4+9 3.23E-1 3.10E-1 5.80E-1 2.60E-1 5.70E-1
Rank 3 7 5 4 2 6 1
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Table 7
Comparison Results | of MIDA and other Meta-heuristics for CEC2014 benchmarks of 30D (continued).
MFO PSO DA SCA WOA CCs MIDA
Mean 3.39E+6 1.26E+4 1.61E+7 6.61E+6 4.33E+6 3.82E+8 5.35E+5
FN17 Std 4.07E+6 3.30E+2 1.36E+7 2.94E+6 2.22E+6 1.73E+8 6.14E+5
Rank 3 1 6 5 4 7 2
Mean 5.19E+46 4.80E-2 6.11E+8 1.85E+8 1.55E+4 1.21E+10 1.65E+4
FN18 Std 3.61E4+7 1.43E+0 8.31E+8 8.68E+7 4.80E+4 3.86E+9 1.83E+4
Rank 4 1 6 5 2 7 3
Mean 7.36E+1 2.91E+1 2.68E+2 9.08E+1 4.48E+1 2.73E+3 2.12E+1
FN19 Std 5.32E+1 1.48E+1 1.08E+2 2.42E+1 3.14E+1 3.70E+2 2.27E+1
Rank 4 2 6 5 3 7 1
Mean 5.67E+4 1.34E+1 2.78E+5 1.31E+4 2.04E+4 5.99E+6 8.13E+2
FN20 Std 4.34E+4 4.16E+2 5.77TE+5 4.83E+3 1.06E+4 1.25E4+7 7.12E+2
Rank 5 1 6 3 4 7 2
Mean 7.83E+5 3.88E+2 8.23E+6 1.48E+6 9.48E+5 1.85E+8 8.45E+4
FN21 Std 1.18E+6 2.70E-1 8.77E+6 8.55E+5 9.91E+5 9.20E+7 1.01E+5
Rank 3 1 6 5 4 7 2
Mean 8.67E+4 7.40E-1 1.12E+43 7.54E+2 7.49E+2 3.43E+6 4.39E+2
FN22 Std 2.29E+4 1.19E+1 4.04E+2 1.25E4-2 1.99E4-2 3.84E+6 1.97E42
Rank 6 1 5 4 3 7 2
Mean 3.71E42 2.94E+3 5.76E+2 3.70E+2 3.31E+2 3.73E+3 3.16E+2
FN23 Std 3.98E+1 3.10E-1 1.98E+2 1.37E+1 6.24E+0 4.91E+2 3.66E-1
Rank 4 6 5 3 2 7 1
Mean 2.76E+2 1.05E+6 2.81E+42 2.01E+42 2.06E+2 2.53E+3 2.34E+2
FN24 Std 2.73E+1 4.44E+7 4.14E+1 9.10E-1 5.95E40 6.83E+0 451E+0
Rank 4 7 5 1 2 6 3
Mean 2.14E4-2 1.64E+1 2.40E+42 2.27TE+2 2.25E+2 2.66E+3 2.10E+2
FN25 Std 7.65E+0 1.52E+4 2.28E+1 6.18E+40 1.66E+1 5.95E+1 3.23E40
Rank 3 1 6 5 4 7 2
Mean 1.03E+2 2.83E+5 1.04E4-2 1.02E+2 1.00E+2 2.79E+3 1.01E+2
FN26 Std 1.50E4-0 1.99E+2 1.69E+0 5.60E-1 1.00E-1 1.06E+2 1.35E-1
Rank 4 7 5 3 1 6 2
Mean 9.21E+2 2.28E+1 1.09E+3 7.22E+2 9.05E+2 7.07E+3 4.93E+2
FN27 Std 2.23E+2 2.15E+0 3.68E+2 2.91E+2 4.15E+2 8.01E+2 1.75E+42
Rank 5 1 6 3 4 7 2
Mean 1.12E+43 2.59E+0 2.24E+43 2.00E+3 2.15E+3 1.41E+4 1.59E+43
FN28 Std 1.57E+42 5.98E+1 5.47E+42 3.17E+2 4.80E+2 1.91E+3 4.08E+2
Rank 2 1 6 4 5 7 3
Mean 3.06E+6 2.71E+2 2.15E+7 1.34E+7 4.38E+6 1.10E+4+9 1.64E+4-6
FN29 Std 3.62E+6 5.04E+2 1.09E+7 7.63E+6 4.68E+6 2.92E+8 5.19E+6
Rank 3 1 6 5 4 7 2
Mean 5.89E+4 1.18E+7 4.79E+5 2.48E+5 8.20E+4 2.35E+7 1.14E+4
FN30 Std 5.40E+4 8.87E+4 3.77TE+5 8.39E+4 6.61E+4 1.48E+7 1.01E+4
Rank 2 6 5 4 3 7 1
Average rank 3.23 3.90 5.27 4.03 2.63 6.77 1.97
Overall rank 3 4 6 5 2 7 1
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Table 8
Comparison Results Il of MIDA and other Meta-heuristics for CEC2014 benchmarks of 30D.
COA EHO ASMO VNBA RFO HFA MIDA
Mean 1.03E+8 4.83E+8 1.20E+8 1.21E+8 1.93E+8 3.34E+7 1.07E+7
FN1 Std 1.30E+6 1.30E+8 3.55E+7 4.42E+7 4.94E+7 1.63E+5 6.70E+6
Rank 3 7 4 5 6 2 1
Mean 2.06E+9 3.82E+10 1.95E+9 2.81E+8 1.35E+10 2.14E49 4.93E+7
FN2 Std 6.91E+5 7.67E+9 2.81E+38 1.24E+8 2.58E+9 6.91E+5 2.10E+7
Rank 4 7 3 2 6 5 1
Mean 1.78E+5 5.64E+4 2.45E+5 2.63E+4 8.73E+4 1.66E+5 2.50E+3
FN3 Std 2.09E+2 6.17E+3 7.65E+4 1.64E+4 6.27E+3 1.79E+42 2.63E+3
Rank 6 3 7 2 4 5 1
Mean 3.98E+2 5.45E+3 7.11E42 6.29E+2 2.18E+3 4.88E+2 1.71E+2
FN4 Std 8.54E-1 1.17E+3 3.56E+1 7.41E+1 4.07E4-2 2.52E-1 5.04E+1
Rank 2 7 5 4 6 3 1
Mean 4.88E+2 5.05E+2 5.11E+42 5.15E+2 4.99E+2 4.98E+2 2.09E+1
FN5 Std 3.62E-3 5.80E-2 9.73E-2 5.43E-2 4.59E-2 3.88E-4 7.07E-2
Rank 2 5 6 7 4 3 1
Mean 4.37E+2 6.18E+2 6.22E+2 6.16E+42 6.00E+2 5.99E+2 2.46E+1
FN6 Std 1.65E4+0 1.81E+40 2.79E+0 2.24E+0 1.63E4-0 1.36E-2 4.38E+40
Rank 2 6 7 5 4 3 1
Mean 7.01E+42 9.89E+2 7.04E42 7.02E+2 7.01E+42 7.00E+2 1.45E+0
FN7 Std 1.01E+1 451E+1 3.15E+0 1.18E+40 1.60E+1 1.12E-2 1.44E-1
Rank 3 6 5 4 3 2 1
Mean 4.21E+2 1.05E+3 1.06E+3 8.15E+2 8.02E+2 8.01E+2 2.07E+1
FN8 Std 1.18E+40 1.93E+1 1.96E+1 3.41E+0 1.24E+1 6.82E-2 4.59E+40
Rank 2 6 7 5 4 3 1
Mean 9.02E+2 1.21E+3 1.17E+3 1.03E+3 9.03E+2 9.02E+2 1.15E+2
FN9 Std 2.28E+2 3.04E+1 1.84E+1 2.69E+1 2.09E+1 1.17E42 3.14E+1
Rank 2 6 5 4 3 2 1
Mean 1.87E+3 7.69E+3 9.01E+3 1.20E+3 3.18E+3 1.00E+3 1.28E+3
FN10 Std 1.82E+3 3.63E+2 4.41E+2 7.82E+1 2.48E+2 1.37E+43 5.48E+2
Rank 4 6 7 2 5 1 3
Mean 4.98E+3 7.96E+3 9.80E+3 4.96E+43 4.43E+3 1.10E+3 7.03E+3
FN11 Std 5.21E42 3.49E+2 4.16E+2 5.89E+2 3.85E+2 3.03E+0 5.53E+2
Rank 4 6 7 3 2 1 5
Mean 1.21E+3 1.21E+3 1.21E+3 1.21E+3 1.21E+3 1.21E+3 2.19E+0
FN12 Std 1.56E-1 3.10E-1 8.09E-1 1.37E-1 2.15E-1 2.16E-1 4.75E-1
Rank 2 2 2 2 2 2 1
Mean 1.31E+3 1.31E+3 1.31E+3 1.31E+3 1.31E+3 1.31E+3 5.57E-1
FN13 Std 2.42E-1 2.11E-1 1.97E-1 1.08E-1 2.80E-1 1.56E-1 1.15E-1
Rank 2 2 2 2 2 2 1
Mean 1.41E+3 1.47E+3 1.41E+3 1.41E+3 1.41E+3 1.41E+3 3.34E-1
FN14 Std 8.74E-1 1.04E+1 1.34E+0 1.63E-1 7.71E40 2.36E-1 1.45E-1
Rank 2 3 2 2 2 2 1
Mean 3.84E+4 2.89E+5 1.53E+3 1.52E+3 1.09E+5 3.40E+4 2.31E+1
FN15 Std 2.28E+40 1.14E+5 2.18E+1 2.46E+1 3.85E+4 9.34E40 4.90E+40
Rank 5 7 3 2 6 4 1
Mean 1.61E+3 1.61E+3 1.61E+3 1.61E+3 1.61E+3 1.61E+3 1.23E+1
FN16 Std 8.51E-3 2.44E-1 2.06E-1 5.08E-1 2.54E-1 2.06E-3 5.70E-1
Rank 2 3 2 2 2 2 1

Parmaksiz et al.: Preprint submitted to Elsevier

Page 28 of 43



Mutation based Improved Dragonfly Optimization Algorithm

Table 8
Comparison Results Il of MIDA and other Meta-heuristics for CEC2014 benchmarks of 30D(continued).
COA EHO ASMO VNBA RFO HFA MIDA
Mean 6.41E+6 1.15E+7 8.77E+6 1.47E4+7 9.00E+6 6.53E+6 5.35E+5
FN17 Std 5.54E+45 4.10E+6 3.78E+6 6.02E+6 3.09E+6 2.51E+4 6.14E+5
Rank 2 6 4 7 5 3 1
Mean 2.18E+8 3.83E+8 9.30E+7 1.24E47 2.03E+8 2.02E+8 1.65E+4
FN18 Std 8.27E+4 1.45E+48 2.91E+7 6.87E+6 4.90E+7 6.14E+3 1.83E+4
Rank 6 7 3 2 5 4 1
Mean 2.54E+3 2.09E+3 1.90E+3 1.94E+3 1.91E+3 1.91E+3 2.12E+1
FN19 Std 2.05E+1 4.75E+1 4.57E+0 4.05E+1 2.80E+1 1.36E-1 2.27E+1
Rank 6 5 2 4 3 3 1
Mean 8.81E+4 2.28E+4 7.12E+5 3.70E+4 5.87E+4 9.87E+3 8.13E+2
FN20 Std 5.85E+3 5.46E+3 6.42E+5 2.13E+4 9.43E+3 1.16E+3 7.12E+2
Rank 6 3 7 4 5 2 1
Mean 2.51E+5 2.74E+6 4 34E+6 3.67E+6 2.51E+6 2.05E+5 8.45E+4
FN21 Std 3.51E+6 1.22E+46 2.07E+6 1.77E+6 7.88E+5 8.37E+3 1.01E45
Rank 3 5 7 6 4 2 1
Mean 8.21E+4 3.27E+3 3.37E+3 2.91E+3 2.28E+4 5.60E+4 4.39E+2
FN22 Std 4.58E+2 1.97E4-2 1.73E42 1.48E+42 1.50E+42 9.62E+0 1.97E42
Rank 7 3 4 2 5 6 1
Mean 2.63E+3 2.43E43 2.60E+3 2.63E+3 2.32E43 2.32E+3 3.16E+2
FN23 Std 1.19E+1 1.82E-2 7.32E+0 2.88E+1 1.19E+1 1.20E-1 3.66E-1
Rank 5 3 4 5 2 2 1
Mean 2.41E+43 2.52E+43 2.61E+3 2.60E+3 2.42E+43 2.42E+43 2.34E+2
FN24 Std 3.21E-1 5.54E-3 1.85E+0 1.94E+1 3.75E+0 5.45E-1 4.51E40
Rank 2 4 6 5 3 3 1
Mean 5.29E+43 2.62E+3 2.67E+3 2.69E+3 2.52E+3 2.52E+3 2.10E+2
FN25 Std 2.62E40 1.90E-4 4.88E+40 5.08E+0 1.93E+40 2.65E40 3.23E40
Rank 6 3 4 5 2 2 1
Mean 2.62E43 2.63E+3 2.65E+3 2.67E+3 2.62E+3 2.62E+43 1.01E+42
FN26 Std 1.13E+1 1.58E+40 1.58E-1 1.14E-1 1.13E+1 5.41E+0 1.35E-1
Rank 2 3 4 5 2 2 1
Mean 2.72E+3 2.81E+3 4.17E+3 4.23E+3 2.72E+3 2.72E+43 4.93E+2
FN27 Std 3.65E-1 3.37E-3 9.74E+1 9.60E+1 3.45E+1 4.99E-1 1.75E+42
Rank 2 3 4 5 2 2 1
Mean 2.82E+3 2.91E+43 4.16E+3 4.46E+3 2.82E+3 2.82E+3 1.59E+43
FN28 Std 1.06E+40 5.99E-3 1.17E+42 3.50E+2 8.14E+1 1.19E+40 4.08E+2
Rank 2 3 4 5 2 2 1
Mean 1.26E+7 3.62E+5 1.81E+6 3.11E+6 6.79E+6 1.80E+7 1.64E+6
FN29 Std 1.23E+42 2.60E+4 3.15E+6 4.11E+6 1.37E+4 1.23E+42 5.19E+6
Rank 6 1 3 4 5 7 2
Mean 3.88E+45 5.41E+5 8.86E+4 4.92E+4 3.29E+5 3.91E+5 1.14E+4
FN30 Std 2.57TE+2 6.55E+5 3.12E+4 2.00E+4 2.22E+5 9.19E+42 1.01E+4
Rank 5 7 3 2 4 6 1
Average rank 3.57 4.60 4.43 3.80 3.67 2.93 1.23
Overall rank 3 7 6 5 4 2 1
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Table 9
Comparison Results of MIDA and improved DA versions for CEC2014 benchmarks of 30D.
EOEDA ARSSDA DA GGBDA QGDA MIDA
Mean 1.66E+1 0.00E+0 4.49E+8 3.34E+7 - 1.07E+7
FN1 Std 1.67E+1 0.00E+0 3.88E+8 2.36E+7 - 6.70E+6
Rank 2 1 5 4 - 3
Mean 5.85E+2 9.04E+0 3.67E+10 5.78E+7 - 4.93E+7
FN2 Std 5.08E+1 1.02E+1 1.55E+10 1.32E+7 - 2.10E+7
Rank 2 1 5 4 - 3
Mean 6.52E+1 0.00E+0 1.81E+5 2.25E+42 - 2.50E+3
FN3 Std 3.45E+0 0.00E+0 9.61E+4 1.02E+3 - 2.63E+3
Rank 2 1 5 3 - 4
Mean 1.11E+2 0.00E+0 4 86E+3 5.95E+2 - 1.71E+2
FN4 Std 2.23E+1 0.00E+0 3.72E+3 8.76E+1 - 5.04E+1
Rank 2 1 5 4 - 3
Mean 2.61E+1 2.00E+1 2.08E+1 5.21E42 - 2.09E+1
FN5 Std 2.47E-3 1.57E-3 1.17E-1 5.59E-2 - 7.07E-2
Rank 4 1 2 5 - 3
Mean 2.12E+1 2.04E+1 3.72E+1 6.20E42 - 2.46E+1
FN6 Std 7.27E-2 5.97E-2 3.71E+0 4.02E+0 - 4.38E+0
Rank 2 1 4 5 - 3
Mean 1.28E+3 7.18E+2 3.54E+2 7.02E+2 - 1.45E4-0
FN7 Std 8.27E+1 1.67E+1 1.59E+2 1.40E-1 - 1.44E-1
Rank 5 4 2 3 - 1
Mean 1.09E+3 8.72E+2 2.89E+2 8.90E+2 - 2.07E+1
FN8 Std 1.21E+1 9.31E+0 4.77E+2 1.48E+1 - 4.59E+0
Rank 5 3 2 4 - 1
Mean 1.22E+3 9.74E4-2 3.01E+2 1.07E+3 - 1.15E+2
FNO Std 7.64E+0 1.77E+1 6.73E+1 3.54E+1 - 3.14E+1
Rank 5 3 2 4 - 1
Mean 7.63E+1 3.03E+1 6.57E+3 2.16E+3 - 1.28E43
FN10 Std 4.24E+0 1.55E+40 6.79E+2 4.06E+2 - 5.48E+2
Rank 2 1 5 4 - 3
Mean 8.28E+1 3.95E+1 6.92E+3 4.31E+2 - 7.03E+3
FN11 Std 2.09E+0 3.62E+0 7.41E+42 5.81E+2 - 5.53E+2
Rank 2 1 4 3 - 5
Mean 1.20E+2 9.20E-2 2.21E+4+0 1.20E+3 - 2.19E+4+0
FN12 Std 2.78E-2 9.92E-2 5.26E-1 6.47E-1 - 4.75E-1
Rank 4 1 3 5 - 2
Mean 1.31E+3 1.30E+3 5.14E+40 1.30E+3 2.50E+3 5.57E-1
FN13 Std 1.07E-1 6.07E-2 1.65E4+0 1.10E-1 1.34E-2 1.15E-1
Rank 4 3 2 3 5 1
Mean 1.64E+1 1.40E+1 1.31E+2 1.40E+3 2.60E+3 3.34E-1
FN14 Std 2.18E-1 1.81E-2 5.52E+1 4.94E-2 9.64E-3 1.45E-1
Rank 3 2 4 5 6 1
Mean 1.44E+4 2.17E40 2.85E+5 1.52E+3 2.70E+3 2.31E+1
FN15 Std 4.90E+3 2.56E-1 4.25E+5 3.87E+0 9.26E-5 4.90E+0
Rank 5 1 6 3 4 2
Mean 1.61E+3 1.61E+3 1.32E+1 1.61E+3 2.90E+3 1.23E+1
FN16 Std 4.43E-1 9.35E-1 3.23E-1 3.80E-1 6.60E-4 5.70E-1
Rank 5 3 2 4 6 1
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Table 9
Comparison Results of MIDA and improved DA versions for CEC2014 benchmarks of 30D(continued).
EOEDA ARSSDA DA GGBDA QGDA MIDA
Mean 7.44E+4 1.93E+2 1.61E+7 2.17E+6 3.00E+3 5.35E+5
FN17 Std 1.22E+5 7.51E+1 1.36E+7 2.72E+6 1.84E-5 6.14E+5
Rank 3 1 6 5 2 4
Mean 1.48E+5 1.59E+6 6.11E+8 1.52E+4 2.03E+4 1.65E+4
FN18 Std 3.46E+5 3.18E+6 8.31E+8 5.23E+4 2.56E+4 1.83E+4
Rank 4 5 6 1 3 2
Mean 1.96E+2 3.08E+40 2.68E+2 1.92E+3 3.45E+3 2.12E+1
FN19 Std 4.92E40 6.08E+4-0 1.08E+2 8.24E+0 1.93E+2 2.27E+1
Rank 3 1 4 5 6 2
Mean 4.09E+1 1.31E+1 2.78E+5 2.28E+3 - 8.13E+2
FN20 Std 3.77E+1 3.23E40 5.77E+5 6.93E+1 - 7.12E+42
Rank 2 1 5 4 - 3
Mean 1.14E+4 2.37E+3 8.23E+6 1.92E+45 - 8.45E+4
FN21 Std 6.15E+3 2.56E+3 8.77E+6 2.87E+5 - 1.01E+5
Rank 2 1 5 4 - 3
Mean 2.91E+43 2.14E+42 1.12E+43 2.67E+3 - 4.39E+42
FN22 Std 2.03E+42 8.16E+1 4.04E+42 1.37E42 - 1.97E42
Rank 5 1 3 4 - 2
Mean 2.66E+2 2.63E+2 5.76E+42 2.50E+3 - 3.16E+2
FN23 Std 6.11E40 0.00E+0 1.98E+2 8.22E-2 - 3.66E-1
Rank 2 1 4 5 - 3
Mean 2.61E+3 2.60E+3 2.81E+42 2.60E+3 - 2.34E42
FN24 Std 1.44E+1 3.51E-4 4.14E+1 4.26E-2 - 4.51E40
Rank 4 3 2 3 - 1
Mean 2.71E42 2.7T1E+42 2.40E4-2 2.70E+3 - 2.10E+42
FN25 Std 1.28E+0 2.29E-1 2.28E+1 1.40E-3 - 3.23E40
Rank 4 3 2 5 - 1
Mean 2.70E+2 1.07E+2 1.04E+2 2.70E+3 - 1.01E+2
FN26 Std 3.09E-1 1.63E-2 1.69E+0 1.80E-1 - 1.35E-1
Rank 4 3 2 5 - 1
Mean 3.42E+43 2.00E+2 1.09E+3 2.90E+3 - 4.93E+42
FN27 Std 4.11E+2 0.00E+4-0 3.58E+2 1.89E-3 - 1.75E+2
Rank 5 1 3 4 - 2
Mean 5.54E+3 3.72E+3 2.24E43 3.00E+3 - 1.59E+3
FN28 Std 3.79E+2 8.35E+1 5.4T7E+42 2.89E-2 - 4.08E+2
Rank 5 4 2 3 - 1
Mean 5.63E+7 2.62E+42 2.15E47 3.11E+43 - 1.64E+4-6
FN29 Std 5.26E+7 0.00E+0 1.09E+7 5.43E4+0 - 5.19E+6
Rank 5 1 4 2 - 3
Mean 6.30E+4 4.05E+4 4.79E+5 3.569E+3 - 1.14E+4
FN30 Std 7.68E+4 3.08E+4 3.77E+5 6.09E+2 - 1.01E+4
Rank 4 3 5 1 - 2
Average rank 3.53 1.90 3.70 3.80 4.57 2.23
Overall rank 3 1 4 5 6 2
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Table 10
Comparison Results of MIDA and original DA for CEC2020 benchmarks.

DA MIDA

Dim

2
[S)

Best Worst Median Mean Std Best Worst Median Mean Std

1.01E+0 4.47E+8 1.32E+4 4.95E+47 1.16E+48 0.00E40 1.27E4+4 5.84E41 1.35E4-3 3.03E+43
7.69E+1 7.41E+2 3.99E+2 3.81E+2 1.95E+2 7.95E+1 5.55E+2 2.92E+2 3.01E+2 1.31E+2
2.61E4+0 3.88E+1 1.63E+1 1.62E+1 7.70E4+0 6.13E-1 2.34E41 7.33E4-0 7.71E4-0 5.32E+4+0
1.07E-2 252E+1 1.13E40 2.61E+0 4.91E40 0.00E+0 8.59E-1  3.51E-1 3.73E-1 2.12E-1
2.14E+2 3.44E+4 3.05E+3 6.65E+3 1.00E+4 9.97E-1 4.15E+1 1.05E+1 1.46E+1 1.21E+1

6.00E-8 7.32E+1 2.15E+41 2.39E+1 1.40E+1 1.86E-1 2.60E+1 1.59E+1 1.52E+1 5.55E+0
1.00E+2 3.50E+2 2.09E+2 2.29E42 8.85E+1 5.56E-3 2.05E4+2 1.00E4-2 1.07E+2 3.77E+1
3.00E+2 3.82E+2 3.52E+42 3.60E+2 1.83E+1 3.00E+2 3.47E+2 3.47E+42 3.43E+42 1.34E+1
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4.82E+6 5.42E4+9 5.98E+8 1.37E4+9 1.62E+9 3.18E+3 8.37E+6 3.95E+4 3.58E+5 1.52E+6
6.50E+2 1.91E4+3 1.34E+3 1.33E43 3.29E42 6.33E+2 1.92E4+3 1.43E+3 1.38E43 3.42E+2
1.97E+1 2.37E+2 7.49E+1 8.90E+1 5.01E+1 1.73E4+1 5.40E+1 3.32E+41 3.38E+1 9.60E+0
4.11E40 8.88E4+4 1.19E41 3.59E+3 1.64E4+4 7.57E-1 3.53E40 1.71E4+0 1.65E4+0 6.90E-1
7.44E43 3.24E4+6 5.97E+4+4 4.37E+5 8.61E+5 3.20E+2 1.96E+4 5.11E+3 7.75E4-3 6.91E43
5.97E-1 8.33E+1 5.64E40 1.47E+4+1 1.85E+1 4.80E-1 1.82E+1 1.24E+0 3.27E4-0 5.43E+0
9.48E+2 3.31E+5 4.07E+3 2.13E+4 5.95E+4 5.39E+1 3.87E4+3 7.51E+2 8.90E+42 8.08E+-2
4.71E4+1 5.18E+42 1.70E42 2.14E+2 1.22E+42 3.87E+1 4.32E4+2 1.10E+2 1.18E42 6.27E+1
1.04E+2 5.76E+2 3.91E+2 3.92E+42 6.71E+1 1.01E42 3.64E+2 3.48E+42 2.93E+2 9.66E+1
4.06E+2 1.02E+4+3 5.44E+42 6.17E+2 1.79E+2 3.98E+2 5.28E+2 4.25E+42 4.27E+2 3.11E+41

10
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5.40E+7 1.89E+10 1.64E+49 4.37E+9 5.37E+9 2.44E+6 4.35E4+7 8.55E46 1.06E+7 7.75E+6
1.76E+3 3.56E+3 2.73E+3 2.65E+43 4.40E+2 1.08E+3 3.60E+3 2.51E+43 2.44E+43 5.93E+2
1.00E+2 4.29E+2 1.91E+2 2.07E+42 9.16E+1 3.14E41 8.02E4+1 6.05E41 5.91E+1 1.25E+1
3.80E+1 1.18E+6 5.22E+42 4.70E+4 2.15E+5 1.60E4+0 9.47E4+0 4.29E4-0 4.54E+40 2.01E+0
1.72E4+5 1.15E+7 3.67E+6 3.83E+6 2.14E+6 5.36E+2 9.80E4+5 2.66E+4 1.04E+5 2.06E+5
1.99E+1 8.72E+2 2.13E+2 3.22E+42 3.26E+42 1.04E+41 8.42E4+1 1.59E41 3.27E+1 3.18E+1
4.75E4+4 2.13E4+6 5.42E45 6.69E+45 5.36E+5 1.64E+1 1.49E+5 4.72E+2 5.99E43 2.71E+4
1.84E+2 3.36E4+3 8.35E+2 1.34E+43 1.08E+3 1.14E42 2.50E+4+3 1.17E+42 5.09E+2 8.10E+2
3.99E+2 6.55E+2 4.93E42 5.09E+2 5.13E+41 3.94E+2 5.21E42 4.11E+4+2 4.16E4-2 2.33E+1
5.69E+2 2.75E+3 1.03E+43 1.09E+3 4.79E+42 4.22E+2 6.65E4+2 6.10E+2 5.81E+42 7.12E+1

15
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2.21E+8 2.56E410 5.80E+49 7.28E+9 5.64E+4+9 5.72E+6 3.76E47 1.56E+7 1.66E+47 7.30E+4-6
1.92E+3 b5.44E+3 4.12E+3 3.77E+3 8.68E+2 1.63E+3 4.50E+3 3.45E+43 3.43E+3 7.56E+2
1.67E+2 5.78E+2 3.37E+2 3.69E+2 1.23E+2 5.43E+1 1.42E+42 8.81E+41 8.94E+1 1.73E+1
8.74E+1 1.05E+5 1.30E+4 2.08E+4 2.61E4+4 4.77E+0 1.46E41 8.42E+0 8.59E4-0 2.79E+4-0
2.20E+5 3.85E+7 5.39E+4+6 7.40E+6 7.87E+6 5.83E+3 1.21E4+6 1.46E+45 2.32E+5 3.02E+5
4.01E+2 4.49E+2 4.36E+42 4.30E+2 2.07E+41 3.01E+0 1.44E+2 2.73E+1 5.19E+1 5.73E+1
151E+5 7.07E+6 1.06E+6 1.49E46 1.55E+46 2.57E43 2.09E4+5 2.36E+4 4.32E+4 4.69E4-4
2.50E+2 5.42E+3 4.13E43 3.74E+3 1.55E+3 1.25E+2 5.15E4+3 1.50E4-2 2.30E+3 2.36E+3
5.00E+2 8.31E+2 6.11E+2 6.29E+2 7.34E+4+1 4.30E+2 5.42E4+2 4.79E+2 4.84E+42 2.44E+1
5.14E42 3.42E4+3 1.07E43 1.38E+3 9.05E+42 4.13E+2 5.46E4+2 4.70E+2 4.69E4-2 4.18E+1

20
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Table 11
Computational complexity of MIDA and DA

DA MIDA
D o ik ) (T2 -T1)/T0 72 (T2 -T1)/T0
5 9.37E-2 8.10E-1 9.27E+1 9.81E+2 6.39E+1 6.73E+42
10 9.37E-2 1.79E+0 9.40E+1 9.84E+2 6.77E+1 7.04E+42
15 9.37E-2 3.71E+40 9.73E+1 9.98E+2 7.43E+1 7.53E+2

The computational complexity of the proposed MIDA and original DA is given in Table 11. The computational
complexity of both algorithms was calculated on a PC with Intel(R) Core(TM) 17-6500U CPU@2.50 GHz with 8 GB
RAM. First, TO is determined, which is the execution time of the following program.

for i=1:1000000 do
x = 0.55 + (double) i;
X=X+X; X=X/2; X=x*X; Xx=sqrt(x);
x=log(x); x=exp(X); x=x/(x+2);
end for

Second, the execution times (T1) are calculated in three different problem dimensions (D=5, 10, and 15) of the F1
benchmark for 2000000 evaluations. Then, the computation times (T2) of the algorithms for 2000000 evaluations are
found using the MIDA and DA structures of F1 in the same problem dimensions. This step is performed five times to
obtain the T2 values and calculate the average T2. The T0,T1, 7/“\2, and (ﬁ — T1)/T0 values for the computational
complexity of both algorithms are summarized in Table 11. Here, the computational complexities of MIDA and DA
are presented according to the problem dimension. The T2 results in this table show that the computation times of the
proposed MIDA are less than those of the original DA for all problem dimensions. It is also understood that the three
mechanisms added to the original dragonfly algorithm do not increase the execution time of MIDA and even decrease
the computation time for different problem sizes.

3.10. MIDA-ANFIS hybrid model for wind speed forecasting problem

The proposed MIDA is adapted to the ANFIS model for short-term wind speed forecasting as a real-world
application in this section. The proposed MIDA-ANFIS hybrid model is presented in Fig. 16. Four sequential wind
speed dataset inputs (x(), x(t — 1), x(t — 2), x(t — 3)) are used in the ANFIS model based on MIDA for one-step short-
term wind speed forecasting. ANFIS has two parameters to be updated by the training process: premise and consequent
parameters. The parameters of the Gauss membership function and the defuzzification layer are represented by the
premise and consequent parameters, respectively. In the optimization process, the problem dimension is one of the
significant criteria. The proposed MIDA algorithm is used in the optimization of ANFIS parameters. To evaluate the
model performance, the results are compared with those of the standard DA based ANFIS model.

The hybrid models are applied to monthly wind speed data collected in different seasons in Turkey (Fig. 17).Fol-
lowing normalization, 70% of the data is employed for training the model, with the remaining 30% used for testing
the model’s performance. All implemented models are run separately 50 times to eliminate the errors caused by the
randomness of the model parameters. The predicted values deviation from the target value during the test and training
phases shows model performance. For this aim, the root mean square error (RMSE), mean square error (MSE), and
mean absolute percentage error (MAPE) mean absolute error (MAE) metrics are used.

The performance metrics can be expressed by (18) through (21) as follows:

N N

(i = 7)?
RMSE = Zl—lyT’y’ (18)

N =32

-1 i =)
MSE:Z’—1+ (19)

N

1 -

MAE=ﬁ2|yi—yi| (20)

i=1
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Figure 16: The structure of the ANFIS and MIDA hybrid forecasting model.

N
1 i
MAPE = F2|yi—yi|><100 @21)

i=1

Where y; and j; are the observed and predicted wind speed values, respectively, and the total number of data
is indicated by N. Figures 18 and 19 show the comparison of the prediction results from the implemented models
for the training and test phases, respectively. It is shown that the ANFIS model with optimized by the MIDA display
outperformance for training and test phase of the short-term forecasting.Furthermore, Fig. 20 depicts the scatter plots
of MIDA-based ANFIS model performance between observed and forecasted values to show the degree of correlation.

Fig. 21 illustrates the distribution of error metrics for the ANFIS model error metrics for DA and MIDA. These
boxplots are the optimization results obtained with 50 runs for the ANFIS test phase. It can be concluded that the
MIDA is found to be more effective and reliable than the DA for all months. The variation of performance metrics
for each iteration for a sample month such as July is presented in Fig. 22. As can be seen, the MIDA has the lowest
RMSE, MSE, MAE, and MAPE metrics values. Moreover, the statistical results of these changes for all months are
calculated. Particularly, the MAE, RMSE, MSE, and MAPE can effectively reflect the differences between the original
values and their corresponding forecasted values. Tables 12, 13, 14, and 15 provide a comprehensive comparison of
the forecasting models used. It can be clearly seen that the MIDA-based ANFIS forecasting models outperform the
corresponding DA-based ANFIS forecasting models in terms of all performance metrics on the four datasets with
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Figure 17: Original wind speed time series for seasonal analysis
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Figure 18: Training results for the best ANFIS parameters as obtained by DA and MIDA in 50 runs.

different seasons. The MSE mean values for test results of the MIDA hybrid model on the four-month datasets are
found to be 0.902%, 0.994%, 0.534%, and 0.446%, which are lower than the corresponding results of the DA hybrid
model. From the reported values, it can be concluded that the mutation-based improvement can enhance information
and improve the accuracy of prediction. As such, the MIDA based ANFIS model can achieve enhanced short-term
wind speed forecasting. It can also be applied in other applications related to forecasting, such as renewable power
production and electrical load consumption, by taking the application specific aspects into account.

Finally, a comparison of six different models frequently used in time series forecasting with the proposed ANFIS-
MIDA hybrid model was performed for short-term wind speed forecasting. These models are Back Propagation Neural
Network (BPNN), Elman Neural Network, Long Short-Term Memory (LSTM), ANFIS, ANFIS-Genetic Algorithm
hybrid model (ANFIS-GA), ANFIS-Particle Swarm Optimizer hybrid model (ANFIS-PSO). In BPNN model, the
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Figure 19: Test results for the best ANFIS parameters as obtained by DA and MIDA in 50 runs.

Training Performance of DA & MIDA

Estimated Data

Estimated Data

0 0.2 0.4 0.6 0.8
Observed Data
(January)

0 0.2

0.4 0.6
Observed Data
(April)

0.8

Estimated Data

Estimated Data

0.2

0.4 0.6
Observed Data
(July)

Test Performance of DA & MIDA

0.8

0 0.2 0.4 0.6 0.8
Observed Data
(October)

Estimated Data

Estimated Data

Estimated Data

Estimated Data

0 0.2 0.4 0.6 0.8 1
Observed Data
(January)

0 0.2

04 0.6
Observed Data
(April)

0.8

0.2

04 06
Observed Data
(July)

0.8

0 0.2 0.4 0.6 0.8
Observed Data
(October)

Figure 20: Scatter results for the best ANFIS parameters as obtained by DA and MIDA in 50 runs.

learning rate is 0.01, there are 3 hidden layers, each with a Tansig function, and an output layer with a Purelin function,
Input nodes are 4 as in ANFIS-MIDA. Elman NN model consists of an input, a hidden, a context, and an output layer.
The context layer uses the hidden layer’s previous output values as input to itself. Here, the number of hidden layer
neurons is 10, in the context layer, a 2-step delay is used in the input, Tansig is selected as transfer function in hidden
layer, output layer transfer function is Purelin, and the learning rate is 0.01. In LSTM model, one hidden layer with
five neurons is used, and the learning rate is taken as 0.01. In the simple ANFIS model, ANFIS-GA, and ANFIS-PSO
models, only the training part differs from the ANFIS-MIDA model. Grid Partitioning is used for training in the simple
ANFIS model, Genetic algorithm is used for training in the ANFIS-GA model, and Particle Swarm Optimizer is used
for training the ANFIS-PSO model. In ANFIS-GA model, GA parameters are determined as follows: the crossover
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Figure 22: The short term wind speed forecasting error metric results for July.

probability is 0.4, the mutation probability is 0.7, population size is 20, and maximum iteration is 1000. The PSO
parameters in the ANFIS-PSO hybrid model are as follows: personal learning coefficient (c;) is 1, global learning
coefficient (c,) is 2, population size is 20, and maximum iteration is 1000.

Table 16 summarizes the comparison results among ANFIS-MIDA hybrid model and other models for short-term
wind speed forecasting. Here, all model results are presented on an annual basis. For this process, wind speed data for
each season (January, April, July, and October) were first separated as 70% for training and 30% for testing, and then
a single training/test data was prepared by combining four different seasonal data. This table includes MSE, RMSE,
MAE, and MAPE metric results of all models. At the same time, the results are presented in two parts as training and
testing phases. The performance rankings of the models are given below each error metric result. The bottom two rows
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Table 12
MSE metric results of ANFIS-DA and ANFIS-MIDA with 50 independent runs
Training Results (MSE) Test Results (MSE)
January April July October January April July October
ANFIS best 3.70E-3 8.15E-3 7.22E-3 4.52E-3 8.41E-3 9.26E-3 5.24E-3 4.37E-3
worst 5.43E-3 1.11E-2 9.72E-3 6.56E-3 1.41E-2 1.38E-2 7.30E-3 6.00E-3
DA mean 3.93E-3 8.67E-3 7.68E-3 4.82E-3 9.29E-3 1.04E-2 5.64E-3 4.63E-3
std 2.74E-4 6.34E-4 6.14E-4 3.72E-4 9.92E-4 1.03E-3 4.47E-4 3.47E-4
ANFIS best 3.67E-3 8.00E-3 7.08E-3 4.44E-3 8.84E-3 9.73E-3 5.29E-3 4.08E-3
worst 3.74E-3 8.21E-3 7.24E-3 4.62E-3 9.60E-3 1.17E-2 5.40E-3 1.16E-2
MIDA mean 3.72E-3 8.15E-3 7.19E-3 4.56E-3 9.02E-3 9.94E-3 5.34E-3 4.46E-3
std 1.41E-5 3.58E-5 4.66E-5 3.80E-5 1.26E-4 2.69E-4 2.51E-5 1.04E-3
Table 13
RMSE metric results of ANFIS-DA and ANFIS-MIDA with 50 independent runs
Training Results (RMSE) Test Results (RMSE)
January April July October January April July October
ANFIS best 6.08E-2 9.03E-2 8.50E-2 6.73E-2 9.17E-2 9.62E-2 7.24E-2 6.61E-2
worst 7.37E-2 1.05E-1 9.86E-2 8.10E-2 1.19E-1 1.18E-1 8.55E-2 7.74E-2
DA mean 6.26E-2 9.30E-2 8.76E-2 6.93E-2 9.63E-2 1.02E-1 7.50E-2 6.80E-2
std 2.08E-3 3.29E-3 3.38E-3 2.56E-3 4.85E-3 4.93E-3 2.87E-3 2.45E-3
ANFIS best 6.06E-2 8.95E-2 8.42E-2 6.66E-2 9.40E-2 9.87E-2 7.28E-2 6.39E-2
worst 6.12E-2 9.06E-2 8.51E-2 6.80E-2 9.80E-2 1.08E-1 7.35E-2 1.08E-1
MIDA mean 6.10E-2 9.03E-2 8.48E-2 6.75E-2 9.50E-2 9.97E-2 7.31E-2 6.65E-2
std 1.16E-4 1.98E-4 2.75E-4 2.82E-4 6.58E-4 1.30E-3 1.72E-4 5.99E-3
Table 14
MAE metric results of ANFIS-DA and ANFIS-MIDA with 50 independent runs
Training Results (MAE) Test Results (MAE)
January April July October January April July October
ANFIS best 4.60E-2 6.64E-2 6.29E-2 5.04E-2 6.54E-2 7.08E-2 5.563E-2 4 52E-2
worst 5.61E-2 7.69E-2 7.39E-2 6.13E-2 8.53E-2 8.60E-2 6.42E-2 5.64E-2
DA mean 4.78E-2 6.87E-2 6.55E-2 5.23E-2 6.89E-2 7.51E-2 5.79E-2 4.68E-2
std 1.53E-3 2.83E-3 2.56E-3 1.92E-3 3.40E-3 3.73E-3 2.38E-3 1.81E-3
ANFIS best 4.62E-2 6.59E-2 6.30E-2 4.97E-2 6.75E-2 7.24E-2 5.58E-2 4.43E-2
worst 4.67E-2 6.68E-2 6.40E-2 5.12E-2 6.93E-2 7.65E-2 5.67E-2 5.34E-2
MIDA mean 4.65E-2 6.65E-2 6.36E-2 5.07E-2 6.81E-2 7.32E-2 5.62E-2 4.53E-2
std 1.29E-4 1.71E-4 2.69E-4 2.90E-4 3.67E-4 5.69E-4 1.99E-4 1.24E-3

of the table show the average ranking and overall ranking results. Although the error metric results seem to be close

to each other, the overall ranking clearly show that the best model is the ANFIS-MIDA model.

4. Discussion

DA is a new meta-heuristic algorithm presented to the literature and has been used by many researchers in different
studies. Although the search capability of the algorithm seems promising, it has some weak points that can be improved.
In this study, it is aimed to increase the search performance with improvements to overcome these weaknesses of DA.

Here is a summary of the results with an overview of them:
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Table 15
MAPE metric results of ANFIS-DA and ANFIS-MIDA with 50 independent runs
Training Results (MAPE) Test Results (MAPE)
January April July October January April July October
ANFIS best 21.38 26.63 22.21 21.80 19.03 30.30 25.94 14.54
worst 78.75 61.85 34.21 81.79 34.44 54.07 71.56 18.69
DA mean 24.05 29.67 23.78 25.93 21.43 33.57 29.83 15.58
std 8.26 4.96 2.14 10.50 2.60 4.82 6.71 0.79
ANFIS best 21.10 26.98 22.22 21.43 20.13 30.02 26.84 14.02
worst 22.37 27.92 22.69 23.00 28.57 31.92 28.42 15.63
MIDA mean 21.85 27.46 22.42 22.49 20.71 31.23 27.26 14.33
std 0.25 0.19 0.10 0.32 1.15 0.42 0.27 0.23
Table 16
Comparison results of the ANFIS-MIDA and other models
BPNN Elman LSTM ANFIS ANFIS-GA  ANFIS-PSO  ANFIS-MIDA
MSE 5.97E-3 2.14E-2 6.01E-3 6.60E-3 6.08E-3 5.92E-3 5.89E-3
Rank 3 7 4 6 5 2 1
00 RMSE 7.71E-2 1.46E-1 7.75E-2 8.13E-2 7.80E-2 7.69E-2 7.67E-2
£ Rank 3 7 4 6 5 2 1
‘© MAE 5.66E-2 1.14E-1 5.70E-2 6.05E-2 5.72E-2 5.70E-2 5.68E-2
= Rank 1 7 3 6 5 4 2
MAPE 2.31E+1 4.10E4+1  3.67E4+1  2.51E+1 2.60E+1 2.36E+1 2.35E+1
Rank 1 7 6 4 5 3 2
MSE 7.22E-3 2.31E-2 7.34E-3 8.00E-3 7.33E-3 7.13E-3 7.16E-3
Rank 3 7 5 6 4 1 2
RMSE 8.50E-2 1.52E-1 8.57E-2 8.97E-2 8.56E-2 8.44E-2 8.46E-2
2 Rank 3 7 5 6 4 1 2
i MAE 6.07E-2 1.18E-1 6.12E-2 6.50E-2 6.08E-2 6.06E-2 6.06E-2
Rank 2 6 4 5 3 1 1
MAPE 2.31E+1  3.89E+1 2.68E+1  2.50E+1 2.56E+1 2.33E+1 2.33E+1
Rank 1 7 6 4 5 2 3
Average rank 2.13 6.88 4.63 5.38 4.50 2.00 1.75
Overall rank 3 7 5 6 4 2 1

MIDA was created in this study by integrating mutation operator, boundary control, and greedy selection
mechanisms into the original DA structure. The mutation operator is effective in finding the global optimum
without getting stuck with the local optimum points. In the boundary control mechanism, the dragonflies updated
in the standard DA are provided to take a random position in case of going outside the limit values of the search
space, maximum 25% from the limit value. In the greedy selection mechanism, the search continues in the next
iteration with the more fit dragonflies from the comparison of the fitness values of the previous dragonflies and
the updated dragonflies.

First, for the search performance analysis of the proposed MIDA, four of the CEC2014 test problems were taken
and some basic meta-heuristic algorithm analyzes were performed. These analyzes are search history, conver-
gence behavior, the average distance of the first dragonfly, the trajectory of the elite dragonfly, computational
complexity, diversity behavior, and balance analysis. All analysis results were compared with the original DA.
The analysis results show that the three different mechanisms in the proposed MIDA structure increase the search
performance of the original DA, provide fast convergence, and have a more dominant exploitative behavior.

Secondly, to evaluate the performance of the proposed MIDA, 30 minimization problems from CEC2014 test
suite, and 10 minimization problems from CEC2020 test suite are utilized for different dimensions. Experimental
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results for all dimensions of CEC2014 benchmarks show that MIDA’s performance is 91.33% better than the
original DA. Again, statistical results obtained for all dimensions of CEC2020 benchmarks say that MIDA is
94.25% more successful than the original DA. The performance of the proposed MIDA was compared not only
with the original DA, but also with twelve meta-heuristics and four different enhanced DA versions from the
literature. MIDA ranked first in comparison with other meta-heuristics for the 30-dimensional CEC2014 test
problems. As a result of the comparison with the DA versions, it took the second place after ARSSDA.

o Finally, the proposed MIDA is integrated into a real optimization problem. Optimization of the parameters of the
ANFIS model, which is used for short-term wind speed estimation, is provided by the MIDA structure. Training
and test results with one-year seasonal wind speed data were evaluated according to different error metrics
(MSE, RMSE, MAE, and MAPE) for MIDA and original DA. In addition, the ANFIS-MIDA hybrid model was
compared with six models used in time series estimation. Error metric results show that the performance of
ANFIS-MIDA is in the first place.

o The proposed MIDA structure has a higher search performance compared to other meta-heuristic algorithms
for CEC2014 and CEC2020 benchmarks. However, MIDA also has some limitations. If the solution of the
optimization problem is close to the boundary of the search space, the convergence rate of the dragonflies
decreases due to the boundary value control mechanism of MIDA. At the same time, the average distance of
dragonflies to each other cannot reach exactly zero. Again, the greedy selection mechanism in the structure of
MIDA contributes to the very rapid convergence of dragonflies in the search space, while reducing diversity
compared to the original DA. While the mutation operator in MIDA provides the solution to avoid local optimal
points, it may not always guarantee this. Therefore, more work needs to be done to address these limitations of
MIDA.

e Potential future work on MIDA could be: further increasing the search performance by reducing the limits
of MIDA, adapting it to multi-objective optimization problems, developing hybrid algorithms with different
methodologies, applying it to different engineering problems.

5. Conclusion and Future Works

In this paper, the DA has been improved by incorporating three mechanisms, namely, mutation operation, boundary
control, and greedy selection, to improve its performance in accuracy and exploration capability in the search space. The
mechanisms have achieved the following objectives: The mutation operator avoids getting stuck at the local optimum
point. The boundary control mechanism presents the new positions for the dragonflies that exceed the boundaries of the
search space. Finally, the greedy selection mechanism, which is newly added to the DA, ensures the search for better
dragonflies after each iteration. The improved model has been used to optimize ANFIS parameters. The performance
of the improved based ANFIS model has been applied to short-term wind speed forecasting as a real-world problem.

The performance of the proposed MIDA over the original DA has been evaluated and shown its superiority in
several analyses such as convergence, search history, trajectory, average distance, computational complexity, diversity,
and balance. For validation, the MIDA has been tested on the 10, 30, 50, and 100 dimensions of the CEC2014
benchmarks, and 5, 10, 15, and 20 dimensions of CEC2020 benchmarks. The results confirmed that the proposed
MIDA outperforms the original DA by 89.33% in 10-dimensional benchmarks, 91.33% in 30-dimensional benchmarks,
91.33% in 50-dimensional benchmarks, and 93.33% in 100-dimensional benchmarks according to all statistical metrics
considered. Wilcoxon rank-sum test results prove the statistical significance of the proposed MIDA in comparison with
DA. It was also shown that the MIDA displayed superiority over the some meta-heuristic algorithms (MFO, PSO,
DA, SCA, WOA, CCS, COA, EHO, ASMO, VNBA, RFO, and HFA) for the 30-dimensional CEC2014 benchmark
functions. The comparison results are ranked according to the mean metric of the 51 runs of the algorithms, and the
performance of the proposed MIDA is clearly superior to other algorithms and ranks first. In addition, different DA
versions (EOEDA, ARSSDA, GGBDA, and QGDA) from the literature were compared with the proposed MIDA for
30D CEC2014 benchmarks. In the results obtained here, MIDA ranks second in performance, but has a close ranking
score with ARSSDA in the first place. Comparing the proposed MIDA with the original DA for the CEC2020 test
problems, MIDA has 95% better results for 5-dimensional problems, 90% for 10-dimensional problems, 96% for 15-
dimensional problems, and 96% for 20-dimensional problems for all statistical metrics. The computational complexity
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for F1 from the CEC2020 benchmarks was examined and it was seen that the computation time of MIDA was less than
the original DA for different problem sizes.

The benchmark results confirmed that the proposed MIDA could be a good alternative to solve real-world
optimization problems. Finally, as a real-world application, it was adapted for training ANFIS model parameters for use
in short-term wind speed forecasting. Both training and testing results confirmed the better forecasting performance
of the MIDA based ANFIS model over that of the DA based ANFIS counterpart.In addition, the ANFIS-MIDA
hybrid model and six different models (BPNN, Elman NN, LSTM, ANFIS, ANFIS-GA, and ANFIS-PSO), which
are frequently used in time series estimation, were compared. According to the error metric results obtained during the
training and test of the models, the ANFIS-MIDA hybrid model is the best one compared to the other models.

In future studies on MIDA, the search performance of the algorithm can be increased further by introducing
different solutions to the limitations of MIDA, which were mentioned in the previous section. The proposed MIDA is
a good alternative to other meta-heuristic algorithms and therefore its application results can be examined in different
engineering problems. The binary version of MIDA can be used for feature reduction in classification problems. In
this study, single-objective optimization problems are discussed, and in future studies, multi-objective MIDA can be
developed for multi-objective optimization problems.
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