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Abstract—Poor real-time performance in multi-QR
codes detection has been a bottleneck in QR code
decoding based Internet-of-Things (IoT) systems. To
tackle this issue, we propose in this paper a rapid de-
tection approach, which consists of Multistage Stepwise
Discrimination (MSD) and a Compressed MobileNet.
Inspired by the object category determination analysis,
the preprocessed QR codes are extracted accurately on
a small scale using the MSD. Guided by the small scale
of the image and the end-to-end detection model, we
obtain a lightweight Compressed MobileNet in a deep
weight compression manner to realize rapid inference
of multi-QR codes. The Average Detection Precision
(ADP), Multiple Box Rate (MBR) and running time
are used for quantitative evaluation of the efficacy and
efficiency. Compared with a few state-of-the-art meth-
ods, our approach has higher detection performance in
rapid and accurate extraction of all the QR codes. The
approach is conducive to embedded implementation in
edge devices along with a bit of overhead computation
to further benefit a wide range of real-time IoT appli-
cations.

Index Terms—Multi-QR Codes, rapid detection,
Internet of Things(IoT), MobileNet, embedded edge
devices.

I. INTRODUCTION
With the development of digital twin and deep learn-

ing in the Industrial Internet of Things [1], the QR code,
as a kind of low-cost reading label, can empower the
reliable construction of deep learning-based perception
framework [2]. However, fast detection of multiple QR
codes in images remains a challenging task, though it
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is crucial for registering large quantities of sample tubes
or commodity goods in various scenes, such as medical
facilities for COVID-19 testing, warehousing and logistics,
as illustrated in Fig. 1. This requires not only high per-
formance in real-time, namely detection of all QR codes
from one image efficiently, but also low computational
complexity for embedded implementation using the edge
devices.

(a) (b)

Fig. 1: Multi-QR codes detection scenarios. (a) and (b)
present the application of multi-QR codes detection in
the medical test tubes for COVID-19 testing and goods

warehousing, respectively.

Earlier approaches [3–5] of the QR code detection
detected QR codes by calculating the width ratio of the
black and white regions. However, they can only be applied
to images with a simple background and high contrast.
The image resolution, illumination and noise etc can easily
influence the detection performance of these approaches
[6]. By extracting the contour lines, QR codes can be
detected using the morphological processing and Hough
Transform [7]. However, this approach has a high com-
putational complexity, yet the overall accuracy in dealing
with complex background is still low. Most conventional
QR code detection approaches only consider the single QR
code scenario, which can not be effectively applied in the
multi-QR codes detection task.

Deep learning-based object detection can help to
predict the location of multiple QR codes in an image.
These object detection approaches can be divided into two
categories according to the detection principles, i.e. single-
stage and two-stage approaches. The single-stage approach
mainly uses the fully convolutional networks to process
the image, so that the class probability and position of
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the target can be directly estimated. As a result, the
detection speed is fast, but the accuracy rate is lower
than that of the two-stage ones. Typical algorithms include
YOLOv3 [8], SSD [9], etc. The two-stage target detection
approach often needs to determine the target candidate
regions first before applying region-based classification.
Compared with the single-stage scheme, the two-stage one,
for instance, R-CNN [10], Fast R-CNN [11] and Faster
R-CNN [11], has a higher accuracy but is more time-
consuming.

Many researchers have also introduced various net-
work models in the research field of multi-QR codes
detection. For example, [12] proposed an effective one-
dimensional barcode detection network. However, the
number of model parameters is high, and the detection
accuracy still needs to be improved. [13] first proposed a
multi-class barcode detection network based on the Faster
R-CNN network that is suitable for complex environ-
ments, which can locate multiple barcodes and correct the
distortions. However, this approach is too time-consuming
and does not consider the influence of illumination changes
on detection accuracy. Subsequently, the authors com-
pressed and optimized the network model to reduce the
parameters in [14], but the computational cost remains
high. Based on the EfficientDet [15], [16] locates the four
vertices of the QR code with a relatively high training
cost. Furthermore, this approach adds an additional key-
points regression layer for locating four vertices of the
QR code accurately, which increases the algorithm’s time
complexity. In order to reduce the computation overhead
of the learning-based model in the QR code detection task,
the batch QR code detection approach [17] is proposed,
which combines the conventional QR code detection and
the lightweight model, demonstrating improved detection
speed. However, the application scenarios of this approach
have some limitations. The detection accuracy of QR codes
will be poor following the high false detection rate, when
the detected image contains complicated background or
noise.

In summary, conventional detection approaches en-
counter difficulties to detect multiple QR codes contained
in a single image, while learning-based ones depend on a
massive model structure, sufficient labeled data, and high
hardware configurations, leading to poor detection speed
and difficulty for embedded implementation on edge de-
vices. In order to overcome these shortcomings, we propose
an effective approach for rapid detection of multiple QR
codes. The major contributions are highlighted as follows.

1) Based on object category determination analysis,
we propose a Multistage Stepwise Discrimination
(MSD) approach, which is capable of rapidly clas-
sifying redundant target candidate regions and ac-
curately subsampling them into small sizes.

2) Inspired by the small-scale and end-to-end detection
task, we use the deep learning-based network to
capture the convolutional features of QR codes, and
propose the lightweight Compressed MobileNet for
high accuracy classification.

3) We propose a rapid detection approach for mul-
tiple QR codes based on MSD and Compressed
MobileNet. The experimental results show that our
approach has higher detection accuracy and the
faster speed. Our model is conducive to embedded
implementation on edge devices, meeting the needs
of real-time multi-QR codes detection in IoT appli-
cations.

The remainder of this paper is organized as follows.
In Section II, we review the related work in detail. The
framework of the proposed approach is given in Section
III. Section IV presents the experiments and the results,
followed by a summary and discussion of future research
in Section V. Table I lists all acronyms, along with de-
scriptions.

TABLE I: List of All Acronyms

Acronym Significance
MSD Multistage Stepwise Discrimination
SD Square Degree

SDSM Square Degree Selection Method
ASSM Area Statistics Selection Method

DD Distance Discrimination
CDA Coincidence Degree Analysis
GSS Grayscale Statistics
MBR Multiple Box Rate
ADP Average Detection Precision

II. RELATED WORK AND MOTIVATIONS
QR code is a low-cost label reading strategy over

the perception layer of the IoT. However, accurate and
rapid QR code detection on edge sensing devices has been
challenging. Related approaches can be divided into two
categories, i.e. image processing-based approach and deep
learning-based model as detailed below.

A. Image processing-based approach
Early works [18–21] use conventional image process-

ing approaches, including image filtering, binarization op-
eration, morphological processing and the Hough trans-
form, to detect the QR codes, followed by extracting the
QR codes as the foreground. This kind of approach is
simple and effective, and has also been applied to QR code
detection in recent years. [22] proposes a QR code location
method based on the areas with high concentration of
edge and corner structures which is so-called the structure
matrix in the HSV(Hue, Saturation, Value) color system.
The edge detection is used to capture the boundary in-
formation, before being transmitted to the HSV space to
locate the QR codes. [23] proposes an approach for 1D bar-
code detection and recognition, which utilizes binarization
and other operations to preprocess the image, and then
performs boundary detection and classification to locate
the barcode. Based on the conventional image processing,
a more efficient QR code detection approach is proposed in
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[24], which can not only locate and detect QR codes under
uneven lighting environments, but also be suitable for low-
resolution images. After converting the captured image
into the gray one followed by binarization, [24] obtains the
QR code’s bounding-box by locating the Finder Pattern
of the QR code. [25] also converts the RGB image into
a binary one and then performs morphological processing
to detect the QR code. [26] proposes a QR code detection
approach based on image integration, which uses the inte-
gral image to determine a threshold for binarization, and
then applies the Finder Pattern of the QR code to locate
the QR code through the extracted connection regions.

The primary purpose of the binarization operation
above is to enhance the edges whilst removing the un-
wanted background. Image binarization can be divided
into local and global thresholding based approaches [27].
The local thresholding determines the binarization thresh-
old using the pixel distribution with a neighborhood re-
gion. Although the image can carry out this binarization
operation adaptively, it needs to calculate multiple thresh-
olds, leading to low efficiency. The global threshold ap-
proach achieves the binarization by setting one threshold,
thus it is fast. OTSU [28] is a kind of global thresholding
approach with simple and rapid calculation, unaffected
by image brightness and contrast. It divides the image
into the background and the foreground according to the
histogram distribution. Because of the rich black and
white block features of the QR code, there is an apparent
distinction between the foreground and the background.
We can obtain the edge information of the QR code
contours by using the OTSU to get the maximal inter-class
variance of the QR code and the background. Therefore, in
our work, we use the OTSU to calculate the binarization
threshold and convert the RGB image into a binary one.

B. Deep learning-based model
In recent years, with the rapid development of Deep

learning and computer vision techniques, Deep Neural
Network (DNN) models have been applied to detect mul-
tiple QR code patterns in the image. [29] uses YOLOv2
[30] to detect the positions of the multiple QR codes in
the image. Simultaneously, the rotation angles of the QR
codes are regressed by DarkNet19. This approach achieves
favorable results on the Muenster barcode dataset. [31]
uses the edge detection operator to process images, map-
ping them to the Hough space. The rotation angles of
the 1D barcode are obtained through a trained Multi-
Layer Perceptron Network, which achieves satisfactory
results in the experiments. A geometric approach in [32]
is introduced to the deep learning-based model, which
extracts the bounding box regions and uses a line detection
algorithm to detect corresponding barcodes after utilizing
the YOLOv2 to locate multiple 1D barcodes in the im-
age. In [33], an end-to-end model is proposed to detect
multiple QR codes in the image. This approach contains a
Quadrilateral Regression Layer that can accurately locate
barcodes and a Multi-scale Spatial Pyramid Pooling Layer
to detect small-scale barcodes.

In addition, many DNN models have achieved high
accuracy in object detection tasks in recent years. These
deep learning-based models can not only be divided into
the two-stage and the single-stage, but also anchor-based
and anchor-free model where anchor is the pregenerated
bounding box. Fast R-CNN, Faster R-CNN, YOLOv2 and
SSD belong to anchor-based methods, while DenseBox
[34], CornerNet [35], ExtremeNet [36], FSAF [37], FCOS
[38] and FoveaBox [39] are anchor-free ones. However, it
is for the multi-QR codes detection that the practicability
of these approaches is considered necessarily in actual
scenes, where whether they can meet the requirements
of the perceptive devices with scarce computing resources
is particularly challenging. Although anchor-free models
proposed in recent years simplify the structure of anchor-
based models and reduce the computational complexity,
they still have a large number of parameters and require
high-performed hardware, which prevents them from being
applied directly to directly the multi-QR codes detection
task. In order to deploy these DNN models in real sce-
narios, they need to be compressed through knowledge
distillation, low-rank decomposition, network quantization
and so on. Moreover, SqueezeNet [40], ShuffleNet [41],
MobileNet [42–44] and other lightweight networks are
proposed to reduce the complexity of the DNN models and
the parameters. Inspired by network compression tech-
nology and the lightweight network model, we introduce
a lightweight model in the last part of our approach to
improve the recognition accuracy.

C. Our motivations
Nowadays, the Internet of Things (IoT) has elicited

great attention from both industrial and scholarly circles,
such as big data, energy management, and commerce, to
name a few. However, in the perception layer of IoT,
QR codes, as the most widely used labeling technology,
still present challenges. These challenges are primarily
composed of two aspects. The first is the complicated
industrial environments [45], where the intricacy of real-
world settings renders detection and decoding more ar-
duous. This complexity encompasses multiple scales, oc-
clusion between QR codes and backgrounds, geometric
distortion, and orientation, commonly seen in industrial
environments. The second is the slow detection speed for
multi-QR codes, which may also affect the security of QR
code information transmission [46, 47] due to the poor
detection speed, as well as for ensuring the production
line efficiency. Therefore, all of these necessitate that IoT
devices are able to quickly acquire as much QR code
information as possible.

To tackle these challenges, we aim to develop a rapid
multi-QR codes detection approach under industrial envi-
ronments. Although attempts have been made to address
some of these issues, as summarized in Table II, they
are far from fully solved. In addition, existing approaches
can be categorized into image processing-based and Deep
learning-based. The former features poor detection accu-
racy but fast speed even on the central processing units
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(CPUs). The latter requests more computational power
hence has difficulty for implementation on a resource con-
strained edge devices yet it tends to have high detection
accuracy. How to combine them for both high detection
accuracy and fast speed will be the major purpose of the
proposed approach.

III. THE PROPOSED APPROACH
In the QR code image detection task, a large num-

ber of predicted bounding boxes are generated. Through
utilizing the category determination principle and IoU
[48] to analyze these bounding boxes, they can be di-
vided into independent ones, intersecting ones and con-
taining ones. In this section, we propose an efficient
box-screening strategy, namely the Multistage Stepwise
Discrimination(MSD)-based approach, to improve the
screening performance. Finally, we present our multi-QR
codes rapid detection approach in detail.

A. Multistage Stepwise Discrimination
1) Analysis of predicted bounding boxes based on cat-

egory determination principle: In the multi-QR codes de-
tection task, there will be many generated bounding boxes
that may not contain the full targets. Thus these need be
examined to remove the false alarms. The classification
of these boxes is a kind of object category determination
problem. As shown in Fig. 2, there are four types for
the overlap of bounding boxes in an image: 1) The four
corners of a bounding box are all contained in the interior
of the another. 2) A corner of a bounding box is contained
inside the another. 3) Two corners of a bounding box are
contained inside the another. 4) The bounding box does
not contain any corners of the others. As for a further
comment, these types can fall into two cases, one is the
intersection relation which is shown in Fig. 2(a), and
the another is the inclusion one which is presented in
Fig. 2(b)(c)(d). These bounding boxes X can be divided
into independent boxes cind, intersecting ones cint, and
containing ones ccon. So the set Y of category is defined
as

Y = {cind, cint, ccon} (1)

x ∈ X represents a bounding box, and the risk of
misplacing it into category c is R(c|x), which is defined as

R(c|x) = R(cind|x)× (R(cint|x) +R(ccon|x)) (2)

This risk can be minimized by finding a decision rule
h : X 7→ Y, which h is defined as

R(h) = E[R(h(x) | x)] (3)

where E stands for the expected function. For each sample
x, if h can minimize the risk value R(h(x) | x), the risk
R(h) will also be minimized, i.e

h(x) = arg min
c∈Y

R(c | x) (4)

A

B

A

B

(a)

A

B

A

B

(b)

A

B

A

B

(c)

A

B

A

B

(d)
Fig. 2: The overlapping relations of Box A and Box B.
The interior of Box A in (a)-(c) contains 4, 1, and 2

corners of Box B respectively. The interior of Box A dose
not contain the corners of Box B in (d).

o x

y

A

B(x01, y01)

(x02, y02)

(x12, y12)

(x11, y11)

IOU

W2

H2

W1

H1

Fig. 3: The intersection over union of Box A and Box B.

We study the bounding box categories to improve
the detection efficiency and propose a decision rule h,
namely Multistage Stepwise Discrimination(MSD), which
can eliminate extra boxes rapidly. Thus all bounding boxes
are quickly divided into independent boxes, intersecting
ones, containing ones. Finally, the QR code within each
bounding box is detected and extracted.

2) Design of MSD approach: For two bounding boxes
containing the same detection target, as shown in Fig. 3,
the IoU score can measure their intersection degree. In
order to judge whether two boxes are in the inclusion
relation, we propose another metric based on the IoU
score, namely the coincidence score C. A and B in Fig.
3 are two intersected boxes. The width iouw, height iouh
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TABLE II: Summarized Comparison of Related Works

Works Features

Image
processing-based

[18–21] Mainly using the Hough transform to detectiong QR codes
[22] Applying a kind of structure matrix in HSV color space to locate the QR code
[23] Detecting the boundary of QR code after binarization
[24] Having a better performance in uneven lighting environments
[24] Locating the QR code via the Finder Pattern
[25] Applying morphological processing to images to find QR codes
[26] Finding the QR code by the Finder Pattern after image integration

Deep
learning-based

[29] Using YOLOv2 to detect the positions of QR codes
[31] Obtaining the rotation angle of QR code by a Multi-Layer Perceptron Network
[32] Locating QR code by YOLOv2 following the line detection algorithm
[33] Proposing an end-to-end model to detect QR codes

and IoU score of their intersected region can be defined
as



iouw =min(x01, x02, x11, x12) + w1 + w2

−max(x01, x02, x11, x12)

iouh =min(y01, y02, y11, y12) + h1 + h2

−max(y01, y02, y11, y12)

iouAB =
iouw × iouh

SA + SB − iouw × iouh

(5)

where (x01, y01), (x02, y02), w1 and h1 are the upper-left
corner, the lower-right corner, width and height of A.
(x11, y11), (x12, y12), w2 and h2 are also the upper-left
corner, the lower-right corner, width and height of B. SA

and SB denote the area of A and B respectively. The
coincidence score CAB is calculated as

CAB =
iouw × iouh

min(SA, SB)
(6)

The Coincidence Degree Analysis (CDA) can be con-
ducted on A and B, i.e. CAB = 1 when the relation of
A and B is inclusion. Consider Xind, Xint and Xcon are
the boxes sets of cind, cint and ccon respectively. nind,
nint and ncon are the number of samples of Xind, Xint

and Xcon. When a sample x is classified into cind, the risk
value R(cind|x) is defined as

R(cind|x) = sign(

nind∑
j=1

iouxxj ), xj ∈ Xind (7)

where sign(x) is a sign function defined as

sign(x) =


1, x > 0

0, x = 0

− 1, x < 0

(8)

When x is assigned to cind correctly, x does not
intersect any other bounding box xj in Xind, whilst
R(cind|x) = 0. Otherwise, R(cind|x) = 1. When x is
classified into cint, the risk value R(cint | x) is defined
as

R(cint|x) =
1

2
sign

(
1∑nint

j=1 eCxxj

− 1

nint

)
+ 0.5, xj ∈ Xint

(9)

where R(cint|x) = 0 when there is an intersection relation
between x and the bounding box xj of Xint, namely x ∈
Xint. Conversely, R(cint|x) ∈ {0.5, 1}. When x is classified
into ccon, the risk value R(ccon | x) is defined as

R(ccon|x) =
ncon∑
j=1

Cxxj −

ncon∑
j=1

Cxxj

 , xj ∈ Xcon (10)

where R(ccon|x) = 0 when there is inclusion relation
between x and the bounding box xj in Xcon, namely x ∈
Xcon. On the contrary, the risk value is 0 < R(ccon|x) < 1.

So far, according to the IoU score and coincidence
score, we have completed the category determination of
independent bounding boxes, intersecting ones and con-
taining ones by minimizing the risk value R(c | x). After
obtaining the category of each box by the MSD in this
section, we propose a filtering algorithm to eliminate the
redundant candidate boxes in Xint and Xcon.

3) Box filtering algorithm based on MSD: Given the
upper-left corner (xlt, ylt), width w and height h of a
bounding box, the center point (cx, cy) can be calculated
as 

cx =xlt +
w

2

cy =ylt +
h

2

(11)

where the center points (cxA, cyA) and (cxB , cyB) in Fig.
3 can be found. The horizontal distance dx and vertical
distance dy between the two center points, namely |cxA−
cxB | and |cyA − cyB |, can also be calculated as

dx = |x11 − x01 +
w2

2
− w1

2
|

dy = |y11 − y01 +
h2

2
− h1

2
|

(12)

The Distance Discrimination (DD) can be conducted
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for A and B, when they have the critical intersection
distance. The width tx and the height ty of the intersected
region can be calculated as

tx =
w1

2
+

w2

2

ty =
h1

2
+

h2

2

(13)

where if two bounding boxes intersect each other, dx ≤ tx
and dy ≤ ty. Otherwise, there is no a intersection relation
between them.

Fig. 4 gives the flowchart how to eliminate the extra
boxes and only retain those smaller ones in Fig. 3, where
the intersecting bounding boxes that do not contain QR
code should be discarded. Different from the containing
bounding boxes, intersecting ones cannot quickly deter-
mine whether the boxes contain real QR codes. Therefore,
we design a rapid filtering approach by combining both
the size and the edge features of the QR code, which has
two stages in Fig. 4. First, all the independent bounding
boxes are obtained as the prior knowledge, using their
size features to filter the intersecting ones preliminarily.
Then, the edge feature is utilized to further filter the re-
maining boxes. When detecting the multi-QR codes, their
sizes should be within a range of [min_area,max_area],
which can be determined using the areas of the detected
independent bounding boxes. Actually, we introduce the
area redundancy parameter β = 0.2 and set the size
range as [(1− β)min_area, (1 + β)max_area], aiming to
prevent the valid boxes from missing or being eliminated.
The bounding boxes are retained when their areas are
within this range. Furthermore, for the bounding boxes
that contain the QR code, another significant feature is its
edge grayscale distribution, which comes from the stage of
binarization and morphological processing. The Grayscale
Statistics (GSS) is utilized to determine the edge grayscale
distribution in each intersecting bounding box of the same
target, which is for finding the box with the maximal area
proportion of the QR code.

B. The Proposed Approach for Rapid Detection
This section introduces our detection algorithm for

multi-QR codes using MSD presented in the previous
section. Different from approaches based on conventional
image processing and QR code’s finder pattern, we elim-
inate false bounding boxes without splitting an image
into several blocks. These blocks’ quantity and size are
uncertain and may lead to incomplete QR code region.
Hence actually those approaches have the delicate adap-
tive ability. Inspired by DNN-based detection approaches,
we obtain all bounding boxes that may contain QR code in
an image according to the QR code’s dense edge informa-
tion after preprocessing and contours extraction of RGB
image. And then the boxes filtering algorithm based on
MSD is applied to these bounding boxes, which has the low
computational complexity and the high precision. Finally,
we train a lightweight model, i.e. Compressed MobileNet,
to improve the classification precision of bounding boxes.

start

Calculate the maximum value Smax and the minimum 

value Smin of the area of the independent bounding boxes

Initialize the area redundancy parameter β = 0.2

Calculate the area of each box in the intersecting 

bounding boxes to form the area set BS

Obtain a area value S from BS

Remove the bounding box corresponding to 

area S in the intersecting bounding boxes

S < (1-β)×Smin or S > (1+β)×Smax ？

Obtain a rect recti from the 

intersecting bounding boxes

Calculate the frequency h0 with gray value of 0 and

the frequency h255 with gray value of 255 in recti

Initiate r = h255 / h0 and rect = recti

Obtain a rect rectj from the 

intersecting bounding boxes

Calculate the frequency g0 with gray value of 0 and
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Fig. 4: The diagram of box filtering based on MSD.

Fig. 5 is the pipeline of the approach we proposed, which
is described in detail in the following.

1) Preprocessing: At the beginning, the multi-QR
codes’ detection accepts the inputs, high resolution im-
ages. These images are usually down sampled to reduce the
computational burden of the subsequent steps. However,
the number of QR codes is uncertain in the image captured
by the actual camera. To make sure that as many QR
codes as possible can be detected, we only carry out the
gray scale transformation on the RGB images instead of
the downsampling. Actually, whether the proportion of
finder pattern which is unique to QR code or the orthogo-
nal distribution of QR code’s edge grayscale, some complex
environments will make both of them insignificant and
lead to detection failure directly. In the study of the
saliency feature of the QR code, we find that QR code’
edge has a dense distribution of the black and white blocks
which can be applied to detection as rich edge information.
Moreover, a standard QR code is surrounded by a white
border to segregate out of the background. This edge
information and the white border are less sensitive to the
environment with robust saliency. Thus we utilize them
as the basis feature to rapidly find out all the regions that
may contain QR code and mainly carry out edge feature
extraction of gray image during preprocessing.

The edge detection operator is applied to QR code’s
edge extraction. There are two types of common edge
detection operators. One is first-order differential oper-
ator, for instance, Roberts, Sobel and Scharr. Another
is second-order differential operators such as Laplacian
and Log/Marr. The Roberts operator is conductive to
detecting steep edges but sensitive to noise as same as
the Laplacian operator, which leads to inaccurate location.
The Log/Marr operator consists of Gaussian smoothing
and Laplacian filter, which requires more computation.
The Sobel operator and the Scharr operator both can
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Fig. 5: Overview of MSD-based approach for rapid detection of multi-QR codes. DD indicates distance discrimination
after ASSM, CDA represents coincidence degree analysis, and GSS denotes grayscale statistics.

detect edges accurately. But the sensitivity of the Sobel
operator is different in all directions. And the Scharr
operator can calculate grayscale gradient changes more
accurately via weighted neighborhood. Thus we use the
Scharr operator to process the gray image, obtaining the
gradient image. Furthermore, we apply binarization to
the gradient image to enhance the visual quality of the
edge features. Since the gradient image where the range
of the grayscale distribution is [0, 255] does not have
complex background, we utilize OTSU [28] to obtain the
binary image. Finally, we dilate the binary image several
times after eroding it to eliminate the slight noise. The
intermediate results in the preprocessing stage are shown
in Fig. 6.

2) The Detection of QR Code Regions: Since the
QR code’s edge feature can not distinguish completely
the QR codes from background, this section captures
these ones’ bounding box through contour extraction
and further filtering. After applying contour extraction
[49] to bounding regions that contain the QR code’s
edge feature, we represent these ones as Λ0, i.e, Λ0 =
([x0, y0, w0, h0], ...[xn, yn, wn, hn]), where [xi, yi, wi, hi](i =
0, ..., n) denotes the ith bounding region and n is their
count. Most bounding regions in Λ0 are negative samples,
which contain only the edge background and no the QR
code’s edge feature. To gain positive ones, inspired by the
characteristic that bounding shape is close to a square, we
define the Square Degree SD of the bounding shape as

(a) (b) (c)

Fig. 6: The results of the preprocessing. (a) is original
image. (b) and (c) are images processed by edge

detection and dilation.

SD =
min(w, h)

max(w, h)
(14)

where w and h are the bounding shape’s width and
height. We eliminate bounding shapes that are not like
a square after setting SD-based filter condition, which we
call Square Degree Selection Method (SDSM). SDSM is
introduced in Algorithm 1.

We filter out bounding boxes that contain only back-
ground after SDSM, but there are still negative samples
which have a large or small one. Thus we first calculate
all the area size of the bounding box obtained by SDSM
following figuring out the critical area size via statistical
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Algorithm 1 Square Degree Selection Method
Input: The bounding regions Λ0

Ouput: The collection Λout of the bounding regions
containing QR codes

1: Initialize: t← 0.65
2: for rect ∈ Λ0 do
3: The rect’s SD was calculated according to Eq. (14)
4: if SD ≥ t then
5: Keep rect and add it to Λout

6: end if
7: end for

Algorithm 2 Area Statistics Selection Method
Input: The collection Λ1 of the bounding boxes ob-

tained by SDSM
Ouput: The collection Λout of the bounding boxes con-

taining QR codes
1: Count the area size set AS and the number num of

the bounding box
2: Obtain the area size histogram of AS by statistical

analysis
3: Create a dictionary D which key is the value range

corresponding to the area size frequency in the his-
togram

4: Sort D in descending order according to the frequency
5: Get the upper bound value v of the area size range in

the second highest frequency
6: Set the parameter: α← 0.5
7: Calculate the segmentation threshold: t← α× v
8: for rect ∈ Λ1 do
9: Calculate rect’s area size S

10: if S > t then
11: Keep rect and add it to Λout

12: end if
13: end for

analysis for the distribution of the area size histogram, and
finally we regard it as segmentation threshold to further
eliminate negative samples. These steps which we call
Area Statistics Selection Method (ASSM) are shown in
Algorithm 2.

(a) (b) (c)

Fig. 7: The results of SDSM and ASSM. (a) shows the
bounding boxes. (b) and (c) show the results of the

bounding boxes processed by SDSM and ASSM.

Fig. 7 shows the QR codes’ bounding boxes after

preliminarily processing in SDSM and ASSM. Obviously
we filter out most negative samples after ASSM but still
retain several bounding boxes which overlap each other.
These boxes also overlap positive samples, where it is hard
to eliminate them. This phenomenon also exists in other
multi-QR codes detection approaches. In our study, we use
MSD-based process to weed out these hard-to-eliminate
samples.

3) Bounding Boxes Filtering Based on MSD: We
rapidly divided the previous stage’s overlapping bounding
boxes into independent boxes, intersecting ones and con-
taining ones through MSD. In addition, these independent
bounding boxes that we utilize as priori knowledge are
combined with the QR code’s edge feature to process
intersecting bounding boxes and containing boxes, which
is shown in Fig. 4. Finally, multi-QR codes as same
as their bounding boxes are detected rapidly through
Preprocessing, The Detection of QR Code Regions and
Bounding Boxes Filtering Based on MSD. However, there
is still low accuracy in bounding box locating. We in-
troduce lightweight DNN-based boxes selection to solve
this problem. Unlike the MSD which need to classify a
great number of overlapping bounding boxes rapidly, the
inputs to this lightweight DNN model are non-overlapping
bounding regions that may contain QR codes. What’s
more, compared with other DNN models for multi-QR
codes detection, the lightweight DNN model that we call
Compressed MobileNet has a simple structure which re-
quires a bit of overhand computation, whilist most of its
inputs are positive samples.

4) Boxes Classification Based on Compressed Mo-
bileNet: Deep convolutional network has the ability of
feature extraction that can map RGB image to convo-
lutional latent space and obtain the target’s higher-layer
features. Therefore many object detection models design
deep convolutional network as backbone, which can merge
contextual feature and capture the deep representation
of the inputs. But this method will increase the model’s
complexity, requiring more train cost to update param-
eters. The QR code itself consists of many black and
white blocks that are obvious and abundant. This feature
conduces to differentiate the QR code and other objects.
Thus we only need to train a lightweight model that can
learn this feature, which contributes to not only reducing
the network parameters and the computation complexity,
but also greatly improving the runtime speed. Whilist by
doing this it is unnecessary to update a large number of
parameters like other common object detection models.

In our work, we introduce the modifiable width multi-
plier and the modifiable resolution multiplier to compress
a small trained MobileNet model, i.e, the Compressed
MobileNet. The role of the modifiable width multiplier
α ∈ (0, 1] is to thin a model uniformly at each layer.
The number of a given layer’s input channels M becomes
αM and the number of its output channels N becomes
αN . α is modifiable statistically during training through a
series of experiments. The modifiable resolution multiplier
ρ ∈ (0, 1] we used is to reduce the inputs and the internal
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representation at each layer, which can reduce computa-
tional cost by ρ2. ρ is also modifiable likehood of α. The
Compressed MobileNet is used to category discriminant
for the output to the stage of Bounding Boxes Filtering
Based on MSD. The related experiment is conducted and
discussed in section IV-A.

IV. EXPERIMENT RESULTS AND ANALYSIS
This section mainly compares our approach and other

approaches following analyzing them. In Section IV-A,
we conduct the comparison of the learned-based model
performance. The time cost and the overhand computation
of our approach are analyzed in detail in Section IV-B.
Section IV-C shows the quantitative results of the multi-
QR codes detection approaches.

Our experiment is conducted on a server equipped
with an Intel Core i7-5930k 3.50GHz CPU and an NVIDIA
RTX1080Ti GPU. The server system is Ubuntu 20.04,
and it has 32GB of memory. What’s more, we use the
medical test tube images in [17] as our dataset. The image
resolution is 3096 × 4048, and each image may contain
2/9/40/80/120 or 160 QR codes. Each QR code region’s
area accounts for 0.25%-10% of the image. Some examples
in our dataset are shown in Fig. 8.

(a) (b) (c)
Fig. 8: Some examples of our dataset. (a) 40 QR codes.

(b) 80 QR codes. (c) 160 QR codes.

A. Quantitative Comparison for Lightweight Models
This section mainly compares the classification per-

formance of lightweight models. We first obtain images
from Preprocessing and The Detection of QR Code Re-
gions. These images may contain background or the QR
code and are split into two groups manually. One group
contains 30,000 positive samples and the another has
17,000 negative ones. We use these images as sub-dataset
to train all the lightweight models and to evaluate their
performance. Before training, we randomly divided the
training set and test set according to 9:1. Fig. 9 shows
some examples in our sub-dataset.

We first train a small MobileNet model, whilist ad-
justing our modifiable width multiplier α and modifiable
resolution multiplier ρ step by step to compress this
model. By applying α and ρ, our Compressed MobileNet
accepts RGB images as inputs with size 32 × 32. Its

Positive

Negative

Fig. 9: Some example of our sub-dataset.

parameters was reduced to 0.26 million, which is about
1/10 of the standard MobileNet’s. What’s more, in order
to enhance our model’s robustness, we extended training
samples via data augmentation and increased the number
of training epochs. The learning rate is set to 10−3, and
we employed a variety of tricks to obtain a model with the
best performance during training. Our model converged
approximately between the 45th and 50th iterations. We
exclusively used this model for validation in succeeding
trials. Table III shows the accuracy comparison of our
approach. In this comparison, SqueezeNet, ShuffleNet,
MobileNetV1, MobileNetV2 and MobileNetV3 all adopt
standard specifications.

TABLE III: Quantitative Results of Different
Lightweight models

Lightweight Model Million Parameters Accuracy(%)
SqueezeNet [40] 1.13 96.66
ShuffleNet [41] 1.91 95.73

MobileNetV1 [42] 4.17 95.51
MobileNetV2 [43] 3.36 97.37
MobileNetV3 [44] 5.40 98.11

Compressed MobileNet 0.26 97.60

As seen in Table III, the accuracy of all lightweight
models exceeds 95% in our binary classification task, in
which our Compressed MobileNet has the least number of
parameters, i.e. less than 0.3 million, compared to over 1
million in other models. Although the MobileNetV3 has a
classification accuracy of 98.1%, it has more than 5 million
parameters thus has difficulty for implementation on IoT
devices. The SqueezeNet and ShuffleNet have a small
number of parameters, yet their classification accuracies
are only 96.6% and 95.7%, respectively. The Compressed
MobileNet has a comparable classification accuracy up
to 97.6%, though much less parameters. By training a
small lightweight model, we can not only achieve higher
classification accuracy, but also ensure the embedded
implementation on edge devices for real-time multi-QR
codes detection.

B. Performance Analysis of The Proposed Approach
In this section, we present the implementation de-

tails and relevant experiment results of the proposed
approach, while using detection accuracy and time cost
to evaluate the detection performance of multi-QR
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codes. The detection accuracy consists of two metrics,
Detection Precision(DP ), the detection accuracy for an
image, and Average Detection Precisionc(ADPc), the
average detection accuracy on a specific number c of QR
codes. DP and ADPc in our work are defined as

DPi = (1.0− ne
i + nm

i

ngt
i

)× 100% (15)


S = {2, 9, 40, 80, 120, 160}

ADPc =
1

nc

nc∑
i=1

DPi, c ∈ S
(16)

MADP =
1

6

6∑
i=1

ADPSi (17)

where
ne
i is the number of false QR codes in the ith image,

nm
i and ngt

i are the number of missed ones and the
number of real ones, respectively,

c is the number of QR codes in an image,
nc is the number of images with the number of QR

codes c in the test dataset,
DPi denotes the detection accuracy of the ith image,
ADPc represents the average detection accuracy of all

images with the number of QR code c,
MADP represents the mean average detection preci-

sion of the approach.
For the actual multi-QR codes detection, false de-

tection is allowed and missed detection should not be
tolerated. Because we can filter bounding boxes via
post process where redundant or repeated bounding
boxes are eliminated. It is necessary that the multi-
QR codes detection approach should detect QR codes
in an image as many as possible. Thus the ability
of generating redundant bounding boxes is also im-
portant. The Multiple Box Rate(MBRc) and the
Mean Multiple Box Rate(MMBR) of an image on a
specific number of QR codes are defined as

MBRc =
nr
c

nc
× 100%, c ∈ S (18)

MMBR =
1

6

6∑
i=1

TAPSi (19)

For all images with the number of QR codes c, nr
c

in Eq. (18) represents the number of images where the
number of generated bounding boxes is not less than c.
The MBRc reflects the ability of generating redundant
bounding boxes of the approach. In Eq. (19), the MMBR
represents the mean MBRc in the test dataset. In order
to compare the detection effect of different approaches, we
divided the test dataset into 6 groups and each group con-
tains 50 images. Groupc(c = 2, 9, 40, 80, 120, 160) indicates
that each image in this group contains c QR codes.

Table IV shows the detection accuracy of different
groups. It can be seen that for the detection of an single
image DP exceeds 97% in Group40, Group80, Group120

and Group160. Most of the ADPc remain at 99.8%. How-
ever, the DP drops slightly on Group2 and Group9 while
being at least 50% on Group2. The reason is that each
image in Group2 contains only two QR codes. If one QR
code is missed during detection, DP will decrease. Table
V shows the quantitative results of Mutltiple Box Rate
in different groups. It can be seen that the MBR of our
approach remains above 94% with an average value of
97.6%, showing an efficient detection performance. Addi-
tionally, for the false detection and missed detection that
are shown in Fig. 10, the cause where our approach fails
is the influence of extreme blur and extreme noise.

Missed

False

Fig. 10: Some examples of our results. The first row
shows the missed examples and the second row shows the

false examples.

Table VI compares the running time, in seconds, of
several key modules in our approach, where obviously our
approach has a fast processing speed. It requires about
0.6s to accurately detect all 160 QR codes within an
image, and more time is needed if the image contains more
QR codes. In Fig. 11, we further visualize the running
time in each module as a histogram, where it clearly
shows that the Compressed MobileNet takes about 2/3 of
the total time. Regarding the mean square error of each
stage’s detection time across 6 groups, the error is 0.5139
for the overall detection time, yet it reduces to 0.3160
for the Compressed MobileNet. This indicates that the
detection stability of our approach is largely benefitted
from the Compressed MobileNet. Actually, the number of
parameters in the Compressed MobileNet can be further
reduced by adjusting the modifiable width multiplier and
the resolution multiplier. In addition, through MSD-based
Bounding Boxes Filtering, most of the inputs to the Com-
pressed MobileNet are positive samples, which can further
reduce the running time for the classification of negative
samples and improve the detection efficiency.
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TABLE IV: Results of DP And ADPc on Different Groups

Group Nfalse/Nmiss/DNtotal/Ntotal
DP (%)

ADPc(%)
min value max value

Group2 2/1/101/100 50 100 97
Group9 2/2/450/450 88.9 100 99.1
Group40 1/1/2000/2000 97.5 100 99.9
Group80 3/0/4003/4000 98.8 100 99.9
Group120 14/0/6014/6000 98.3 100 99.8
Group160 5/10/7995/8000 97.5 100 99.8

TABLE V: Results of MBRc on Different Groups

Group Group2 Group40 Group80 Group120 Group160 Mean
MBRc 98%(49/50) 98%(49/50) 98%(49/50) 100%(50/50) 94%(47/50) 97.6%

TABLE VI: Running Time in Seconds of Key Modules in
Our Approach

Group Preprocessing QR Regions
Detection

MSD-Based
Box Filter

Compressed
MobileNet Total

Group2 0.1617 0.0085 0.010 0.2187 0.3989
Group9 0.1697 0.0244 0.0066 0.2492 0.4499
Group40 0.1644 0.0121 0.0056 0.2639 0.4460
Group80 0.1694 0.0170 0.0159 0.3331 0.5354
Group120 0.1738 0.0181 0.0188 0.3882 0.5989
Group160 0.1722 0.0190 0.0201 0.4428 0.6541

Mean 0.1685 0.0165 0.0106 0.3160 0.5139
Proportion 32.79% 3.21% 2.06% 61.49% 100%

Preprocess

QR Regions 

Detection

MSD-Based 

Box Selection

Compressed 

MobileNet

Total

0 0.1 0.2 0.3 0.4 0.5 0.6

0.1685

0.0165

0.0106

0.3160

0.5139

Time Cost /s

Average Time

Mean Square Error

Average Time

Mean Square Error

Average Time

Mean Square Error

Fig. 11: Histogram of the module based running time in
our approach.

C. Quantitative Comparison for Multi-QR Codes Detec-
tion Approaches

In this section, we use three kinds of metrics, i.e,
ADP , MBR, and the time cost, to quantitatively compare
the performance of our approach and other up-to-date
approaches. How we used the test dataset is the same as
that in the previous section. Table VII, Table VIII and
Table IX are three representative results, corresponding to
Group2, Group80 and Group160 respectively. We applied
the same train dataset to all the learning-based approaches
in this section. The images in the train dataset are not
repeated in the test dataset and each of them contains the
number of QR codes ranging from 2 to 160. What’s more,

we did not stop the training of the network models until
the training loss convergence and the hyper-parameters of
these models were set uniformly according to their articles.

TABLE VII: The Detection Results of Different
Approaches on Group2

Approach ADP2(%) MBR2(%)
YOLOv3 [8] 45.86 75.00

Faster R-CNN [11] 68.68 87.00
Jia et al. [13] 75.55 79.00

Sharif et al. [16] 98.00 90.00
The Proposed Approach 97.00 98.00

As seen in Table VII, for Group2 where each image
contains 2 QR codes, the MBR2 of our approach is the
highest compared with other approaches, which means
that our approach can generate more redundant bounding
boxes. The ADP2 of [16] is 1% higher than our approach,
because the number of QR codes contained is fewer,
leading to the false detection of our approach. In Table
VIII, we can find that the ADP80 of our approach and
[16] both have more than 99% on Group80 where each
image contains 80 QR codes, and the MBR80 of both is
also over 98%. Compared with YOLOv3, Faster R-CNN
and [13], our approach has the best detection accuracy
on Group80. With the increasing number of QR codes in
an image, Table IX further shows an excellent detection
performance of our approach on Group160. On Group160,
except our approach which achieves over 99%, all other
approaches have their performance declined apparently,
i.e. 71.45% for Faster R-CNN, 37.21% for ADP80 and
34.24% for ADP160, respectively.

As visually compared in Fig. 12 where different multi-
QR codes detection approaches were evaluated in different
groups, it can find that with the increase of the number of
QR codes in an image, the Average Detection Precision
curve and the Multiple Box Rate curve of YOLOv3,
Faster R-CNN, [13] and [16] ascend gradually and subse-
quently decline. The reason is that these network models
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Fig. 12: Comparison of detection effect of different approaches on different groups. (a) Comparison of average
detection precision. (b) Comparison of multiple box rate.

TABLE VIII: The Detection Results of Different
Approaches on Group80

Approach ADP80(%) MBR80(%)
YOLOv3 [8] 51.97 85.00

Faster R-CNN [11] 71.45 97.00
Jia et al. [13] 80.98 94.00

Sharif et al. [16] 99.77 98.00
The Proposed Approach 99.90 98.00

TABLE IX: The Detection Results of Different
Approaches on Group160

Approach ADP160(%) MBR160(%)
YOLOv3 [8] 30.57 79.00

Faster R-CNN [11] 37.21 89.00
Jia et al. [13] 48.41 90.00

Sharif et al. [16] 93.84 91.00
The Proposed Approach 99.80 94.00

[8, 11, 13, 16] require manually-setted anchor box sizes,
which limits the size of the targets they can detect. If
the size of a image is fixed, as the number of QR codes
in this image changes, the size of these targets changes
accordingly. Only when the QR codes are kept within an
appropriate size range can these network models achieve
optimal performance. In contrast, our approach does not
lie in the anchor size setting, thus we can maintain the ro-
bust detection performance. Moreover, the more QR codes
an image contains, the better detection effect our approach
achieves. In addition, it can be seen from Fig.12(b) that
the Multiple Box Rate of our approach is the highest
in all groups of the test dataset. We attempt to explain
such an excellent synthesis effect that our approach tends
to generate more bounding boxes, namely being more
tolerant towards the redundancy of bounding boxes. Table

X shows the quantitative results of the average detection
effect of each approach, where we use MADP , MMBR
and the time cost as evaluated metrics.

TABLE X: The Detection Results and The Running
Time of Different Approaches

Approach MADP (%) MMBR(%) Time(s)
YOLOv3 [8] 50.95 83.00 0.1127

Faster R-CNN [11] 68.83 93.00 1.3169
Jia et al. [13] 75.40 90.00 1.2852

Sharif et al. [16] 97.81 93.00 0.8112
The Proposed Approach 98.34 95.00 0.5522

As seen in Table X, YOLOv3 has a rapid detection
speed, with an average detection time of 113 ms for a
multi-QR codes image. However, both the MADP and
MMBR of YOLOv3 is poor, which denotes that YOLOv3
has a low performance for multi-QR codes detection. In
contrast, Faster R-CNN, as a two-stage detection model,
has a higher MADP and MMBR than YOLOv3, but it
is quite time-consuming. For [13], an improved Faster R-
CNN, with rotation-invariant detection and key points re-
gression for QR codes detection, also belonging to the dual
phase detection approach, has achieved 90% of MMBR.
However, when the QR code is large, the MADP is poor.
The QR code detection in [16] is improved using the
EfficientDet, by adding the key point regression header
network, which can capture the key points of the QR
codes for regression training. The relatively high MADP
is achieved at up to 97.81%. Its MMBR is also close to
our approach, but the structure of the model is complex
and results in a much higher computational cost. The
overall detection accuracy of our approach is the best,
which has the lowest computational cost to benefit real-
time industrial applications.
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V. CONCLUSION
In this paper, we have proposed a fast multi-QR

codes detection approach, which consists of four stages:
Preprocessing, Detection of QR Code Regions, MSD-based
Bounding Boxes Filtering, and Compressed MobileNet
based Classification of the detected bounding boxes. The
proposed MSD strategy for box-screening has indeed im-
proved the accuracy for rapid classification of the multi-
QR codes. In addition, the Compressed MobileNet has
resulted in reduced parameters for efficiency but higher
recognition accuracy. In comparative experiments, we val-
idate the superiority of our approach on the publicly
available dataset. Finally, due to lower requirements on
hardware resources than the existing deep learning-based
approaches, our approach is conducive to the embedded
implementation on edge devices to further benefit multi-
QR codes detection in real-time IoT scenarios.

In order to further improve the accuracy and effi-
ciency in multi-QR codes detection, especially with more
lightweight local spatial representation, we will make ref-
erence to deep learning-based image segmentation ap-
proaches [50, 51] and local feature extraction approaches
[52]. Also, to improve the reliability and explainability of
the DL-based models, we will also explore multi-QR codes
detection with the Explainable Artificial Intelligence [53]
in trustable IoT systems, as well as to test on new version
of YOLO, such as YOLOv5.
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