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Abstract: The planetary boundary layer (PBL) is the main region for the exchange of matter, 14 

momentum, and energy between land and atmosphere. The transport processes in the PBL determine 15 

the distribution of temperature, water vapour, wind speed and other physical quantities and are very 16 

important for the simulation of the physical characteristics of the meteorology. Based on the two 17 

non-local (YSU, ACM2) and two local closure PBL schemes (MYJ, MYNN) in the Weather 18 

Research and Forecasting (WRF) model, seasonal and daily cycles of meteorological variables over 19 

the Yangtze River Delta (YRD) region are investigated. It is shown that all four PBL schemes 20 

overestimate 10-m wind speed and 2-m temperature, while underestimate relative humidity. Inter-21 

comparisons among the different PBL schemes show that the MYNN scheme results in closer match 22 

of 2-m temperature and 10-m wind speed to surface observations in summer, while the MYJ scheme 23 

shows the smallest bias of 2-m temperature and relative humidity in winter. Compared to the 24 

observed PBL height obtained from a micro-pulse lidar system, the MYNN scheme exhibits lowest 25 

mean bias while the ACM2 scheme shows the highest correlation. It is also found that there is a 26 

varying degree of sensitivity of the PBL height in winter and summer, respectively; a best-27 

performing PBL scheme should be chosen under different seasons to predict various meteorological 28 

conditions over complicated topography like the YRD region. 29 
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Highlights 35 

• WRF model performances with four PBL schemes over the YRD region are evaluated. 36 

• Seasonal and diurnal variations of surface meteorological parameters are presented. 37 

• MYNN scheme shows good performance during summer while MYJ scheme performs 38 

better in winter.  39 

 40 

1 Introduction 41 

Through the interaction of surface forcing and turbulent motion, the planetary boundary layer (PBL) 42 

leads to mixed exchange of surface water vapour, heat and upper-level momentum, which in turn 43 

affects the near-surface meteorological field and the diffusion of atmospheric pollutants [Ayotte et 44 

al., 1996; Jia and Zhang, 2020; Sullivan et al., 1994]. The structure and variations of the PBL 45 

directly reflect changes in surface thermal conditions and are characterized by significant diurnal 46 

variations with temperature. Since the turbulent motion of the PBL is generally much smaller than 47 

the horizontal grid spacing of existing small- and medium-scale models, sub-grid scale effects need 48 

to be considered [Bryan et al., 2003]. The heat and momentum fluxes in the boundary layer are 49 

transported by turbulent motions, which are difficult to resolve on the spatial and temporal scales 50 

[Penchah et al., 2017] even with general engineering turbulence models; hence general engineering 51 

or application simulations require the introduction of a PBL parameterization scheme to calculate 52 

the physical quantities of heat and momentum in the boundary layer [Draxl et al., 2014; Smith and 53 

Thomsen, 2010]. 54 

 55 

PBL parameterisation scheme mainly describes the vertical transport of atmospheric momentum, 56 

heat, water vapour and other physical quantities in the boundary layer [Garratt, 1994]. Uncertainties 57 

in the physical parameterisation configurations of models, such as cumulus convection, surface 58 

processes, and PBL scheme are some of the main causes of errors in the regional climate modeling 59 

system [Wang et al., 2014]. Hence the choice and use of parameterisation schemes is of vital 60 

importance for the prediction of meteorological fields within the boundary layer, the trajectory study 61 

of air pollutant diffusion and the simulation of large-scale weather systems [Bright et al., 2002; Han 62 

et al., 2008; Li et al., 2016, Oozeer et al., 2016]. At present, the parameterisation schemes of 63 

numerical models mainly include simple population parameter method, K-profile method, closed 64 

method, original asymmetric convection method and spectral diffusion theory [Hu et al., 2010; 65 

Moeng, 1984; Shin and Hong, 2011].  66 

 67 
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The Weather Research and Forecasting (WRF) [Skamarock et al., 2008], a mesoscale model widely 68 

used for weather forecasting and relevant research, provides different boundary layer 69 

parameterisation schemes. The spatial resolution of the mesoscale model both in horizontal and 70 

vertical directions is finer than that of the large-scale model, therefore the boundary layer process 71 

can be resolved with more details with the mesocale model. Given the importance of boundary layer 72 

parameterisation scheme to a successful numerical simulation, previous studies have examined the 73 

impacts of different PBL schemes on simulated meteorological fields and the applicability of 74 

specific schemes at different regions [Coniglio et al., 2013; Gopalakrishnan et al., 2013; Mohan 75 

and Bhati, 2011; Smith and Thomsen, 2010; Yver et al., 2013]. In general, the impact of PBL 76 

schemes on simulated meteorology is under the influence of season or time of day, the variables 77 

considered and the regional characteristics. Thus, there is no single scheme that outperforms others 78 

for different applications.  79 

 80 

PBL schemes are used to describe the vertical fluxes of heat, momentum, moisture due to eddy 81 

transport within the whole atmospheric column in the turbulent processes [Banks and Baldasano, 82 

2016]. The number of unknowns of the equations appearing in a turbulent motion equation set is 83 

greater than the number of equations sets, making the original closed equation set non-closed, i.e., 84 

a set containing an infinite number of equations is needed to fully describe turbulence. To solve this 85 

problem, a finite number of equations is used to approximate the unknown quantity, which is known 86 

as turbulence modelling [Hariprasad et al., 2014; Holt and Raman, 1988]. One major component 87 

of the turbulence processes is whether a local or non-local mixing approach is employed. The local 88 

closure schemes obtain the turbulent fluxes using the mean variables and their gradients at each 89 

model grid. The non-local closure schemes use multiple vertical levels and profiles of convective 90 

boundary layer to determine variables [Cohen et al., 2015]. The sensitivity of different 91 

parameterisation schemes is closely related to meteorological and geographical environments. The 92 

MM5 model (5th generation Mesoscale model) is used by Zhang and Zheng [2004] to simulate 93 

surface wind and temperature in the central part of summer in the United States. Results show that 94 

the non-local Blackadar (BLK) scheme performs better in predicting the daily cycle of temperature 95 

and surface wind speed compared with other schemes. Sanjay [2008] shows that the non-local 96 

Troen-Mahrt (TM) scheme coupled to the land surface scheme causes boundary layer transition 97 

mixing, resulting in low humidity in the boundary layer under the condition of clear air in northwest 98 

India. Kwun et al. [2009] simulates the ocean surface wind speed during the typhoon using MM5 99 

and WRF in combination with various parameterization schemes. It is found that the wind speed 100 

obtained from the WRF coupled with the Yonsei University (YSU) and Mellor-Yamada-Janjić (MYJ) 101 

schemes are most consistent with observations. By quantifying the meteorological elements 102 
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simulated by four PBL schemes in the WRF model, Xie et al. [2012] shows that the PBL height 103 

simulated by the MYJ and Bougeault and Lacarrere (BouLac) schemes is higher than that simulated 104 

by the YSU and ACM2 schemes. It is more conducive to the upward transport of warm and humid 105 

airflow and the development of strong convection. Ooi et al. [2018] uses the MYJ scheme and 106 

studies the momentum and air pollutant transfers during the monsoon climates of Malaysia. Hu et 107 

al. [2010] evaluates three PBL schemes in the WRF model and found that the non-local YSU scheme 108 

and ACM2 scheme simulated strong daytime boundary layer mixing and entrapment, resulting in 109 

higher temperatures and lower humidity, while the local MYJ scheme predicted lower temperature 110 

and humidity due to weaker mixing and entrainment. At night the mixing of the YSU scheme is 111 

stronger than that of the ACM2 and the MYJ schemes, and the predicted temperature is also higher 112 

and humidity was lower. Wang et al. [2017a] uses the WRF model coupled with four commonly 113 

used PBL schemes to predict the meteorological elements and boundary layer structure in a typical 114 

farmland area of China, and finds that the ACM2 scheme shows good performance on both sunny 115 

and cloudy days. 116 

 117 

Although a number of previous studies have looked at the sensitivity of simulated meteorology to 118 

the choice of different parameterisation schemes, their simulation is generally conducted for very 119 

short periods (days ~ month) or is usually conducted for a specific meteorological event. Therefore, 120 

the conclusions of the studies may not be applicable in other situations. It is also found that in some 121 

cases, YSU or ACM2 is reported to be good for day-time calculations while results could be different 122 

for night-time period or under a different season. Previous works [Chu et al., 2019; García‐Díez et 123 

al., 2013; Kala et al., 2015; Madala et al., 2015] have shown that there are seasonal variations of 124 

different parameterisation schemes and a single PBL scheme could be inappropriate for annual 125 

simulations. Therefore, it is important to consider the seasonal and diurnal variations when choosing 126 

the optimal PBL scheme. 127 

 128 

The Yangtze River Delta (YRD) is located in the north marine monsoon subtropical climate zone of 129 

southeast China, which is one of the fast-developed city clusters in China. In recent years, this region 130 

has suffered from serious air pollution [Li et al., 2018; Li et al., 2019a, 2019b], which is generally 131 

affected by meteorological conditions and emissions. The topography of the YRD region is very 132 

complicated, with mountains in western and southern area, and adjacent to the ocean in eastern 133 

region. Besides, the YRD region is located in a transection area between northern and southern 134 

region. The weather is generally warm and humid in summer and cool and dry in winter. Thus, the 135 

air masses are complex. In this situation, the robust prediction of meteorological conditions will 136 

significantly affect the air quality simulation. The objective of this study is hence to investigate the 137 
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performance of the turbulence parameterisation scheme in the WRF mesoscale model of boundary 138 

laminar flow structure simulations in the YRD region of China. In particular, we focus on the 139 

seasonal discrepancy in the study area and assess the respective skill of four different commonly 140 

used PBL (YSU, ACM2, MYJ, MYNN) schemes in reproducing the meteorological variables in 141 

different seasons and discuss their applicability respectively. Our results could be used for further 142 

air quality simulation and air pollution research. 143 

2 Methodology 144 

2.1 WRF configurations 145 

The WRF version 4.0 is a non-hydrostatic mesoscale weather simulation system with flexible 146 

resolution and parametric scheme. In this study, three nested domains are configured with horizontal 147 

resolution of 36 km, 12 km, and 4 km, respectively (Fig. 1). The coarse D01 (186 × 149) covers 148 

most of the East Asia and part of Southeast Asia, while D02 (148 × 241) covers eastern China. D03 149 

(205 × 229) encompasses the entire YRD region. 39 vertical levels with a model top set at 50-hPa 150 

are used, the first 19 layers are from the planetary boundary layer. Initial and lateral boundary 151 

conditions are based on the 6-hour (1.0°×1.0° resolution) Global Final Analysis (FNL) data, 152 

provided by the National Center for Environmental Prediction-National Center for Atmospheric 153 

Research (NCEP/NCAR).  154 

 155 

The main physical-parameterisation schemes contain the Lin microphysics scheme [Lin et al., 1983], 156 

the NOAH land surface scheme [Chen and Dudhia, 2001], the Kain–Fritsch (KF) cumulus 157 

parameterisation (only used in D01 and D02) [Kain and Fritsch, 1993], the Rapid Radiative Transfer 158 

Model shortwave radiation scheme and the Rapid Radiative Transfer Model longwave radiation 159 

scheme [Mlawer et al., 1997]. 160 

 161 

Simulations are conducted for July and November 2018, starting at 0000UTC. The whole month is 162 

divided into 6 parts. The initial 24 hours are considered as a spin-up period, and the respective 163 

outputs during these two periods are excluded from the analysis. The analysis nudging option is 164 

switched on above the PBL for the horizontal wind components, potential temperature, and water 165 

vapor mixing ratio through three domains.  166 
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 167 
Fig. 1. (a) The three nested modeling domains for WRF model and (b) terrain height for the YRD region 168 

2.2 PBL scheme 169 

Two local closure (MYJ, MYNN) and two non-local (YSU, ACM2) PBL schemes are compared in 170 

this study. These four schemes are chosen because they represent the most commonly used schemes 171 

in various applications [Clark et al., 2015; Deppe et al., 2013; Lo et al., 2008; Steele et al., 2013; 172 

Su and Fung, 2015; Yerramilli et al., 2010]. The YSU PBL scheme is a first-order non-local closure 173 

scheme. Revised from the Medium-Range Forecast (MRF) scheme, the significant improvement to 174 

YSU is the addition of an explicit term for the treatment of entrainment process at the top of YSU. 175 

PBL height in the YSU scheme is determined from the Richardson bulk number, with a critical bulk 176 

Richardson number of 0.25 over land. This scheme improves the boundary layer diffusion algorithm 177 

to allow deeper mixing in windy conditions. Compared to MRF, vertical mixing in the buoyancy 178 

driven is increased in YSU scheme and decreased in the mechanic driven situation [Hong et al., 179 

2006]. However, the YSU scheme also shows weakness in mixing with too little over the cold oceans 180 

and producing too low nocturnal PBL height [Hong, 2010]. 181 

 182 

The ACM2 scheme [Pleim, 2007] is a hybrid first-order scheme, a combination of the ACM1 and 183 

local eddy diffusion. It calculates the PBL height above the level of neutral buoyancy when the bulk 184 

Richardson number is over 0.25. ACM2 is intended to better represent the shape of the vertical 185 

profiles and be more applicable to predict humidity, winds, or trace chemical mixing ratios in the 186 

boundary layer scheme. It tends to result in a deeper mixing PBL than other schemes due to its larger 187 

critical the bulk Richardson number [Huang et al., 2019]. 188 

 189 

The MYJ scheme [Janjić, 1990] is a one-and-half order local turbulence closure scheme. It 190 

diagnoses the vertical mixing process in PBL and free atmosphere through forecasting the TKE, 191 

combining with one additional prognostic equation of the TKE. In this method, the upper limit of 192 

the main length scale is given, which depends on the turbulence kinetic energy and the shear stress 193 

of the buoyancy and driving flow. Under unstable conditions, the equation form of this upper limit 194 
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is derived from the turbulent kinetic energy during the growth of turbulence satisfying non-singular 195 

conditions. Compared with other schemes, the MYJ scheme shows moister, cooler and little mixing 196 

PBL than other schemes since it has a smaller turbulent mixing [Hu et al., 2010]. 197 

 198 

The MYNN scheme [Nakanishi and Niino, 2006] is also a one-and-half order, local closure scheme. 199 

To overcome the biases of insufficient growth of convective boundary layer and under-estimated 200 

TKE, MYNN considers the effects of buoyancy in the diagnosis of the pressure covariance terms, 201 

and uses closure constants in the stability functions and mixing length formulations that are based 202 

on large eddy simulation (LES) results rather than observational datasets. This scheme takes into 203 

account the effect of buoyancy on the barometric correlation term and introduces the condensation 204 

physics process, and is applied to the study of fog events in general [Chaouch et al., 2017; Li et al., 205 

2012; Román-Cascón et al., 2012]. 206 

 207 

In this study, we conducted WRF simulation with the aforementioned four PBL schemes in four 208 

scenarios while the other inputs and parameters keep consistent, so as to look into the impact of 209 

different PBL scheme on meteorological simulation in a complicated region like YRD. 210 

 211 

2.3 Model performance evaluation 212 

Simulated 2-m surface temperature, 10-m wind speed, relative humidity from four stations at 213 

Shanghai (121.336°N 31.198°E), Hangzhou (120.432°N 30.228°E), Nanjing (118.862°N 31.742°E), 214 

Hefei (117.298°N 31.780°E) are compared with the hourly meteorological observations for model 215 

performance evaluation. The observational data are obtained from the National Oceanic and 216 

Atmospheric Administration (NOAA)’s National Climate Data Center archive 217 

(http://www.ncdc.noaa.gov/oa/ncdc.html). Meteorology variables are evaluated in terms of mean 218 

bias (MB), root of mean square error (RMSE), and correlation coefficient (R): 219 

MB = 1
𝑁𝑁
∑ (𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)𝑁𝑁
𝑖𝑖=1         (1) 220 

RMSE = �1
𝑁𝑁
∑ (𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1        (2) 221 

R = 1
𝑁𝑁
∑ (𝑀𝑀𝑖𝑖−𝑀𝑀�)(𝑂𝑂𝑖𝑖−𝑂𝑂�)

�1
𝑁𝑁
∑ (𝑀𝑀𝑖𝑖−𝑀𝑀�)2𝑁𝑁
𝑖𝑖=1 �1

𝑁𝑁
∑ (𝑂𝑂𝑖𝑖−𝑂𝑂�)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1     (3) 222 

where M and O refer to the simulated and observed meteorological values, respectively. N represents 223 

the number of data pairs. 224 

http://www.ncdc.noaa.gov/oa/ncdc.html
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3 Results and discussions 225 

3.1 Comparison of surface meteorological variables 226 

Tables 1 and 2 show the MB, RMSE and R between the WRF simulated meteorological factors and 227 

the observations at four meteorological stations. Figures 2, 4 and 6 show the time series of predicted 228 

and observed meteorology variables.  229 

3.1.1 2-m temperature 230 

The temporal series of the WRF model-simulated meteorological variables against observations 231 

from the four stations of July is shown in Fig. 2a. All four PBL schemes provide certain 232 

overestimations at the beginning of July, however, the simulated 2-m temperatures are generally 233 

consistent with the observed values, which is common for temperature simulations [Giannaros et 234 

al., 2013; Hogrefe et al., 2015; Mallard et al., 2014; Mughal et al., 2019; Wang et al., 2017b]. In 235 

terms of individual cases during the summer, all the four PBL schemes perform well in the prediction 236 

of 2-m temperature in Shanghai, Nanjing and Hangzhou, while all the four PBL schemes 237 

overestimate 2-m temperature in Hefei. The YSU and ACM2 schemes perform better than the MYJ 238 

and MYNN schemes at 2-m temperature with least MB (0.02℃) of YSU and highest R (0.77) of 239 

ACM2 (Table 1). Shin and Hong [2011] also reports positive biases with the different PBL schemes. 240 

In terms of RMSE and correlation coefficient in summer, ACM2 scheme is also better than other 241 

schemes. It is reasonable to infer that the overestimation of simulated 2-m temperature of four PBL 242 

schemes at Hefei is in large part due to a notable overestimation in the early and mid-July. Among 243 

which the MYNN scheme provides the highest correlation coefficient. In general, the average 244 

observed temperature in summer is 29.82℃ and the average of YSU scheme is closest to the 245 

observation with 29.87℃. The discrepancies of the short-wave radiation reaching the ground 246 

simulated by each PBL scheme and its own treatment of turbulence mixing can result in different 247 

temperature simulations by different PBL schemes. 248 

 249 

Different from summer, simulations of 2-m temperature are overestimated at all sites in winter (Fig. 250 

2b). The main reason is that the boundary layer is mostly in a steady stable state in winter, and 251 

coupled with the influence of complex topography, strong inversion temperature, insufficient 252 

development of turbulence in the near-surface layer, and the transport of material and energy is 253 

dominated by the local area. The MYNN scheme overestimates the most among all cases. In 254 

Shanghai, the YSU scheme shows the lowest MB of 0.83℃, the ACM2 and MYJ schemes perform 255 

slightly better with high correlation coefficient of 0.87 (Table 2). Though the simulations of the 256 

YSU, ACM2 and MYJ schemes are close, 2-m temperature simulations of local closure MYJ 257 

scheme are better than those of non-local closure YSU and ACM2 schemes. Simulated 2-m 258 
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temperature deviates from observation more in winter than that in summer while the consistency of 259 

winter is much better than summer on the whole. This is probably due to the lower temperature in 260 

winter and the smaller amplitude variation brought about by the simulation compared to summer. 261 

 262 
Fig. 2. Time series of 2-m temperature predicted with WRF against observations at four sites for summer (a) and 263 

winter (b). 264 

Comparing the average diurnal changes of 2-m temperature, it can be seen that all four PBL schemes 265 
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could reflect the diurnal variations reasonably well (Fig. 3a, 3b). Due to the different treatment of 266 

physical processes in the boundary layer, even if the same land surface parameters are used, the 267 

difference in surface turbulence transportation will cause significant discrepancies in the simulated 268 

surface temperature of the four experiments [Lee et al., 2006]. In summer, the daytime simulations 269 

of 2-m temperature are generally higher than the observations, but lower than observations at night 270 

(Fig. 3c). On the contrary, during winter night, the simulations exhibit overestimation (Fig. 3d). 271 

Hariprasad et al. [2014] also find that most PBL schemes produce a warm bias in the daytime air 272 

temperature and a slight cold bias in the night time air temperature in India. The main reason for the 273 

overestimation in summer daytime is that the YRD region is located in the intersection zone of land 274 

and sea. Under the influence of the summer monsoon, the water vapor transport is stronger in the 275 

daytime. A small cold bias is observed during the summer night which may be attributed to an 276 

overestimation of the surface cooling rate during the PBL collapse. Similar finding is also reported 277 

by Cuchiara et al. [2014]. The MYNN performs the least overestimation in summer daytime with 278 

0.12℃. YSU and ACM2 schemes produce higher temperatures than MYJ and MYNN schemes 279 

during the summer nighttime due to its enhanced vertical mixing in the lower PBL [Hu et al., 2010]. 280 

The differences in the 2-m temperature simulations of the four PBL schemes at night (Fig. 3c 3d) 281 

indicating that there are differences in the four PBL schemes treatment of the stable stratification at 282 

night. The surface temperature simulated by the local closure MYJ scheme during winter night is 283 

better than that simulated by the non-local closure schemes. The boundary layer is in a steady state 284 

during winter, especially due to the influence of valley topography with strong inversion 285 

temperature, near-surface turbulence is not fully developed, material and energy transport are 286 

mainly local. 287 
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 288 

Fig. 3. Average diurnal changes of 2-m temperature for summer (a) and winter (b); Average diurnal differences of 289 

2-m temperature for summer (c) and winter (d) 290 

3.1.2 10-m wind speed 291 

All four PBL schemes overestimate 10 m-wind speed over the YRD region in (Fig. 4), however, 292 

there are some differences among the cities due to their specific locations. Different from Shanghai, 293 

located along the coastline, the other three sites are all located in inner YRD region, closer to the 294 

western or southern hills. The WRF model is unable to capture this special geographical 295 

environment as well as sub-grid scale local fluctuations, resulting in the overestimations. Jiménez 296 

et al. [2012] also reports that wind speed was overestimated in the plains and valleys. The ACM2, 297 

MYNN and YSU schemes underestimate 10 m-wind speed in Shanghai in summer, while the MYJ 298 

scheme shows overestimation. All the four schemes exhibit overestimation in the other three cities. 299 

Among them, the MYNN scheme is the least underestimated with the lowest MB of 0.31 m s-1 in 300 

summer (Table 1) while the MYJ scheme shows the highest correlation coefficient of 0.59 (Table 301 

2). Other studies have also shown a general tendency of overestimation regarding the 10-m wind 302 

speed simulation [Cheng et al., 2005; Mölders, 2008]. The discrepancies in wind speed simulation 303 

from the different schemes may be caused by different mixing lengths due to various turbulence 304 

coefficients and friction velocities for each scheme. 305 
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 306 
Fig. 4. Time series of 10-m wind speed predicted with WRF against observations at four sites for summer (a) and 307 

winter (b). 308 

Similar to July, all four PBL schemes overestimate 10 m-wind speed in Nanjing, Hangzhou and 309 

Hefei in November, but the gap becomes narrower. Relative to the lower consistency of Hefei 310 

simulations in summer, the overall consistency of the winter simulations is better, with all 311 
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correlation coefficient higher than 0.54. Wind speed fluctuates more in summer than in winter, both 312 

in observations and simulations. Among the four PBL schemes, the MYJ scheme produces the most 313 

obvious level of fluctuations. The 10-m wind speed simulations in winter are much closer to 314 

observations than summer, and all four PBL schemes perform much better compared to the summer 315 

simulations. Seasonal diurnal variation also corresponds to the good performance of ACM2 and 316 

MYNN (Fig. 5). Simulations in winter are close to the observations before 0800UTC, and higher 317 

than observations after 0800UTC (Fig. 5b). The reason is partly due to the overestimation of the 318 

surface friction velocity at night. The MYNN scheme provides the lowest bias throughout the day 319 

in summer as well as night hours in winter (Fig. 5c 5d). This is expected since the MYNN is based 320 

on local closure, which is better suited for stable conditions prevailing in winter. This is also possibly 321 

due to higher diffusivity coefficients simulated by ACM2 and MYNN [Hariprasad et al., 2014], 322 

which exhibit lower wind speed and subsequent less errors compared with other schemes. 323 

 324 

Fig. 5. Average diurnal changes of 10-m wind speed for summer (a) and winter (b); Average diurnal differences of 325 

10-m wind speed for summer (c) and winter (d) 326 

3.1.3 Relative humidity 327 

As for relative humidity, all four PBL schemes mostly exhibit underestimations. Underestimation 328 

of humidity by MYJ and YSU schemes is also reported by Misenis and Zhang [2010] in air quality 329 

simulations over the coastal Mississippi. It can be seen from Table 1 and 2 that MYNN scheme 330 

shows the lowest RMSE of 12.74 and highest correlation coefficient of 0.67 in summer (Fig. 6a), 331 

MYJ scheme provides the lowest MB of -5.86 and relatively good correlation coefficient of 0.69 in 332 
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winter (Fig. 6b). The underestimation of humidity is greater in winter than that in summer. This may 333 

be attributed to the moisture content of the atmosphere, which is inherently small in winter, and the 334 

diurnal temperature variation becomes the dominant factor in relative humidity changes.  335 

 336 

In winter, due to weak mixing and clamping, the relative humidity simulation of MYJ scheme is 337 

higher than the other schemes. The non-local scheme ACM2 produced a large dry bias in both 338 

summer and winter. Overall MYNN and MYJ simulated the surface relative humidity reasonably 339 

well in summer and winter, respectively. The above results are similar to those found in García‐340 

Díez et al. [2013] over Europe. 341 
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 342 
Fig. 6. Time series of relative humidity predicted with WRF against observations at four sites for summer (a) and 343 

winter (b). 344 

The diurnal variation of relative humidity is relatively well reproduced with all PBL schemes. 345 

Relative humidity is not an output of the model but inferred from temperature, water vapor mixing 346 

ratio, and surface pressure. All four PBL schemes show different degrees of underestimations. 347 
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During daytime in summer, strong underestimation is shown with all PBL schemes and dry bias 348 

becomes smaller at night hours (Fig. 7a). It is shown that MYJ simulates the relative humidity better. 349 

In winter, all PBL schemes provide dry bias during day and night hours (Fig. 7b). Gunwani and 350 

Mohan [2017] also reports that in temperate zone higher dry bias is predicted by all PBL schemes 351 

compared to other climate zones. The boundary layer simulated by the non-local YSU and ACM2 352 

schemes has the characteristics of strong mixing and strong coiling, resulting in higher temperature 353 

and lower relative humidity simulations. While due to the weak mixing and clamping of local MYJ 354 

scheme, the relative humidity simulation is high compared to other three PBL schemes (Fig. 7c 7d). 355 

Consistent with a slight warm bias produced by the ACM2 in the northern area of the YRD region, 356 

wet bias simulation is found in the same area during summer (Fig. S3). The MYJ scheme exhibits 357 

lower simulation of relative humidity than other three schemes in summer while produces obvious 358 

higher simulation in winter (Fig. S3). 359 

 360 

Fig. 7. Average diurnal changes of relative humidity for summer (a) and winter (b); Average diurnal differences of 361 

relative humidity for summer (c) and winter (d) 362 

3.2 Comparison of PBL height 363 

3.2.1 Temporal variations of PBL height 364 

One of the largest sources of biases in mesoscale model simulations is the diagnosis of the PBL 365 

height. Estimates of the hourly PBL height between 0800 and 1700LST during July are determined 366 

based on observations from a micropulse lidar (MPL) at Hefei Environmental Protection Bureau 367 
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(31.78 N, 117.20 E) and the PBL height corresponding to the same time in hour during November 368 

are calculated at Dianshanhu in Shanghai (31.09 N, 120.98 E). Due to the instrument limitations, 369 

the PBL height at night and early morning is not available. Based on the available hourly PBL data, 370 

the WRF model simulations are compared. 371 

 372 

Fig. 8 compares the hourly observed PBL height with those simulated by the WRF model. The 373 

ACM2 scheme leads to the highest overestimation with MB of 0.19 km. The MYNN scheme 374 

exhibits the lowest MB of 0.04 km. Time-series comparisons for July of four PBL schemes 375 

simulations to the lidar measurement is provided in Fig. 8b. The strong diurnal daytime PBL patterns 376 

are captured in all four experiments especially for the MYNN and YSU schemes; however, four 377 

schemes exhibit varying degrees of overestimations at daytime-maximum PBL height. The YSU 378 

scheme exhibits the highest underestimation with MB of -0.22 km while the MYNN shows the 379 

lowest discrepancies compared to the MPL estimate with a difference of -0.04 km. The ACM2 380 

scheme shows the best performance in which the correlation coefficient was 0.92 and the MYNN 381 

scheme demonstrates relatively a good result of 0.91. Comparison of PBL height in the daytime 382 

during winter is shown in Fig. 8c. From 1100LST to 1500LST all PBL schemes overestimates the 383 

PBL height. The MYNN scheme produces the highest overestimation while the MYJ and YSU 384 

schemes exhibit closer simulation. The MYJ scheme produces the lowest MB of -0.02km while the 385 

MYNN exhibits the highest correlation coefficient of 0.63. Month-series comparisons for November 386 

is not so good as July. During 6-8 and 27-30 of November, most PBL schemes show overestimation 387 

in the daytime (Fig. 8d). 388 

389 
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 390 
Fig. 8. (a) Time series of daytime PBL heights simulations and hourly average from the lidar in July 2018. (b) 391 

Time series of monthly PBL heights simulated by WRF and available hourly average from the lidar of July 2018. 392 

(c) Time series of daytime PBL heights simulations and hourly average from the lidar in November 2018. (b) Time 393 

series of monthly PBL heights simulated by WRF and available hourly average from the lidar of November 2018. 394 

3.2.2 Spatial distribution of PBL height 395 

Spatial discrepancies of PBL height between the four PBL schemes are evident during different 396 

seasons (Fig. S4). PBL height in the inland area of the YRD region during summer is significantly 397 

higher than that in winter. In summer, the temperature stratification of the surface atmosphere is 398 

unstable, turbulence and turbulent exchange will increase accordingly [Zhang et al., 2011]. 399 

Therefore, compared with winter, the more intense convection and turbulence in the summer 400 

provides favorable dynamic conditions for the development of the deep boundary layer. While the 401 

PBL height is higher in winter than in summer along the coastal area. Due to the differences in the 402 

thermal properties of the sea route, the southeast wind prevails in summer and the northwest wind 403 

prevails in winter over the YRD region [Ni et al., 2018; Shen et al., 2019; Li et al., 2021]. In summer, 404 

the prevailing southeast wind transports the warm and humid airflow to the relatively colder sea 405 

surface, which makes it easier to form a stable boundary layer, thus reducing the PBL height; while 406 

in winter, the strong northwest wind transports a large number of cold air masses to the warm sea 407 

surface, increasing the sensible and latent heat fluxes upward at the sea-air interface, causing the 408 

instability of the lower boundary layer and resulting in an increase in the PBL height. 409 

 410 
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Table 1 Statistics of WRF model performance with different PBL schemes in July, 2018 411 

 412 

 413 

 414 

 Shanghai Nanjing Hangzhou Hefei Average 

 MB RMSE R MB RMSE R MB RMSE R MB RMSE R MB RMSE R 

T2/℃ 

YSU -0.31 2.00 0.74 -0.34 2.12 0.82 -0.89 2.62 0.73 1.62 2.84 0.76 0.02 2.42 0.73 

ACM2 -0.49 1.72 0.83 -0.41 1.97 0.85 -1.03 2.26 0.82 1.65 2.88 0.76 -0.07 2.25 0.77 

MYJ -0.13 1.85 0.81 -0.69 2.23 0.82 -1.03 2.69 0.73 1.61 2.92 0.76 -0.06 2.46 0.74 

MYNN -0.41 1.93 0.76 -0.69 1.95 0.86 -1.17 2.54 0.77 1.32 2.56 0.78 -0.24 2.27 0.76 

WS10/ms-1 

YSU -0.48 1.53 0.70 0.72 1.82 0.55 1.02 1.98 0.50 0.29 1.59 0.41 0.39 1.74 0.55 

ACM2 -0.35 1.50 0.70 0.97 1.97 0.56 1.30 2.21 0.49 0.32 1.60 0.42 0.56 1.84 0.54 

MYJ 1.19 2.21 0.63 1.33 2.51 0.49 1.62 2.60 0.52 1.68 2.64 0.32 1.46 2.50 0.55 

MYNN -0.66 1.53 0.73 0.60 1.89 0.51 0.86 1.89 0.53 0.41 1.69 0.36 0.31 1.76 0.54 

RH/% 

YSU -3.60 10.30 0.71 -2.11 11.15 0.73 -4.91 14.39 0.56 -10.78 17.49 0.56 -5.35 13.64 0.64 

ACM2 -3.22 9.93 0.76 -3.82 11.69 0.72 -6.08 13.83 0.65 -12.63 19.08 0.53 -6.44 14.06 0.66 

MYJ -3.49 10.65 0.71 1.90 10.88 0.73 -4.35 14.67 0.51 -6.96 14.06 0.66 -3.22 12.74 0.65 

MYNN -4.44 10.01 0.75 -1.29 10.70 0.72 -4.36 13.70 0.60 -9.7 16.34 0.59 -4.05 12.70 0.67 
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Table 2 Statistics of WRF model performance with different PBL schemes in November, 2018 415 

 416 

 417 

 Shanghai Nanjing Hangzhou Hefei Average 

 MB RMSE R MB RMSE R MB RMSE R MB RMSE R MB RMSE R 

T2/℃ 

YSU 0.83 1.80 0.85  0.68 2.12 0.87 1.23 2.13 0.85  0.83  2.07  0.89  0.89  2.03  0.88  

ACM2 0.91 1.73 0.87  0.88 2.26 0.86 1.40 2.22 0.85  0.80  2.00  0.89  1.00  2.06  0.89  

MYJ 0.84 1.70 0.87  0.67 2.10 0.87 1.22 2.08 0.86  0.68  2.12  0.87  0.85  2.01  0.89  

MYNN 1.24 2.08 0.84  1.00 2.17 0.88 1.51 2.37 0.83  1.01  2.15  0.89  1.19  2.19  0.88  

WS10/m·s-1 

YSU -0.31 1.35 0.60  0.60 1.35 0.66 0.33 1.23 0.49  0.56  1.41  0.55  0.28  1.34  0.56  

ACM2 0.28 1.39 0.56  0.62 1.43 0.62 0.29 1.28 0.43  0.53  1.46  0.54  0.28  1.39  0.53  

MYJ -0.54 1.49 0.62  0.57 1.61 0.62 0.90 1.64 0.52  0.56  1.57  0.60  0.58  1.58  0.59  

MYNN -8.52 1.41 0.59  0.45 1.31 0.63 0.38 1.30 0.41  0.38  1.35  0.55  0.17  1.34  0.53  

RH/% 

YSU -8.52 15.11 0.66  -6.21 14.82 0.67 -12.50 18.90 0.53  -6.78  13.03  0.80  -8.50  15.61  0.67  

ACM2 -8.74 15.34 0.67  -8.26 15.85 0.66 -14.35 20.32 0.52  -8.81  14.67  0.78  -10.04  16.69  0.66  

MYJ -6.66 13.21 0.71  -3.23 13.06 0.68 -10.56 16.81 0.59  -3.01  11.85  0.78  -5.86  13.85  0.69  

MYNN -12.42 17.75 0.66  -8.12 14.25 0.74 -15.50 20.77 0.55  -8.09  12.87  0.84  -11.03  16.69  0.70  
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4 Conclusions 418 

In this study, a seasonal sensitivity analysis study from the WRF mesoscale model is conducted to 419 

explore the impacts of four most commonly used PBL schemes (YSU, ACM2, MYJ and MYNN) 420 

on simulated meteorological variables over the YRD region in summer and winter. The WRF 421 

simulation indicates that the PBL schemes have different impact on meteorological variables in 422 

different seasons. Most the four PBL schemes underestimate the 2-m temperature in summer (-423 

0.06~0.24℃ for July) while all the four PBL schemes overestimate the 2-m temperature in winter 424 

(0.17~0.52℃ for November). All the four PBL schemes overestimate 10-m wind speed 425 

(0.29~1.47m/s for July; 0.25~0.66m/s for November) and underestimate the relative humidity (-426 

4.07~-5.86% for July; -5.86%~-11.03% for November). Warm bias in summer is mostly found in 427 

daytime, mainly as a consequence of overestimated breeze circulations. The warm deviation in 428 

winter is possibly related to the unresolved strong temperature inversion and the stability limitation 429 

of surface parameterisation. Wind speed of overestimation in summer is higher than winter. 430 

Diagnosis of the surface meteorological variables indicate that for temperature the local closure 431 

scheme MYNN simulated well in summer while MYJ performs better in winter. For wind speed, 432 

ACM2 scheme and the local closure scheme MYNN produced better simulations, and the MYJ and 433 

YSU schemes slightly overestimated the winds than the formers. For humidity, ACM2 and YSU 434 

schemes simulate reasonably well in summer and relatively underestimated in winter while the other 435 

three schemes produced close simulations and the MYNN performed larger bias in winter. Generally, 436 

the simulations of winter cases are better than that of summer cases, the reason is related to the 437 

relatively stable flow field in winter. MYNN performs better in meteorological factors than other 438 

three schemes in summer and MYJ provides better simulations in winter for the YRD region. 439 

Comparisons of the PBL heights reveal that except for the ACM2, other three PBL schemes show 440 

varying degrees of underestimation, with the MYJ scheme exhibits the largest underestimation and 441 

the MYNN scheme shows the smallest in summer. On the contrary, most PBL schemes especially 442 

the MYNN scheme produce the highest overestimation in winter. As for the diurnal cycle, the YSU 443 

and MYNN schemes exhibit more realistic time variation in the PBL heights in accordance with 444 

radiosonde data. All four schemes capture a strong diurnal PBL pattern of daily variation while the 445 

MYNN scheme performed the lowest MB and the ACM2 scheme provided the highest correlation 446 

coefficient in summer. While the MYJ scheme shows the best simulation with MB of -0.02km in 447 

winter. 448 

 449 

In summary, we find that model systematic errors are dependent on the seasonal and daily cycles, 450 

and variable terrain conditions that causes different atmospheric factors. This is necessary to be 451 



22 
 

considered when selecting the most adequate model configuration or improving the parametrization 452 

schemes. Overall, the local PBL scheme MYNN performs well for model simulations of the 453 

meteorology and PBL height in summer while the local PBL scheme MYJ exhibits better simulation 454 

results in winter over the YRD region. 455 
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Fig S1. Spatial distribution of 2-m temperature simulated with the WRF model using each of the 

four PBL schemes during July and November. 

Fig. S2. Spatial distribution of 10-m wind speed simulated with the WRF model using each of the 

four PBL schemes during July and November. 

Fig. S3. Spatial distribution of relative humidity simulated with the WRF model using each of the 

four PBL schemes during July and November. 

Fig. S4. Spatial distribution of PBL height simulated with the WRF model using each of the four 

PBL schemes during July and November. 
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Fig. S1. Spatial distribution of 2-m temperature simulated with the WRF model using each of the four PBL schemes during July and November. 



 

Fig. S2. Spatial distribution of 10-m wind speed simulated with the WRF model using each of the four PBL schemes during July and November. 



 

Fig. S3. Spatial distribution of relative humidity simulated with the WRF model using each of the four PBL schemes during July and November. 



 

Fig. S4. Spatial distribution of PBL height simulated with the WRF model using each of the four PBL schemes during July and November. 
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