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 

Abstract—Despite of various approaches proposed to smooth 

the hyperspectral images (HSIs) before feature extraction, the 

efficacy is still affected by the noise, even using the corrected 

dataset with the noisy and water absorption bands discarded. In 

this study, a novel spectral-spatial feature mining framework, 

Multiscale Superpixelwise Prophet Model (MSPM), is proposed 

for noise-robust feature extraction and effective classification of 

the HSI. The prophet model is highly noise-robust for deeply 

digging into the complex structured features thus enlarging 

interclass diversity and improving intraclass similarity. First, the 

superpixelwise segmentation is produced from the first three 

principal components of an HSI to group pixels into regions with 

adaptively determined sizes and shapes. A multiscale prophet 

model is utilized to extract the multiscale informative trend 

components from the average spectrum of each superpixel. Taking 

the multiscale trend signal as the input feature, the HSI data are 

classified superpixelwisely, which is further refined by a majority 

vote based decision fusion. Comprehensive experiments on three 

publicly available datasets have fully validated the efficacy and 

robustness of our MSPM model when benchmarked with eleven 

state-of-the-art algorithms, including six spectral-spatial methods 

and five deep learning ones. Besides, MSPM also shows superiority 

under limited training samples, due to the combined strategies of 

superpixelwise fusion and multiscale fusion. Our model has 

provided a useful solution for noise-robust feature extraction as it 

achieves superior HSI classification even from the uncorrected 

dataset without prefiltering the water absorption and noisy bands. 

Index Terms—Hyperspectral image (HSI); Multiscale Prophet 

model; Spectral-spatial feature mining; Superpixel segmentation.  

I. INTRODUCTION

OWADADYS, with the enhanced sensor and communication 

techniques, increasing spectral ranges and bands can be

obtained in HSIs [1, 2]. The rich spectral information in an 

HSI allows for accurate discrimination of materials with subtle 

spectral differences than panchromatic and multi-spectral 

images [3]. As a result, the HSI has been widely used in a wide 

range of applications, such as salient object detection [4], 

peated barley malt analysis [5], beef quality evaluation [6], 

corneal epithelium injuries classification [7] and fingerprint 

anthocyanins extraction [8] et al.  
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Often, pixel-level mapping is widely used for classification 

of the HSI [9], where a certain number of pixels in each class 

should be labelled in prior for training a supervised classifier 

[10], such as the popularly used support vector machine (SVM) 

[11]. Due to the limitations of the sensors, environmental 

factors, and even atmospheric effects, there inevitably exist 

bands with a low signal-to-noise ratio (SNR)  [12]. Even after 

removal of these water absorption bands and noise bands, the 

resting bands still contain severe noise [13]. This would 

unavoidably degrade the subsequent feature extraction and 

classification, especially under limited training samples and 

severely unbalanced distributions in different classes.  

To tackle these challenges, the feature mining of an HSI has 

gained increasing attention recently in both the spectral and 

spatial domains [1]. Typical techniques for spectral feature 

mining include the principal component analysis (PCA) [14], 

non-negative matrix factorization (NMF) [15], empirical mode 

decomposition (EMD) [16] and the singular spectrum analysis 

(SSA) [13], which have shown good performance in preserving 

the dominant spectral information whilst  removing the noise. 

However, most of these techniques only utilize the spectral 

information, which fail to deal with the objects with low inter-

class heterogeneity and low intra-class homogeneity [17, 18].  

There are also many spatial feature mining methods, such as 

the Gabor filter [19], morphological profile [20], sparse 

representation [21], 2D-EMD [16] and 2D-SSA [3]. In addition, 

a supervised spectral-spatial classification approach was 

proposed in [10],  which features a spectral data fidelity term 

derived from the sparse multinomial logistic regression 

(SMLR)  and a spatially adaptive Markov Random Field (MRF) 

prior model constructed via spatially adaptive total variation 

regularization (denoted as SMLR-SpATV). This method could 

spatially smooth the images and gain robust results of 

classification even with very limited training samples.  

Besides, the deep learning methods, which can extract latent 

structure features in spatial and spectral domains, have recently 

drawn increasing attention in classifying HSIs. Typical 

methods include the diverse region based convolutional neural 

network (DR-CNN) [22], the spectral-spatial cascaded 

recurrent neural network (SSCasRNN) [23], the Gaussian-

Bernoulli restricted Boltzmann machine (GBRBM) in parallel 
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[24], the fully convolutional segmentation network (FCSN) [2] 

and the segmented autoencoders using only the spectral features 

[25]. However, their results depend heavily on the network 

structure and the training strategy, where the results can be quite 

poor when there are insufficient training samples [26].  

In most of the aforementioned approaches, spatial-spectral 

classification produces much improved results, where often the 

spatial region adopted has a fixed size and shape. This actually 

differs from real cases where the regions of interest are usually 

irregularly shaped and inconsistently sized [20]. Therefore, the 

spatial regions used for feature mining should be adaptive to the 

specific structures of the image. To this end, the superpixel has 

been employed to adaptively extract the spatial features for the 

object based HSI classification [9, 20, 26]. The superpixels in 

an image are local homogeneous regions with different sizes 

and shapes, where smooth areas tend to form larger superpixels 

while superpixels from heterogeneous areas tend to be much 

smaller. In fact, superpixel is found effective to represent the 

spatial-contextual information and improve the classification 

[12]. In [9], multiscale superpixel (MSP) segmentation and 

subspace-based support vector machine (SVM), SVMsub, are 

combined for spectral-spatial classification of HSIs. By using 

the simple linear iterative clustering (SLIC) for extracting 

superpixels, multiscale spatial features are combined and fused 

for improved classification of HSIs. In [26], the superpixel was 

combined with the conventional SSA and 2-D SSA for the HSI 

classification, where the local spatial features are adaptively 

extracted based on the  size of the extracted superpixels.  

However, most of these spectral/spatial feature mining 

techniques fail to deal with the noisy bands, as they are often 

tested on the corrected datasets with the water absorption bands 

and noisy bands removed. In practical applications, this will 

cause information loss and also extra burden to filter these noise 

affected bands. To tackle the noisy bands rather than simply 

removing them, a few advanced denoising approaches have 

been developed in recent years, such as low-rank representation 

(LRR) and superpixel segmentation based denoising (denoted 

as SS-LRR) [12]. In [27], the low-rank matrix approximation 

and an iterative regularization framework is proposed to 

denoise the low SNR bands while preserving high-SNR bands. 

In [28], the subspace LRR was used to decompose an HSI into 

two lower-rank sub-matrices, using superpixel based 

segmentation to exploit low rank in local spatial regions. 

However, these approaches pay more attention on the denoising 

rather than extraction of the discriminative features for data 

classification in an HSI. In [29], we proposed a multiscale 2D-

SSA with principal component analysis (2D-MSSP). By fusing 

the spatial features of 2D-SSA in different scales, it shows 

promising performance in noise-robust feature extraction even 

on the uncorrected HSI datasets.  

As a recently developed forecasting tool by Facebook, the 

Prophet model can deeply analyze data by decomposing it into 

different components whilst well preserving the trend 

component and the most informative part of signal [30]. The 

derived trend component is jointly decided by the information 

of former data in the series, making it robust to any missing or 

highly noisy data. The HSI also characterizes a sequential data 

though in the spectral domain [28], which contains highly 

nonlinear scattering noise and even missing data, thus it 

motivated us to apply the Prophet model in analyzing the HSI. 

In this paper, a novel multiscale superpixelwise Prophet 

model (MSPM) is proposed for noise-robust feature extraction 

under small training size. With the exceptional capability of the 

Prophet model in noise-robust trend extraction and data 

prediction for enhancing features with improved interclass 

diversity and intraclass similarity, we aim to realize improved 

classification even on the uncorrected HSIs. The major 

contributions of this paper can be summarized as follows:  

(1) The proposed MSPM model can simultaneously

denoising the data whilst extracting the noise-robust features of 

an HSI, even from the uncorrected dataset without removing or 

denoising the water absorption bands and severely noisy bands; 

(2) It is the first time the Prophet model is applied in HSIs,

where the proposed MSPM can adaptively extract the trend 

components in different scales based on the characteristics of 

the input data. The fusion of multiscale trend components can 

extract effective features under unknown noise levels, which is 

beneficial to the HSI classification; 

(3) With both multiscale superpixelwise spatial-spectral

feature-level fusion and decision-level fusion, the proposed 

framework is found to be effective for the HSI classification 

even under limited training samples, which has outperformed a 

number of state-of-the-art approaches including conventional 

spectral-spatial classifiers and several deep learning models as 

evaluated on three publicly available datasets. 

The remainder of this paper is organized as follows. Section 

II introduces the principles of the Prophet model. Section III 

presents in detail the proposed MSPM framework. The design 

of experiments including the testing datasets and parameter 

settings are discussed in Section IV. Section V presents the 

experimental results and analysis, followed by some concluding 

remarks drawn in Section VI.  

II. PRINCIPLES OF THE PROPHET MODEL

A. Concept and Algorithm of the Prophet Model

As a recently developed forecasting tool by Facebook for

analyzing time-series data of business [30], the Prophet model 

blends the advantages of judgmental and statistical modelling 

to convert the forecasting problem as a curve-fitting task. As a 

nonlinear and decomposable model, the Prophet model can 

deeply analyze data by decomposing a given time-series 𝑦(𝑡) 

into different components, in which the trend component 

represents the most informative part of signal.  

𝑦(𝑡) = 𝑔(𝑡) + 𝑝(𝑡) + ℎ(𝑡) + 𝜀𝑡                   (1)

where 𝑔(𝑡) is the trend component modelling the non-periodic 

changes; 𝑝(𝑡) is the periodic seasonality component i.e., daily, 

weekly or annual seasonality; ℎ(𝑡) denotes the holiday effects 

which usually appear on irregular schedules over one or more 

days; 𝜀𝑡 is the error term assumed in the normal distribution.  

The trend component represents the most informative part 

of signal, which is widely defined by a logistic function [30].  

𝑔(𝑡) = 𝐶 (1 + 𝑒−𝑟(𝑡−𝑚))⁄                        (2)

where C is the carrying capacity determining the maximum 

value of 𝑔(𝑡), r denotes the growth rate and m is an offset 

parameter. In ( )g t , the growth rate r is defined to characterize 

the changes in trend component. More specifically, there are S 

changepoints are set over the whole time t. At each changepoint 

𝑠(𝑠 = 1, … , 𝑆), the growth rate r is set to change for better 
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curve-fitting. The rate change is defined as 𝜹 ∈ ℝ𝑆, where 𝛿𝑠

denotes the rate change at the s-th changepoint. Therefore, the 

growth rate 𝑟𝑠 at any changepoint is calculated by adding the 

rate adjustment to the former growth rate.  

   𝑟𝑠 = 𝑟𝑠−1 + 𝛿𝑠                                   (3) 

where the base rate r1 is determined by the Stan’s L-BFGS [32] 

and the rate adjust vector 𝜹 is represented by a sparse prior via 

a Laplace distribution: 𝛿𝑞~laplace(𝜏). The more explanations

are given in Section IV.B. Based on the growth rate, the 

parameter m is correspondingly updated for connecting the 

trend at different changepoints. The adjustment on m at the s-th 

changepoint is defined as ∅𝑠. Thus, the offset value m at s-th 

changepoint is given by: 

 𝑚𝑠 = 𝑚𝑠−1 + ∅𝑠                                 (4) 

where the base offset m1 is also defined using the Stan’s L-

BFGS. The ∅𝑠 is calculated as: 

∅𝑠 = (𝑠 − 𝑚1 − ∑ ∅𝑞𝑞<𝑠 )(1 − 𝑟𝑠−1 𝑟𝑠⁄ )           (5)

where ∅1 is set to 0.  

Business time series usually possess periodic phenomena 

due to the associated repeated seasonal behaviors [31]. To 

achieve this, the period function of t is employed as the 

Seasonality in the model. It employs a standard Fourier series 

to flexibly approximate the seasonal effects. 

𝑝(𝑡) = [cos (
2𝜋(1)𝑡

𝑀
) , … , sin (

2𝜋(𝑁)𝑡

𝑀
)] 𝜷           (6)                                             

where M represents the expected regular period of data (e.g., M 

= 7 for weekly series when using days as the time scale). The 

parameter vector 𝜷  is set to satisfy 𝜷~Normal(0, 𝜎2) . The 

factor N affects the fitting performance on the seasonality, 

where a large N results in more decomposed terms in 𝑝(𝑡). It 
allows seasonal patterns change more quickly with an increased 

risk of overfitting [30, 31].  

In the forecasting of business time series, the holiday’s 
effects are incorporated in a straightforward way based on 
the prior knowledge of the events as follows: 

ℎ(𝑡) = 𝑍(𝑡)𝜿                              (7) 
where 𝑍(𝑡) = [1(𝑡 ∈ 𝐷𝑎𝑦1), … ,1(𝑡 ∈ 𝐷𝑎𝑦𝐿)] is an indicator 

signifying if a time t is in the period of holiday events. The 
factor Day is the predefined holiday days. The parameter 𝜿 

denotes the magnitude of the change caused by the 

corresponding holiday events in the forecast, which is 
defined as 𝜿~Normal(0, 𝑣2).  Further details about the 
Prophet Model can be found in [30, 32]. 

B. Enhancing Features of HSI with the Prophet Model

From Eqs. (3-5), it is clear that the derived trend component

𝑔(𝑡) is decided not only by the input data at time t but also by 

all information of the former data jointly in the time-series. 

Therefore, when the input data at time t is corrupted by noise, 

the obtained 𝑔(𝑡) can avoid the negative effect of noisy data 

and still derive the correct information. As such, the Prophet 

model has great potential to analyze the complex uncorrected 

HSI with noisy and water absorption bands. By taking the 

spectral data in hundreds of bands as a time-series, we can gain 

insights into an HSI, including decomposing the spectral 

profiles into different components to derive the informative 

parts i.e., the trend, and mitigate the noise in an HSI.  

For effective feature extraction, it is necessary to deal with 

the subtle interclass difference and large intraclass variations of 

an HSI [33]. In order to evaluate the feature characterization 

ability of Prophet on HSIs, the interclass and intraclass 

variations are calculated and assessed in this section. Here, 

some classic feature extraction approaches, such as 1D-SSA 

[13] and Mean filtering are compared with Prophet model. The

raw spectral profiles are taken as the baseline for comparison,

too. Besides, the Prophet model with and without seasonality

settings are also evaluated to test the effects of seasonality

components in feature extraction of an HSI. For 1D-SSA, the

window size is set to 5 × 5. Only the first component is used

for eigenvalue grouping according to the recommended

configurations [3, 13]. The size for the mean filtering is set to

5 × 5. In the Prophet Model, the values of parameters 𝜏, 𝜎 and

N are set to 25, 30 and 3 empirically in this test.

For evaluating how the Prophet model may affect the 

interclass diversity and intraclass variance, the Kullback-

Leibler divergence [34] is employed, which is based on the 

information entropy theory to quantify the dissimilarity (or 

difference, distance and discrimination) between different data. 

Here, the Salinas dataset [35] is taken as an example. For each 

comparing approach, ten samples are randomly selected from 

each class of the 16 labelled classes. The Kullback-Leibler 

divergences among the samples from every two classes, each 

with all other classes on average, and within each class are 

calculated. The results of interclass and intraclass Kullback-

Leibler divergences are shown in Fig.1. 

 (a)

(b) 

Fig.1.  The Kullback-Leibler divergence of classes in the Salinas dataset: (a) 

interclass divergence, (b) intra-class divergence. 

As seen in Fig. 1, the Prophet model achieves the highest 

interclass Kullback-Leibler divergence and lowest intraclass 

Kullback-Leibler divergence in most classes. That is, the 

Prophet model can effectively improve the disparity between 

classes and similarity within each class, which would help 

enhance further data classification [36]. This validates the 
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potential of Prophet in an HSI feature extraction. The raw 

spectral profiles (Baseline) contain much noisy information. As 

shown in Fig.1, compared with Mean filtering and 1D-SSA, the 

Baseline exhibits higher interclass and intraclass Kullback-

Leibler divergence. As for Mean filtering, it performs better in 

classes #1, #3, and #15 on interclass disparity and classes #2-

#4, #7-#9, and #11 on intraclass similarity. The 1D-SSA shows 

higher interclass Kullback-Leibler divergence on the class #6 

and better intraclass Kullback-Leibler divergence on the classes 

#1, #10, #12, and #14-#16. The main reason for the inferior 

performances of 1D-SSA and Mean filtering is that they filter 

out the noisy contents only using the local information within 

each sliding window size. On the contrary, the Prophet model 

can suppress the noisy and reconstruct data based on the 

contextual spectral information in former bands. In addition, 

from Fig.1, we can find that the Prophet model without 

Seasonality shows better results, i.e., higher interclass 

Kullback-Leibler divergence and lower intraclass Kullback-

Leibler divergence in most cases. This may be due to that it is 

difficult to use the periodic Seasonality settings to characterize 

the complicated non-periodic changes in HSI spectra. The 

results from the Indian Pines and PaviaU datasets are given in 

Figs. S1 and S2 of the Supplementary material, which are 

consistent with the findings here. Thus, in this paper, we use the 

Prophet model without Seasonality for the further feature 

extraction and data classification.  

III. THE PROPOSED APPROACH

The flowchart of the proposed MSPM approach is depicted 

in Fig. 2, which has three main stages, i.e., multiscale 

superpixelwise spatial constrained smoothing, multiscale 

Prophet model based feature extraction, and superpixelwise 

HSI classification and fusion, as detailed below.  

A. Superpixelwise Spatial Segmentation and Smoothing

In general, adjacent pixels in an HSI often share the similar

spectral profiles because of the same surface material. Through 

superpixelwise segmentation, these pixels can be grouped to 

one region (superpixel) whilst the whole image is segmented 

into homogeneous regions with adaptively determined sizes and 

shapes. To ease the computational cost, the PCA is applied onto 

the original HSI dataset to extract the first three principal 

components to form a pseudocolour image. The SLIC [37] 

method is then selected and applied to this pseudocolour image 

for superpixelwise segmentation of the HSI, as the SLIC can 

produce accurate boundary adherence yet with a low 

computational complexity [9].  

Specifically, the SLIC starts with k initial cluster centres 

distributed on an evenly spaced grid, where k is the desired 

number of superpixels. It clusters on a square region sized of 

2𝑅 × 2𝑅 around the centres, where 𝑅 = √𝑛 𝑘⁄  denotes the 

segmentation scale, and n is the total number of pixels of the 

HSI. For measuring the homogeneity of a superpixel, a distance 

between two pixels 𝐷𝑖𝑠𝑡(𝑖, 𝑗)  is defined, which includes the 

spectral distance to measure the spectra similarity and the 

spatial distance to estimate the regularity, proximity and 

compactness of these two pixels, respectively:  

𝐷𝑖𝑠𝑡(𝑖, 𝑗) = √|𝑥𝑖 − 𝑥𝑗|
2

+ 𝐺 𝑅2|𝑝𝑖 − 𝑝𝑗|
2

⁄  (8) 

where the spatial coordinates of the two pixels 𝑥𝑖 and 𝑥𝑗 are 𝑝𝑖  

and 𝑝𝑗 ; G is a geometric factor to balance the relative 

importance between the spectral and spatial features.  

Mapping Spectral Features

Original HSI

Multiscale Superpixel Maps

Spatial Constrained 

Spectral Smoothed Image

PCA SLIC

PCA 3 bands

Scale 1

Scale 2

Scale n

Multiscale Prophet Model

SVM

1

Multiple 

Classification Maps

Decision Fusion

Final Map

Scale 1

Scale 2

Scale n
T

2

Fig.2.  The flowchart of the proposed MSPM method. 

For each superpixel in the generated segmentation results of 

the superpixel maps, the location indices of all its pixels will be 

recorded and mapped to all the spectral bands, resulting in non-

overlapping 3-D superpixels [20]. In this way, each superpixel 

contains a group of adjacent pixels in D dimensions. As shown 

in Fig.2, superpixelwise spatially constrained image smoothing 

is then employed to remove the noise. Specifically, for each 

spectral band, the mean value of all pixels within the superpixel 

is taken as the value for that superpixel. In other words, 

superpixelwise mean spectral vectors are calculated to replace 

all pixels within each superpixel. In this paper, rather than 

setting a fixed segmentation scale for each dataset, we adopt a 

multiscale superpixel strategy, in which a set of segmentation 

scales are applied to different datasets when generating multiple 

superpixel maps for improved feature extraction.  

The superpixelwise image smoothing can remove the noise 

within each superpixel to some extent. Besides, the next 

Prophet operation will only need to be applied to the mean 

spectral vector of each superpixel, which can significantly 

improve the efficiency of the following-on analysis. 

B. Superpixelwise Multiscale Prophet Model

The Prophet model without the Seasonality was used for the

further image process. Specifically, for the k-th superpixel in 

one superpixel map, let 𝑆𝑃𝑘,𝑑 denote its superpixelwise mean 

spectra at the d-th band gained in Section III.A, and the spectra 

data from all bands would form a vector  𝑺𝑷𝑘 . The trend 
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component in 𝑆𝑃𝑘,𝑑
𝑔

 can be derived via Eq. (3) as: 

𝑆𝑃𝑘,𝑑
𝑔

= 𝐶𝑘 (1 + 𝑒−𝑟𝑑(𝑑−𝑚𝑑))⁄  (9) 

where 𝐶𝑘 is the carrying capacity of the k-th superpixel, which 

is determined based on the input spectra, i.e., the maximum 

value among the spectra of all bands, 𝐶𝑘 = max
𝑑∈{1,…,𝐷}

𝑆𝑃𝑘,𝑑. For 

better capturing the statistical spectral-spatial structures in an 

HSI throughout the whole bands, we define each band as a 

changepoint. This can help to extract the local shifts of the 

superpixelwise profile among consecutive bands. Based on the 

Eqs. (3)-(5), the 𝑟𝑑 and 𝑚𝑑 in an HSI data can be calculated.  

During this process, as explained in Eq. (3), the factor 𝜏 

significantly affects the value of 𝑟 in each pair of consecutive 

bands, which further determines the magnitude of output trend 

components. That is, a large 𝜏  leads to the derived trend 

components overfitting while a small 𝜏  causes trend 

components under-fitting with the input superpixelwise spectral 

profile. In other words, the parameter 𝜏  determines the 

informativeness and noise level of the input data. Generally, the 

noise level varies throughout the hyperspectral bands, which is 

also correlated to sensor characteristics, image contents and 

weather conditions whilst the image was acquired [38].  

Taking one pixel from the Indian Pines dataset [3] as an 

example, Fig. 3 (a) shows the extracted trend signals under 

different values of 𝜏 , indicating the effect of various noise 

levels on the derived features. The trend function with a larger 

𝜏 generates more similar estimates to the original data, although 

it may risk of potential overfitting. In essence, for an HSI data 

with a low-SNR, smaller 𝜏 values can remove most of the noisy 

content. However, if 𝜏 is too small, important characteristics of 

the spectral profile may be lost. Thus, applying a small 𝜏 to a 

dataset with a high-SNR can lead to the loss of discriminating 

information in the samples. Besides, it also shows that the 

Prophet model can derive the informative trend from this HSI 

data, which is robust to the noisy content. This will be further 

validated in Section V.  

In addition, the effectiveness of superpixelwise Prophet 

model on the water absorption band is also analyzed as shown 

Figs. 3(b-d). Although water absorption bands are severely 

affected by noise, they still contain some useful information, as 

shown below. We take the band image with wavelength of 

2499nm as an example, which is severely affected by water 

absorption. The reconstructed image from Fig. 3 (b), using our 

proposed superpixelwise Prophet model with a superpixel scale 

of 100 and τ of 20 is shown in Fig. 3 (c). Although Fig. 3 (b) 

seems to contain no useful information, the denoised version 

from our approach shown in Fig. 3 (c) has dramatically 

improved the usefulness of the features. In other words, thanks 

to the strong prediction capability of the Prophet model, the 

severely noise-affected water-absorption band now becomes 

reusable, in particular the well preserved and enhanced local 

spatial structures as compared with the GT in Fig.3(d). Overall, 

it has demonstrated the great value and noise-robustness of the 

proposed model to extract useful information from the water-

absorption bands and further improve the classification of HSI. 

For the noisy HSI data, in real cases the signal and noise 

ratio varies differently in each band [38]. Therefore, it is a 

challenging or even impossible task to estimate an optimal scale 

of 𝜏 for the trend components for all the bands. To tackle this 

challenge, a multiscale approach is adopted in our MSPM 

framework, where a set of 𝜏  values are used, 𝜏 =
{𝜏1, 𝜏2, … , 𝜏𝑇  } , representing different scales, where 𝑇 is the

number of scales. For various values of 𝜏 , in total 𝑇  trend 

components can be extracted from the smoothed mean spectral 

vector of each superpixel. These are then taken as multiscale 

features of the HSI for data classification in the next stage, 

where the Prophet R package is used for implementation in our 

experiments [39]. 

 (a) 

(b) (c) (d) 

Fig. 3. The application of the proposed approach in the spectral and spatial 

domain: (a) the original and derived profiles with different τ values for a pixel 

selected from the Indian Pines scene, (b) one water absorption band at 2499nm, 

(c) reconstructed image from (b), and the Ground truth (d).

C. Superpixelwise HSI Classification and Decision Fusion

At a given scale, the trend components extracted from the

Prophet model can be taken as the feature for the corresponding 

superpixel to produce a superpixelwise classification map. For 

𝑇 scales, we will have 𝑇 classification maps, denoted as 𝑴 =
{𝑀1, 𝑀2, … , 𝑀𝑇}. The final classification map 𝑀𝑓 is determined

by majority voting, i.e., the label that has the maximum number 

of appearances within 𝑴:  

𝑀𝑓 = arg max
𝑙=1,…,𝐿

∑ 𝐹(𝑀𝑡, 𝑙)𝑇
𝑡=1                     (10)

where 𝑙 represents the possible class label in HSI, and 𝐹 is an 

indicator function given by 𝐹(𝑖, 𝑗) = 1 𝑖𝑓 𝑖 = 𝑗, or 𝐹(𝑖, 𝑗) = 0. 

IV. EXPERIMENTAL SETTINGS AND DATASETS DESCRIPTION

For performance assessment, three publicly available HSI 

datasets are used in our paper. The descriptions of the datasets 

and the experimental settings as well as some ablation studies 

are presented in detail as follows.  

A. Description of the Datasets

The first dataset is the Indian Pines, which was collected

using the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) sensor [35] over the Indian Pines study site in 

Northwest Indiana, USA. This dataset contains 145×145 pixels 

with a low spatial resolution of 20 m/pixel and 220 spectral 

bands in the wavelength range of 0.4 − 2.5μm after removing 

4 invalid bands. In addition, twenty water absorption bands 

(104-108, 150-163 and 220) were often discarded [40] before 

data classification, leaving 200 spectral reflectance bands for 

analysis and testing. There are 16 manually defined land-cover 

classes, which are mostly different kinds of crops.  
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The second dataset is Salinas, which was also acquired via 

AVIRIS [35] in the Salinas Valley in California, USA. It has 

512×217 pixels and 224 spectral bands with a spatial resolution 

of 3.7m. Similar to the first dataset, twenty water absorption 

bands are usually discarded. In addition, the corresponding 

ground-truth map also has 16 classes.  

The third is the Pavia University dataset, namely PaviaU, 

which was acquired by the Reflective Optics System Imaging 

Spectrometer sensor over Pavia, Northern Italy [41]. It contains 

114 spectral bands in a spectral range of 0.43 − 0.86μm and 

610×340 pixels with a spatial resolution of 1.3m. Similarly, for 

avoiding the effect of water absorption, the available number of 

bands was reduced from 114 to 103. The ground truth has nine 

classes of land covers. Further detail including the number of 

samples in each class within these datasets can be found in [20]. 

B. Experimental Settings

For performance evaluation, two groups of experiments are

designed, using respectively the uncorrected HSI dataset 

(without removing any bands), and the corrected dataset (with 

the noisy and water absorption bands removed). This is to 

validate the robustness of our MSPM as most of the existing 

approaches only work well on the corrected HSI datasets.  

TABLE I 

LIST OF PARAMETER SETTINGS FOR OUR PROPOSED MSPM FRAMEWORK AND 

OTHER BENCHMARKING APPROACHES 

Method Settings 

SVM-spe N/A 

2D-EMD 
Stop threshold: 0.2; IMF Grouping (IMFG): 1-3rd for Indian 

Pines, 1-4th for Salinas and PaviaU 

SMLR-SpATV Smoothness parameter: 2 

MSP-SVMsub superpixel number: {5, 10, 15, 25, 50, 75, 100} 

SS-LRR superpixel number: Indian Pines/Salinas (40), PaviaU (190) 

FS2LRL 
subspace dimension: 10; superpixel number: 100; 

sparse parameter: 0.13; fidelity parameter: 0.040 

2D-MSSP 
Window size: {5 × 5, 10 × 10, 20 × 20,40 × 40,60 × 60} 

NPCs: 40 

Proposed 

MSPM 
𝜏: {5, 10, 20, 25, 30}  
superpixel scale: {50, 100, 200, 400, 600} 

First, comparison analysis was conducted and benchmarked 

with six state-of-the-art spectral-spatial HSI classification 

methods, using both the corrected and uncorrected HSI images. 

These include two signal decomposition-based methods, 2D-

EMD [16] and 2D-MSSP [29], the multiscale superpixel-based 

method, MSP-SVMsub [9], an MRF weighted spatial-spectral 

classifier, SMLR-SpATV [10] and two superpixelwise low 

rank representation based denoising techniques, SS-LRR [12] 

and fast superpixel based subspace low rank learning method 

(FS2LRL) [28], which exhibited superiority in directly 

classifying the uncorrected HSI data. Our MSPM is also 

compared with some deep learning approaches. Besides, the 

approach to apply the SVM classifier on the raw spectral 

profiles of HSI for classification, denoted as SVM-spe, is taken 

as the baseline. The ablation experiments for comparing the 

effectiveness of different components of the proposed approach 

are given in the Table S1 of Supplementary. 

The parameter settings of relevant methods are summarized 

in Table I. For our MSPM, the superpixel segmentation scales 

were set to {50, 100, 200, 400, 600}  for all HSI datasets 

according to the parameter analysis in Subsection C. As for the 

scale τ of the Prophet model, it varies within the range of 
{1, 5, 10, 15, 20, 25, 30, 35}  in different permutations and 

combinations. For balancing the accuracy and efficiency, the 

optimal set of {5, 10, 20, 25, 30} was employed based on the 

parameter analysis in Subsection C. The base rate r0 and the 

base offset value m0 are set by using Stan’s L-BFGS in the 

Prophet R package by determining a maximum a posteriori 

estimate [32]. For SVM, the LIBSVM library was utilized for 

implementing multiclass classification [42, 43]. According to 

[16, 44], the Gaussian radial basis function (RBF) was 

employed, where the kernel factor and penalty parameter were 

optimally determined via a grid search to 0.125 and 1024, 

respectively. To ensure a fair comparison, we keep the SVM 

parameters consistent for all experiments. The other parameters 

for the benchmarking approaches are set according to their 

recommended default values [13] as shown in Table I.  

To reduce the random discrepancies and avoid systematic 

errors, all experiments were independently run ten times. In 

each run, the training and testing sets were randomly divided 

with no overlapping in between. To fully evaluate the 

performance of these methods, experiments were also 

conducted with different numbers of training samples. In 

particular, we mainly concern the problem of a small training 

set. Hence, the number of selected samples m set to 5, 10 and 

20 for each land cover class in the training set via stratified 

sampling. If the total number of samples within the land cover 

class is less than 30, such as grass/pasture-mowed and oats in 

Indian Pines, 50% of samples in each class will be used for 

training [45]. In addition, the overall accuracy (OA), Kappa 

coefficients ( 𝜅 ) and average accuracy (AA) are used for 

quantitative evaluation of the classification results.  

All involved approaches were implemented using the 

Matlab 2018a platform on a computer with an Intel (R) Core 

(TM) i7-8700 CPU (3.20 GHz) and 16.0 GB of memory. The 

Prophet model was implemented on the R 3.5.3.  

C. Parameter Analysis

1) Segmentation scale

The scale of superpixel segmentation is a key parameter that

affects the generated superpixels and the classification results 

[17]. Here, the optimal scale values for the three datasets were 

tested, which were set to {10, 50, 100, 200, 400, 600, 800} . 

Note that the numbers of training and test samples were set the 

same as aforementioned in Subsection IV(B).  

Fig. 4 illustrates the mean OA over ten independent runs of 

the proposed MSPM using different segmentation scales on the 

three corrected datasets, under various numbers of training 

samples per class. In general, more training samples will lead 

to better classification results in terms of higher OA values. For 

a given training size, the segmentation scale in MSPM 

determines the homogeneity within a local region and thus 

affects the classification accuracy. An appropriate scale value 

can generate more accurate object boundaries. The landcovers 

in three datasets have different characteristics and complexity. 

As seen in Fig.4, the best segmentation scales for Indian Pines, 

Salinas and PaviaU are found to be 100, 600 and 200, 

respectively, as they can help to generate the highest OA for a 

given number of training samples. Specifically, the proper 

range of segmentation scales for Indian Pines, Salinas and 

PaviaU are supposed to be 50~400, 50~800 and 50~600, 
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respectively. Therefore, in the multiscale superpixel 

segmentation, the set {50, 100, 200, 400, 600} is adopted for 

three datasets in this paper in the remaining experiments.  

(a)  

 (b) 

(c)  

Fig. 4.  The OA of MSPM with different superpixel segmentation scales for the 

three datasets of Indian Pines (a), Salinas (b) and PaviaU (c). 

2) The parameter 𝜏
To test the optimal sets of parameter τ on three datasets, the

achieved class-based accuracy and OA of the proposed method 

with varying τ within {1, 5, 10, 15, 20, 25, 30, 35} are analysed 

in this section. The results of class-based accuracy are given in 

in Fig. S3 of the Supplementary. The number of training 

samples are set to 5 for each land cover for all tests.  

Fig. 5.  The effect of the parameter τ of MSPM to the OA. 

From Fig. 5, it is clear that the value of parameter τ in the 

range [5,30] enables the MSPM to achieve better classification 

results in terms of higher OA values. As for the class-based 

classification performance shown in Fig. S3, on the Indian 

Pines dataset, the value 5, 10, 20 and 25 for parameter τ leads 

to the best accuracy in the three classes (the classes #3, #5 and 

#16), two classes (the classes #6 and #15), two classes (the 

classes #10 and #14) and two classes (the class #2 and #11), 

respectively. On the corrected Salinas dataset, apart from the 

classes #1, #9 and #12, where the 100% accuracy of MSPM are 

produced on all cases, the best results are generated when the 

parameter τ equal to 20 and 25, in which MSPM achieve the 

highest accuracy in three classes, respectively. The proposed 

MSPM also realize better performance when parameter τ are 

set to 5, 15 and 30. The best value of parameter τ for PaviaU 

are found to be 1 and 5, as they can help to generate the highest 

accuracy on the classes #1 and #4, and #3 and #5, respectively. 

The value 10, 20, 25, 30 and 35 for parameter τ also lead to the 

best classification performance on the classes #9, #2, #6, #8 and 

#7, respectively. To sum up, considering the OA and class-

based performance of MSPM on three datasets, we employ the 

set of  {5, 10, 20, 25, 30} for the parameter τ in this paper.  

V. EXPERIMENTAL RESULTS

In this section, qualitative and quantitative results from the 

three HSI datasets are presented for performance assessment of 

the proposed MSPM approach. Relevant results from 

uncorrected and corrected HSI datasets as well as the efficacy 

of different strategies in MSPM and further comparison with 

several deep learning approaches are detailed as follows.    

A. Results from the Indian Pines Dataset

Indian Pines dataset is heavily corrupted by noise and water

absorption [28]. Here, corrected and uncorrected Indian Pines 

datasets, where noisy and water absorption bands are removed 

or kept, respectively, are used for quantitative and qualitative 

performance evaluation as detailed below.  

1) Quantitative evaluation

For quantitative evaluation, the overall accuracy (OA) and

the Kappa coefficient (κ) are utilized. The proposed MSPM 

approach has been compared with 2D-EMD, 2D-SSA, SMLR-

SpATV, MSP-SVMsub, SS-LRR, FS2LRL, SVM-spe, and SP-

SVM (only use superpixelwise smoothing yet without Prophet 

model). Relevant results are reported in Table II. Note that the 

best results in each row are highlighted in bold for comparison. 

First of all, all the results in Table II are positively correlated 

with the increasing number of training samples. With the 

introduced spatial features, 2D-EMD, 2D-MSSP and SMLR-

SpATV have all yielded better classification results than SVM-

spe, in which no spatial features are used. With superpixel 

based smoothing, more effective spatial features can be 

extracted thus the further improved results from MSP-SVMsub. 

This superior performance is mainly due to the utilization of 

adaptive local structures in superpixelwsie segmentation and 

smoothing, which has enhanced the consistency of the spectral 

features better than using a fix-sized window. Besides, SS-LRR 

TABLE II 

THE OA (%) AND κ (IN PARENTHESES) OF DIFFERENT METHODS UNDER VARIOUS NUMBERS OF TRAINING SAMPLES  
FOR THE INDIAN PINES DATASET WITH OR WITHOUT REMOVING THE NOISY AND WATER ABSORPTION BANDS  

Samples Dataset SVM-spe 2D-EMD SMLR-SpATV MSP-SVMsub SS-LRR FS2LRL 2D-MSSP MSPM 

5 
Uncorrected 41.77 (0.35) 54.16 (0.49) 54.69 (0.50) 62.39 (0.58) 63.51 (0.59) 55.98 (0.51) 82.89 (0.81) 87.92 (0.86) 

Corrected 46.85 (0.41) 57.71 (0.53) 56.08 (0.52) 68.09 (0.68) 60.95 (0.56) 56.13 (0.51) 83.27 (0.82) 87.91 (0.86) 

10 
Uncorrected 49.80 (0.44) 67.35 (0.63) 73.63 (0.70) 82.01 (0.80) 75.63 (0.73) 67.30 (0.63) 90.15 (0.89) 93.54 (0.93) 

Corrected 54.91 (0.50) 71.88 (0.68) 73.95 (0.71) 83.57 (0.81) 74.26 (0.71) 69.60 (0.66) 90.13 (0.89) 92.03 (0.91) 

20 
Uncorrected 57.22 (0.52) 79.77 (0.77) 83.12 (0.81) 88.99 (0.88) 85.11 (0.83) 77.64 (0.75) 94.92 (0.94) 95.74 (0.95) 

Corrected 63.44 (0.59) 84.16 (0.83) 83.12 (0.81) 90.12 (0.89) 83.64 (0.81) 78.95 (0.76) 94.31 (0.94) 95.18 (0.95) 
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and FS2LRL also improve the classification accuracy due to the 

effect of their denoising operations. Overall, the proposed 

MSPM remains the best and constantly produces the highest 

accuracy in terms of OA and κ. It is worth noting that the 22D-

MSSP method also works effectively for the HSI feature 

extraction, which shows competitive results to MSPM on both 

corrected and uncorrected Indian Pines dataset, and ranks 

second among all. Compared with 2D-MSSP, thanks to the 

introduced Prophet model, our MSPM has further improved the 

spectral feature extraction. The MSPM achieves better 

performance than 2D-MSSP especially when the training size 

is small. In the case of 5 training samples, the classification 

accuracy of MSPM is about 5% higher than that of 2D-MSSP. 

This has validated the efficacy of our proposed MSPM 

approach in addressing the Hughes phenomenon under very 

limited training samples.  

When comparing the performance of each method on 

corrected and uncorrected Indian Pines dataset, we can find that 

in most cases, SVM-spe, 2D-EMD, SMLR-SpATV, MSP-

SVMsub and FS2LRL achieve better results on corrected 

dataset. The 2D-MSSP and advanced noise reduction method, 

SS-LRR, can effectively remove the effect of noise while 

preserving the spectral features. As a result, they achieve higher 

accuracy on the uncorrected HSI in most cases. For our 

proposed MSPM approach, in almost all cases the results on the 

uncorrected dataset have outperformed those from the corrected 

one. Thanks to our multiscale superpixelwise smoothing and 

multiscale Prophet modelling, the proposed MSPM model can 

successfully suppress the noise and produce satisfactory results, 

even without removing the low-SNR and water absorption 

bands. This has provided additional benefits for efficient and 

effective interpretation of HSI in an automatic way, as no extra 

work is needed to filter out those unwanted bands.  

2) Visual and class-based performance assessment

Although the superior performance of our MSPM has been

validated in quantitative assessment, here visual and class-

based performance evaluation is used to show how exactly the 

classification errors has been reduced from the uncorrected 

dataset. Three methods in Table II with promising performance, 

i.e., SMLR-SpATV, MSP-SVMsub and 2D-MSSP, are selected

for further comparison. For visual assessment, the classification

maps from our approach and the three others on both the

uncorrected and corrected dataset under 20 training samples per

class are compared in Fig. S4 of the Supplementary, where

black and magenta circles are used to mark respectively the

correct and incorrect classification. In Table III, class-by-class

classification results are also compared in terms of the OA,

average accuracy (AA) and Kappa coefficient.

First of all, as shown in Table III, MSPM has achieved the 

best classification accuracy in 13 and 11 out of 16 classes on 

the uncorrected and corrected datasets, respectively, especially 

in the classes 3, 10 and 11 (Corn-min till, Soybeans-no till and 

Soybeans-min till). Overall, MSPM ranks first in terms of OA, 

AA and Kappa coefficient, and shows better accuracy on the 

uncorrected dataset. This has demonstrated again the efficacy 

of MSPM on classification of the Indian Pines dataset with 

limited and unbalanced samples. Note that the recently 

proposed 2D-MSSP also shows high efficiency in noise-robust 

feature extraction with promising class-based performance.  

TABLE III 

CLASSIFICATION ACCURACY (%) OF ALL INVOLVED METHODS FOR THE INDIAN 

PINES DATA WITH 20 TRAINING SAMPLES PER CLASS 

Uncorrected Corrected 

Class SMLR-

SpATV 

MSP-

SVMsub 

2D- 

MSSP 

MSPM SMLR-

SpATV 

MSP-

SVMsub 

2D- 

MSSP 

MSPM 

1 99.28 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
2 73.80 85.58 93.62 94.29 71.05 88.99 97.66 96.28 

3 77.25 88.27 96.75 99.88 76.65 90.49 94.69 99.75 

4 99.80 100.00 100.00 100.00 98.06 100.00 100.00 100.00 

5 88.02 94.38 97.69 99.81 89.37 84.45 96.69 93.54 

6 98.61 98.87 99.87 98.79 98.94 97.89 98.10 99.44 

7 99.76 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
8 99.95 99.13 100.00 100.00 99.91 100.00 100.00 100.00 
9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
10 79.80 86.66 89.89 99.47 82.02 90.02 94.75 99.38 

11 71.73 80.29 90.34 90.83 71.14 80.99 85.13 88.14 

12 86.41 90.58 92.95 81.87 89.32 91.27 91.36 83.49 

13 99.95 96.22 100.00 100.00 100.00 98.92 100.00 100.00 
14 93.66 93.09 99.52 100.00 94.48 96.39 100.00 100.00 
15 94.10 98.63 100.00 99.73 95.55 97.81 100.00 99.73 

16 99.86 100.00 100.00 100.00 100.00 100.00 100.00 99.04 

OA 83.12 88.99 94.92 95.74 83.12 90.12 94.31 95.18 

 0.81 0.88 0.94 0.95 0.81 0.89 0.94 0.95 

AA 91.37 94.48 97.54 97.79 91.66 94.83 97.40 97.42 

B. Results from the Salinas Dataset

Similarly, the Salinas dataset with or without noisy and

water absorption bands, denoted as uncorrected Salinas and 

corrected Salinas, respectively, are employed for performance 

evaluation.  Relevant results under different numbers of training 

samples are reported in Table IV for quantitative comparison.  

1) Quantitative evaluation

In Table IV, the similar factual conclusions can be made as

from the Indian Pines dataset. The difference here is that the 

addition of various spatial features contributes less than that on 

the Indian Pines dataset. The possible reason is the high intra-

class homogeneity caused by low-level noise and geometrically 

structured simple agricultural objects in the image. Overall, the 

proposed MSPM remains the best and constantly produces the 

highest OA and 𝜅 except one occasion on the corrected dataset 

with 5 training samples per class. In most cases, MSPM has 

better results on the uncorrected dataset than the corrected one. 

These results have clearly shown the efficacy of our MSPM for 

HSI classification, which is again mainly due to combining 

multiscale superpixelwise segmentation and smoothing along 

TABLE IV 

THE OA (%) AND κ (IN PARENTHESES) OF DIFFERENT METHODS UNDER VARIOUS NUMBERS OF TRAINING SAMPLES  
FOR THE SALINAS DATASET WITH OR WITHOUT REMOVING THE NOISY AND WATER ABSORPTION BANDS  

Samples Dataset SVM-spe 2D-EMD SMLR-SpATV MSP-SVMsub SS-LRR FS2LRL 2D-MSSP MSPM 

5 
Uncorrected 79.79 (0.78) 80.22 (0.78) 86.54 (0.85) 91.73 (0.91) 84.12 (0.82) 85.64 (0.84) 95.81 (0.95) 96.14 (0.96) 

Corrected 80.99 (0.79) 80.70 (0.79) 86.42 (0.85) 89.18 (0.88) 82.46 (0.81) 83.85 (0.82) 96.33 (0.96) 96.54 (0.96) 

10 
Uncorrected 83.53 (0.82) 83.76 (0.82) 90.77 (0.90) 95.70 (0.95) 87.33 (0.86) 89.35 (0.88) 97.06 (0.96) 97.64 (0.97) 

Corrected 83.62 (0.82) 84.05 (0.82) 90.77 (0.90) 93.30 (0.93) 87.08 (0.86) 88.93 (0.88) 96.83 (0.97) 97.55 (0.97) 

20 
Uncorrected 86.27 (0.85) 86.03 (0.85) 92.89 (0.92) 97.81 (0.98) 92.23 (0.91) 93.51 (0.93) 99.00 (0.99) 99.16 (0.99) 

Corrected 86.38 (0.85) 86.33 (0.85) 93.12 (0.92) 97.49 (0.97) 90.71 (0.90) 93.02 (0.92) 98.65 (0.99) 98.67 (0.99) 
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with the multiscale Prophet model based noise-robust feature 

mining. In the classification of Salinas dataset, both the 2D-

MSSP and MSPM achieve enough accuracy when the training 

size is 20. The 2D-MSSP shows competitive results. When 

comparing the OA and 𝜅 of other methods on the corrected and 

uncorrected Salinas datasets, in all cases, SVM-spe and 2D-

EMD generate better results on the corrected Salinas than the 

uncorrected one. As for the SMLR-SpATV and 2D-MSSP, they 

have inconsistent results though achieve better results in more 

cases from the uncorrected dataset. The two denoising methods, 

SS-LRR and FS2LRL, and MSP-SVMsub produce better 

classification on uncorrected Salinas in almost all cases.  

2) Visual and class-based performance assessment

In addition, results of class-by-class classification from

SMLR-SpATV, MSP-SVMsub, 2D-MSSP and MSPM with 20 

training samples per class are compared in Table V, with the 

classification maps given in Fig. S5 of the Supplementary for 

visual comparison. In Table V, the proposed MSPM produces 

the best results in 14 and 13 out of 16 land cover classes on the 

uncorrected and corrected dataset, respectively. The 2D-MSSP 

ranks the second, which achieves the best results in 10 out of 16 

land cover classes on both uncorrected and corrected datasets. 

Apart from SMLR-SpATV, all the methods in this subsection 

ha ve achieved better OA on the uncorrected Salinas dataset. 

This has validated the efficacy of the useful information in 

water vapor absorption bands. 

TABLE V 

CLASSIFICATION ACCURACY (%) OF ALL INVOLVED METHODS FOR THE 

SALINAS DATA WITH 20 TRAINING SAMPLES PER CLASS 

Uncorrected Corrected 

Class SMLR-

SpATV 

MSP-

SVMsub 

2D-

MSSP 

MSPM SMLR-

SpATV 

MSP-

SVMsub 

2D-

MSSP 

MSPM 

1 99.91 99.80 100.00 100.00 99.94 100.00 100.00 100.00 

2 100.00 97.30 100.00 100.00 99.98 99.38 100.00 100.00 

3 95.43 100.00 100.00 100.00 94.28 99.90 100.00 100.00 

4 99.10 97.31 99.85 99.93 98.56 97.02 99.93 99.93 

5 98.38 96.31 99.56 98.95 98.59 98.87 97.36 98.95 

6 100.00 98.45 99.79 100.00 100.00 98.98 99.92 100.00 

7 99.94 98.96 99.64 99.92 99.94 99.38 99.89 99.92 

8 80.18 96.20 95.78 96.96 81.22 95.63 94.74 94.63 

9 99.97 100.00 100.00 100.00 100.00 98.84 100.00 100.00 

10 95.80 96.13 99.82 99.82 93.93 95.33 99.94 99.88 

11 99.88 99.62 100.00 100.00 99.87 99.90 100.00 100.00 

12 99.97 96.54 99.74 100.00 99.97 99.21 100.00 100.00 

13 99.23 98.88 100.00 100.00 99.69 99.78 99.90 100.00 

14 99.88 96.29 100.00 100.00 99.84 98.76 99.91 100.00 

15 82.23 98.05 99.72 99.03 83.46 94.34 99.29 98.93 

16 99.29 98.43 100.00 100.00 99.16 98.10 100.00 100.00 

OA 92.89 97.81 99.00 99.16 93.12 97.49 98.65 98.67 

 0.92 0.98 0.99 0.99 0.92 0.97 0.99 0.99 

AA 96.83 98.02 99.62 99.66 96.78 98.34 99.43 99.51 

C. Results from the PaviaU Dataset

In this subsection, the performance of our proposed MSPM

is further evaluated using the PaviaU dataset. Here the 

performances of all comparing approaches on corrected PaviaU 

dataset are analyzed. As the uncorrected PaviaU dataset with 

water absorption bands is unavailable, a simulated noisy dataset 

is produced with results given in Table S2 of Supplementary.  

1) Quantitative evaluation

In Table VI, our proposed MSPM is compared with SVM-

spe, 2D-EMD, 2D-MSSP, SMLR-SpATV, MSP-SVMsub, SS-

LRR and FS2LRL, where class-based classification results are 

also shown. Similarly, the best quantitative results are labelled 

in bold for clarity. As seen in Table VI, the proposed MSPM 

has produced the best results in terms of the highest OA, 𝜅 and 

AA, which is followed by the 2D-MSSP. The proposed method 

MSPM and 2D-MSSP are significantly better than other 

comparing methods. For the class-based performance, MSPM 

produces the highest accuracy in 6 out of 9 classes and realizes 

correct classification of all testing data in class #6 and #7.  

TABLE VI 

CLASSIFICATION ACCURACY (%) OF ALL INVOLVED METHODS FOR THE 

CORRECTED PAVIAU DATA WITH 20 TRAINING SAMPLES PER CLASS

Class SVM-

spe 

2D-

EMD 

SMLR-

SpATV 

MSP-

SVMsub 

SS-

LRR 

FS2 

LRL 

2D-

MSSP 

MSPM 

1 67.87 69.08 83.62 92.80 73.19 77.20 93.11 90.38 

2 76.87 77.78 86.11 89.22 76.13 85.59 99.12 99.31 

3 74.54 72.24 87.50 92.74 79.54 77.18 98.42 99.04 

4 91.37 90.98 92.45 90.97 90.10 90.59 83.91 92.95 

5 99.09 99.08 100.00 99.70 99.23 99.28 96.82 99.78 

6 70.60 75.83 86.58 97.34 77.73 89.44 99.88 100.00 

7 89.42 90.70 99.11 96.41 93.06 92.16 100.00 100.00 

8 75.93 77.69 77.93 95.88 81.66 88.02 94.89 99.02 

9 99.91 99.85 60.70 91.15 99.90 99.86 87.03 79.84 

OA 77.15 78.41 85.88 92.19 79.26 85.83 96.49 97.12 

 0.71 0.72 81.71 0.90 0.74 0.82 0.95 0.96 

AA 82.84 83.69 86.00 94.02 73.20 77.20 94.80 95.59 

Table VII shows the classification results from the corrected 

PaviaU dataset using different numbers of training samples for 

all the involved algorithms. As seen, MSPM still achieves the 

highest OA and 𝜅 in all the experiments. With a lower number 

of spectral bands than the other two datasets, the Hughes effect 

in PaviaU dataset is not apparent [9]. As a result, spectral-

spatial classification strategies have shown less contributions 

than those on the other two datasets. Nevertheless, the 

superpixel based approaches, MSP-SVMsub still exhibit 

superior performance due to the preserved local homogeneous 

regions especially when the number of training samples is 

above 5. Besides, the proposed MSPM and 2D-MSSP show 

significantly better results than other methods, which validates 

their effectiveness in feature extraction. In general, the 

proposed MSPM has again produced effective and reliable 

results on the PaviaU dataset. 

TABLE VII 

THE OA (%) AND 𝜅 (IN PARENTHESES) OF DIFFERENT METHODS ON THE 

CORRECTED PAVIAU DATASET UNDER VARIOUS TRAINING SIZES  

No. Samples 5 10 20 

SVM-spe 63.79 (0.55) 71.42 (0.64) 77.15 (0.71) 

2D-EMD 63.76 (0.55) 71.41 (0.64) 78.41 (0.72) 

SMLR-SpATV 68.02 (0.60) 78.03 (0.72) 85.88 (0.82) 

MSP-SVMsub 66.26 (0.59) 82.65 (0.78) 92.19 (0.90) 

SS-LRR 63.21 (0.55) 73.62 (0.67) 79.26 (0.74) 

FS2LRL 65.86 (0.58) 78.55 (0.73) 85.83 (0.82) 

2D-MSSP 87.66 (0.84) 90.66 (0.88) 96.49 (0.95) 

MSPM 89.43 (0.86) 95.74 (0.94) 97.12 (0.96) 

2) Visual comparison

Visual comparison of the classification maps from our

MSPM and other comparing methods on the corrected PaviaU 

dataset are shown in Fig. S6, where black and magenta circles 

denote correct and incorrect classified pixels to show the best 

results that have been achieved by the proposed MSPM method. 
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D. Running time Comparison

The running time of different methods are compared in this

subsection. As seen in Table VIII, the methods 2D-EMD, 2D-

MSSP, MSP-SVMsub, and MSPM have longer running time 

than SMLR-SpATV, SS-LRR and FS2LRL. Therein 2D-MSSP, 

MSP-SVMsub, and MSPM all use the multiscale strategy, 

inevitably leading to a high computational complexity. 

However, these three methods have produced the best results 

on all the datasets. The proposed MSPM unfortunately requires 

the longest processing time, followed by 2D-EMD without 

using the multiscale strategy hence quite poor results. In this 

paper, the improvement of the classification accuracy under 

small number of training samples is first emphasized. The fast 

Prophet model will be explored in the future study.

TABLE VIII 

THE RUNNING TIME (S) OF DIFFERENT METHODS UNDER 20 TRAINING SAMPLES 

PER CLASS ON THREE HSI UNCORRECTED DATASETS 

Dataset 2D-EMD 
SMLR-

SpATV 

MSP-

SVMsub 

SS-

LRR 

FS2

LRL 

2D-

MSSP 
MSPM 

Indian Pines 843 105 374 43 116 476 862 

Salinas 3948 530 1190 237 600 3704 6554 

Pavia 3209 409 876 304 519 3964 3575 

E. Comparing with other Methods include Deep Learning

We further compare our MSPM with five state-of-the-art

approaches including four deep learning approaches, i.e., 

GLapLRR [46], SSCasRNN [23], GBRBM in parallel [24], 

FSCN [2], and DR-CNN [22] on the corrected Indian Pines, 

Salinas, and PaviaU datasets, and the results are given in  Table 

IX. Note for the three datasets, we only use 20 samples per class

for training, in comparison to 10% training samples used in

GLapLRR, SSCasRNN, and GBRBM in parallel, which equals

to on average 65, 338 and 475 samples per class.

TABLE IX 

COMPARING MSPM WITH FOUR DEEP LEANING APPROACHES USING OA (%) 

ON THREE CORRECTED DATASETS WITH THE NUMBER OF TRAINING SAMPLES 

Corrected 

Datasets 

Training 

samples 

Glap 

LRR 

SSCas-

RNN 

GB-

RBM 

FSCN DR-

CNN 

MSPM 

Indian Pines 65/64/50/20 96.42 91.79 - 90.45 94.94 95.18

Salinas 338/-/50/20 - - 95.94 - 95.54 98.67

PaviaU 475/238/50/20 86.39 90.30 96.22 98.19 98.67 97.12 

The FSCN adopts 64 training samples per class on the 

corrected Indian Pines dataset, and 238 samples per class on the 

corrected PaviaU dataset. For DR-CNN, 50 training samples 

per class are used in each dataset. Obviously, in most cases 

MSPM has produced quite comparable or even slightly better 

results than those methods, including four deep learning 

models. In summary, this has validated again the superiority of 

our proposed MSPM approach in noise-robust spectral-spatial 

feature extraction and data classification of the HSI.    

VI. CONCLUSION

In this paper, we have proposed Multiscale Superpixelwise 

Prophet model (MSPM), a novel spectral-spatial feature mining 

framework for noise-robust feature extraction and effective data 

classification of the HSI. First, we demonstrate that the Prophet 

model is able to enhance the HSI features in terms of reduced 

intraclass variance and enlarged interclass diversity. Second, 

superpixelwise image segmentation has found particularly 

useful for grouping local spectrally similar pixels and reducing 

the high intra-class heterogeneity and inter-class homogeneity 

of different land cover classes in the HSI. Third, our MSPM 

model has successfully exploited spectral data at different noise 

levels. The Prophet model has also contributed noticeably to the 

classification, especially to the uncorrected datasets. The 

superpixelwise segmentation and the Prophet model can 

supplement to each other in enhancing the features in the spatial 

and spectral domains, respectively. As a result, the joint 

spectral-spatial features can more effectively characterize both 

the corrected and uncorrected HSI datasets, especially with very 

limited training samples. Our MSPM model has significantly 

outperformed a few state-of-the-art approaches, including 

several deep learning models along with much more training 

samples. The improved classification results from the 

uncorrected datasets have enabled potentially a new and fully 

automatic roadmap for interpreting the HSI where conventional 

wisdom of pre-filtering of unwanted bands can be skipped.  

Future work will focus on the analysis of the non-periodic 

seasonality effects in the spectral profile of the HSI. Besides, 

fast and adaptive Prophet model will be investigated, where an 

adaptive scale will be exploited to replace the multiscale 

strategy for improved computational efficiency as well as new 

applications in missing data restoration and HSI reconstruction. 

Since the proposed method performs well with limited training 

sample size, the unsupervised Prophet model for the HSI data 

classification will be explored in the future work. 
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