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ABSTRACT

This paper considers the stability of a thin film propagating beneath a large quantity of ambient static non miscible lighter liquid and over a sloping
plane. Such configuration that has never been considered earlier can model the spill of a heavy hydrocarbon into the ocean by a tanker. Equations of
conservation of the mass and the momentum were appropriately made non dimensional and a similar solution is proposed in this paper. In this way, an
analytical expression of the hydrodynamic field, say velocity field and pressure field is provided. Then, the equation governing the spatiotemporal
evolution of the water-oil interface was built and solved by a perturbation method. Also, the time evolution of the wave front position along the
inclined plane was built. Finally, the effect of the control parameters on the linear stability of the flow was investigated.

Keywords: Gravity Current, Hydrodynamic stability, Liqui-liquid interface

1. Introduction

Oil spills can be caused by the accidental (ruin of the material
constituting the tank) or intentional (degassing or act of war)

spillage of a large quantity of oil from an oil tanker into the

ocean. The collection, destruction, and storage of the oil that ran
aground on the coast, as well as the coast cleaning are arduous,
dangerous and expensive tasks for the populations living in these
soiled territories (Tansel, 2014; French-McCay, 2004; Reed et al.,
1999). The oil which is spilled in the ocean undergoes three main
phenomena: entrainment on the ocean surface on the one hand and
at the ocean bottom on the other hand and evaporation as well as
physico-chemical reactions with the medium in which it evolves.
Moreover, to date, no universal law makes it possible to determine
a priori the respective proportions of oil in these three processes.
Therefore, an oil spill is a complex phenomenon of which each
process must firstly be controlled before they are put into
competition by a relevant modeling. In this paper, we study the 1D

propagation of a fixed volume of dense fluid (with density p, and

kinematic viscosity v, ) released from a reservoir to the bottom of

a large body of ambient lighter non miscible liquid, static water in

this case (with density 0, and kinematic viscosity V; ). Based on

this description, the phenomenon studied is defined as a lubricated
(a flow in which one dimension, thickness in this case, is
significantly smaller than the others) viscous (the inertial terms in
the momentum equation can be neglected versus the viscous ones)
film flow.
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Figure 1. Intrusion of a dense liquid in a lighter ambient liquid
upon a horizontal plane (Huppert, 1982)
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The ocean is not flat so, for modelling purpose in the present
pioneering study, a basic configuration where the ocean bottom is
an inclined plane is considered as a basic case and is not applied
to a particular real ocean bottom topography. Consequently, the
flow is controlled by gravity, oil/water density difference, oil
viscosity and surface tension.

The lubricated gravity flow of one liquid in another liquid upon
a horizontal plane (termed as gravity current) was investigated
earlier in a unidirectional configuration (figure 1) by Fay (1969),
Hoult (1986), Britter (1979), Didden & Maxworthy (1982) and
Huppert (1982), Kowal & Worster (2019).

In lubrication theory, the Navier Stokes equations describing
the one-dimensional lubricated intrusion (in X -direction) of a
dense gravity current beneath a static large volume of lighter static
ambient liquid reduce to its projection in the X -direction in the
following form :

8214

R (1)

pox 52

where the longitudinal pressure gradient in the current can be
written

op h(x,t)
£ _(Ap)g—22) 2)
= (B0)e—
with Ap=p— P 3)
Inserting Equ.(2) in Equ.(1), we get
2
o u

0=\ )

p o x 822

Self-similar solutions are then sought in the following form where

Xy is the abscissa of the current front.

al )

P49 .a-p
Xy =Ke" s h=—"t f
K xN(t)

Hydrodynamic stability is a fundamental topic of the fluid
dynamics curriculum in schools of engineering. A laminar flow is
said to be stable if a small disturbance superimposed on it vanishes
over time. The flow is unstable if this small disturbance increases
or remains constant over time. The aim of this work is to point out
the control parameters that promote instability in order to provide
reliable information to contribute to the protection of the ocean.
Since Kapitza’s original work on stability of film flow over an
inclined plane (Kapitza &Kapitza, 1949), many papers have been
published on this topic (e.g.: Yih, 1955; 1963, Benjamin, 1957,
Kao, 1964 among others). They found that the critical Reynolds

number Re . » 1.e. the threshold above which some disturbances

will be amplified depends only on the slope and is given by

Re, = %cot 0 (6)

Moreover, very short waves are damped by surface tension.
Kao (1964) extended that basic configuration to flow of a binary
system of two layers of viscous fluids of different densities. More
recently, the shallow water models (e.g.: Ruyer-Quil &
Manneville, 1998 ; 2000) provide a good understanding of the
stability of Newtonian fluids. For power-law fluids, Ng. & Mei
(1994) as well as Hwang & al. (1994) built lubrication models
while Nsom et al. (2019) proposed a generalized Orr-Sommerfeld
model with appropriate definition of non-dimensional numbers.
All of the models existing in literature were restricted to the case
where the flow develops in the atmosphere, while in the present
paper, the case where the ambient fluid is a large volume of static
non miscible liquid is tackled.

The paper is organized as follows. In the second section, the flow
configuration is presented and the equations of motion are
presented and made non-dimensional. These equations of motion
are solved and the hydrodynamic field as well as the interface
profile are derived in the third section. The fourth section is
devoted to the linear stability where Orr-Sommerfeld equation is
built and solved by the method of perturbation and notably the
effects of the different control parameters on the linear stability of
the flow are respectively pointed out. Finally, the fifth presents a
discussion and the conclusions.

2. Problem statement
2.1. Flow configuration

We consider a fixed quantity of a dense viscous Newtonian
fluid (heavy crude oil) spilled at time # = ()~ upon an inclined
plane in the form of a thin film beneath a large quantity of static
lighter non miscible liquid (sea water jn this case) between
abscissa film tail tt))c = —/ )and film front <x = (). Downstream,
the film front is occupied by the ambient static liquid. At initial
time, £ = Q" the film flows downstream the sloping plane with
slope @ and length L, with L >> [ and beneath the ambient

static liquid. The width of the flow system is infinite.

The quantities referring to lighter ambient static liquid have the
subscript 1, while those referring to the heavy viscous liquid
contained in the reservoir at negative time and that will undergo
the flow have the subscript 2. Typically, we have 0, > P, . The
flow configuration is presented on figure 2.

:
:
E
A

Figure 2. Flow configuration
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2.2. Equations of motion

If V; (U I; ,0,0) and FE: denote the velocity field and the
pressure field in the gravity current that propagates downstream
the inclined plane, the 1D flow in hand is governed by the
conservation equations of the mass (Equ.(7)) and of the
momentum (Equs.(8)-(9)). They write:

ou; _

predally (M

which brings that U, =U, ()

U*aug BPb 02U}, 6 0%U; N in(6)

Pz( bax*) T + Uy 6(x Y2 6(y) P29 sin
(®)

0=—-—-— + p.g cos(6) )

3. Bas1c laminar flow
3.1. Hydrodynamic field

Equ.(9) shows that the pressure field is hydrostatic so it writes
By (y) = —pygy*cosd+B (10)
Denoting the atmospheric pressure by Pmm , the constant of
integration B is determined by equating at the interface, the
pressure in ambient liquid given by Pascal law as
A (mt elffczce) = p,gH + P, with its yalue in the denser
liquid given by Equ(10) as P, (ll‘lt erface) =B.
Consequently, the pressure field in the gravity current has the
following expression:

Pi(y) = —p,gy*cos 6 + p,g [(Hy — Lsinf) — h*(x*) cos 0] +
Patm

(11

Introducing that expression of the pressure field in Equ.(8), we
get

d*U; L oh* P
M2 =>—<7 d(y*)2 = TP1g oSt T P29 sin
(12)
whose general solution writes
. (y* 2 ah*
#Up(y) = —g=—5—|prcosf-——p,sinf| + Kiy + K,

(13)

The constants of integration K  and K , are determined by
the boundary conditions. The first boundary condition is the no
slip condition at channel bed, i.e.

Up=0 at y*=—h* (14)

while the second boundary condition expresses the continuity
of the shear stress at the interface. Assuming the ambient liquid
(water) to be a perfect fluid, it writes

aut
uzﬁzo at

o =0 (15)

After straightforward calculations, the velocity field is obtained
with the following expression

dh*
Up(y) = — hmwd—mmdwy (h)?]

(16)

3.2. Evolution equation of the interface

To form the evolution equation of the interface, the continuity
equation is written in its global form, i.e.

dh* 0 h
* 2 *| —

(17)
Using the expression of the velocity field given by Equ.(16),
the integral appearing in Equ.(17) writes

6h* sin 8
" cos@

(p, pl)g cos @

fwww=— [CoRE (]

(18)

So, equation of continuity takes the form

oh*(x*, t) B (py — p1)g cos @
ot 121

2
{a( 57 1) 6] —4rge—[(h ) 1}
(19)

Assuming the following set of non-dimensional functions and
variables in which the characteristic height of the gravity current
H ; the characteristic abscissa is L and the characteristic
longitudinal velocity U

U H3g cos @
U= (p2—-p1)H’g =

h
U 12usL ’ H

o
x = T;U” =

(20)

with the lubrication assumption H << L and the

. . L
characteristic time is derivedas T = 5

Equ.(18) takes the following non-dimensional form

oh 9?%[h*] 4l d[h3] —0
at 0x? + ox
(2D
Parameter A is defined as
A =2tg 22
=58 (22)
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3.3. Interface profile
3.3.1 Spatiotemporal equation of interface profile

Flow upon an inclined plane is governed by Eqs.(20) whose
meaning is that the convective term is balanced by the summ of
the two others. Meanwhile these two tems are not of the same order
of magnitude. The order of magnitude of the second term of

4
H
Equ.(21) is — while the order of magnitude of the third term is
L

H3
——. From the lubrication assumption the second term of
L

Equ.(21) is much smaller than the third one so, it can be neglected.
Consequently, Equ.(21) becomes

-l
—+41 =0 23
ot ox (23)

We seek similar solutions to Equ.(23) of the form

h(x,t) =D- x'B 17 (24)

where D, 8,7 are constants that we can determine by inserting

the form assumed for the solution Equ.(24) in the equation of
motion (Equ.(23) we find

1
B=r=Y, D= 25)

Inserting these values in Equ.(24), the interface evolution
equation writes

1 X
)= —— | (25)
() 2@\/7

Fig.3 and Fig.4 show for assigned parameter A the variation
of fluid height vs. abscissa at given time and vs. time at given
abscissa, respectively. It can be noticed that the smaller parameter
the greater fluid height. That flow characteristic is explained by

the fact that the higher parameter A , i.e. the higher the slope for
given ratio H/L , the greater the gravity effect. Moreover, Fig. 3

exhibits the general space evolution of a gravity current.
Immediately following the initiation of the flow, an inertial regime
takes place where the inertia dominates the other effects present in
the flow and equation of characteristic tangent is given by
h = 4x . During the development of the inertial regime where the

equation of characteristic tangent is given by s =0.75x, the
viscous effects increase to the point of becoming dominant. The
viscous regime then settles over a given distance, until an
equilibrium is reached which characterizes the asymptotic regime

where the equation of characteristic tangent is given by 7 = 0.2x

0.45 .
—A=05
04F |=----A=07
............. A:O‘Q
0.35} v
Asymptotic =
0.3 Viscous regim i =
~0.25} Inertia regyme —__,—' e
L regime L “ e

0 e "
0 0.2 0.4 0.6 0.8 1
X

Figure 3. Variation of fluid height vs. abscissa at given time and

for assigned parameter A

0.8 1
Figure 4. Variation of fluid height vs. time at given abscissa and
for assigned parameter A

3.3.2 Law of evolution of the front

To determine the law of evolution of the front abscissa x 7o we

state that the fluid volume V is equal to a constant O , that is
equal (see Fig.2) at any time ¢, per unit width in non dimensional
variable to

A
- - =5 27
2@{)& @0

Taking one quadrature of Equ.(27), we get

% (28)

xf:Ct

where

C= [32% 5% ] (29)
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Fig. 5 shows, for assigned value to parameter A, the time
variation of the abscissa of film front vs. parameter O . It can be

noticed that the higher parameter O , the greater front abscissa.
That flow characteristic is explained by the fact that the higher
parameter O , the greater the liquid volume and consequently the
faster the flow.

2.5 '
........... §6=0.3
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0 : : . .
0 0.2 0.4 0.6 0.8 !

t

Figure 5. Time evolution of front abscissa for given parameters

A and O

3.3.3 Interface profile
Combining the results of the two previous sections, the whole
interface can be shown. A master curve is obtained for given

parameter A and the front is obtained to close the interface
downwards after computing front abscissa, for assigned parameter

O . As shown in Fig.6 where the interfaces corresponding to three
flow configurations from the same master curve obtained with

A = 0.5 and the respective fronts can be drawn, considering the

corresponding value of parameter & , namely 0.3 ; 0.5 and 0.7 in

this case
25
—2=0.5
-==2=0.7
2 —1=0.9 B}
15 T T
= e -
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Figure 6. Interface profile
4. Linear stability analysis
4.1. The Orr-Sommerfeld equation

If, from Equ.(16), we take the surface velocity as the reference

velocity U, i.e.

*
Ug(y =0)= i[pl cosﬁ% +py sinﬁ}[(h *)2}
2/12 X

(30)

Then, in non dimensional form, the velocity field of the basic
flow field writes
_ 2
Uy)=1-y (3D

where the flow depth has been used as reference length defining
the non dimensional normal coordinate ) .

To investigate the linear stability of the previous laminar steady
basic flow, a small 2D perturbation with velocity field
[ulx,y,0)]; [v(x,y,t)] and pressure field [p(x,y,t)] is
superimposed to the above steady basic flow. Using the
characteristic length, velocity and time defined in Equ.(20), the
equations of conservation of mass and momentum are written in
non dimensional form for the resulting hydrodynamic field with

[ljr(Up,ij,Pp}

Up= Ub(y)+u(x,y,t); Vp = v(x,y,t);

+——sind

Py =B, (x,)+ plx.y.1) (32)
in the following form:
ou, ov
P, 7P _y (33)
Ox Oy
o’u, U
ou oUu ou oP 1 )4 P
P, Py p__"pr,
P p B 2 2 2
ot ox oy ox Re| py oy Fr
(34)
0%, o
vy Vp p Py, 1 p P | cos@
+U P + Vp =—+— > 2 3
ot Ox oy oy Re| p oy Fr
(35)
where Reynolds number, Froude number respectively defined
as
LU
Re = P2 ;o Fr= v (36)
Hy Vel

have been sorted as non dimensional control parameters of the
flow.

The disturbance superimposed to the basic laminar steady flow
produces a deformation ﬁ(x, y,t) of the interface. To satisfy

identically the continuity equation, we introduce a stream function
y(x, y,t) according to :

W, ,t) = o0y(x.p.t)

u(x,y,;):a‘/}(x’y’t) :
X

o 5
G37)



International journal of COMADEM

Assuming that the instability sets with respect to long waves as
in the case where the flow develops in open atmosphere (Liu et al.,
1993 ; Smith, 1990 ; Kelly & Goussis, 1989), we investigate the
linear regime where the waves are sinusoidal, where the stream
function, the perturbation on the free surface and the pressure field
can be expanded in normal modes repectively with the form :

i =p()eel) i=nlpiebet)

. (38)
A —ct
p= p(y)ela(x c )

We consider a temporal analysis where the wave number & is
real and is viewed as a small parameter, while the wave speed €
is complex with the form ¢ =¢;. + ic; and [ is the imaginary unit
defined by i% = —1.

Substituting the disturbance hydrodynamic field described by
Equs.(37)-(38) in the equations of motion (Equs.(33)-(34)), we get
after a straightforward handling:

V/vvvv_zal.y/vv+a4(// _ iaRe‘ (U _ Clwu_aél//J _ U”(// ‘

(39)

Equ.(39) known as the Orr-Sommerfeld equation (Orr, 1907,
Sommerfeld, 1908) governs the stability of a Newtonian fluid over

a sloping plane. The effect of the ambient liquid, water in this case,
is described by the following boundary conditions.

a/ The no slip condition

u=0 and v=0 at y=0 (40)

Using Equs.(37), we get in terms of stream function:

w'=0 and w=0 at y=0 41)

b/ The kinematic condition

YO0 —(c—Dn=0 (42)

¢/ The dynamic condition

Y(0) + a*y(0) +nD?(0) = 0 (43)

Y+(0) + (3a2 — iaRe(c — 1) )°(0) + iaRe (= + <) =
0 (44)

where a fifth characteristic non dimensional quantity We* and
which can be turned as a characteristic Weber number, defined as

UpL
We*zpooo
Yo

(45)

Has been introduced, while the following relation exists
between the Reynolds number and the Froude number

__ Re'tanp
2

Fr+ (46)
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In the next sections, Orr-Sommerfeld equation given by
Equ.(39) with the associated boundary conditions governed by
Equs.(41); (42); (43); (44) can be solved analytically, using a
perturbation method. In that analysis, the velocity field of the basic
flow in non dimensional form was obtained in Equ.(38) and it is
assumed following Charru (2007)that a’/We =
0(1). Furthermore, the celerity and the stream function can be
investigated in the form of power series of that small parameter,
say: ¢ =co+ac; and Y(y) = Yy(y) + ay,(y) respectively.
The index gives the order of the solution.

In fact, Nsom et al. (2019) proposed a generalized model for
shear thinning fluid over an inclined plane surrounded by the
atmosphere that reducgs to the previous model if power-law index
equals unity ?‘ = 15, i.e. for Newtonian fluid. So, a similar
solution can be derived, provided that in the solution built by
Nsom et al. (2019), we put gn =1). Notably, the following
results can be derived, where the subscript on the non dimensional
parameters Re, Fr, We will be dropped, for making the notations

simpler.
5. Solution

5.1. General solution

The problem at order zero is governed by Orr Sommerfeld
equation (Eq.(39)) associated with boundary conditions (Eqgs.(41);
(42); (43); (44)) in which we put a = 0. Its solution writes for the
stream function say y®

PO =nly +1)? 7
and for the celerity say c(©
@ =2 (48)

This result is similar but not identical to the one obtained by
Nsom et al. (2019) and Charru (2007). Indeed, the solution
description is the same but the expression of the interface velocity
U o 1s not the same.

At first order, the problem is governed by Orr Sommerfeld
equation (Eq.(39)) associated with boundary conditions (Eqgs.(41);
(42); (43); (44)) in which we put & = 1. Its solution writes for the
stream function say 1™

DD (y) = iRe ((Uo —c@)p2 — DZUO) YO
(49)

Whose solution provides celerity at first order in the form

2
ClZiR€£<1—E(l+_a ))
15 8 \F | we

(50)
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5.2 Marginal stability and parametric study

The marginal stability states correspond to ¢; = 0. As Reynolds
number and Froude number are related by Equ.(46), the latter
secular equation f%qu.(49)) involves two parameters  say,
Reynolds number ™€ and reduced wavenumber @°/ . For
assigned value of any of these parameters, Equ.(49) is solved by a
shooting method. A trial value is given to one of them and the
value of the other parameter is sought in order to satisfy Equ.(49).

So, for given slope, the marginal stability curve is obtained as
follows: a value of reduced wavelength is fixed and growing
Reynolds numbers are used for computing Equ.(49). The values
obtained for celerity c, are negative (defining stable flow) and then
positive (defining unstable flow). Stable and unstable flows are
separated by the marginal state where ¢; =0 and the
corresponding value of the Reynolds number defines the critical
Reynolds number noted Re,.

1.5

Stable 2

a’/We

Unstable
0.5¢

100 150
Re

0 50 200

Figure 7. The marginal stability curve separating the stable states
from the unstable ones for assigned flow configurations.

The computations brought out for gentle slopes, such that 1° <
B < 6° (Allouche, 2015 ; Nsom et al., 2018) lead to the marginal
stability curves presented in Fig.7. They show that when the slope
increases, the critical Reynolds number decreases for given
reduced wavelength. Moreover, as we can see in Fig.2, inertia acts
along the x — axis while pressure (hydrostatic) acts along the y —
axis. Therefore, inertia has a destabilizing effect while pressure has
a stabilizing effect.

6. Discussion and Conclusions

The stability of a thin film propagating beneath a large quantity
of ambient static non miscible lighter liquid and over a sloping
plane was considered theoretically. Such configuration that has
never been considered earlier can model the spill of a heavy
hydrocarbon into the ocean by a tanker, following a voluntary or
accidental degassing or an act of war. Equations of conservation
of the mass and the momentum were appropriately made non
dimensional and a similar solution was proposed in this paper. In
this way, an analytical expression of the hydrodynamic field, say
velocity field and pressure field is provided. Then, the equation
governing the spatiotemporal evolution of the water-oil interface
was built and solved by a perturbation method. Notably, three flow
regimes were identified, say the inertial the viscous and the
asymptotic regime in the height spatiotemporal evolution, for

11

assigned aspectratio A . Also, the time evolution of the wave front
position along the inclined plane was built.

Notably, an appropriate non dimensional form of the velocity field
shows that it is similar to the case where the surrounding fluid is
the atmosphere but with a different average velocity.
Consequently, the stability analysis of both configurations and the
results of both problems were similar. Notably, the solution to the
secular equation showed that at zeroth order, there is no instability
with respect to the long wave perturbations considered.

At first order, the secular equation was solved numerically by a
shooting method. The marginal stability curve was built and the
effect of the different forces acting on the flow has been pointed
out. It was particularly shown that pressure and surface tension
have a stabilizing effect, while inertia has a destabilizing effect.
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