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Figures 
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Fig. S1. The Kullback-Leibler divergence of classes in Indian Pines dataset: (a) interclass Kullback-Leibler divergence, 

(b) intraclass Kullback-Leibler divergence. 
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(a) 

(b) 

Fig. S2. The Kullback-Leibler divergence of classes in PaviaU dataset: (a) interclass Kullback-Leibler divergence, (b) 

intraclass Kullback-Leibler divergence. 
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(a)  
 

(b)    

(c)    

Fig. S3.  The effect of the parameter τ of MSPM to (a) class-based classification accuracy on datasets of Indian Pines 

(b) Salinas and (c) PaviaU. 
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As seen in Fig. S4, with the introduced spatial information, SMLR-SpATV produces much 

smoother results as shown in Figs. S4 (c-d). However, the three classes Corn-no till, Soybeans-min till 

and Soybeans-no till are largely misclassified with each other as highlighted in magenta circles. 

Though SMLR-SpATV performs slightly better on uncorrected datasets as shown in Fig. S4 (c), it 

fails to preserve detailed structures and fine object boundaries. In particular, several regularly shaped 

land covers are distorted due to the incorrect boundaries. With further introduced superpixel 

segmentation, MSP-SVMsub has produced improved object boundaries, owing mainly to the 

homogeneous regions produced by SLIC. However, there are still several misclassified regions, 

especially in the Soybeans-min till and Soybeans-no till classes as highlighted in Figs. S4 (e)-(f). This 

may be due to improper scale values used in multiscale superpixeling, owing to noise caused high 

intra-variations within the land cover classes. Comparing the classification maps between Figs. S4 (e) 

and (f), MSP-SVMsub achieves better results on corrected dataset, whilst the 2D-MSSP obtain better 

classification maps than SMLR-SpATV and MSP-SVMsub as shown in Fig. S4 (g) and (h). There are 

still misclassifications between classes of Corn-no till, Soybeans-min till and Soybeans-no till. On the 

corrected dataset, the misclassifications between classes Corn-no till, Soybeans-min till and Wheat are 

distinct. As for our MSPM, it has produced much smoother and accurate maps and more 

homogeneous regions compared to all others. As highlighted in black circles in Figs. S4 (i)-(j), the 

complex objects with high intra-class variations can still be correctly classified by MSPM. Here, 

MSPM performs much better on uncorrected data when discriminating Soybeans-min till and 

Soybeans-no till. These visual results are consistent with the quantitative results in Table III, which 

has validated again the efficacy of our MSPM in noise-robust feature mining and HSI classification. 
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Fig. S4.  Classification maps on the Indian Pines data (20 samples per class): (a) False colour image (R: 831nm, G: 

657nm, B: 557nm), (b) Ground truth in 16 classes, (c) SMLR-SpATV on uncorrected data, (d) SMLR-SpATV on 

corrected data, (e) MSP-SVMsub on uncorrected data, (f) MSP-SVMsub on corrected data, (g) 2D-MSSP on 

uncorrected data, (h) 2D-MSSP on corrected data, (i) MSPM on uncorrected data and (j) MSPM on corrected data. 
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Regarding the classification maps in Fig. S5, it is obvious that the proposed MSPM algorithm 

can generate the smoothest results with a higher geometric fidelity and more accurate boundaries on 

the uncorrected dataset. As for the land cover classes with a high spectral and spatial similarity, such 

as Vinyard untrained and Grapes untrained, all approaches have difficulty to differ in between on 

both corrected and uncorrected datasets, as highlighted by magenta circles in Figs. S5 (c)-(j). The 2D-

MSSP and the proposed MSPM show much better performance, seen in black circles in Fig. S5 (g)-(i). 

Besides, the misclassification between the Corn senesced green weeds and Lettuce romaine 7wk by 

SMLR-SpATV, MSP-SVMsub and 2D-MSSP in Figs. S5 (c)-(h) are significantly improved.  

When comparing the classification maps between Figs. S5 (c) and (d), Figs. S5 (e) and (f), Figs. 

S5 (g) and (h), and Figs. S5 (i) and (j), MSP-SVMsub, 2D-MSSP and MSPM have all produced better 

visual results on the uncorrected dataset. Overall, MSPM has successfully and accurately classified 

most of the boundaries in the uncorrected Salinas dataset using a small number of training samples as 

shown in Fig. S5 (i), which are consistent with the quantitative results given in Table V.  
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Fig. S5. Classification maps on the Salinas dataset (20 samples per class): (a) False colour image (R: 831nm, G: 657nm, 

B: 557nm), (b) Ground truth in 16 classes, (c) SMLR-SpATV on uncorrected data, (d) SMLR-SpATV on corrected 

data, (e) MSP-SVMsub on uncorrected data, (f) MSP-SVMsub on corrected data, (g) 2D-MSSP on uncorrected data, (h) 

2D-MSSP on corrected data, (i) MSPM on uncorrected data and (j) MSPM on corrected data. 
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Visual comparison of the classification maps from our MSPM and other comparing methods on the 

corrected PaviaU dataset are shown in Fig. S6, where black and magenta circles denote correct and 

incorrect classified pixels. As seen in Figs. S6 (c)-(j), Meadows are severely confused with Trees or 

Bare Soil when appearing densely or sparsely visually. By combining spatial features in SS-LRR, 

FS2LRL and SMLR-SpATV, the noisy estimations of SVM-spe and 2D-EMD are dramatically 

reduced, and most of the remaining misclassified pixels are further corrected by MSP-SVMsub, 2D-

MSSP and MSPM as highlighted in black circles in Figs. S6 (f), (i) and (j). These have also validated 

by the corresponding higher accuracy values on Meadows and Trees in Table VI. To differ between 

Self-Blocking Bricks and Gravel, only MSPM and 2D-MSSP can discriminate these two to some 

extent as shown by the black circles in the Figs. S6 (i) and (j) and also the quantitative results in Table 

VI. These are mainly owing to the multiscale strategies adopted in extraction of spatial and spectral 

features. The two classes, Asphalt and Trees, have mixed spectra of surrounding pixels. There are 

distinct misclassifications in the edge part of Asphalt in the maps of MSP-SVMsub and 2D-MSSP, see 

in magenta circles in Figs. S6 (f) and (i), while other methods have correct classifications. To sum up, 

the proposed MSPM method obtain the best results in the visual comparison. 
 

 

(a) (b) (c) (d) (e)
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Fig. S6. Classification maps on the corrected PaviaU data (20 samples per class): (a) False colour image (R: 834nm, G: 

650nm, B: 550nm), (b) Ground truth with 9 classes, (c) SVM-spe, (d) 2D-EMD, (e) SMLR-SpATV, (f) MSP-SVMsub, 

(g) SS-LRR, (h) FS2LRL, (i) 2D-MSSP and (j) Our proposed MSPM. 
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Tables 

Here the ablation experiment is carried out to compare the effectiveness of different components 

within the proposed approach. First, the approach to apply the SVM classifier on the raw spectral 

profiles of HSI for classification is denoted as SVM-spe. Second, SP-SVM is used to denote SVM 

based classification of superpixelwise segmented HSI. Finally, MSPM is the proposed framework. As 

seen, the superpixelwise segmentation has dramatically improved the classification accuracy than 

SVM-spe which uses only the spectral features. With the proposed Prophet model, the classification 

accuracy is further improved, especially for Indian Pines and PaviaU datasets. Also, it is worth noting 

that MSPM has helped to produce higher classification accuracy on the uncorrected datasets than 

those from the corrected datasets, indicating its unique value in noise-robust classification of HSI even 

without filtering the water-absorption bands. 

The superpixelwise segmentation is one of the key elements to significantly improve the 

classification accuracy, due mainly to the introduced spatial information whilst suppressing the intra-

class variations. However, the Prophet model has also contributed noticeably to the classification, 

especially to the uncorrected datasets, owing mainly to the strong capability in modelling and 

prediction in the spectral domain. In other words, superpixelwise segmentation and the Prophet model 

can supplement to each other in enhancing the features in the spatial and spectral domains, 

respectively, where the joint spatial-spectral feature has significantly improved the classification 

accuracy. 

 

TABLE S1 THE OA (%) AND Κ (IN PARENTHESES) OF DIFFERENT COMPONENTS IN THE PROPOSED FRAMEWORK UNDER 20 

TRAINING SAMPLES PER CLASS FOR THE CORRECTED AND UNCORRECTED HSI DATASETS  

Datasets  SVM-spe SP-SVM MSPM 

Indian Pines uncorrected 57.22 (0.52) 89.10 (0.88) 95.74 (0.95) 

 corrected 63.44 (0.59) 91.81 (0.91) 95.18 (0.95) 

Salinas uncorrected 86.27 (0.85) 98.14 (0.98) 99.16 (0.99) 

 corrected 86.38 (0.85) 98.67 (0.99) 98.67 (0.99) 

PaviaU corrected 77.15 (0.71) 91.13 (0.90) 97.12 (0.96) 

 

 

As the uncorrected PaviaU dataset which contains the water absorption bands is unavailable, it is not 

easy to simulate the true water absorption conditions for an HSI. Although different types of noises 

can be added to clean HSI datasets, the simulated noise is much different from the water absorption 

effect [r1, r2]. However, following the practice in [r2], the noisy PaviaU dataset is produced by adding 

the zero-mean Gaussian noise 𝑁(0, 𝜎2)  with 𝜎 =0.05 to all bands. As shown in Table S2, all 

comparing methods have worse classification results than those on the corrected dataset, as the 

introduced Gaussian noise has degraded the extracted features. However, SVM-spe, 2D-EMD, and 

FS2LRL are more significantly affected by the simulated noise than 2D-MSSP, MSP-SVMsub and the 

proposed MSPM, where our approach has actually achieved the best results compared to all others. 

This has validated again the noise-robustness of our MSPM approach. This experiment is added in the 

updated Supplementary Materials. 
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TABLE S2 THE OA (%) AND Κ (IN PARENTHESES) OF DIFFERENT METHODS UNDER VARIOUS NUMBERS OF TRAINING 

SAMPLES FOR THE CORRECTED AND SIMULATED NOISY PAVIAU DATASET.  

Training 

Samples 
Dataset SVM-spe 2D-EMD 

SMLR-

SpATV 

MSP-

SVMsub 
SS-LRR FS2LRL 2D-MSSP MSPM 

5 
Noisy 54.84 (0.45) 55.56 (0.45) 66.87 (0.59) 64.33 (0.57) 56.33 (0.46) 54.38 (0.44) 86.89 (0.83) 88.96 (0.86) 

Corrected 63.79 (0.55) 63.76 (0.55) 68.02 (0.60) 66.26 (0.59) 63.21 (0.55) 65.86 (0.58) 87.66 (0.84) 89.43 (0.86) 

10 
Noisy 63.25 (0.54) 63.76 (0.55) 75.18 (0.68) 82.53 (0.78) 56.33 (0.55) 64.57 (0.56) 90.02(0.88) 95.70 (0.94) 

Corrected 71.42 (0.64) 71.41 (0.64) 78.03 (0.72) 82.65 (0.78) 73.62 (0.67) 78.55 (0.73) 90.66 (0.88) 95.74 (0.94) 

20 
Noisy 69.39 (0.62) 68.90 (0.65) 81.59 (0.76) 92.17 (0.88) 75.42 (0.69) 72.10 (0.65) 96.41(0.95) 97.00 (0.96) 

Corrected 77.15 (0.71) 78.41 (0.72) 85.88 (0.82) 92.19 (0.90) 79.26 (0.74) 85.83 (0.82) 96.49 (0.95) 97.12 (0.96) 
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