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Abstract: Accurate assessment of SOE and SOH is a critical issue in the battery management system. This 

paper proposes an improved variable forgetting factor recursive least square-double extend Kalman filtering 

algorithm based on global mean particle swarm optimization to obtain a stable and accurate SOE and SOH at 

different ageing levels and temperatures. Firstly, this paper establishes a framework for the parameter 

identification of variable forgetting factors recursive least squares algorithm based on the global mean particle 

swarm optimization. Then, proposing a global mean particle swarm optimization search mechanism centered on 

variable time double extended Kalman filtering. Finally, The proposed algorithm is validated on the hybrid 

pulse power characterization (HPPC) and Beijing bus dynamic stress test (BBDST) datasets. The experimental 

results show that the MAE and RMSE of the SOE results based on the HPPC condition are less than 0.0096 and 

0.0153 at -5 °C and 15 °C. Similarly, the estimation results based on the BBDST condition are less than 0.0094 

and 0.0102, respectively. The SOH estimation errors are less than 0.02. Therefore, the variable forgetting factor 

recursive least square-double extend Kalman filtering based on global mean particle swarm optimization 

algorithm can achieve accurate and stable SOE and SOH at different ageing levels and temperatures. 
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1. Introduction

The development of human society is dependent on innovation, and the automotive industry is developing 

rapidly through innovation and transcendence [1, 2]. New energy vehicles (Nevs) have become a new trend in 

the development of the automotive industry, and the safety of Nevs is receiving more and more attention [3]. 

However, With the increasing popularity of Nevs, their charge/discharge problems are gradually increasing, 

which is very unfavorable for the development of Nevs [4, 5]. Therefore the evaluation of the state of energy 

(SOE) and state of health (SOH) of Lithium-ion batteries are gradually becoming an essential issue in battery 

management systems (BMS) and has attracted the attention of a large number of researchers 

SOE is defined as the remaining available energy of the battery in real time, and an accurate estimation result 

of it will facilitate the stable and reliable operation of Nevs. Current national and international methods of 

estimating SOE include equivalent circuit model-based, data-driven, and hybrid methods. In the first place, Tian 

et al. and Tian et al. use the second-order RC equivalent circuit model to estimate state of charge (SOC) and 

SOH, respectively [6, 7]. To get a better result, Li et al. introduction of battery hysteresis voltage segmentation 

into a second-order RC model to form an improved second-order RC model, and the estimation results error is 

under 0.0431 [8]. Furthermore, for researching charging safety and SOC, Zhang et al. and Xu et al. use an 

improved back propagation (BP) neural network to get results [9, 10]. Liu et al. establish a lithium-ion battery 

internal short-circuit diagnosis model by combining a convolutional neural network [11], and the mean absolute 

error is under 1.8%. However, data-driven methods usually have time-consuming problems, requiring large 

amounts of data and poor generalization. Additionally, Wang et al., Hu et al., and Ma et al. introduce a hybrid 

method that combines the Extended Kalman filter (EKF) with back propagation (BP) neural network to get SOC, 

and the estimation error under 0.0141, 0.0240, and 0.0121, respectively [12-14]. However, the hybrid methods 

reduce some errors but increase the amount of computation. Consequently, the equivalent circuit model-based 

has attracted much attention due to its simplicity, reliability, and stability. 



Current national and international methods based on equivalent circuit models usually include the Thevenin 

model, electrochemical model, and PNGV model. Previously, some researchers would estimate the SOE and 

state of power (SOP) of lithium-ion batteries using the first-order Thevenin equivalent circuit model [15, 16]. 

However, the first-order Thevenin model is difficult to achieve with the required precision. For instance, Zhang 

et al. introduce an application-oriented multistate estimation framework to estimate state values. However, the 

model parameters need optimization by EKF, particle swarm optimization, and recursive least square [17]. Li et 

al. and An et al. all use least squares to estimate the parameters but require compensation with an improved 

Kalman algorithm [18, 19]. Therefore, the other researchers used the second-order Thevenin model to estimate 

SOC and SOE. For example, Yang et al. and Zhang et al. estimate results error is less than 0.0193 and 0.02 

based on the second-order Thevenin model, respectively [20, 21]. Zhang et al. introduce a novel 

non-experiment-based reconstruction method and use second-order Thevenin model as the basic structure and 

the mean absolute error can be limited under 0.01 [22]. Besides this, some electrochemical models have also 

been researched. Wu et al. and Liu et al. use a simplified electrochemical model to realize SOC estimation, and 

the mean absolute error is less than 0.02 and 0.0135 under constant and dynamic loading conditions, 

respectively [23, 24]. Zhang et al. introduce an equivalent circuit model and electrochemical impedance 

spectroscopy (EIS)-based technique to estimate SOC and SOH, and the estimation error can reach 1.29% [25]. 

However, electrochemical equipment is often expensive and prevents us from doing research. 

SOE estimation based on equivalent circuit models requires accurate parameter identification results. 

Recursive least squares (RLS) and genetic algorithm (GA) are the more popular parameter identification 

methods. For example, Zhang et al. used an immune genetic algorithm to identify the model parameters and the 

error between voltage and reference voltage is less than 20 mV [26]. Zhang et al. used a particle swarm 

optimization (PSO) algorithm to improve accuracy of genetic algorithm [27]. Jiang et al. presented a random 

mutation ant colony optimization (RMACO) algorithm to parameter identification [28]. In this process, PSO 



algorithm is found to be well optimized for parameter identification. However, GA is not very good at solving 

large scale computational problems and can easily fall into "precocious". Recursive least square is widely used 

in the parameter identification for lithium-ion batteries due to their simple implementation, computational 

simplicity, and stable performance. For instance, Li et al. added a variable forgetting factor to improve the 

robustness and accuracy of the traditional recursive least squares algorithm [29]. Shi et al. introduced a variable 

forgetting factor with the difference between open circuit and terminal voltages in sliding window mode based 

on recursive least square parameter identification approach. It can improve efficiency of data utilization [30]. 

Therefore, it can be seen that using an optimization algorithm to improve the accuracy of parameter 

identification is a better trend. 

Once good parameter identification results have been obtained, selecting a suitable SOE estimation algorithm 

is core to the whole BMS. Due to the unique characteristics of the Kalman filter (KF), it has been developed and 

improved by many researchers and is used in many industries, such as aviation, marine and automotive. For 

example, Moradi et al. used Kalman filtering to analyze linear frequency modulated (FM) or chirp signal 

problems [31]. KF is used in real-time road target detection and tracking for autonomous driving to provide 

accurate pose and velocity information about objects moving on the road around the vehicle [32]. It can be seen 

that the KF is only suitable for use in linear systems. However, lithium-ion batteries are highly non-linear 

systems, and conventional Kalman filtering cannot be used directly for estimation. Therefore, some researchers 

have made many improvements to enable the Kalman filter to work on non-linear systems. For instance, Zhang 

et al. indicated an Extended Kalman filtering to estimate SOC, and the estimation error is within 1.10% [33]. 

Lee et al. estimated information feedback by using an extended Kalman filter to mitigate excessive battery 

operation [34]. Hou et al. introduced an adaptive unscented Kalman filtering (AUKF) algorithm to estimate 

SOE, and the proposed algorithm can adaptively correct the SOE values [35]. Shrivastava et al. used a double 

extended Kalman filtering (DEKF) to estimate the different battery states concurrently, the estimation results 



error is less than 0.01, and experimental results show that DEKF algorithm has excellent multi-parameter 

estimation characteristics [36]. Besides this, Shrivastava et al. also proposed a new dual forgetting factor-based 

adaptive extended Kalman filter (DFFAEKF) algorithm. It is based on the DEKF algorithm and can estimate 

SOE and SOC [37]. Thus, it can be seen that adaptive joint estimation is the focus of researchers' attention. 

In practice, the service life of lithium-ion batteries is shortened with the reduction of state of health (SOH). 

Many researchers currently estimate SOH including data-driven and feature-based methods. For example, 

Zhang et al. used a temporal convolutional network to fit relationship between SOH and temperature variety rate 

and SOH predicted values are less than 0.0145 [38]. Feng et al. presented a novel SOH estimation model based 

on relevance vector machine (RVM) [39]. Zhang et al. introduced an improved Particle Swarm Optimization 

Extreme Learning Machine for estimating SOH and remaining useful life (RUL). The results show that SOH 

estimation error is 0.033 [40]. Zhu et al. used a linear regression model to estimate SOH and the experimental 

results show a linear relationship between charging time and state of health with an error of less than 0.012 [41]. 

However, the lack of data support will affect the accuracy of SOH estimation, which is a difficult aspect of SOH 

estimation. Therefore, feature-based methods are more widely used in state of health prediction. For instance, 

Peng et al. developed a capacity degradation model based on the KF algorithm, and the results show that strain 

can be used as an indicator for estimating state of health [42]. Zhu et al. used an improved unscented particle 

filter algorithm to estimate SOH [43]. Adaptive algorithms have also been applied to SOH estimation. Jiang et al. 

proposed a comprehensive co-estimation scheme of SOC and SOH based on an adaptive extended Kalman filter 

(AEKF), The estimated capacity and internal resistance are less than 0.017 and 0.022, respectively [44]. Qian et 

al. introduced a modified-sine-cosine algorithm based on DEKF. A modified-sine-cosine algorithm improves the 

covariance noise matrix in the state filter. The experiment results show that proposed algorithm can reduce 

errors and correct initial values [45]. 

To fully explore the performance of intelligent optimization and model-based algorithms. This paper proposes 



a novel double extended Kalman filtering collaborative state of energy and state of health estimation algorithm 

based on the global mean particle swarm optimization (GLPSO) algorithm. The main contributions of this paper 

are as follows. 

(1) Variable forgetting factors recursive least squares can improve the accuracy of the model parameters

identification through changing the forgetting factor in real time. 

(2) The improved DEKF algorithm is used to estimate the SOE and update the model parameters online to

obtain state of health. In addition, estimation time can set a controlled time step to reduce it. 

(3) The GLPSO algorithm is introduced to solve the manual adjusting parameters problem, which

significantly reduces the proposed algorithm estimation error and adjustment time. 

2. Mathematical analysis

2.1 Improved variable forgetting factors recursive least squares 

Recursive least squares (RLS) is a common mathematical optimization technique to obtain parameter 

estimation results for a system that minimizes the sum of squares of the errors between the observed data and 

estimation values. The algorithm is simple in principle, easy to implement, and widely used for online 

identification of lithium-ion battery model parameters. However, RLS algorithm still has drawbacks compared 

with genetic algorithms or particle swarm optimization. For example, with increasing recursions, the new data 

becomes difficult to correct and the algorithm loses its tracking and correction ability, which in turn affects the 

parameter estimation. Therefore, this paper introduces an improved variable forgetting factor to correct 

estimation errors. 

Compared with the conventional forgetting factor recursive least squares (FFRLS) algorithm, improved 

variable forgetting factor recursive least squares (VFFRLS) can actively change the size of the forgetting factor 

according to the error value in real-time, rather than being limited to a single number, thus solving the problem 



of variable data in complex operating conditions. The main process can be described as 

 𝑒(𝑘) = 𝐸(𝑘) − 𝑋(𝑘)𝜃(𝑘 − 1) (1) 

 𝐾(𝑘) =
𝑃(𝑘 − 1)𝜃(𝑘)

𝑋𝑇(𝑘)𝑃(𝑘 − 1)𝑋(𝑘) + 𝜆(𝑘 − 1)
 (2) 

 𝜃(𝑘) = 𝜃−(𝑘) + 𝐾(𝑘)𝑒(𝑘) (3) 

 𝑃(𝑘) =
(𝐼 − 𝐾(𝑘)𝑋𝑇(𝑘))𝑃(𝑘 − 1)

𝜆(𝑘 − 1)
 (4) 

 𝜆(𝑘) = 𝜆𝑚𝑖𝑛 + (1 − 𝜆𝑚𝑖𝑛)ℎ
𝜎(𝑘) (5) 

 𝜎(𝑘) = 𝑟𝑜𝑢(
𝑒(𝑘)

𝑒𝑏𝑎
) (6) 

Where 𝑋(𝑘) is including current and voltage, 𝐸(𝑘) indicates the errors between estimating voltage and real 

voltage, 𝜃(𝑘) indicates the results of the estimated model parameters, 𝐾(𝑘) indicates the Kalman gain, 𝑃(𝑘) 

is the covariance matrix, 𝑒𝑏𝑎 is usually taken with the expected error, h takes values ranging from 0 to 1, which 

indicates the sensitivity of the forgetting factor for error variation, rou indicates taking the nearest number, 𝜆𝑚𝑖𝑛 

usually sets 0.98 according to RLS part of the introduction, 𝜆(𝑘) indicates a dynamically changing forgetting 

factor, it can dynamically adjust the size of the forgetting factor according to the estimation errors between the 

terminal and simulated voltage in real-time. 

According to equation (5) and equation (6), it can be seen that when system simulated voltage changes 

obviously, such as, the prediction 𝑒(𝑘) increases and 𝜎(𝑘) increases quickly. However, 𝜆(𝑘) will decrease 

rapidly since h is between 0 and 1, then prediction state values will forget the previous data and fit the new data 

quickly. In turn, with the boosting input of fresh values, the fitting data gradually converged, the prediction 

𝑒(𝑘) decreases and 𝜎(𝑘) decreases quickly, accordingly, 𝜆(𝑘) will increase rapidly, so that the retained valid 

data ensures the algorithm to have high accuracy and strong robustness.  

Considering equivalent circuit model can more accurately simulate the dynamic performance of the 

lithium-ion batteries. Therefore, the second-order Thevenin is chosen as the object of parameter identification 

and state estimate, as shown in Fig.1. This model consists of voltage sources 𝑈𝑏, an ohmic resistor 𝑅𝑖, and two 



RC electric networks including polarization resistors (𝑅1 and 𝑅2) and polarization resistors capacitance (𝐶1 

and 𝐶2), which can reflect the phenomenon of gradual voltage changes after charging and discharging and the 

end of the process. 

 

Fig. 1 Second order Thevenin model and parametric identification framework.  

In Fig. 1, to complete the process of identifying the variable forgetting factor recursive least squares 

parameters based on the second order Thevenin model, it is necessary to calculate the model to obtain the 

required characteristic equations. According to Kirchhoff's laws, the model can be described as 

 

{
 
 

 
 
U = 𝑈𝑏 − 𝑈1 − 𝑈2 − 𝐼(𝑡)𝑅𝑖
𝑑𝑈1
𝑑𝑡

= −
𝑈1
𝑅1𝐶1

+
𝐼

𝐶1
𝑑𝑈2
𝑑𝑡

= −
𝑈2
𝑅2𝐶2

+
𝐼

𝐶2

 (7) 

According to Eq.(7), which can be obtained the Laplace transform expression of second order Thevenin model 

and present calculated process of variable forgetting factor recursive least squares. The equation process can be 

described as  

 U𝑏 = (
𝑅1

𝑅1𝐶1𝑠 + 1
+

𝑅2
𝑅2𝐶2𝑠 + 1

+ 𝑅𝑖) I+𝑈 (8) 

In the Eq.(8), s is the Laplacian operator. Define 𝐸𝐿(𝑠) = 𝑈(𝑠) − 𝑈𝑏(𝑠), which can be obtained the transfer 

function of continuous time system. So the model equation can be rewritten as 

 𝐺(𝑠) =
𝐸𝐿(𝑠)

𝐼𝐿(𝑠)
= −(𝑅𝑖 +

𝑅1
𝑅1𝐶1𝑠 + 1

+
𝑅2

𝑅2𝐶2𝑠 + 1
) (9) 

Using the bilinear transformation, the transfer function of the discrete-time system can calculate by Eq.(9) 

rewritten as 



 𝐺(𝑧−1) =
θ3 + θ4𝑧

−1 + θ5𝑧
−2

1 − θ1𝑧
−1 + θ2𝑧

−2
 (10) 

Define 𝜃(𝑘) =[θ1,θ2,θ3,θ4,θ5], θ𝑛 will be used as the basic parameter for parameter 𝑅1, 𝐶1, 𝑅2, 𝐶2, 𝑅𝑖, 

which can be described as 

 

{
 
 
 
 
 

 
 
 
 
 𝑅𝑖 =

θ3 − θ4 + θ5
1 + θ1 − θ2

𝑅1𝐶1𝑅2𝐶2 =
𝑇2(1 + θ1 − θ2)

4(1 + θ1 − θ2)

𝑅1𝐶1 + 𝑅2𝐶2 =
𝑇(1 − θ2)

4(1 + θ1 − θ2)

𝑅𝑖 + 𝑅1 + 𝑅2 =
θ3 + θ4 + θ5
1 − θ1 − θ2

𝑅𝑖𝑅1𝐶1+𝑅𝑖𝑅2𝐶2 + 𝑅1𝑅2𝐶1 + 𝑅1𝑅2𝐶2 =
𝑇(θ5 − θ3)

4(1 − θ1 − θ2)

 (11) 

In the Eq.(11), the T is a simple time. Define the Coefficient matrix of the system 𝑋(𝑘) = [𝐸𝐿(𝑘 − 1), 𝐸𝐿(𝑘 −

1),−𝐼(𝑘),−𝐼(𝑘 − 1),−𝐼(𝑘 − 2)] for preparing parameter process. Suppose a, b, c, d, and f are used as 

coefficients in Eq.(11), so the expression can be rewritten as 

 

{
 
 
 
 
 

 
 
 
 
 𝑎 =

θ3 − θ4 + θ5
1 + θ1 − θ2

b =
𝑇2(1 + θ1 − θ2)

4(1 + θ1 − θ2)

c =
𝑇(1 − θ2)

4(1 + θ1 − θ2)

d =
θ3 + θ4 + θ5
1 − θ1 − θ2

f =
𝑇(θ5 − θ3)

4(1 − θ1 − θ2)

 (12) 

Define 𝜏1 = (𝑐 +
√𝑐2−4𝑏

2
), 𝜏2 = (𝑐 −

√𝑐2−4𝑏

2
). Thus , the 𝑅1, 𝐶1, 𝑅2, 𝐶2, 𝑅𝑖  can be obtained by recursive 

algorithm. Combined with Eq. (12) and Eq. (11), the parameter results can be rewritten as 

 

{
 
 
 
 

 
 
 
 
𝑅𝑖 = 𝑎
𝑅1 = |𝑑 − 𝑎 − 𝑅2|

𝑅2 =
𝑑 − 𝑎 × 𝜏2 − 𝑑 × 𝜏1

𝜏2 − 𝜏1

𝐶1 =
𝜏2
𝑅1

𝐶2 =
𝜏1
𝑅2

 (13) 

After the above analysis, a reasonable initial value of 𝑋(𝑘) and 𝜃(𝑘) can be obtained. Setting 𝑃0 = 1, the 



values of 𝐾(𝑘) can be obtained according to Eq.(2). Therefore, reasonable initial values allow the VFFRLS 

algorithm starts fitting iteratively over time to obtain model parameter values in real time. 

2.2 Variable time double extended Kalman filter  

To accomplish the joint state of energy and state of health estimation of lithium-ion batteries is necessary to 

estimate state and parameter variables simultaneously, so a double extended Kalman filter (DEKF) algorithm for 

collaborative estimation parameters is used in this paper. However, traditional double extended Kalman filtering 

can only be used to estimate SOC and SOH and cannot handle the collaborative SOE and SOH estimation and 

the division of the estimated time domain. Therefore, this paper introduces a novel variable time double 

extended Kalman filter to collaborative SOE and SOH estimation in real-time, the model state space equation 

can be described as 

 {
𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘, 𝜃𝑘) + 𝑤𝑘
𝑦𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘, 𝜃𝑘) + 𝑣𝑘

 (14) 

In the Eq. (14), 𝑤𝑘 and 𝑣𝑘 indicate Gaussian noise in the state equation and output equation, respectively. 

𝜃𝑘 represents system parameter vector, which can achieve state and parameter estimation time division. So the 

system parameter calculation of algorithm can be rewritten as 

 {
𝜃𝑘+1 = 𝜃𝑘 + 𝜊𝑘
𝑙𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘 , 𝜃𝑘) + 𝑒𝑘

 (15) 

In the Eq. (15), 𝜊𝑘 represents the parameter slowly changing process and 𝑒𝑘 represents observation noise. 

So the different time variation domains can be obtained by adjusting 𝜊𝑘. The variable time double extended 

Kalman filter structure can be divided into four parts, including determining the state transfer matrix, parameter 

initiation, time update, and state update.  

First step, the state transition matrix of the system can be described as 



 

{
  
 

  
 𝐴𝑘−1 =

𝜕𝑓(𝑥𝑘 , 𝑢𝑘 , 𝜃𝑘
−)

𝜕𝑥𝑘−1

𝐶𝑘
𝑥 =

𝜕𝑓(𝑥𝑘 , 𝑢𝑘 , 𝜃𝑘
−)

𝜕𝑥𝑘−1

𝐶𝑘
𝜃 =

𝜕𝑔(𝑥𝑘
−, 𝑢𝑘 , 𝜃𝑘)

𝜕𝜃

 (16) 

In the Eq. (16), 𝑥𝑘
− is the prior estimate of the state variable at time k, 𝐶𝑘

𝑥 and 𝐶𝑘
𝜃 are for the system state 

and system parameters respectively. 𝑥0 𝜃0 𝑃𝑥0 𝑃𝜃0 

The second step, initialize the algorithm parameters, the process can be described as 

 𝑥0 = 𝐸(𝑥0), 𝑃𝑥0 = 𝐸[(𝑥0 − 𝑥0̂)(𝑥0 − 𝑥0̂)
𝑇] (17) 

 𝜃0 = 𝐸(𝜃0), 𝑃𝜃0 = 𝐸[(𝜃0 − 𝜃0̂)(𝜃0 − 𝜃0̂)
𝑇] (18) 

 𝑃𝑤 = 𝐸[𝑤𝑤
𝑇], 𝑃𝑣 = 𝐸[𝑣𝑣

𝑇], 𝑃𝜊 = 𝐸[𝜊𝜊
𝑇], 𝑃𝑤 = 𝐸[𝑒𝑒

𝑇] (19) 

𝑃𝜃0 is the covariance matrix of the system parameter. 𝑃𝑥0 is the covariance matrix of the system state. 𝑥0̂ and 

𝜃0̂ are represented estimation values. 𝐸 indicates the expected value.  

Third step, time update for 𝑥  and 𝜃 . 𝑃𝑤  and 𝑃𝜊  indicate the covariance matrix of the corresponding 

parameter. which can be described as 

 𝑃𝜃𝑘
− = 𝑃𝜃𝑘−1 + 𝑃𝜊 (20) 

 𝑃𝑥𝑘
− = 𝐴𝑘−1𝑃𝑥𝑘−1𝐴𝑘−1

𝑇 + 𝑃𝑤 (21) 

Fourth step, state update for x and θ, which can be described as 

 

{
 
 

 
 𝐾𝑘

𝜃 = 𝑃𝜃𝑘
− (𝐶𝑘

𝜃)
𝑇
(𝐶𝑘

𝜃𝑃𝜃𝑘
− (𝐶𝑘

𝜃)
𝑇
+ 𝑃𝑒)

−1

𝜃𝑘 = 𝜃𝑘
− + 𝐾𝑘

𝜃[𝑦𝑘 − 𝑔(𝑥𝑘
−, 𝑢𝑘 , 𝜃𝑘

−)]

𝑃𝜃𝑘 = (𝐼 − 𝐾𝑘
𝜃𝐶𝑘

𝜃)𝑃𝜃𝑘
−

 (22) 

 {

𝐾𝑘
𝑥 = 𝑃𝑥𝑘

− (𝐶𝑘
𝑥)𝑇(𝐶𝑘

𝑥𝑃𝑥𝑘
− (𝐶𝑘

𝑥)𝑇 + 𝑃𝑣)
−1

𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘

𝑥[𝑦𝑘 − 𝑔(𝑥𝑘
−, 𝑢𝑘 , 𝜃𝑘

−)]

𝑃𝑥𝑘 = (𝐼 − 𝐾𝑘
𝑥𝐶𝑘

𝑥)𝑃𝑥𝑘
−

 (23) 

In the Eq.(22) and Eq.(23), the superscripts 𝜃 and x are divided into corresponding system parameter and 

state values, 𝐾 indicates Kalman gain, 𝐶𝑘
𝜃 and 𝐶𝑘

𝑥 represent the state transfer matrix of the system parameter 

and state, 𝐼 represents unit matrix, 𝑃𝑒 and 𝑃𝑣 indicate measure noise covariance for state filter and parameter 



filter respectively. The equation show that one of the extended Kalman filter performs the parameter estimation, 

the other performs the system state and then the final result is the collaborative SOE and SOH estimation. The 

flow chart of the variable time DEKF algorithm, as shown in Fig. 2. 

 

Fig. 2 the flow chart of Variable time double extended Kalman filter 

In Fig. 2, the top extended Kalman filter outputs the SOE parameter, 𝑥𝑘, and the bottom filter outputs the 

model parameters, 𝜃𝑘. The required parameters are obtained by setting different time delays between State and 

Parameter filters and iterating the 4-step calculation. According to Fig.1, Discrete the circuit model to obtain the 

state equations and output equations. The state equation for the system state variable of the first EKF can be 

described as 

 [
𝑆𝑂𝐸(𝑘)
𝑈1
𝑈2

] = [
𝑒
(−

𝑇
𝑅1𝐶1

)
0 0

0 𝑒
(−

𝑇
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)
0

0 0 1

] [

𝑆𝑂𝐸(𝑘 − 1)
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] +

[
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−
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𝑅2 (1 − 𝑒
−

𝑇
𝑅2𝐶2)

−
𝑇𝑢𝑘
3600𝐸 ]

 
 
 
 
 
 

𝐼(k + 1) + 𝑄1 (24) 

The output equation can be described as 

 𝑈𝑥(𝑘) = 𝑈𝑏[𝑆𝑂𝐸(𝑘)] − 𝑈1(𝑘) − 𝑈2(𝑘) − 𝑅𝑖𝐼(𝑘) + 𝑅1 (25) 

In the Eq. (24), 𝐴𝑘 = [
𝑒
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−
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3600𝐸 ]
 
 
 
 
 

, 𝐶𝑘
𝑥 = [

𝜕𝑈𝑥(𝑘)

𝜕𝑆𝑂𝐸(𝑘)
− 1 − 1]. The state 

equation for the system parameter variable of the second EKF can be described as 



 

[
 
 
 
 
 
𝑅1(𝑘)
𝑅2(𝑘)
𝐶1(𝑘)
𝐶2(𝑘)
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𝐶2(𝑘 − 1)
𝑅𝑖(𝑘 − 1)
𝑄𝑚(𝑘 − 1)]

 
 
 
 
 

+ 𝑄2 (26) 

The output equation can be described as 

 𝑈𝜃(𝑘) = 𝑈𝑏[𝑆𝑂𝐸(𝑘)] − 𝑈1(𝑘) − 𝑈2(𝑘) − 𝑅𝑖𝐼(𝑘) + 𝑅2 (27) 

In the Eq, 𝑄1,  𝑄2,  𝑅1, and 𝑅2  are the error covariance matrices for 𝑤 , 𝜊 , 𝑣  and 𝑒  respectively. The 

discretized state and output equations are brought into the variable time DEKF algorithm to update the SOE 

values and the current maximum capacity of the lithium-ion batteries in real time. Besides this, using the 

remaining charge definition method to define the battery SOH and equation can be described as 

 𝑆𝑂𝐻 =
𝑄𝑚
𝑄𝑓

× 100% (28) 

In the Eq. (28), 𝑄𝑓 indicates the rated capacity of the battery, 𝑄𝑚 indicates the estimated maximum available 

capacity. The algorithm can be realized with the above algorithm formula for collaborative SOE and SOH 

estimation of lithium-ion batteries. 

2.3 Global mean particle swarm optimization algorithm 

The particle swarm optimization algorithm simulates a bird in a flock by designing a massless particle with 

only two properties: velocity (𝑣𝑖), which represents the speed of movement, and position (𝑥𝑖), which represents 

the direction of movement. Each particle searches for the optimal solution in the search space, which is recorded 

as the current individual extreme value (𝐼𝑒𝑣), and shares the extreme individual value with the other particles in 

the whole particle swarm. 𝐼𝑒𝑣 is used as the current global optimal solution for the whole swarm, and other 

particles will adjust their velocity and position according to compare with global 𝐼𝑒𝑣 and their own 𝐼𝑒𝑣.  

In each iteration, the particle updates estimation parameters by tracking two “extreme values” (p𝑏𝑒𝑠𝑡, g𝑏𝑒𝑠𝑡), 

p𝑏𝑒𝑠𝑡  indicates the individual optimal values, g𝑏𝑒𝑠𝑡  indicates the group optimal values. Once found, the 



particle updates the velocity and position using the following formula, which can be described as 

 𝑣𝑖 = 𝑤 × 𝑣𝑖 + 𝑐1 × 𝑟𝑎𝑛𝑑() × (𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝑐2 × 𝑟𝑎𝑛𝑑() × (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖) (29) 

 𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖 (30) 

In the Eq. (28), i indicates the number of particles, 𝑐1 and 𝑐2 indicate learning factor, 𝑟𝑎𝑛𝑑() indicates a 

random number between 0 and 1, 𝑤 indicates inertia factor, which normally has a negative value and calculates 

can be described as 

 𝑤 = 𝑤𝑚𝑎𝑥 − ((𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛) ×
ger − itern

ger
) (31) 

In the Eq. (31), 𝑤𝑚𝑎𝑥 = 0.9, 𝑤𝑚𝑖𝑛 = 0.4, ger indicates the number of cycles, itern the current number of 

cycles. The introduction of linearly decreasing weight (LDW) can make a significant improvement to the PSO 

algorithm. However, considering the limitations of the traditional PSO algorithm, the instability of the VFFRLS 

parameter estimation and the inadequacy of experiential tuning of the parameters in the DEKF algorithm. This 

paper introduces a global mean particle swarm optimization algorithm to optimize the above parameters together. 

The algorithm structure, as shown in Fig. 3. 

 



 

Fig. 3 the flow chart of VFFRLS-DEKF based on global mean particle swarm optimization algorithm 

As shown in Fig. 3, the whole algorithm is divided into four parts, including battery model, VFFRLS 

algorithm, variable time DEKF algorithm and global mean particle swarm optimization (GLPSO). Since we 

cannot directly observe the process signal and measure the noise covariance, the value of 𝑃𝑤 and 𝑃𝑒 are 

obtained by searching for GLPSO. Besides this, the VFFRLS online parameter identification results are 

mean-sorted by the GLPSO algorithm to obtain the optimal 𝑅𝑖, 𝑅1, 𝑅2, 𝐶1, and 𝐶2 results, respectively. 

Addresses the errors caused by fluctuating online parameter identification results, manual parameter adjustment, 

and improves the accuracy of its estimation. 

3. Experimental analysis 

This paper takes a 70 Ah ternary lithium-ion battery as the research object and builds an independent test 

battery test platform, including BMS-HIL-1005 Model and max power is 1500 W, it performs data acquisition. 

HT-HW-80 thermostat with a temperature range of -40 to +150 (℃). The Charging and discharging equipment is 

CT-4016-5V100A-NTFA and the power is 12 Kw, which can realize hybrid pulse power characterization (HPPC) 

and Beijing bus dynamic stress test (BBDST). The experimental team has already carried out a series of battery 



testing experiments on this platform (https://www.researchgate.net/project/Whole-Life-Cycle-Test). The 

lithium-ion batteries test platform, as shown in Fig. 4. 

 

Fig. 4 Lithium-ion batteries test platform 

This paper uses lithium-ion batteries test platform to obtain HPPC and BBDST experimental data at -5 and 15 

degrees. The working condition voltage and current test results, as shown in Fig. 5. 

 

(a) voltage of HPPC test under -5 ℃ 

 

(b) current of HPPC test under -5 ℃ 

 

(c) voltage of HPPC test under 15 ℃ 

 

(d) current of HPPC test under 15 ℃ 



 

(e) voltage of BBDST test under -5 ℃ 

 

(f) current of BBDST test under -5 ℃ 

 

(g) voltage of BBDST test under 15 ℃ 

 

(h) current of BBDST test under 15 ℃ 

Fig. 5 HPPC and BBDST test current and voltage results 

3.1 Global mean value parameter identification results 

Using HPPC test at -5 degrees to verify the accuracy of the proposed GLPSO-VFFRLS algorithm parameter 

identification. Firstly, VFFRLS algorithm is used online to identify 𝑅1, 𝐶1, 𝑅2, 𝐶2, and 𝑅𝑖 of the second-order 

Thevenin model online, respectively. Then, to verify that offline parameter identification is better than online, a 

multi-objective GLPSO algorithm is used to optimize the parameter results. The estimation results, as shown in 

Fig. 6. 

 

(a) Resistance identification results 

 

(b) Capacitance identification results and forgetting 



factors 

 
(c) Analogue voltage comparison results 

 
(d) Analog voltage error comparison results 

Fig. 6 Parameter identification and simulated voltage results of the algorithm 

As shown in Fig.6 (a) and (b), the 𝑅1, 𝐶1, 𝑅2, 𝐶2, and 𝑅𝑖 online identification results and the variation of the 

forgetting factor are shown respectively. (b) shows that the forgetting factor varies simultaneously with the 

variation of the parameters, ranging from 0.99 to 0.94. However, there are large fluctuations in the simulated 

voltage errors after bringing the online identification results into the second-order Thevenin model. For example, 

VFFRLS and Comprehensive Learning particle swarm optimization (CLPSO) online identification algorithms 

achieve a maximum simulated voltage error and Mean Absolute Error (MAE) of 0.14 V, 0.114 V, and 0.028, 

0.025, respectively. Therefore, using GLPSO to perform an average global search for the optimal identification 

results of the VFFRLS algorithm, the maximum simulated voltage error and MAE of GLPSO-VFFRLS 

algorithm are 0.03 V and 0.0042, respectively. Besides this, the PSO-VFFRLS algorithm simulates voltage 

errors and MAE is 0.0697 V and 0.01101. The results show that GLPSO-VFFRLS is significantly better than the 

other algorithms and meets the accuracy requirements. 

3.2 collaborative estimation results of SOE and SOH 

HPPC and BBDST working conditions at -5 °C and 15 °C were used to estimate SOE and SOH and verify the 

accuracy of the proposed algorithm in this section. Besides this, the PSO-DEKF, DEKF and long short term 

memory (LSTM) algorithm are used as comparative experiments with proposed algorithm. The SOE and SOH 

estimate results, as shown in Fig. 7, Fig. 8, and Fig. 9.  



 
(a) SOE estimation results at -5 °C 

 
(b) SOE estimation error at -5 °C 

 
(c) SOE estimation results at 15 °C 

 
(d) SOE estimation error at 15 °C 

 
(e) Comparison results of four algorithms MAE 

 
(f) Comparison results of four algorithms RMSE 

Fig. 7 SOE estimation results under HPPC working conditions 

As shown in Fig. 7, the state of energy estimation curve based on the DEKF algorithm has large fluctuates, and 

the phenomenon is particularly obvious with the SOE gradually decreasing. Especially at 15 °C, the PSO-DEKF 

and LSTM algorithms estimate the SOE curve with an increasingly significant fluctuation error, which cannot 

meet the daily requirements. From this, it can be seen that single-objective optimization only leads to 

improvements in individual parameters and cannot achieve the required accuracy. LSTM often shows large 

fluctuations at low state of energy due to underfitting and overfitting problems. In contrast, at ambient 

temperatures of -5 °C and 15 °C, the proposed GLPSO-DEKF algorithm can effectively reduce error 

fluctuations and converge quickly. In particular, the algorithm is more robust at low state of energy. The MAE 



and RMSE of the four algorithms as shown in Fig. 7 (e) and (f). According to (e) and (f), the MAE and RMSE 

of the GLPSO-DEKF algorithm outperformed the other algorithms at all temperatures. For example, at 15 

degrees, the maximum error and RMSE are below 0.01. Thus, the algorithm has better accuracy in the HPPC 

condition. The algorithms estimate results under the BBDST condition, as shown in Fig. 8. 

 
(a) SOE estimation results at -5 °C 

 
(b) SOE estimation error at -5 °C 

 
(c) SOE estimation results at 15 °C 

 
(d) SOE estimation error at 15 °C 

 
(e) Comparison results of four algorithms MAE 

 
(f) Comparison results of four algorithms RMSE 

Fig. 8 SOE estimation results under BBDST working conditions 

As shown in Fig. 8, the four algorithms show low error fluctuations at -5 °C. However, the GLPSO-DEKF 

algorithm achieves a minimum error of 0.0074 and the DEKF algorithm only reaches 0.01. The proposed 

algorithm is significantly better than the other algorithms. At an ambient temperature of 15 °C, the DEKF 

algorithm exhibits large error fluctuations and cannot obtain a stable SOE estimate. However, the proposed 



GLPSO-DEKF algorithm achieves an accurate accuracy of 0.0037 and converges consistently. Similarly, 

according to fig. (e) and (f), the values of MAE and RMSE for the four algorithms are presented. It can be seen 

that the DEKF algorithm is 0.0174 and GLPSO-DEKF algorithm is 0.0088, with the DEKF being twice as large 

as the GLPSO-DEKF algorithm. Besides this, the value of GLPSO-DEKF is 0.5 times smaller than PSO-DEKF 

and LSTM, which again reflects the instability of single-objective optimization and underfitting problem under 

BBDST working conditions. At the same time, this further demonstrates that the proposed GLPSO-DEKF 

algorithm is beneficial in reducing the state of energy estimation error and improving the adaptability and 

robustness. This paper uses the real capacity of lithium-ion batteries with different levels of ageing as reference 

values and performs SOH experiments at temperatures of -5 °C and 15°C under the HPPC and BBDST 

conditions, respectively, as shown in Fig. 9. 

 

(a) SOH estimation results under HPPC test 

 

(b) SOH estimation results under BBDST test 

Fig. 9 SOH estimation results for different aging levels and temperatures 

According to Fig. 9 (a), it can be seen that the algorithm can accurately estimate the true capacity under HPPC 

and BBDST conditions. For example, the capacity estimation errors are 0.006 Ah and 0.0131 Ah at 15 °C and 



-5°C, respectively. Similarly, the capacity estimation errors are 0.062 Ah and 0.0338 Ah under BBDST 

conditions. Besides this, the SOH estimation errors are below 0.02 for both HPPC and BBDST conditions. 

Therefore, the proposed GLPSO-DEKF algorithm can effectively improve the estimation accuracy of state of 

health. 

4. Conclusions 

This paper proposed an improved variable forgetting factor recursive least square-double extend Kalman 

filtering based on GLPSO algorithm for collaborative state of energy and state of health estimation of 

lithium-ion batteries. Firstly, the VFFRLS algorithm can actively change the size of the forgetting factor 

according to the error value in real time. Then, the VFFRLS-DEKF algorithm does not need manual adjustment 

parameters. Specifically, when the VFFRLS-DEKF algorithm is in the iterative process, the global mean particle 

swarm optimization will automatically find the optimal parameters to improve the accuracy of the SOE and 

SOH. In addition, the proposed algorithm is evaluated under different operating conditions at different 

temperatures separately, including HPPC and BBDST conditions at -5 ℃ and 15℃. The experiment results show 

that the proposed algorithm can accurately collaborate SOE and SOH estimation. The MAE and RMSE values 

of SOE are less than 0.016 and 0.011 under two conditions, respectively. Meanwhile, the SOH estimation errors 

are less than 0.02 at different aging degrees. However, the algorithm will have large fluctuations and lead to 

poor results when the battery is at low capacity. In future work, we will try to combine algorithms with neural 

networks to adapt to wide temperature environments and different levels of aging batteries. 
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