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Abstract

The field of dynamic optimisation continuously designs and compares algo-
rithms with adaptation abilities that deal with changing problems during
their search process. However, restarting the search algorithm after a de-
tected change is sometimes a better option than adaptation, although it is
generally ignored in empirical studies. In this paper, we suggest the elusiv-
ity formulation to (i) quantify the preference for restart over adaptation for
algorithms running on dynamic problems, and (ii) evaluate the advantage
and behaviour of adaptation. Informally, we state that a dynamic problem is
elusive to an algorithm if restart is more effective than adapting to changes.
After reviewing existing formalisms for dynamic optimisation, the elusivity
concept is mathematically defined and applied to two published empirical
studies to evaluate its utility. Conducted experiments show that replicated
works include elusive problems, where restart is better than (or equal to)
adaptation, and demonstrate that some empirical research effort is being de-
voted to evaluating adaptive algorithms in circumstances where there is no
advantage. Hence, we recommend how and when elusivity analysis can be
gainfully included in empirical studies in the field of dynamic optimisation.
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1. Introduction

The optimisation community identifies dynamic problems as optimisation
problems that change at least once during the execution of an algorithm.
They are commonly instantiated as sequences of static problem instances,
where the problem varies during algorithm execution. Under this set-up,
the literature presents various benchmark generators for creating dynamic
problems from static optimisation problems [1, 2, 3, 4]. Starting from a
static problem instance, these methods produce a sequence of static problem
instances by incrementally making changes to the latest problem instance in
the sequence.

Although dynamic problems may possess many features, such as the time-
linkage of changes [5], the dynamism is often reduced to the calibration of
two prominent features: the frequency and magnitude of changes [6]. In gen-
eral, it is assumed that the more frequent and severe the change, the more
challenging the problem becomes for an algorithm dealing with changes. For
example, a dynamic routing problem where multiple orders arrive simulta-
neously is likely to be more difficult to an algorithm than a problem where
a single order is added from time to time. However, it may be the case that
algorithms perform efficiently on problems that change with high frequency
or magnitude [6].

In academia, a dynamic optimisation problem (DOP) is defined as a spe-
cial class of dynamic problems that are solved online by an optimisation
algorithm as time progresses [5]. As mentioned in [7], solving the problem
online means that the dynamic problem must be solved as time goes by to
approach such problems. The research community has developed a variety
of powerful online algorithms able to deal with changes in the problem dur-
ing algorithm execution [8]. These algorithms typically contain adaptation
mechanisms aimed at improving the overall algorithm performance [9].

The literature presents a number of works that study the impact of prob-
lem changes on algorithm performance. Branke [10] proposes that optimi-
sation problems should be considered dynamic only if the algorithm adapts
accurately to the changes over time. Conversely, problems that vary without
reference to previous stages should be regarded as sequences of independent
problems. The authors in [11] present some measures to analyse and char-
acterise the nature of changes based on the shifting distance of the best
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solutions after a change in the continuous domain. Rohlfshagen et al. [6]
theoretically analyse the runtime of a (1+1) evolutionary algorithm on two
simple frameworks according to the magnitude and frequency of changes,
and illustrate two counter-intuitive assumptions about the dynamic domain
where restart is preferred over adaptation for slightly changing problems.
Further theoretical works also analyse the runtime analysis of different al-
gorithms for different well-studied dynamic problems [12, 13, 14, 15]. Yu
et al. [16] demonstrate that relocating the moving optima may be difficult
in severely and quickly changing continuous optimisation problems. T́ınos
and Yang in [17] give realistic examples where solving the instances indepen-
dently (restarting the algorithm after detecting a change) is effective, and
they suggest that in those cases dynamic problems should be considered as
series of unrelated static instances. Similarly, the authors in [18] empirically
show that restarting the algorithm is often the best option on a drug mixture
problem with severe drug replacement rate. The authors in [19] review the
field of dynamic continuous optimisation, and point out that a prominent
future direction is the analysis of algorithms performance and capability of
online approaches on dynamic problems with different dynamics.

As far as we are aware, there is no systematic quantitative analysis that
measures and relates problem variation, adaptability of algorithms and algo-
rithm performance. Hence, the motivation of this work is to be able to accu-
rately quantify the extent to which an online algorithm successfully adapts
to a dynamic problem, given a performance metric. In other words, this work
aims to quantify to what extent an online algorithm successfully adapts to
changes compared to a restart under a performance metric. Assuming that
changes are known or easily detectable by the algorithm, restarting the search
is probably the simplest and most straightforward approach to tackle problem
changes, and it could also be valuable when reusing old information does not
provide any advantage [20, 21]. However, most empirical studies in dynamic
optimisation generally operate under the implicit assumption that adapting
to small or to medium changes is generally more efficient and stable than
restarting the search from scratch [22].

In this paper, we define the elusivity that quantifies and analyses the
degree to which adapting to a problem change is beneficial, for an online
algorithm, rather than restarting the search from scratch (after detecting a
change) given a specific dynamic problem and a performance metric. More-
over, we suggest using the restart as the baseline against which all adaptation
mechanisms should be compared to evaluate its adaptative advantage.
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The contribution of this work is to precisely formulate the elusivity in
mathematical terms, and apply the metric to (i) measure the extent to which
adaptation improves or degrades algorithm performance in comparison to a
restart after a change, and (ii) use the elusivity to study the advantage and
behaviour of adaptation mechanisms.

In order to illustrate and evaluate the utility of the metric, we apply elu-
sivity analysis to two already published empirical studies to evaluate the over-
all elusivity of the algorithms considered, i.e. in what cases a simple restart
is more effective than the implemented online algorithms [2, 22, 23]. Con-
ducted experiments use well-known dynamic benchmark generators, meta-
heuristic algorithms and performance metrics. Obtained results demonstrate
the existence of some elusive problems in the reproduced experiment, where
adaptation mechanisms confer little or no advantage over restart for specific
problem, algorithm and performance metric combinations. That is, not only
severe changes prove elusive, but frequently and slightly changing problems
may also be elusive to some algorithms under a performance metric. In these
cases, adaptation mechanisms confer little to no advantage, or are even disad-
vantageous. This shows that the counter-intuitive behaviour exhibited in the
theoretical example of [6] is also observable in mainstream state-of-the-art
algorithms operating on widely-used benchmarks. While in no way invali-
dating published works, our results allow us to distinguish the cases in which
online algorithms are performing successfully on problems from cases where
adaptation mechanisms are not operating effectively. That is, we distinguish
elusive and non-elusive problems based on the adaptative advantage of al-
gorithms. In addition, by examining the elusivity distribution of problems
with different magnitudes and frequencies of change, we obtain information
about the performance and behaviour of the adaptation mechanisms to the
configurations used.

The remainder of the paper is structured as follows. Section 2 presents
a brief review of properties of dynamic benchmark generators and dynamic
problems in the literature. Section 3 introduces the elusivity formulation
and its mathematical formulation. Section 4 describes in detail the empirical
case studies considered in this work. Section 5 is dedicated to the analysis
and visualisation of results. Section 6 summarises the implications of the
observed results and concludes the paper by presenting valuable research
streams and future application guidelines.
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2. Dynamic Optimisation Problems and their Properties

Dynamic problems have been widely defined as sequences of static prob-
lem instances [24, 3, 25, 26], although others defined them as optimisation
problems parametrised by time [27, 28, 7, 29]. Nguyen in [5] provides a theo-
retical basis, and defines dynamic optimisation problems (DOPs) as dynamic
problems that are solved online by an algorithm as time goes by. Informally,
assuming that time is a discrete parameter, solving the problem online means
that at time tnow, the function cannot be evaluated at time t > tnow [7].

Researchers typically build dynamic test problems using benchmark gen-
erators that insert changes into the objective function, the problem instance,
the decision variables or the constraints of existing static problems [8]. The
literature presents some classification schemes based on the characteristics
of changes. These classifications intend to taxonomise the difficulty of algo-
rithms to solve the problems. The authors in [29, 26] present similar classi-
fication schemes that can be summarised as follows:

• Eberhart and Shi [31] differentiate three categories based on the change
direction in the continuous space, i.e. whether a change modifies the
location of an optima in the fitness landscape, its objective value, or
both.

• Presented in the continuous domain, the trajectory of the optima de-
scribes the path of the moving optima in the changing fitness landscape.
Angeline [32] distinguishes three types of changes: linear, cyclic and
random. The linear dynamism maintains a constant displacement of
the optima considering a change magnitude. Cyclic problems shift the
optima through a circular path considering a magnitude as the radius
of the circular path. The random dynamism add certain variation to
the objective function every time it is changed.

• Introduced by De Jong [33] and extended in [30], dynamic problems
may be categorised based on their most prominent parameters: the
frequency and magnitude of changes. The four categories proposed by
the authors are: quasi-static problems (slightly and occasionally chang-
ing problems), progressive problems (frequently and slightly changing
problems), abrupt problems (occasionally and significantly changing
problems), and chaotic problems (drastically and frequently changing
problems). Figure 1 displays graphically the above mentioned tax-
onomisation according to Duhain and Engelbrecht in [30].
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Figure 1: Classes of problems presented in [30].

In empirical studies, it is common to compare online algorithms across
benchmark sets designed to provide varied challenges across the enumerated
categories. However, these studies implicitly assume that restart is an inferior
option over adaptation for small or medium changes [1], although it is not
always given, i.e. it varies according to the algorithm used. In the next
section, we present a formulation to quantitatively measure the preference
for restart over adaptation for algorithms running on a dynamic problem:
the elusivity of a problem to an algorithm under a performance metric.

3. Elusivity of dynamic problems

In this section, we define elusivity as a quantitative measure of the perfor-
mance difference between the algorithm that adapts to changes against the
performance that would have been achieved by the same algorithm restarting
the optimisation when the problem is changed. We assume that algorithms
are able to detect when a change happens in the problem. Therefore, in
the event that restarting the algorithm is better, or no worse, than dealing
with problem changes, we can observe that the algorithm cannot adequately
adapt to changes: the problem proves elusive to the algorithm.

To make this precise, we introduce some mathematical terminology to
describe the performance of the aforementioned (online and restarting) algo-
rithms and define a formulation of the elusivity of a problem to an algorithm.
In the definitions that follow, we aim to describe dynamic problems and al-
gorithms in sufficient generality to apply to most situations of interest, and
avoid unnecessary assumptions about problems or algorithms. Therefore, we
draw on the language of stochastic processes to abstract any detail of the
internal state of algorithms into random variables representing successive
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states of the search. In applying these ideas to specific algorithms, internal
state parameters are known and the extent to which they condition search
state transitions can be estimated experimentally.

Simply, a static optimisation problem Ps = (X, f) can be defined as a
tuple consisting of a search space X and an objective function f : X −→
R. This notion captures any representation of solutions, and it can also be
extended to multiple objectives without difficulty.

A search algorithm A is run on a static problem Ps = (X, f) with bud-
get B whenever A evaluates solutions in X until reaching a maximum of
B evaluations (or iterations) using f . We can represent a run of the al-
gorithm A on problem Ps with budget B as a sequence of random variables
S1(A,Ps), . . . , Si(A,Ps), . . . , SB(A,Ps). The value that each random variable
takes in a single run is a sample of one or more solutions in X, called popula-
tions. Note however that this notation is not limited to only population-based
algorithms, since other structures can be used in essentially the same way.
We can write Pr(Si = s) for the probability that s is the ith population gen-
erated by the algorithm A, i.e. during a run on the static problem Ps, A
generates a sequence of populations s1, . . . , sB. In the remainder, we refer to
these random variables as populations, and the sequence of populations as a
trajectory1 of algorithm A on problem Ps.

Algorithms start from a given distribution of initial populations, usually
uniform U(A,Ps)

2. Following our notation above, the initial random variable
on the run of algorithm A on a static problem Ps is drawn from

S1(A,Ps) = U(A,Ps). (1)

Since the trajectory is generated by sampling a sequence of random vari-
ables, it is itself a random variable. We denote by Tr(A,Ps) the random vari-
able of trajectories of algorithm A on problem Ps, and will refer to tr(A,Ps)
to denote a specific value sampled from Tr(A,Ps). That said, we can also
regard a given trajectory tr(A,Ps) as “a run of algorithm A on problem Ps”.

1For non-population-based algorithms, such as local search algorithms using candidate
solution(s) as structure, their structure can easily be added to the trajectory without
altering our formulation.

2This statement however could equally apply to algorithms starting with a predefined
initialisation strategy by replacing U(A,Ps) with the approach used to generate the initial
random variable.
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A performance metric ϕ(A,Ps) can be defined as a function which assigns
a real number to a run tr(A,Ps) of the algorithm A on problem Ps. In other
words, ϕ is a function from run trajectories to real numbers. Since Tr(A,Ps)
is stochastic, the performance of algorithms over R runs can be used to
estimate the expected performance E[ϕ(A,Ps)].

In order to extend previous definitions to the dynamic domain, we need
to formulate dynamic problems and online algorithms precisely. A dynamic
problem P can be defined as a sequence of static problem instances P1, ..., Pm,
where Pj = (Xj, fj) for each j = 1, . . . ,m, and Pj is defined on the space Xj

and the objective function fj : Xj −→ R. To ensure the problem is changed at
least once during the optimisation run, we set m ≥ 2 to mean m−1 objective
function changes.

Empirical benchmark studies in dynamic optimisation assume that online
adaptation is usually beneficial to track efficiently the moving optima and
reduce the computational cost. Informally, a search algorithm A is run online
on the dynamic problem P with budget B =

∑m
j=1Bj means that A out-

puts a related trajectory tr(A,P ) while successively processing a sequence
of problem instances Pj. Using the above notations, we can say that the
algorithm A is conditioned on the trajectory tr(A,Pj−1) through changes in
the objective function fj, i.e. the ith population of A in Pj is sampled from
Si(A,Pj), which is conditional on the so far trajectory of A.

These notations allow us to understand how an online algorithm runs
on a dynamic problem (previously introduced as DOPs), and also to make
precise what we mean by restarting the algorithm for dynamic problems.
Assuming that changes are detectable, we define Ar as the algorithm A run-
ning with restart on problem P with budget B =

∑m
j=1Bj to mean that

A runs independently with budget Bj on each of the instances Pj, i.e. the
overall trajectory tr(Ar, P ) is a concatenation of the m independent trajec-
tories tr(A,P1), . . . , tr(A,Pm), where the initial population of each instance
is initialised as S1(A,Pj) = U(A,P ). In other words, Ar means A running from
initialisation on P1 to generate tr(A,P1), A running from initialisation on P2

to generate tr(A,P2), and so on.
It is worth noting that, in general, Si(A,Pj) and Si(A

r, Pj) will follow
different probability distributions, determined by the different trajectories of
A and Ar, respectively. In this way, we can compute and compare trajecto-
ries and performance metrics for A and Ar over general dynamic problems.
Without loss of generality, we make the choice that the algorithmic goal is
to minimise a performance metric. This prompts the following definitions.
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Definition 1. Let P be a dynamic problem, A be an algorithm running on-
line on P and ϕ be a performance metric. We define the elusivity of P to A
under ϕ as:

E(P,A, ϕ) = E[ϕ(A,P )− ϕ(Ar, P )].

Definition 2. We say that the problem P is elusive to the algorithm A under
the performance metric ϕ iff E(P,A, ϕ) ≥ 0.

Informally speaking, if P is elusive to A under ϕ, then there is no per-
formance advantage to be gained from A as the problem changes. In other
words, equally good or even better performance can be expected from sim-
ply restarting the algorithm when detecting a problem change. This estab-
lishes restart as the baseline against which all online algorithms should be
compared with, i.e. online algorithms must, at least, beat their restarting
version to mean that we work with non-elusive problems. Trivially from our
definitions, all dynamic problems will be elusive to algorithms that adapt by
re-initialising the entire population (not necessarily uniformly at random),
because in this case we have Tr(Ar) = Tr(A). Moreover, the elusivity pro-
vides us with a measure of how well or badly a particular algorithm adapts
to a particular dynamic problem, allowing us to quantitatively compare al-
gorithms over dynamic benchmark sets. Strongly negative elusivity will indi-
cate that an algorithm is well-suited to a particular benchmark set. Finally,
the concept enables us to quantitatively relate the online performance to
problems and algorithm features.

4. Case Studies for Elusivity Analysis

In this work, we evaluate the elusivity concept by using and extending the
analysis on two already published experimental works, i.e. a number of well-
studied non-noisy dynamic problems, algorithms and performance metrics
are re-implemented from two existing frameworks, and the resulting trajec-
tories are subjected to elusivity analysis. In that context, there are a number
of critical elements that we address in this section: (i) the dynamic genera-
tors used to insert dynamism into static problems, (ii) a brief review of the
algorithms, the adaptation mechanisms incorporated to enhance their adapt-
ability and their restarting version, and (iii) the functions used to measure
the performance of the algorithms.
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4.1. Dynamic Benchmark Generators

Probably, the most studied method to generate artificial dynamic testing
problems from any existing static combinatorial problems is the landscape
rotation [2, 3, 4, 34]. Its popularity results from its simplicity and capability
to maintain certain properties of the static problem, such as the number
of optima or the objective function values. However, it is usually criticised
because of its unrealistic nature [25, 35].

Characterised by the period τ and magnitude ρ of changes, the generator
constructs artificially a concatenated homogeneously changing problem by
disrupting the mapping between solutions and objective values over time.
Formally, given a static problem Ps = (X, f), the dynamic problem P is
represented by

fj(x) = f(M j · x),
where fj is the changing objective function in Pj = (X, fj) andM j is a binary
mask. The mask is incrementally generated by M j+1 = M j · T , where T
is a template generated uniformly at random containing ⌈n × ρ⌉ variations.
The problem is periodically changed based on the budget Bj = ⌈ i

τ
⌉, subject

to the iteration i = 1 . . . B and the change period τ . It is worth noting that
there are some components of the generator that vary with representations
as shown in Table 1. For more information, we direct the interested reader
to [2, 3, 34].

Another common way to insert dynamism into a static problem is modi-
fying the initial problem instance parameters. In [23], the authors associate
these dynamics with the traffic factor in the dynamic travelling salesperson
problem (DTSP), and present a benchmark generator based on

fj(σ) = dj(σ1, σ2) +
n∑

i=2

dj(σi, σi+1),

where dj(x, y) is the distance between cities x and y for instance j. So
following the notation above, the search spaceX remains constant over them
instances, whereas the varying objective function fj is incrementally modified
by

dj(x, y) =

{
d(x, y) + r, if (x, y) ∈ Wj,

dj−1(x, y), otherwise,

where d(x, y) is the original distance between cities x and y, dj(x, y) is the
distance between cities x and y on the problem instance j, r ∼ N(0, d(x, y)) is
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Table 1: Components that vary with the class of problem.

Component Binary problems Permutation problems

Mapping
function (·)

XOR operation (⊕). Composition between per-
mutations (◦).

Change rep-
resentation
⌈n× ρ⌉

Number of ones to be flipped
(Hamming distance).

Permutation distance metric
dependant (relabels for Ham-
ming distance or swaps for
Cayley distance, for exam-
ple).

Initial mask
M j

A zero vector, M 1 = {0}n. Identity permutation, M 1 =
e = 12 · · ·n.

a normally distributed random number and Wj is a set of randomly selected
arcs for the change period j. In the case of asymmetric DTSPs, the magni-
tude of changes ρ implies the modification of ⌈n(n− 1)ρ⌉ arcs in Wj, where
n(n − 1) is the total number of connections between cities. For symmetric

instances, this number is halved, ⌈n(n−1)
2

ρ⌉, since dj(x, y) = dj(y, x).
Besides, the authors in [23] also suggest using the city replacement to

generate dynamism into static TSPs [36], where a number of cities are re-
placed with new ones. Formally, given a graph G = (V,E) with v nodes and e
edges, this benchmark generator replaces, every τ iterations, ⌈ρ× n

2
⌉ random

nodes (cities) in Nin in the instance with the same number of random nodes
in Nout, where V is a set of nodes (cities), E is a set of arcs fully connecting
the nodes, τ and ρ are the frequency and magnitude of changes, respectively,
n is the size of the problem and Nin ∩ Nout = N are two sets containing n

2

nodes each.

4.2. Algorithms and adaptation mechanisms

The algorithms used in this experimentation have been selected from
previous works [37, 38, 39, 40], where the benchmark generators above are
used. For the first case study, three well-studied algorithms are accompa-
nied by two immigrant-based adaptation mechanisms: the elitism and ran-
dom immigrants-based approaches [37, 41]. Hence, an elitism and a random
immigrants-based genetic algorithm (EIGA and RIGA) [37], population-
based incremental learning (EIPBIL and RIPBIL) [2, 38] and ant colony
optimisation (EIACO and RIACO) [42] are considered for this case study.
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In short, given a replacement rate, the immigrants-based adaptation mech-
anisms for EIGA, RIGA, EIPBIL and RIPBIL substitute the less promising
(worst) solutions of the population with a set of immigrants (solutions) ev-
ery iteration, no matter whether the problem changes or not. In the case of
EIACO and RIACO, the immigrants replace the worst solutions in a memory
(set of solutions), rather than replacing the worst solutions in the popula-
tion [39]. A replacement rate of 1.0 means replacing the entire population
with new immigrants. The elitism immigrants-based adaptation mechanism
have been proved to be useful for slightly and occasionally changing prob-
lems [37, 38, 39], whereas the random immigrants approach is suitable for
fast and considerably changing environments [43, 40, 37, 39], quasi-static and
chaotic changes in Figure 1, respectively.

For the second case study, we consider four ant colony optimisation
(ACO) variants presented in [23]: two pheromone evaporation-based algo-
rithms (MMAS and MC-MMAS), and two memory-based algorithms (PACO
and EIACO). These two types of algorithms, evaporation- and memory-
based, differ in the way they update the pheromone-trail, and consequently,
in the way they adapt to problem changes. Pheromone evaporation-based
algorithms balance the stability of the algorithm by reducing the evapo-
ration trail of previously found good solutions, whereas the memory-based
algorithms use approaches to store previously found good solutions, so they
decrease faster outdated pheromone trails. We refer the reader to [23] for
further details about the algorithms.

The restarting version of the algorithms3 dismisses the gathered informa-
tion and re-initialises the algorithm parameters every time the problem is
changed. Restarting the optimisation when a change occurs is probably the
simplest and most naive way to tackle a problem-change, and it can be useful
in some cases [22, 17]. Restart however is usually computationally expensive,
in addition to the fact that changes must be detected. In this work, we use
detectors [9] that reevaluate the best solution of the population each iteration
to check if their objective value has been altered, i.e. a change occurs when
the objective value of the detector at iteration i and i+ 1 differs.

3The superscript “Ar” refers to the restarting version of the algorithm A.
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4.3. Performance Metrics

Algorithms are usually evaluated using performance metrics, where dif-
ferent factors (specified by the practitioner) are measured depending on the
goals of the problem. For example, the financial field is more focused on
obtaining good solutions quickly, rather than finding the best solution pos-
sible for each problem instance [9]. As a result, performance metrics can
be classified into two classes: optimality-based and behaviour-based perfor-
mance metrics. The former evaluates the ability of algorithms to find high-
quality solutions, whereas the latter studies the internal nature of algorithms,
such as their recovery speed or stability. In this work, we considered three
optimality-based measures used in the replicated works, and we also consider
a behaviour-based measure.

First, the best-of-generation [2] averages the value of the best objective
value at each iteration over several runs. Formally, it may be described as:

E[FBOG(A,P )] =
1

R

R∑

k=1

(FBOG(A,P )) =
1

R

R∑

k=1

(
1

B

B∑

i=1

x∗
i,k(A,P )

)
, (2)

where R is the total number of independent runs and x∗
i,k is the best objective

value of the population si(A,Pj) at run k. Therefore, the elusivity of a
problem to an algorithm under best-of-generation is measured as:

E(P,A, FBOG) =
1

R

R∑

k=1

(
1

B

B∑

i=1

[
x∗
i,k(A,P )− x∗

i,k(A
r, P )

]
)
. (3)

Second, the accuracy [44] averages the difference between the optima and
the value of the best individual at the end of each change period. [45] adapted
it to average the accuracy over the runs. It may be represented as:

E[H∆m(A,P )] =
1

R

R∑

k=1

(H∆m(A,P )) =
1

R

R∑

k=1

(
1

m

m∑

j=1

hj(A,P )

)
, (4)

where hj is the best-error when the problem instance Pj reaches the budget
Bj on run k, and m is the total number of instances. The error is assumed
to be the difference between the best-known value of the instance and the
value of the best individual in the population. By replacing the best-error
hj with the best found objective value just before changing Pj to Pj+1, x

∗
j ,

we obtain the best-before-change performance metric, P∆m, that is used as
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the third measure in our experimentation (as done by [23]). The elusivity of
a problem to an algorithm under the accuracy measure is calculated as:

E(P,A,H∆m) =
1

R

R∑

k=1

(
1

m

m∑

j=1

[hj(A,P )− hj(A
r, P )]

)
. (5)

It is worth noting that, since the accuracy measures the difference between
the best found solution’s objective value and the optimal objective value,
the elusivity analysis of the accuracy or the best-before-change metrics is the
same. In other words, the elusivity formulation of H∆m and P∆m can be
summarised as the difference of the best found objective values of the online
and restart algorithms, A and Ar, respectively.

Fourth, the robustness [46] measures the stability, persistence and degra-
dation of an algorithm by comparing the best already found solution with
the best solution found on the last change (instance) in the following way:

E[R(A,P )] =
1

R

R∑

k=1

(R(A,P )) =
1

R

R∑

k=1

(
1

m

m∑

j=1

min
(
1,

∆x∗
j−1(A,P )

x∗
j(A,P )

))
,

(6)
where ∆x∗

j−1 is the best objective value found so far and x∗
j is the best

objective value found for instance j. R ∈ [0, 1] is a maximisation performance
metric, i.e. the closer to 1, the better average robustness of the algorithm
A. The min operation evaluates if the algorithm is able to reach the same or
even a better objective value than previous changes. Note that this equation
is prepared for minimisation problems, although it can be easily transferred
to maximisation problems by replacing the min with the max operation. That
said, the elusivity of a minimisation problem to an algorithm measured by
its robustness is therefore obtained by:

E(P,A,R) =

1

R

R∑

k=1

(
1

m

m∑

j=1

[
min

(
1,

∆x∗
j−1(A,P )

x∗
j(A,P )

)
−min

(
1,

∆x∗
j−1(A

r, P )

x∗
j(A

r, P )

)])
.

(7)
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Table 2: Parameter values of the benchmark generators and algorithms extracted from
reference works [2, 22, 23, 37, 42].

Case Study I Case Study II

Parameter Value Value

Change periods (τ) 10, 25, 50, 100, 200 ⌈n · s⌉, s = {1, 2.5, 5, . . . , 22.5, 25.0}
Change magnitudes (ρ) 0.1, 0.25, 0.5, 0.75, 1.0 0.1, 0.2, . . . , 1.0

Number of independent runs (R) 50 30

Elitism criteria TRUE FALSE

Stopping criterion (B) 1000 iterations τ ∗ 100 (99 changes)

“Population” size n (⌈0.25n⌉ ants for ACO) 25

Immigrant replacement rate 0.2 0.5 (EIACO)

RIGA mutation probability 0.01 -

RIPBIL learning rate 0.25 -

RIPBIL mutation probability 0.02 -

RIPBIL shift operator 0.05 -

RIACO initial pheromone trail 1/n 1/n

RIACO relative influence rate α = 1, β = 5 α = 1, β = 5

Pheromone evaporation rate - θ = 0.8 (MMAS & MC-MMAS)

Memory size ⌈0.25n⌉ 3 (PACO & EIACO)

Performance metrics FBOG & H∆m FBOG & P∆m & R

5. Experimentation and Results

In this section, we conduct an elusivity analysis on the extended experi-
mental frameworks in [2, 22, 23, 37, 42] to (i) introduce the elusivity concept
and accurately identify the elusivity portrait of problems to algorithms, (ii)
characterise changes as elusive or non-elusive to well-studied algorithms, (iii)
analyse the adaptative advantage and the behaviour of state-of-the-art online
algorithms regarding the elusivity of a realistic problem, and (iv) compare
the real algorithms’ performance between them. That said, we divide the
experimentation in two parts.

First, we replicate and evaluate the elusivity concept by a comprehensive
and straightforward case study, where the landscape is rotated for the travel-
ling salesman problem (DTSP) and the knapsack problem (DKP) [2, 37, 42].
In the case of DTSP, the instances4 kroA100, kroA150 and kroA200 (con-
taining 100, 150 and 200 cities) are used to insert dynamism, and their best-
known values are obtained from [47], used for the accuracy measure. For

4Available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
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DKPs, three static instances have been constructed following the patterns
presented in [22], and they are available online5 repository as supplemen-
tary material. The parameter setting employed for this experimentation
(extracted from previous works [2, 22, 37, 42]) is described in the second
column (Case Study I) of Table 2.

In the second case study, our goal is to exploit the elusivity concept to
analyse the advantage of adapting over restart and compare the “real” per-
formance of algorithms in a more sophisticated and realistic framework, and
compare to the conclusions drawn in the original experiments. That said,
we reproduce (run available code to obtain the same results) and extend the
experimentation in [23] to see the entire elusivity portrait of problems to four
different ant colony variants with the same parameters employed. The au-
thors insert dynamism (traffic factor) to the instances4 kroA100 and kroA200

(with 100 and 200 cities, respectively) considering 110 change configurations
(10 change magnitudes and 11 change frequencies, respectively). The param-
eters used in our experimentation are described in the third column (Case
Study II) of Table 2.

Note that, due to the space limit, only certain results that illustrate
the elusivity concept are selected and presented in the following sections.
Complete implementation and results are available online5.

5.1. Case Study 1: Introductory Elusivity Analysis

For illustrative purposes, we select a set of four problems with different
dynamism, two algorithms and two performance metrics as example. We
denote as P1 and P2 two DTSPs that change every τ = 100 iterations with
magnitudes ρ = 0.1 and ρ = 0.5, respectively. Similarly, P3 and P4 represent
two DKPs changing at period τ = 100 and magnitudes ρ = 0.1 & ρ = 0.5.
Note that P1 & P2 are minimisation problems, and P3 & P4 are maximi-
sation problems. As for the algorithms and performance metrics, RIPBIL
and RIGA are employed under the best-of-generation and the accuracy mea-
sures. Table 3 summarises the overall performances of the algorithms, and
also captures the elusivity of problems to the algorithm and performance
metric combinations (following Definition 1). The results show that online
algorithms are useful on P1–P3, but restarting the RIGA is beneficial on P4.
In other words, P4 proves elusive to RIGA, regardless of the performance

5Available at https://zenodo.org/record/7346818#.Y3yfwOx pqs
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Table 3: Overall performances of the algorithms and, in bold, the elusivity value for each
problem, algorithm and performance metric combination (elusive problems highlighted in
orange).

E[FBOG] E(P,A, ϕ) E[H∆m] E(P,A, ϕ)
(P1, RIPBIL) 186049.80

-31204.70
170126.30

-34361.50
(P1, RIPBILr) 217254.50 204487.80

(P2, RIPBIL) 208870.90
-8847.90

191811.10
-13238.90

(P2, RIPBILr) 217718.80 205050.00

(P3, RIGA) 1788.26
-9.03

20.40
-9.00

(P3, RIGAr) 1779.23 29.40

(P4, RIGA) 1773.59
5.95

31.00
2.00

(P4, RIGAr) 1779.54 29.00

metric.
Once the elusivity concept has been introduced and described, we proceed

to replicate the first case study. Several change period and magnitude combi-
nations are considered to change the same initial problem, and the elusivity
values are shown in a two-dimensional representation (heatmaps) based on
the period and magnitude combinations, as shown in Figure 1. Each cell of
the heatmap represents the elusivity of the problem, with a specific period-
magnitude setting, to an algorithm. Figures 2, 3 and 4 display in heatmaps
the elusivity of DTSPs and DKPs with the landscape rotation, solved by
RIACO, EIGA, RIGA and RIPBIL and measured by the best-of-generation
measure, FBOG(P,A). The colours in the tables are used for guidance only,
where the red colour indicates the problem is elusive to the algorithm; also,
the higher its intensity, the larger elusivity of the problem to the algorithm.
On the contrary, the more green the colour, the less elusive the problem is
to the algorithm.
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Figure 2: Elusivity heatmaps of DTSPs with landscape rotation constructed from kroA150

to RIACO, RIGA and RIPBIL under the best-of-generation.
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Figure 3: Effect of the performance metric on DTSPs with landscape rotation constructed
from kroA150 to EIGA under best-of-generation and accuracy.
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Figure 4: Elusivity heatmaps of DKPs to RIGA and RIPBIL under the best-of-generation.
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We can extract the following observations from the heatmaps. First,
they demonstrate that adapting to slightly changing problems (left side) is
generally beneficial rather than restarting, although the preference is gradu-
ally reversed to the point that restarting after a change is more favourable to
severely changing problems (right side). This result may sound obvious, since
slight changes retain certain similarities of the previous problem instance,
and the increase on the magnitude and frequency of changes (decrease of
the period) complicates the algorithm adaptability. However, obtained re-
sults show that this statement may not hold for certain cases. For example,
DTSPs with landscape rotation changing at ρ = 0.1 and τ = 200 (see Fig-
ure 2(c)) are more elusive to RIPBIL under FBOG than the same problem
changing at ρ = 0.75 and τ = 200; in other words, the adaptative advantage
of RIPBIL is lower in DTSPs with landscape rotation changing slightly and
occasionally than the same problem changing severely and occasionally un-
der the best-of-generation metric. This is due to the nature of the random
immigrants-based approach, where the new immigrants may not be useful for
reacting to slight changes, and since the period of change is large, restarting
is more convenient.

Second, the images show different elusivity values for every problem and
algorithm combination. For example, DTSPs with landscape rotation chang-
ing at ρ = 1 and τ = 200 are less elusive to RIACO under FBOG than the
same problem changing at ρ = 1 and τ = 10 (see Figure 2(a)); in other words,
the adaptative advantage of RIACO is higher in DTSPs changing severely
and occasionally than the same problem changing severely and frequently.
Therefore, we can say that the same algorithm proves more or less elusive
depending on the problem configuration.

Third, from Figure 3, we can see different elusive values for DTSPs with
landscape rotation to EIGA under both performance metrics, although the
general pattern of elusivity holds for both performance metrics. That is, for
example, DTSPs that change (rotate) at ρ ≤ 0.5 are non-elusive to EIGA
under FBOG and H∆m to different degrees, depending on the frequency and
magnitude of the change, and the performance metric considered. There-
fore, these observations highlight the effect of the performance metric on the
elusivity formulation.

Fourth, by contrasting Figures 2(b) and 3(a) we can analyse the influ-
ence of the adaptation mechanism on the elusivity of DTSPs with landscape
rotation to EIGA and RIGA under best-of-generation. Based on this com-
parison, we can observe slightly different elusivity values of the DTSPs for
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EIGA and RIGA under FBOG, respectively, although the general elusivity
pattern is certainly similar for both immigrant-based algorithms. That is,
although to different degrees, slightly and frequently changing DTSPs are
non-elusive to EIGA and RIGA under FBOG, and severely and frequently
changing DTSPs are elusive under the same conditions.

Finally, the results show that landscape rotation generates mostly non-
elusive DTSPs no matter the algorithm used, i.e. adapting to changes is
usually beneficial (only 40 problems out of 125 are elusive according to Fig-
ures 2 and 3). In the case of the DKPs, however, online algorithms are rarely
beneficial, since 38 problems out of 50 prove elusive to random immigrants-
based algorithms (see Figure 4). Hence, the inclusion of elusivity analysis
adds value by revealing that, under the set conditions, restart is more ef-
fective than random immigrant adaptation on DKPs generated by the XOR
DOP benchmark generator. Moreover, it is worth noting that DKPs chang-
ing at ρ = 0.1 and τ = 100 are on the threshold to prove elusive to RIPBIL
under FBOG. Hence, in order to validate the experimental results, we will
perform a statistical analysis in the next section.

5.1.1. Statistical Analysis

In order to ensure that such results are still valid when assessing the
uncertainty related to the experimentation, a Bayesian statistical analysis,
equivalent of the pairwise Wilcoxon signed-rank test6, is carried out. This
technique estimates the expected probability of two algorithms obtaining the
best results (winning probability), given some observations (experimental
results), and some prior belief (usually uniformly generated from a Dirichlet
distribution [49, 50]). We consider that the two algorithms to be compared
perform similarly (tying probability) if the performance difference between
them is within the Range Of Practical Equivalence (ROPE):

ROPE = (0, |E[ϕ(Ar, P )]| · γ), (8)

where E[ϕ(Ar, P )] is the mean performance of the restarting version of the
algorithm A on the problem P under the performance metric ϕ and γ is a
variance parameter. Certainly, the γ parameter is used to define the ROPE
of the contrasted algorithms in the Bayesian analysis, where a value of γ = 0
denotes that two algorithms have equivalent performance when the difference

6Available in the R package scmamp [48].
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Figure 5: Elusivity heatmaps showing winning probabilities of online RIPBIL against
RIPBILr (in green) and equivalent performance probabilities (in blue) when solving DKPs
with landscape rotation and measured by best-of-generation.

in scores is equal to 0. We set γ = 0.001 to be a relatively low value to
consider both algorithms performing similarly. Note that this strategy could
be also added to the elusivity formulation by replacing the zero in Definition 2
with |E[ϕ(Ar, P )]| · γ.

Based on this analysis, we wish to extend the previously shown elusivity
heatmaps to more general statistical heatmaps. Particularly, for each experi-
mental setting, two complementary heatmaps are created: (i) the first shows
the probability of the online algorithm being the winner (green cells), and (ii)
the second shows the probability of the equivalent performance (blue cells)
of both algorithm.

To illustrate the statistical analysis of the elusivity of the results obtained
in the previous section, we consider the combination of DKPs with landscape
rotation, RIPBIL and best-of-generation (see Figure 5). Guided principally
by the colours, the winning heatmap (green) in Figure 5 looks similar to the
elusivity heatmaps presented in Figure 4(b). Nevertheless, the heatmaps in
Figure 5 demonstrate that most DKPs with landscape rotation prove elusive
to RIPBIL in this experimental setting, although for some problems, RIPBIL
and RIPBILr achieve similar performance. Only two DKPs changing at ρ =
0.1 and τ = 10, 20 prove clearly non-elusive to RIPBIL under FBOG, whereas
problems changing at τ = 50, 100, 200 and ρ = 0.1 are in the threshold
to prove elusive to RIPBIL under FBOG. That is, the winning and tying
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probabilities of RIPBIL over RIPBILr are practically equivalent for DKP
that change in τ = 50, 100, 200 and ρ = 0.1. On the contrary, restarting
is better, or no worse, than adapting to DKPs changing at ρ ≥ 0.25, no
matter the period between changes. Hence, we can say that this configuration
is narrowly elusive to RIPBIL under best-of-generation. The rest of DKP
configurations are elusive to RIPBIL. Hence, we can deduce that the XOR
DOP generator constructs mostly elusive DKPs for RIPBIL under best-of-
generation.

5.1.2. Effect of the Parameter Setting on the Elusivity

As previously mentioned, the immigrant replacement rate determines the
number of immigrants that substitute the less promising (worst) solutions of
the population of immigrants-based algorithms at every iteration. In previous
experiments, the replacement ratio was set to 0.2, a typical value used in
the literature [37, 38, 51]. Hence, in order to analyse the influence of this
parameter on the performance of immigrant-based algorithms, the immigrant
replacement rate is set to {0.1, 0.2, . . . , 0.9}.

First, we have performed an evaluation of the performance achieved by
the immigrants-based online algorithms (for each problem under the consid-
ered performance metrics) to get the optimal immigrant replacement rates.
Figure 6 shows in heatmaps the optimal immigrant replacement rate setting
for EIGA and RIGA to solve DTSPs with different frequency and magnitude
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Figure 6: Optimal immigrant replacement rate of EIGA and RIGA under best-of-
generation for DTSPs with landscape rotation constructed from kroA100.
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of change under best-of-generation, respectively.
Figure 6(a) shows that the largest immigrant replacement rate for EIGA

obtains the best performance under FBOG when solving DTSPs with land-
scape rotation, no matter the frequency and magnitude of change. Further-
more, smaller replacement rates for RIGA generally achieve better perfor-
mance under FBOG (see Figure 6(b)), although it varies by the frequency
and magnitude of changes on DTSPs. Specifically, smaller replacement rates
are preferred for occasional and slightly changing problems, and gradually,
it is increased together with the frequency and magnitude of change, to the
point that larger replacement rates are more suitable for frequent and severe
changes. These observations are consistent with the observations found in
literature [38].

Afterwards, once optimal parameter settings are calculated for each prob-
lem and algorithm, we have performed an analysis to study the influence of
the immigrant replacement rate on the elusivity of problems to the algorithms
(for each parameter setting) under the performance metrics considered. Fig-
ure 7 shows a set of heatmaps that reveal the elusivity values obtained for
each EIGA and RIGA with a defined parameter setting for each DTSP under
best-of-generation, respectively. As can be seen in the figure, the elusivity
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Figure 7: Elusivity heatmaps showing the influence of immigrant replacement rates for
EIGA and RIGA, under best-of-generation, on the elusivity of DTSPs with landscape
rotation constructed from kroA100.
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of DTSPs with landscape rotation to EIGA and RIGA is roughly sensitive
(under best-of-generation metric) to the considered algorithmic parameters,
although the general elusivity pattern is maintained. That is, although the
elusive values vary slightly with the modification in the immigrant replace-
ment rate, any setting of this parameter would illustrate the applicability of
the concept of elusivity. Hence, even if we apply the optimal replacement
rate on the immigrants-based algorithms for each dynamic problem (from
Figure 6), some DTSPs would still prove elusive to EIGA under FBOG (for
example, see the top-right heatmap in Figure 7(a)).

5.1.3. Overall outcome

Although the above statements ratify the utility of the elusivity formu-
lation, they do not quantify the extent to which elusivity can feature in
published work. Therefore, we compute the expected probability of the land-
scape rotation creating elusive problems (for the considered algorithms and
performance measures) as follows. First, the expected performance of the
online and restart algorithms are calculated. Then, the elusivity (following
Definition 1) of each problem to the algorithms and performance metrics is
quantified. Finally, after performing a Bayesian analysis, we count and aver-
age the highest posterior probability for each problem (with all combinations
of frequency and magnitude of change) being elusive to the algorithms under
performance metrics considered.

For clarification purposes, let’s consider Figure 5 as an example. We
can observe that online RIGA is superior 4 times out of 25, and ties restart
once out of 25. Hence, these results reflect an expected probability of 0.12 to
produce non-elusive DTSPs with landscape rotation to RIGA under the best-
of-generation, and a probability of 0.08 to produce DTSPs with landscape
rotation where online and restart RIGA are practically equivalent.

That said, the expected probability that permutation-based landscape
rotation creates elusive DTSPs is 0.2. In the case of the XOR DOP, the
expected probability is 0.66 that the generated problems are elusive, and
0.14 represents practical equivalence.

Now that we can ensure the generation of dynamic, but non-elusive, prob-
lems to algorithms, we focus on extending the elusivity concept to quantify
the effectiveness of adaptation mechanisms or comparing algorithm perfor-
mances regarding the elusivity.
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5.2. Case Study 2: Advanced Elusivity Analysis

In the previous section, we demonstrated that the elusivity of problems
generated by the landscape rotation, which are mainly used for academic
purposes, varies with the change period and magnitude tuning, as well as
with the selected algorithm. In this section, the goal is to make the most of
the elusivity formulation to capture and evaluate the adaptative advantage
and behaviour of online algorithms on a more realistic framework. The idea
is to use the elusivity concept to measure the extent to which adaptation
improves or degrades algorithm performance in comparison to restart.

The experiments carried out are reproduced from a state-of-the-art re-
search work [23], where DTSPs with different dynamisms (traffic factor and
city replacement), four ant colony variants (MMAS, PACO, EIACO and
MC-MMAS) and three performance metrics are used. The authors cate-
gorise changes as fast when the change period is τ ≤ 2.5n, and slow for
τ ≥ 25n. Similarly, they refer a change to be small, medium or large based
on the magnitudes ρ = 0.1, 0.25, 0.5, 0.75. However, we can observe that
change magnitudes are unevenly distributed across categories, as four values
(ρ = 0.1, 0.25, 0.5, 0.75) are assigned to three categories (small, medium or
large).

The paper states that adaptation mechanisms enhance the adaptability of
algorithms, although their performance depends on the settings (dynamism)
of the problem. Besides, they exhibit the following observations. First,
PACO and EIACO outperform MMAS and MC-MMAS for most quickly
changing DTSPs under FBOG. Second, MMAS and MC-MMAS perform
better than PACO and EIACO for most slowly changing DTSPs under FBOG

and P∆m, although it is gradually inverted with the increase of problem
size. Third, all algorithms obtain very good results under R. Fourth, the
restarting version of the algorithms are not effective for DTSPs with traffic
factor when changes do not affect the best solution found, since it would
result in an undetected change for the restarting algorithm.

Finally, authors assure that the following statements are consistent with
the observations found in their previous studies [26]: (i) MC-MMAS is com-
petitive with MMAS, i.e. both maintain a competitive performance; (ii)
EIACO generally outperforms PACO; and (iii) PACO gradually outperforms
MMAS as problem size increases.
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Figure 8: Elusivity heatmaps of DTSPs with city replacement to four algorithms under
three different performance metrics.
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Figure 9: Elusivity heatmaps of DTSPs with traffic factor to four algorithms under three
different performance metrics.
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Figure 10: Elusivity as a measure for adaptative advantage algorithms on DTSPs with
traffic factor under robustness. The elusivity threshold (zero) is represented by a vertical
dashed line, and the algorithms by the colour of the header of the heatmaps.
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5.2.1. Elusivity Analysis

First of all, note that the aim of this experimentation is to illustrate and
study the application of the elusivity concept to quantify the adaptability
of online algorithms over restarting the search after detecting a change. To
that end, we have decided to extend the change period and magnitude set-
tings used in [23], and show the elusivity values in heatmaps to accurately
highlight the adaptative advantage of online algorithms to solve DTSPs with
different settings. Figures 8 and 9 capture the elusivity of the DTSPs with
city replacement and traffic factor, respectively, to the algorithms under three
performance metrics.

Figures 8(a), 8(b), 9(a) and 9(b) demonstrate that most DTSPs (either for
city replacement or traffic factor) prove non-elusive to the algorithms under
FBOG and P∆m. MC-MMAS exhibits lower elusivity than PACO, MMAS and
EIACO under FBOG and P∆m, meaning that the adaptative advantage over
its restart version is large under these performance metrics. The heatmaps
for PACO, MMAS and EIACO reveal that adaptation is slightly better than
restarting the search for slight and frequent changing DTSPs, although both
online and restarting versions obtain similar results in general. Hence, DTSPs
with city replacement or traffic factor are in the threshold to become elusive
to PACO, MMAS and EIACO under FBOG and P∆m, respectively, since the
adaptation mechanisms for these algorithms confer little or no advantage
over their restart for occasional and severe changes.

In the same way, Figure 8(c) shows that DTSPs with city replacement
prove non-elusive to the algorithms under R. However, Figure 9(c) shows
that some DTSPs with traffic factor that prove elusive to MC-MMAS under
R. That is, the robustness of MC-MMAS deteriorates with the increase of
the traffic factor, to the point that DTSPs with medium to severe traffic fac-
tor become elusive to MC-MMAS under R. This particular case allows us to
demonstrate the role of performance metrics in adaptability, apart from the
problem and the algorithm. Nevertheless, it is worth noting that most em-
pirical studies in dynamic optimisation design and compare algorithms that
aim to optimise the best-of-generation. In fact, as stated in [52], robustness
and best-of-generation metrics conflict with each other, where algorithms
perform better on problems that prove less robust.

5.2.2. Elusivity as a Measure for the Advantage of Adaptation Mechanisms

So far, we have presented and analysed our results using elusivity heat-
maps to quantify the advantage that adaptation brings over a restart of the
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algorithm. Nevertheless, heatmaps fall short when analysing the effectiveness
and sensitivity of the algorithms, and comparing the best performance of
each version of algorithms against other algorithms’. Therefore, we extend
the elusivity analysis using density plots and scatter plots.

For illustration purposes, we consider the aforementioned paradigmatic
case study to analyse the relation between the robustness and elusivity of
the four ACO algorithms for DTSPs with traffic factor in more depth. It
is worth noting that the observations drawn in the following analysis may
not hold for other problem, algorithm and performance metric combination.
In fact, as mentioned in [52], the observations drawn from robustness may
conflict with the ones from best-of-generation, thus affecting the elusivity
analysis. In Figure 10, we support the elusivity heatmap in Figure 9(c) with
a density plot and a scatter plot. The density plot in Figure 10(a) uses a
kernel probability density to estimate the elusivity distribution for DTSPs
with traffic factor to each algorithm under R, described in Equation 7, on
the same set of DTSPs (see Table 2). The scatter plot in Figure 10(b) shows
the relation between the robustness obtained by the best algorithm version
(online or restart) for each problem setting and the elusivity obtained by
each algorithm.

Figure 10(a) reveals that PACO, MMAS and EIACO generally prove
non-elusive under R, whereas the performance of MC-MMAS varies with
the frequency and magnitude of change. That is, from the heatmaps, we
can observe that DTSPs with traffic factor changing at ρ = 1 and τ = 100
prove elusive to MC-MMAS under R, whereas problems changing at ρ = 0.1
and τ = 100 prove non-elusive. Therefore, we can say that, for these change
configurations, the adaptation mechanisms for MC-MMAS is giving little or
no advantage in terms of robustness.

Similarly, densities also demonstrate that PACO, MMAS and EIACO
have a more concentrated elusivity distribution, whereas the elusivity of
DTSPs with traffic factor to MC-MMAS under R is more variable. This
might be because of (i) the high variability of adaptation mechanisms, that
stand out depending on the period and frequency setting of changes; or (ii) a
bad tuning of adaptation mechanism parameters, such as immigrant replace-
ment rate or the memory size in EIACO or PACO, for example.

Figure 10(b) displays the relation between the robustness of the best ver-
sion for each algorithm and their respective elusivity in a scatter plot. Points
on the left-side (elusivity lower than zero) represent a better performance of
online algorithms over their restarting version (PACO, MMAS, EIACO and
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MC-MMAS), and the opposite for right-sided points (PACOr, MMASr and
EIACOr). From the plot, we can say that DTSPs with traffic factor prove
non-elusive to PACO, MMAS and EIACO under R, and also for problems
changing at ρ ≤ 0.4 to MC-MMAS. The figure also shows the line of best fit
for each algorithm, aiming to highlight the elusivity and performance trend
of algorithms with respect to the configuration of the changes. In a certain
way, this chart shows the elusivity distributions in Figure 10(a) from a top
view, and the depth is determined by the robustness of the algorithms. Re-
call that robustness is a maximisation measure, so larger robustness means
a better performance of the algorithm.

From the figure, we can observe a similar pattern for all algorithms when
measured under robustness, where slightly changing DTSPs are concentrated
in the upper part of the plot and severe changes at the bottom, although all
algorithms differ in the elusivity distribution. Aforementioned, PACO and
EIACO usually prove non-elusive for DTSPs with traffic factor under R,
although points are concentrated close to the threshold to become elusive
(elusivity close to zero) as the frequency and magnitude of change increase.
MC-MMASr proves more or less elusive depending on the setting of changes
under R, although its robustness is certainly maintained, no matter the fre-
quency and magnitude of change. That said, we can conclude that, in this
case study, the adaptation mechanisms for MC-MMAS may be disadvanta-
geous for some frequencies and magnitudes of change when measured under
robustness, although the algorithm is quite robust by nature. Nevertheless,
note that these observations are drawn from a particular illustration of the
obtained results, and they are limited to the exposed experimental setup.
Finally, it is interesting to note the trend on the distribution of the algo-
rithms: the less elusive, the more robust become the algorithms. Therefore,
we can conclude that the adaptative advantage is influenced by the change
frequency and magnitude setting.

From these observations, we can state that PACO, MMAS and EIACO are
less robust than MC-MMASr for some change settings, i.e. except from the
DTSPs changing at ρ ≥ 0.5, even a restarting behaviour of MC-MMAS can
be more effective than PACO, MMAS and EIACO under R. So we demon-
strate that adaptation mechanisms do not always improve the robustness
of algorithms, since PACO, EIACO and MMAS are less robust than MC-
MMASr for DTSPs with traffic factor changing at ρ ≥ 0.5. Obtained results
suggest the inclusion of the restart, in future research, to avoid erroneous
evaluation of algorithms in elusive problems where there is no adaptative
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advantage.
Finally, an interesting observation that we cannot ignore is that, for each

algorithm, points are grouped based primarily on the magnitude of changes,
but also on the change period. This statement allows us to display, in a
certain way, the characterisation of problems in regard to the performance
and elusivity of algorithms. For example, from Figure 10(b), we can discern
7 different groups for PACO, MMAS and EIACO, and 6 for MC-MMASr.
However, the characterisation of the groups varies with the algorithm version.
For MMAS, EIACO and PACO, the increase in the change magnitude is
related to the variability in robustness and the concentration of elusivity
of groups. In the case of MC-MMASr, the robustness is maintained for
each period of change (the magnitude does not influence the performance
of restarting algorithms), while the elusivity of the groups varies with the
magnitude of the change, i.e. the more severe the change, the more effective
is the restart over the adaptation for MC-MMAS.

5.2.3. Overall outcome

This section has demonstrated that the elusivity formulation can be ex-
tended to evaluate the adaptation mechanism over a well-defined behaviour
of algorithms. The different visual representations have revealed that (i)
heatmaps are useful to get the elusivity portrait of problems (or benchmark
generators) varying their change frequency and magnitudes, (ii) density plots
give us an insight of the elusivity and the adaptative advantage of algorithms
on a problem set, and (iii) scatter plots allow us to compare the best perfor-
mance of the algorithms.

6. Conclusions and Future Work

The field of dynamic optimisation presents a wide variety of algorithms
with adaptation mechanisms to solve problems that change over time, either
adapting or reacting to problem changes. However, empirical works usually
compare the performance of algorithms under the frequency and magnitude
of changes, although they often ignore whether the problem is amenable to
be solved by an online algorithm. This work has validated that the frequency
and magnitude of changes alone are insufficient to determine the difficulty of
dynamic problems to algorithms that adapt to changes, since it also depends
on the repercussion of problem variations on algorithms’ performance. To
that end, the elusivity concept has been introduced and evaluated.
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The mathematical formulations and the systematic analysis of the elu-
sivity concept proved the validity to (i) distinguish elusive and non-elusive
problems based on the adaptability of algorithms to changes, and (ii) evalu-
ate the advantage of the adaptation mechanisms over the restart. This study
suggests avoiding algorithm performance comparison under change classifi-
cations based only on the frequency and magnitude of changes, since the
dynamism also depends on the adaptation challenge of algorithms to deal
with changes and the performance metric used. In fact, performance metrics
are usually neglected in previous research on this topic, but they are crucial
to a full definition of the elusivity.

The conducted experiments demonstrated the existence of elusive prob-
lems in already published studies [2, 22, 23, 37, 42] to different extents
according to the problem, algorithm and performance metric combination.
Therefore, this work suggests including the restarting version of the algo-
rithms in the experimentation to eliminate erroneous study of algorithms
with disadvantageous adaptation mechanisms in future research. Note that
our definitions do not make any assumptions about the problem, algorithm,
performance metric, representation, type of dynamism, etc. so it can be
applied into any dynamic optimisation research.

There are many studies that emerge from this work. The first and most
obvious is the extension of this preliminary work to explore other properties
of benchmark generators and their elusivity values for particular algorithms.
It may be interesting to analyse the elusivity of a real-world applications for
different dynamics that may happen. For example, extend this study to the
consideration of dynamic problems with dimensional changes. This way, we
should guarantee the generation of non-elusive dimensionally varying DTSPs
to algorithms.

The other way round, the elusivity may be also extended to considering
changes that are impossible or sensitive to adapt (robust optimisation) [16,
53]. In such cases, the goal is to find a sequence of solutions that preserve
an acceptable quality during a time interval until it deteriorates.

Finally, an interesting and promising current is to predict the elusivity
of a dynamic problem to an algorithm. In a real world situation, it can be
useful to quantify the elusivity of a problem in advance (offline), ideally in
toy experimentation, before running the online or the restarting algorithm
version. This idea can also be extended to develop a predictive adaptation
mechanism capable of deciding online when to restart, adapt or maintain the
algorithm search based on the information collected.
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