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Abstract
Background Load–velocity relationships are commonly used to estimate one-repetition maximums (1RMs). Proponents 
suggest these estimates can be obtained at high frequencies and assist with manipulating loads according to session-by-
session fluctuations. Given their increasing popularity and development of associated technologies, a range of load–velocity 
approaches have been investigated.
Objective This systematic review and individual participant data (IPD) meta-analysis sought to quantify the predictive 
validity of individualised load–velocity relationships for the purposes of 1RM prediction.
Methods In September 2022, a search of MEDLINE, SPORTDiscus, Web of Science and Scopus was conducted for pub-
lished research, with Google Scholar, CORE and British Ethos also searched for unpublished research. Studies were eligible 
if they were written in English, and directly compared a measured and predicted 1RM using load–velocity relationships in the 
squat, bench press, deadlift, clean or snatch. IPD were obtained through requests to primary authors and through digitisation 
of in-text plots (e.g. Bland–Altman plots). Risk of bias was assessed using the Prediction model Risk Of Bias ASsessment 
Tool (PROBAST) and the review conducted in accordance with PRISMA-IPD guidelines and an a priori protocol. Absolute 
and scaled standard error of the estimates (SEE/SEE%) were calculated for two-stage aggregate analyses, with bootstrapping 
performed for sampling variances. Estimates were pooled using three-level hierarchical models with robust 95% confidence 
intervals (CIs). One-stage analyses were conducted with random intercepts to account for systematic differences across 
studies and prediction residuals calculated in the absolute scale (kg) and as a percentage of the measured 1RM. Moderator 
analyses were conducted by including a priori defined categorical variables as fixed effects.
Results One hundred and thirty-seven models from 26 studies were included with each identified as having low, unclear 
or high risk of bias. Twenty studies comprising 434 participants provided sufficient data for meta-analyses, with raw data 
obtained for 8 (32%) studies. Two-stage analyses identified moderate predictive validity [SEE% 9.8, 95% CI 7.4% to 12.2%, 
with moderator analyses demonstrating limited differences based on the number of loads (β2Loads:>2Loads = 0.006, 95% CI − 1.6 
to 1.6%) or the use of individual or group data to determine 1RM velocity thresholds (βGroup:Individualised =  − 0.4, 95% CI − 1.9 
to 1.0%)]. One-stage analyses identified that predictions tended to be overestimations (4.5, 95% CI 1.5 to 7.4 kg), which 
expressed as a percentage of measured 1RM was equal to 3.7 (95% CI 0.5 to 6.9% 1RM). Moderator analyses were consist-
ent with those conducted for two-stage analyses.
Conclusions Load–velocity relationships tend to overestimate 1RMs irrespective of the modelling approach selected. On 
the basis of the findings from this review, practitioners should incorporate direct assessment of 1RM wherever possible. 
However, load–velocity relationships may still prove useful for general monitoring purposes (e.g. assessing trends across 
a training cycle), by providing high-frequency estimates of 1RM when direct assessment may not be logistically feasible. 
Given limited differences in predictions across popular load–velocity approaches, it is recommended that practitioners opting 
to incorporate this practice select the modelling approach that best suits their practical requirements.
Registration https:// osf. io/ agpfm/.
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Key Points 

Load–velocity-based 1RM predictions demonstrate a 
tendency to overestimate actual 1RM values. This bias 
may result in inappropriate load prescription when 
estimates are used to adjust the load lifted on a session-
by-session basis.

There is currently no evidence of improved accuracy 
with more complex load–velocity-based models.

Given the errors associated with 1RM prediction, it is 
recommended that practitioners obtain direct assess-
ments of 1RM. However, in instances where this is 
not possible, practitioners should select a modelling 
approach that best fits their own tolerance of error and 
relevant external factors (e.g. resources available, time, 
statistical understanding and ability to collect high-
quality data with appropriate frequency), or consider 
alternative approaches such as monitoring the velocity 
measured against a standardised load.

1 Introduction

Resistance training is considered the most effective means 
for enhancing a range of important physical qualities includ-
ing maximum strength and power [1, 2]. Whilst effective 
programming of resistance training requires consideration of 
several variables (e.g. load, volume, effort, velocity, modal-
ity) and their interaction, current recommendations suggest 
that the most influential variable for inducing changes in 
maximum strength is the load lifted [3]. The load lifted is 
frequently prescribed on a relative scale and expressed as 
a percentage of the maximum load that can be lifted for a 
single, technically proficient, repetition (1RM). Prescribing 
relative loads in this manner facilitates both individualisa-
tion of the training stimulus and specification of various 
training zones thought to be appropriate for developing 
specific physical qualities [4]. In practice, it is common to 
directly assess an individual’s 1RM, requiring completion 
of an exercise across a series of incremental loads until a 
load that can be lifted only once with proper technique is 
identified [4]. However, despite both research and practical 
experience supporting both the reliability and efficacy of this 
method [5, 6], the process can be fatiguing, time-consuming 
and limited by the precision of a single measurement that 
may fluctuate due to changes in readiness, or trend substan-
tively over the short-to-medium term due to changes in both 
fitness and fatigue [7].

Previous attempts to address limitations associated 
with direct assessment of 1RM include the use of indi-
rect approaches, whereby 1RM values are estimated on 
the basis of various statistical models [8]. One popular 
approach includes measuring the maximum number of 
repetitions that can be performed with a submaximal load, 
which is then used to predict the individual’s 1RM using a 
range of previously validated regression equations that link 
the number of repetitions performed to the load lifted [9, 
10]. While this method may be less time-consuming than 
a direct 1RM assessment, repeated administration of any 
repetition maximum test is likely to generate substantial 
levels of fatigue, thereby limiting the frequency with which 
the measurement process can be completed. Alternative 
methods that have grown in popularity include the use of 
load–velocity relationships [11] and the strong inverse lin-
ear relationship between the load lifted (expressed in both 
relative and absolute terms) and barbell velocity which has 
been repeatedly observed [11]. The increased popularity of 
these approaches is also partly due to the rapid prolifera-
tion in technologies capable of accurately measuring barbell 
velocity [12]. Unlike methods of direct assessment and rep-
etition maximum testing, however, establishment of 1RM 
using load–velocity relationships may not require frequent 
participation in fatiguing protocols and can be readily inte-
grated into pre-existing warm-up routines, meaning that the 
prediction of daily 1RM requires no additional time to com-
plete [11, 13].

The seminal work of Gonzalez and Badillo [14] was the 
first to identify the potential in using load–velocity rela-
tionships for the purposes of daily resistance training load 
prescription. Since then, a range of approaches have been 
proposed for predicting 1RM from load–velocity relation-
ships, with research indicating various degrees of predictive 
validity across a range of both upper and lower body exer-
cises [15–25]. In general, these approaches involve devel-
opment of regression models using velocity data gathered 
from an incremental loading protocol whereby individu-
als perform each repetition as quickly as possible but do 
not perform sets to a repetition maximum. An individual’s 
1RM is then predicted by extrapolation of the regression 
equation to a velocity thought to represent the 1RM [11]. 
Whilst the majority of researchers have used the so-called 
minimum velocity threshold (the velocity associated with a 
previous 1RM), others have proposed using a velocity of 0 
(LD0), or the velocity associated with the last repetition in 
a set performed to failure (Vlast). Representative approaches 
have also differed on a range of other factors, including the 
number of loads used to build the model, the function used 
to fit the data (e.g. polynomial versus linear) and the use 
of both group and individual data to obtain an MVT value 
[11]. While the strong relationship underpinning load–veloc-
ity approaches presents clear opportunities to prescribe 
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loads in an effective and efficient manner, the broad range 
of approaches and current lack of robust evidence synthe-
sis projects make it difficult to determine which approach 
should be recommended to balance accuracy and feasibility.

Previous studies investigating the predictive validity 
of load–velocity relationships have tended to adopt com-
parative designs whereby competing models are assessed 
through primary data collection. However, these approaches 
in isolation have yielded limited insight, as studies have 
often focused on only a selection of available approaches, 
whilst also employing a range of diverse—and often incom-
patible—criteria to describe predictive validity. For exam-
ple, in a study by Jukic et al. [24], the authors described 
the predictive validity of different approaches in both abso-
lute terms using the standard error of the estimate (SEE) 
and in relative terms using standardised mean differences. 
Whilst this approach provided more information, there were 
multiple instances whereby the two statistics provided dif-
ferent, and potentially conflicting, information. For one of 
the models examined, the SEE was reported to be 10.1 kg, 
and standardised mean difference zero. Additionally, in 
another model the SEE reduced from 10.1 kg to 5.7 kg, but 
the standardised mean difference increased from 0 to 0.11. 
These results highlight the challenge researchers face when 
selecting statistics which accurately convey information on 
model accuracy, whilst also providing results in a manner 
that are readily interpretable and practically relevant.

Previous attempts have also been made to synthesise 
existing load–velocity research through systematic [27] or 
narrative review [28]. However, no review to date has pro-
vided a robust quantitative synthesis of the predictive valid-
ity of common approaches. Previous reviews have attempted 
to gain insight through examination of model R2 values [27, 
28]. Whilst the dimensionless nature of the R2 value is ben-
eficial when comparing disparate models, the practical rel-
evance is often difficult to identify. This is because the R2 
value is principally a measure of model fit to observed data 
[29], meaning that models may display excellent R2 values 
whilst still yielding errors unlikely to be deemed acceptable 
in practice [29]. On the basis of the increasing research base 
and absence of robust quantitative approaches to synthesise 

information surrounding the use of load–velocity models 
for the purposes of 1RM prediction, the aims of this indi-
vidual participant data (IPD) meta-analysis were threefold: 
(1) to quantitatively synthesise information from studies 
investigating the predictive validity of various load–veloc-
ity models; (2) investigate model-level characteristics that 
may influence predictive validity; and (3) report results in 
an informative manner that is more easily understood by 
practitioners who are most likely to use these procedures.

2  Methods

This review was conducted in line with best practice guide-
lines for conducting systematic reviews, as outlined by JBI 
[30] and a pre-registered protocol (https:// osf. io/ agpfm/). 
Items were reported according to the PRISMA-IPD, which is 
a PRISMA variant specifically designed for IPD meta-anal-
yses [31]. A completed version of the PRISMA-IPD check-
list can be found in the supplementary materials (Online 
Resource 1). By selecting an IPD meta-analysis design, 
results from previous studies that were reported using dif-
fuse statistics could be synthesised into common effect sizes 
both to facilitate further investigation and to enhance the 
interpretability of results.

2.1  Search Strategy and Eligibility Criteria

Inclusion criteria for this review were developed according 
to the PIRD (Population–Index test–Reference test–Diag-
nosis of interest) mnemonic [32] detailed in Table 1. Given 
the non-medical nature of predictive models in this review, 
however, the ‘diagnosis of interest criteria’ was changed to 
‘target variable of interest’. Studies were eligible for this 
review if they: (1) included participants of any sex, age and 
demographic with previous resistance training experience; 
(2) investigated Smith-machine or barbell variants of either 
the squat, bench press, deadlift, clean, clean and jerk, power 
clean, snatch or power snatch exercises; (3) conducted the 
index test (i.e. collection of load and velocity data used for 

Table 1  PIRD inclusion criteria

Criteria Definition

Population Studies including individuals of any sex, age and demographic with previous resistance training experience and no underlying 
health conditions

Index test Any regression model built using load–velocity data recorded at more than one load for the purposes of predicting 1RM 
through extrapolation in any of the following exercises: (1) squat, (2) bench press, (3) deadlift, (4) clean, (5) clean and jerk, 
(6) power clean, (7) snatch, (8) power snatch

Reference test Any direct 1RM assessment whereby the outcome measure was the heaviest mass that could be lifted for a single repetition 
with appropriate technique

Target variable Maximum strength as quantified by the measurement of an individual’s 1RM
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prediction of 1RM) and reference test (measurement of cri-
terion 1RM value) within 3 weeks of each other; and (4) 
directly compared measured 1RM with a predicted 1RM 
value generated from a load–velocity model. Studies were 
excluded from this review if they were not written in the 
English language or included participants with underlying 
health conditions, including those who had undergone sub-
stantive medical procedures in the past 6 months. Because 
of the focus of this review, studies including models that 
incorporated predictors other than velocity were excluded. 
Models were also excluded if data used to fit the model were 
inclusive of the 1RM load, meaning that 1RM estimates had 
to be obtained via extrapolation. In addition to study-level 
criteria, model-level criteria were also applied with models 
excluded where load–velocity data were collected follow-
ing interventions designed to induce substantive fatigue, or 
where isolated contraction modes were investigated (e.g. 
eccentric only). These criteria were adopted to ensure the 
contexts and models included in this review reflected the 
procedures most often used when attempting to develop 
strength and power in athletes. The criteria and definitions 
used herein are largely in line with those stated in the pre-
registered protocol (https:// osf. io/ agpfm/). However, minor 
changes such as inclusion of model-level criteria and amend-
ments to the definitions presented in Table 1 were made 
to reflect the large range of contexts examined across the 
research base, and to provide clearer and more detailed 
definitions.

A comprehensive search was conducted in three stages 
[30]. The first stage included a limited search of MEDLINE 
and SPORTDiscus databases using preliminary key search 
terms related to resistance training, prediction of 1RM and 
terms related to measurement of velocity (Online Resource 
2). As no additional key words were identified, the initial 
strategy was used to conduct a full search including MED-
LINE, SPORTDiscus, Web of Science and Scopus. Google 
Scholar, CORE, SportRxiv and British Ethos databases were 
also searched for unpublished literature, with searching com-
pleted on 10 September 2022. For all searches, key terms 
were combined with Boolean operators and search fields 
were restricted where possible to title and abstract only. No 
limitations were placed on date of publication. A full exam-
ple of the search strategy can be found in Online Resource 
2. All records were then imported into  Proquest® Refworks 
for de-duplication before being imported into the systematic 
review software Covidence (Melbourne, Australia). Rele-
vant records were then identified using a two-stage process. 
First, the title and abstracts of all records were screened with 
irrelevant studies omitted. Full texts of studies identified as 
potentially relevant during title and abstract screening were 
then screened against the inclusion criteria for this review. A 
final search stage was then conducted which included both 
backwards (cited) and forwards (citing) citation tracking, 

combined with hand-checking of other relevant sources. For 
all stages of the screening process, records were screened 
independently by both L.G. and A.H., and disagreements 
resolved either through conversation or from input by a third 
and final reviewer (P.S.).

2.2  Data Coding and Curation

IPD for each study were obtained through requests sent to 
primary authors and through digitisation of in-text plots 
illustrating differences between the measured and predicted 
1RM. Data were digitised using the freely available Web-
PlotDigitizer software v4.5 (Ankit Rohatgi; https:// apps. 
autom eris. io/ wpd/) and all digitising was performed in dupli-
cate (L.G. and R.A.) to provide information on reliability of 
the process. Information relating to study demographics (e.g. 
sample size, relative strength, sex split), models investigated 
(e.g. number of loads used, extrapolation method, use of 
group- versus individualised-level data to make predictions) 
and exercises assessed was then extracted on a pre-piloted 
and standardised spreadsheet. Variables identified as poten-
tial moderators a priori were coded as a categorical variable, 
with levels assigned in alphabetical order. Number of loads 
was also treated as a categorical variable, with binary cod-
ing of either two loads or greater than two loads due to the 
extensive range used across studies (2–8) and, in some cases, 
the inability to determine the actual number of loads used.

2.3  Risk of Bias

Risk-of-bias assessment for this review was completed 
using a modified version of the Prediction model Risk 
Of Bias ASsessment Tool (PROBAST), which is a vali-
dated risk-of-bias tool used when studies are designed to 
assess the predictive validity of statistical models [33]. 
This tool was selected as no exercise science equivalent 
currently exists, and factors such as blinding and randomi-
sation which are frequently of importance under a causal 
framework were less relevant to the contexts examined 
in this review (i.e. within-subjects designs whereby the 
primary goal is prediction at the individual level). Instead, 
the factors most likely to be of importance include issues 
related to data curation, model selection and model build-
ing [34]. Before commencing risk-of-bias assessment, 
modifications were made to the existing PROBAST tool to 
account for the nature of models examined in this review. 
PROBAST was originally designed to evaluate multivari-
ate models designed for purposes of either diagnosis or 
prognosis within medical settings. This differs from the 
models included in the current review which include only 
a single predictor (velocity). To ensure modifications were 
contextually relevant and suitably appraised the studies 
included in this review, a pilot trial was conducted by two 
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researchers (P.S. and L.G.) with disagreements resolved 
through discussion. No further modifications were made, 
and risk-of-bias assessment was completed independently 
for all predictive models on a custom spreadsheet by two 
researchers (P.S. and L.G.). Disagreements were resolved 
through discussion in all instances.

2.4  Statistical Analyses

The present study comprised both one-stage (simultaneous 
modelling of all individual data) and two-stage (aggrega-
tion of study-level effect size from individual data then 
traditional pooling) IPD meta-analysis approaches. Two-
stage aggregate meta-analyses were conducted using the 
SEE (Eq. 1), and the SEE scaled by the reference test 
mean (SEE%). Both quantities were calculated for each 
load–velocity model by first estimating the SEE from 
model residuals (measured 1RM − predicted 1RM), and 
then subsequently scaling the resulting SEE estimate by 
the mean measured 1RM value for that study (i.e. the 
mean measured 1RM score for all participants). Uncer-
tainty in SEE and SEE% estimates were calculated for each 
load–velocity model through bootstrapping of model resid-
uals, and for each bootstrapped sample, calculation of the 
SEE and SEE%. The standard deviations of the bootstrap 
samples were then used as the within-study standard error 
of the calculated effect sizes (SEE and SEE%), as these 
are required for meta-analysis models [35]. Convergence 
of bootstrapped estimates were assessed through visual 
inspection of line plots to ensure the number of iterations 
selected was appropriate, with 1000 iterations initially 
selected. A final check was then completed by comparing 
the results obtained when bootstrapping was completed 
with an increased number of iterations (10,000). Cal-
culated SEE and SEE% values and their corresponding 
within-study standard errors were then pooled using three-
level hierarchical models, with random intercepts included 
to account for dependence in the outcomes synthesised 
[36]. In the main meta-analysis model conducted across 
all exercises, the SEE% was used to pool results. Exercise-
specific meta-analyses models were then built using the 
raw SEE values, providing results in kg units to enhance 
interpretation. Cluster robust standard errors and associ-
ated 95% confidence intervals were produced for all meta-
analytic models using the ClubSandwich package [37] for 
one-stage analyses and the Metafor package [38] for two-
stage analyses. Parameters for all models were estimated 
using restricted maximum likelihood [39, 40].

(1)SEE =

�

∑

(measured − predicted1RM)2

n − 2
.

One-stage analyses were performed though multilevel 
modelling of both scaled (expressed as a percentage of 
1RM) and unscaled residuals (expressed in kg units). Data 
from all studies were incorporated simultaneously into three-
level models with random effects included to account for the 
nested data structure inherent in this review. Prior to analy-
ses, raw residuals were reflected where required by multi-
plying by − 1, such that a positive value indicated model 
overprediction. A new variable containing residuals scaled 
by the measured 1RM was then created to assess whether 
any differences in the magnitude of errors identified between 
exercises was influenced by the magnitude of the load lifted. 
As measured 1RM data were not available for all studies, 
these values were estimated from the difference between the 
measured and predicted 1RM as well as the mean of the 
measured and predicted 1RM, both of which were obtained 
from in-text figures (e.g. Bland–Altman). This was achieved 
by first halving the difference between the predicted and 
measured 1RM, and then subtracting the resulting value 
from the mean of the measured and predicted 1RM (obtained 
from in-text plots), as outlined in Eq. 2 below

For both one-stage and two-stage analyses, intraclass cor-
relation coefficients (ICCs) were calculated to quantify the 
covariance in multiple outcomes (models) reported from 
a single study. Conceptually, this statistic provides similar 
information to the I2 statistic when data are clustered [41]. 
Calculation of the ICC (Eq. 3) was made by dividing the 
between-study variance (level 3 variance) term by the sum 
of the variances across all levels as estimated from intercept-
only models.

For both one-stage and two-stage analyses, meta-regres-
sions of study-level variables identified a priori (https:// osf. 
io/ agpfm/) were performed using three-level mixed-effects 
models. In addition to the variables identified in the protocol, 
the influence of relative strength was also investigated as a 
study-level variable and was quantified by dividing the mean 
1RM in the study by the mean body mass of the participants. 
Identification of relative strength as a potential moderator 
was based on previous observations that individuals with 
greater levels of relative strength tend to display velocity 
values that are comparatively lower than those observed in 
less experienced cohorts [42, 43]. This may result in larger 
error in 1RM estimations if predictions are based on mod-
els which use group-level data. Meta-regression with cat-
egorical predictors was conducted by selecting a reference 

(2)

(

predicted + measured

2

)

− 0.5(predicted − measured).

(3)ICC =
�
2

betweencluster

�
2

Total

.
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category to compare with (i.e. βreference:comparator), with 
results presented such that βreference:comparator > 0 indicates an 
increase in the error of predictions for the comparator rela-
tive to the reference. For moderator analyses involving con-
tinuous predictors (e.g. relative strength), meta-regressions 
were performed after mean centring. When investigating the 
influence of relative strength on predictive validity, the pre-
dictor was scaled to enhance interpretation of the regression 
coefficient. For both sets of analyses, moderator analyses 
were conducted only when there were at least four observa-
tions per level of the moderator variable [44]. Because each 
study could contribute more than one outcome to the analy-
ses, an observation was defined as any model included in this 
review, except for relative strength, which was treated as a 
study-level variable. For both analyses, model appropriate-
ness was assessed through visual inspection of the distribu-
tion of model residuals when plotted against the values fit by 
the model (Online Resource 3). All statistical analyses were 
conducted in the R environment with one-stage analyses 
performed using the lmerTest package [45] and two-stage 
analyses performed using the metafor package [46].

2.4.1  Reliability of digitisation and validity of digitised 
data

To assess potential errors during the digitisation of raw data, 
data were independently digitised by two reviewers (L.G. 
and R.A.) and reliability analyses conducted. All digitised 
data were recorded in a single spreadsheet and coded by 
study and model before pre-processing. Data were then 
sorted in descending order to account for differences in the 
order by which data were digitised, and rows with missing 
observations deleted. As the data were continuous, reliability 
was estimated through calculation of the typical error. This 
involved first calculating the difference between reviewer 1’s 
data and reviewer 2’s data for each model, and then subse-
quently calculating the standard deviation of the difference 
scores and dividing by 

√

2  [47]. A similar process was also 
undertaken to assess the validity of the digitised data with 
comparisons made between a single set of digitised data and 
raw data obtained directly from study authors.

3  Results

3.1  Study Selection

A total of 935 studies were identified from the search strat-
egy, which reduced to 569 following removal of duplicates 
and 26 following screening of full texts against inclusion 
criteria. Broad reasons for study exclusion are listed in the 
PRISMA-IPD diagram (Fig. 1), and a more comprehen-
sive list of reasons for each study can be found in Online 

Resource 4. Of the remaining 26 studies, a total of 20 (77%) 
contained figures enabling IPD extraction, with raw data 
provided by authors also obtained for 8 (31%) of the studies. 
Therefore, 20 studies (107 models) were eligible for quan-
titative synthesis, whilst 6 studies were eligible for narra-
tive synthesis only. Across all studies included in either the 
quantitative or narrative synthesis, a total of 137 models 
were investigated across 641 participants.

3.2  Risk of Bias

A total of 61 (46%) of models were identified as having 
low risk of bias, with 36 (27%) and 37 (28%) models iden-
tified as having unclear or high risk of bias, respectively 
(Fig. 2). Downgrading from low to unclear or high risk of 
bias occurred when models used the velocity measured dur-
ing the actual 1RM assessment as the MVT for predictions, 
or where this was unclear as per Sect. 3.3 of the PROBAST 
tool.

3.3  Reliability and Validity of Digitised Data

Inter-rater reliability of digitised data quantified through 
mean typical error across all studies was 0.2 kg and ranged 
from 0.008 to 1.2 kg, indicating excellent reliability. Validity 
quantified by comparing digitised versus author provided 
data indicated good validity with the mean typical error 
across all studies being 0.11 kg, with range 0.01–1.1 kg. 
Bland–Altman analyses indicated a mean difference of 
0.04 kg, when averaged across all models, suggesting that, 
whilst digitised data may have resulted in a slight bias, 
any overestimation is likely to be small and inconsequen-
tial given the overall modelling approach adopted. A more 
extensive overview of these results can be found in Online 
Resource 3, where both validity and reliability data are pre-
sented as the study median and range to account for the large 
number of models explored in some studies.

3.4  Study Descriptors

The most common exercise assessed across studies was the 
bench press exercise, with 30 (22%) models investigated 
for the Smith machine bench press. The number of loads 
used to build load–velocity models in the included stud-
ies ranged from 2 to 8, with 2 most commonly used across 
all exercises (32%). One hundred and sixteen (87%) models 
predicted 1RM values using the MVT (% group, 63% indi-
vidual), whilst 4 studies (15%) investigated other methods. 
Table 2 contains a breakdown of the number of participants 
per exercise alongside the mean 1RM strength and other 
model-related factors.
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3.5  Two‑Stage Aggregate Data Meta‑analysis

3.5.1  Pooled Model (All Exercises)

The main two-stage meta-analysis model conducted across 
all exercises pooled 94 outcomes (bench press: 44; squat: 29; 
deadlift: 19; power clean: 2) from 18 studies indicated mod-
erate predictive validity (SEE% 9.8, 95% CI 7.4% to 12.2%; 
Fig. 3), moderate within-study ( �

2
 = 2.3, 95% CI 1.8% to 

3.1%) and between-study variation ( �
3
 = 4.5, 95% CI 3.1% 

to 6.8%) and substantial covariance between multiple meas-
ures reported from the same study (ICC 0.69). Moderator 
analyses indicated similar point estimates in predictive valid-
ity between bench press and deadlift with no significant dif-
ferences identified (βBench:Deadlift =  − 2, 95% CI − 5.9 to 1.9%, 
p = 0.274). Greater relative error was observed in the point 
estimate for the squat compared with the bench press; how-
ever, this difference was also insignificant (βBench:Squat = 4.7, 
95% CI − 2.8 to 12.2%, p = 0.196). Moderator analyses also 
indicated no significant differences between the use of group 
versus individualised MVT (βGroup:Individualised =  − 0.4, 95% 
CI − 1.9 to 1.0%, p = 0.515) or between using two versus 
multiple loads to predict 1RM (β2Loads:>2Loads = − 0.006, 95% 
CI − 1.6% to 1.6%, p = 0.994).

3.5.2  Bench Press

The two-stage meta-analysis model for the bench press 
comprised a total of 44 outcomes pooled from 10 stud-
ies (median outcomes per study 3, range 1–14) and indi-
cated moderate predictive validity (SEE 8.5, 95% CI 5.4 
to 11.6 kg, p ≤ 0.001) and moderate within-study ( �

2
 = 1.6, 

95% CI 1 to 2.4 kg) and between-study variation ( �
3
 = 4.0, 

95% CI 2.4 to 7.3 kg), with substantial covariance observed 
between outcomes reported from the same study (ICC 0.76). 
Similar results were obtained when results were synthesised 

Fig. 1  PRISMA-IPD flow chart demonstrating records at each stage of the systematic review process. IPD individual participant data

Fig. 2  Stacked bar chart representing proportion of models (% 
of total) identified as low, unclear or high risk of bias across all 
domains, as assessed by the Prediction model Risk Of Bias ASsess-
ment Tool (PROBAST)



1700 L. Greig et al.

in standardised form (SEE% 9.9, 95% CI 6.8 to 12.9, 
p ≤ 0.001). Results from moderator analyses indicated no 
significant difference between the use of free weight or Smith 
machine in the prediction of 1RM (βFree-weight:Smith =  − 3.6, 
95% CI − 8.3 to 1.09 kg, p = 0.114), number of loads used 
(β2loads:>2loads = 0.07, 95% CI − 1.1 to 1.2 kg, p = 0.888), or 
use of group versus individualised MVTs (βGroup:Individualised 
= – 0.08, 95% CI − 1.3 to 1.4 kg, p = 0.886). Mean centred 
meta-regression indicated a significant influence of relative 

strength (β0 = 0.75 kg, β1 = 0.98 kg, 95% CI 0.4 to 1.6 kg) 
with the slope parameter estimating that prediction errors 
would increase by 0.98 kg on average for each 0.1 unit 
increase in relative strength.

3.5.3  Deadlift

The two-stage meta-analysis model for the deadlift com-
prised a total of 19 outcomes pooled from 3 studies (median 

Table 2  Model characteristics of included studies

MVT minimal velocity threshold, LD0 load at 0 velocity, Vlast velocity of the last repetition during a set to failure, NR not reported, Lasso least 
absolute selection and shrinkage operator

Exercise Prevalence (number 
of models, number of 
studies)

Mean 1RM (± sd) Load–velocity models

Number of 
loads (median: 
IQR)

Extrapolation/prediction 
method

Group versus individual 
data

Free-weight bench press 28 models across 9 
studies

85.6 (46.3) 3 (3) MVT (n = 28) Group (n = 13)
Individual (n = 9)
NR (n = 6)

Smith-machine bench 
press

30 models across 5 
studies

75.4 (8.9) 4 (2.5) MVT (n = 24)
NR (n = 2)
Lasso (n = 1)
Vlast (n = 3)

Group (n = 5)
Individual (n = 21)
NR (n = 4)

Back squat 42 models across 9 
studies

145.5 (36) 4 (3) MVT (n = 35),
LD0 (n = 6),
NR (n = 1)

Individual (n = 30)
Group (n = 5)
NR (n = 7)

Deadlift 29 models across 5 
studies

165 (12.6) 4.5 (3) MVT (n = 25), Vlast 
(n = 4)

Individual (n = 14)
Group (n = 9)
NR (n = 6)

Power clean 4 models across 2 studies NR 4.5 (1) MVT (n = 4) Group (n = 0)
Individual (n = 0)
NR (n = 4)

Fig. 3  Caterpillar plot of all 
outcomes and corresponding 
95% confidence intervals syn-
thesised in the main two-stage 
meta-analyses model. Outcomes 
are plotted in ascending order 
according to the magnitude 
of the standard error of the 
estimate percentage (SEE%) 
(top-to-bottom). As each study 
could contribute more than one 
outcome (model), the y axis is 
labelled as “[Outcome, refer-
ence]” where outcome refers to 
the model number and reference 
is used to identify the study
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outcomes per study 6, range 1–12) and indicated poor pre-
dictive validity (SEE 13.3, 95% CI 9.5 to 17.1 kg, p = 0.004), 
large within-study variation ( �

2
 = 4.01, 95% CI  2.0 to 

7.63 kg) and negligible between-study variation (σ3 < 0.001, 
95% CI < 0.001 to 3.16). Similarly, negligible covariance 
was observed for multiple outcomes reported from a single 
study (ICC < 0.001). Analyses conducted in terms of the 
SEE% indicated moderate predictive validity (SEE% 8, 95% 
CI 5.9 to 10.2, p = 0.004), with similar patterns observed for 
within-study ( �

2
 = 2.2, 95% CI 1% to 3.8%) and between-

study (σ3 < 0.001, 95% CI < 0.001% to > 3.2%) variation. 
Insufficient data were available to perform moderator analy-
ses investigating the influence of the number of loads, rela-
tive strength or the MVT used.

3.5.4  Squat

The two-stage meta-analysis model for the back squat com-
prised a total of 35 outcomes pooled from 7 studies (median 
outcomes per study 4, range 1–12) and indicated poor pre-
dictive validity (SEE 18.6, 95% CI 7.5 to 29.8 kg, p = 0.006). 
Moderate within-study variation ( �

2
 = 3.2, 95% CI 1.8 to 

5.2 kg), substantial between-study variation ( �
3
 = 11.7, 95% 

CI 6.9 to 23.9 kg) and large covariance between multiple 

outcomes reported from the same study were also observed 
(ICC 0.9). Analyses conducted in terms of the SEE% also 
indicated poor predictive validity (SEE% 12.3, 95% CI 3.3% 
to 21.4%, p = 0.017. Insufficient data were available to per-
form moderator analyses investigating the influence of the 
number of loads, the MVT used or relative strength.

3.6  One‑Stage Meta‑analysis

One-stage meta-analyses pooled across all exercises (Fig. 4) 
were initially conducted for both scaled (%1RM: 2289 obser-
vations from 19 studies) and unscaled (absolute load kg: 
2355 observations from 20 studies) residuals. Analysis of 
unscaled residuals identified a small, albeit systematic over-
estimation of 1RM by 4.5 (95% CI 1.5 to 7.4 kg, p = 0.005), 
which, when scaled and expressed as a percentage of meas-
ured 1RM, was equal to 3.7 (95% CI 0.5% to 6.9% 1RM, 
p = 0.025). Moderate within-study (σ2 = 6.3, 95% CI 5.3 to 
7.6 kg) and between-study (σ3 = 5.1, 95% CI 2.4 to 8.1 kg) 
variation was evident for unscaled residuals with moder-
ate covariance between multiple outcomes reported from 
the same study also observed (ICC 0.36). Similar findings 
were obtained for variance parameters using scaled residu-
als (Online Resource 3). Moderator analyses with exercise 
included as a fixed effect indicated small prediction errors 

Fig. 4  Plot of results from the 
main meta-analysis model con-
ducted using unscaled residuals 
(kg) during one-stage analyses. 
Each individual data point rep-
resents the difference between 
the predicted and measured one-
repetition maximum (1RM) for 
a single participant and model, 
where positive values represent 
overprediction, and negative 
values represent underpredic-
tion. Study “average” effects 
(best linear unbiased predic-
tion) and associated confidence 
intervals (CIs) are included and 
represented as diamonds. The 
pooled estimate (i.e., model 
intercept) and cluster robust 
95% CIs are included at the 
bottom and are represented as a 
diamond and whiskers
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for the bench press (βBench = 2.7, 95% CI − 1.2 to 6.6 kg, 
p = 0.155). Relative errors were smallest for the deadlift 
(βBench:Deadlift =  − 1.5, 95% CI − 13.1 to 10.0 kg, p = 0.747), 
followed by the squat (βBench:Squat = 8.5, 95% CI − 3.6 to 
20.6 kg, p = 0.133). Similar results were obtained for analy-
ses reperformed using scaled residuals (Online Resource 3). 
Moderator analyses investigating the number of loads indi-
cated small differences in predictive validity between mod-
els using only two loads in comparison with models using 
multiple loads when data were pooled across all exercises 
(βTwo:Multiple = − 1.5, 95% CI − 3.0 to − 0.1 kg, p = 0.038). A 
similar result was also observed when including the extrapo-
lation method used as a fixed effect, indicating limited differ-
ences between the use of individualised or group level MVT 
data (βGroup:individual = 1.4, 95% CI − 2.0 to 4.9 kg, p = 0.301), 
with limited differences also observed for models using Vlast 
(βGroup:Vlast = 0.8, 95% CI − 1.2 to 2.8 kg, p = 0.291). For 
both sets of moderator analyses, no substantial differences 
in results were obtained between models built using scaled 
versus unscaled residuals (Online Resource 3).

Of the six studies included for narrative synthesis only, 
each investigated a single exercise including the bench press 
[48, 49], back squat [50], deadlift [51] and power clean 
[39]. All six studies investigated free-weight variations and 
models built using mean concentric velocity (MCV); how-
ever, the studies by Lake et al. [50] and Haff et al. [51] also 
investigated the use of different velocity variables including 
mean propulsive or peak velocity, respectively. Despite large 
differences in models and exercises examined, there was a 
general trend for models to overestimate an individual’s 
1RM. For example, Banyard et al. [49] reported systematic 
errors ranging from 10 to 17 kg during the back squat, whilst 
Medrano et al. [47] reported errors comparatively smaller 
in magnitude ranging from 7 to 9 kg in the bench press. 
Lake et al. [50] also identified a general trend for models 
to overestimate 1RM in the deadlift, with mean differences 
ranging from 16 to 28 kg. In contrast to the other studies 
included in this review, however, Lake et al. [38] used the 
velocity measured during the last successful repetition of a 
set completed to failure to represent the MVT in their predic-
tions. The authors also observed greater predicative validity 
when models were built using mean propulsive velocity, as 
opposed to mean concentric velocity. To date, only two stud-
ies have investigated the predictive validity of load–velocity 
models for use with commonly used weightlifting exercises 
and their derivatives [51, 52]. In the study by Haff et al. 
[51], the authors compared several models differing in either 
the number of loads (3 or 4) or the velocity metric used 
(MCV or peak velocity) for predicting the power clean 1RM. 
Despite identifying that the three-load peak velocity model 
resulted in the best predictions, some evidence of underes-
timation was observed across all models with no significant 
differences identified in model performance when stratified 

according to participants’ maximum strength. These results 
are in line with the findings by Berton et al. [52] who also 
identified a general trend to underestimate by approximately 
4–6.5 kg when models were built using peak velocity data 
gathered across several loads.

4  Discussion

The present review is the first to employ a robust quan-
titative synthesis of information relating to the validity 
of load-velocity models for predicting 1RM. The results 
highlight a general trend for all load–velocity-based 
models to systematically overestimate an individual’s 
measured 1RM with no significant differences in predic-
tive validity identified across the modelling approaches 
included. Results from one-stage analyses estimated a 
4.3 kg mean error in prediction across all models, which 
expressed as percentage of the measured 1RM was equal 
to 3.6%. Limited differences in predictive validity were 
observed when investigating the influence of group-level 
versus individualised-level MVTs, or when comparing 
the use of two versus multiple loads to build predictive 
models. Differences in model performance, however, were 
observed on the basis of the exercise investigated, with the 
back squat demonstrating the largest errors and the bench 
press demonstrating the smallest errors.

The primary findings generated from the current review 
are in general agreement with those reported from many 
individual studies, which is an overestimation of an indi-
vidual’s 1RM, irrespective of the modelling approach 
selected [15, 16, 23, 24, 49, 53–55]. Despite systematic 
overestimation being a common finding, the magnitude 
of these errors appears to be influenced by the exercise 
selected. In the current review, moderate yet insignificant 
differences were observed between the bench press and 
squat exercises (βBench:Squat = 8.5, 95% CI − 3.6 to 20.6 kg), 
with smaller differences also observed between the bench 
press and deadlift (βBench:Deadlift =  − 1.5, 95% CI − 13.1 to 
10.0 kg).These trends were evident during both one-stage 
and two-stage analyses and are congruent with the general 
range of errors reported across studies. For example, stud-
ies investigating the back-squat exercise have frequently 
reported errors as large as 10–20 kg [49], whilst studies 
investigating the deadlift and bench press exercises have 
tended to report errors comparatively lower in magnitude 
and within the 2–10 kg range [23]. It is reasonable to 
expect that absolute errors in 1RM prediction will be influ-
enced by the magnitude of the 1RM loads lifted, and this 
may offer a partial explanation for the disparity observed 
in model performance. However, analyses conducted on 
scaled residuals (such that errors were expressed as a 
percentage of the measured 1RM), were consistent with 



1703Validity of Individualised Load-Velocity Relationships for Predicting 1RM

results obtained during analysis of unscaled residuals for 
both the squat (βBench:Squat = 4.5, 95% CI − 8.0 to 17.1%) 
and the deadlift (βBench:deadlift = − 3.2, 95% CI − 14.9 to 
8.5%), suggesting that the differences observed between 
exercises may not be explained by the magnitude of 
the loads lifted. Across all exercises, prediction errors 
expressed as percentage of 1RM were in a range likely 
deemed acceptable by most practitioners (~ 4–6% of meas-
ured 1RM). However, regardless of whether residuals were 
expressed in absolute or relative terms, analyses demon-
strated that overestimation was most likely to occur. This 
overestimation suggests that current models are limited 
by the profile of the regression such that non-linearities 
and concave features at the upper range are underappreci-
ated, and/or identification of the 1RM velocity is overes-
timated. Indeed, despite studies providing consistent evi-
dence that linear relationships describe the relationship 
between loads lifted and barbell velocity very well, some 
authors have shown that improvements in model fit can be 
obtained through non-linear modelling [56]. For example, 
Pestana-Melero et al. [56] compared linear and polyno-
mial regression models when modelling the load–velocity 
relationship in the Smith machine bench press exercise. 
The authors described model fit through assessment of 
median R2 values and their associated ranges, observing 
an increased median R2 value (0.995) and tighter range 
(0.985–1.00) for polynomial models in comparison with 
their linear counterparts (R2 = 0.990, range 0.964–0.998). 
However, these differences are small and not necessarily 
indicative of practically relevant increases in model per-
formance [24]. In fact, multiple comparative studies have 
now shown no improvements in predictive validity when 
comparing polynomial models with the linear counterparts 
across a range of exercises, including the bench press [22], 
deadlift [24] and squat [21]. Given the consistent evidence 
of overestimation associated with load–velocity relation-
ships, and evidence that polynomial formulations may pro-
vide limited improvements in predicative validity, future 
research may seek to explore additional modelling func-
tions that may better capture underlying relationships, and/
or identify alternative methods for selecting the MVT to 
predict 1RMs. Additional sources of error that are likely 
to influence the predictive validity of the derived 1RM 
include measurement error inherent to the process, which 
may comprise both biological and instrumental compo-
nents [47] However, unlike the systematic sources identi-
fied in this review, these are likely to be random in nature, 
and can be minimised through selection of devices with 
established validity and reliability, as well as standardisa-
tion of data collection protocols [47].

Common to all models included in this review was the 
use of extrapolation to generate 1RM predictions. This pro-
cess requires selection of a velocity outside the range of the 

measured data to a point thought to represent an individual’s 
1RM. Researchers have most often selected this value by 
using the velocity recorded during a previous 1RM lift under 
controlled conditions [17, 23, 49], and have proposed using 
both group-level (i.e. mean 1RM velocity across all partici-
pants) or individual-level data [11]. However, researchers 
have also proposed generating predictions through extrapo-
lation to the load which would produce a velocity of 0 [17, 
57] and, less commonly, through extrapolation to the veloc-
ity recorded during the final repetition of a set performed to 
failure (Vlast) [28, 50, 58]. In the current review, limited dif-
ferences in model performance were observed when compar-
ing the use of group versus individualised MVTs during both 
one-stage (βGroup:individual = 1.4, 95% CI − 2.0 to 4.9 kg) and 
two-stage (βGroup:Individualised =  − 0.4, 95% CI − 1.9% to 1.0%) 
analyses. Whilst both the magnitude of errors observed 
and a lack of evidence for differences in predictive valid-
ity based on the MVT used are in general agreement with 
previous observations [24, 59], conflicting evidence does 
exist, with two studies suggesting the use of individualised 
MVTs may be inappropriate [17, 49]. Both Banyard et al. 
[49] and Hughes et al. [17] compared a range of load–veloc-
ity models for predicting an individual’s 1RM in the back 
squat using individualised MVT, with both authors report-
ing substantial model overestimation (≥ 10 kg). In addition, 
Banyard et al. [49] also documented unacceptable changes 
in the velocity associated with an individual’s 1RM between 
adjacent trials (coefficient of variation 22.5%), concluding 
that models based on this metric were generally unreliable 
and unlikely to yield valid estimates. Because neither study 
directly compared individualised MVTs to group MVTs, it 
is unclear whether group MVTs may have displayed errors 
comparatively large in magnitude when examined under 
similar testing conditions. In contrast, Jukic et  al. [24] 
directly compared the predictive validity of 1RM estimates 
generated using either group- or individual-based MVTs. 
The authors observed limited differences in model perfor-
mance and concluded that group MVTs may still be prefer-
able for enhancing the ease with which these procedures 
could be implemented [24]. Given the general agreement in 
findings between this review and previous individual studies, 
it is plausible that the discrepancies reported by both Ban-
yard et al. [49] and Hughes et al. [17] are attributable to fac-
tors other than the MVT selected, including the participants 
used, procedures implemented and exercise investigated as 
well as the technology and its calibration. To better establish 
the validity across different MVT thresholds and approaches, 
future research implementing well-designed comparative 
studies which standardise factors thought to influence model 
performance is required.

Initial research investigating the use of load–velocity 
relationships for 1RM prediction frequently investigated 
models with more than two loads [17, 23, 24, 47, 50, 51, 
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53, 59–63]. However, given the increased popularity of these 
procedures and the desire to implement them across differ-
ent practical environments, including those encompassing 
the simultaneous training of many athletes, researchers sug-
gested that valid 1RM estimates could be obtained more 
efficiently using two evenly spread loads—one from each 
end of the relationship (e.g. 40% and 90% 1RM). Previous 
recommendations have generally advised that a minimum 
velocity difference of 0.5 m/s should be observed between 
the two loads selected to ensure sufficient coverage of the 
underlying relationship is achieved [57]; however, the actual 
difference in velocity required is likely both exercise and 
individual specific. Preliminary research by Garcia-Ramos 
et al. [64] was the first to provide support for this prem-
ise, identifying limited differences in the predictive validity 
when models were built using two loads in comparison to 
four loads during the free-weight bench pull. These find-
ings have since been replicated with other exercises [24, 
65] and are supported by the results of the current review. 
While initial consideration may have expected that increas-
ing the number of loads (and therefore observations) would 
generate more accurate predictions [66], what is likely to 
be of most importance is the spread of the loads included 
[i.e. including loads at both the low (30%) and high (90%) 
end of the range]. This is because most models investigated 
rely on the process of extrapolation, whereby predictions 
are obtained through extension of the modelled relationship 
beyond the range of observed data. Implicit in this process 
is the assumption that modelled data are representative of 
the underlying relationship, meaning that estimates derived 
from models which capture the majority of the relationship 
are most likely to result in the least error [66]. Practically, 
this means including loads as close to the upper range of 
the relationship as possible is desirable for maximising the 
validity of predictions. Studies comparing models with only 
two loads have most often selected a similar spread in loads 
recorded for both the ‘two-point’ models (e.g. 40% and 
90%) and models incorporating multiple loads. Therefore, 
the limited differences observed between the two modelling 
approaches both in research and in this review are likely 
in part due to the studies investigating two-point models 
capturing a comparable range of the relationship to those 
investigating models incorporating multiple loads (e.g. 40%, 
60%, 80%, 90%).

One area that has received less attention in the lit-
erature is whether differences in predictive validity exist 
based on the mode of resistance selected. Only two stud-
ies included in this review examined exercises performed 
using a Smith machine [67]. This is likely reflective of 
practice where the majority of compound movements are 
performed using free-weight equipment [68]. The results 
of this review support previous studies, identifying a lack 
of evidence for a difference in predictive validity between 

free-weight and Smith-machine variants of the bench press 
exercise. In the current review results were consistent across 
both two-stage (βFree-weight:Smith =  − 3.6, 95% CI − 8.3 to 
1.1 kg) and one-stage analyses performed on both scaled 
(βFree-weight:Smith =  − 1.13, 95% CI − 10.5% to 8.3% 1RM) and 
unscaled data (βFree-weight:Smith = 0.5, 95% CI − 8.6 to 9.6 kg). 
Despite consistency in findings across research, initial con-
siderations may have expected greater errors with free-
weight movements due to larger degrees of medio-lateral 
and/or anteroposterior displacement [11, 68] which linear 
position transducers are generally unable to measure. How-
ever, the results of this review do not support this hypothesis. 
One potential explanation for this is that all the included 
studies comparing Smith-machine and free-weight variants 
of an exercise have investigated the bench-press exercise 
where absolute errors are already small, and thus any differ-
ences between modalities are likely to be less pronounced 
than in exercises with larger non-vertical components of dis-
placement. Owing to a lack of studies using Smith machine 
variants of other exercises included in this review, it was 
not possible to identify if discrepancies between modalities 
may exist for exercises such as the squat and deadlift. Whilst 
the paucity of literature is likely reflective of the tendency 
to use free-weight variations of these exercises in practice, 
coaches may still wish to remain cognisant that predictions 
generated using velocity data collected during free-weight 
exercises with substantial medio-lateral and/or anteroposte-
rior components may produce larger disparities between the 
free-weight and Smith-machine variants than those reported 
both throughout the literature and in this review. This is 
particularly likely to be the case where velocity data are 
collected using devices with poorer validity and reliability 
(e.g. accelerometer-based instruments) or devices that are 
incapable of capturing non-vertical components of displace-
ment (e.g. LPTs).

Adopting an IPD approach enabled quantitative synthesis 
where previous reviews were limited to narrative syntheses 
only. There are, however, several limitations of the current 
review that should be considered and can broadly be catego-
rised into limitations arising from the methods adopted and 
the included studies. In the current review sampling variances 
for each outcome were estimated through bootstrapping of 
model residuals. While bootstrapping is an approach com-
monly used to estimate distributional properties, the proce-
dure is also dependent on the samples used [69]. Owing to the 
small sample sizes presented across the majority of included 
studies, it is possible that modelled estimates obtained for 
within-study variation may lack accuracy, and—as a result—
may have influenced associated confidence intervals and the 
weighting of individual studies during two-stage analyses 
[70]. To address this, the stability of estimates was investi-
gated increasing sample sizes from n = 1000 to n = 10,000 
with no substantive differences identified. A second limitation 
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is that it was not possible to obtain raw data for all studies 
identified in the search for this review. In such instances, data 
were obtained through manual digitisation of in-text figures, 
and subsequently synthesised. Substantial inaccuracies in the 
digitisation process could lead to poor estimates influencing 
findings from analyses. Reliability and validity assessments, 
however, indicated that the processes adopted were likely to 
produce stable and sufficiently accurate data. A third limita-
tion of the current review includes an inability to investigate 
moderators that are likely to be of practical interest, such as 
the difference between polynomial and linear models. The ina-
bility to perform these analyses stemmed primarily from the 
large degree of heterogeneity between studies, meaning that 
in many cases there were insufficient data at each level of the 
moderator to enable robust analyses. In addition, the nature of 
data obtained for this review meant that identification and cod-
ing of each individual participant was often not possible, and 
therefore assessment of individual-level characteristics such as 
relative strength levels which may better explain some of the 
disparities observed was precluded. One salient limitation of 
the included evidence, and—by extension—this review, is the 
use of previously assessed 1RM values as a comparator against 
which 1RM predictions are assessed. This is problematic as it 
results in an inability to identify whether the observed error in 
1RM predictions stems from the modelling approach selected, 
or a real change in an individual’s 1RM since the last measure-
ment occasion. Therefore, to ensure that inferences regarding 
predictive validity are well founded, future research should 
ensure that predictions are assessed against a 1RM measured 
on the same day/session as the velocity data used to build the 
model are collected. A final limitation of this review pertains 
to the presentation of results and their interpretation from a 
practical standpoint. An aim of the current review was to quan-
titatively synthesise the existing literature whilst presenting 
results in units directly interpretable by those most likely to 
use these approaches in practice. During the two-stage model-
ling approach, results were presented in standardised units as 
the SEE% to account for a broad range of differences across 
the outcomes synthesised. Whilst the SEE% is more easily 
interpretable than more commonly used effect size measures 
(e.g. Cohen’s d), the statistic is symmetrical, meaning that it 
provides limited insight into whether errors are chiefly sys-
tematic or random in nature. This information is likely to be 
of importance to practitioners, as overestimation is likely to 
be deemed less favourable than underprediction, even when 
the magnitude of these errors is equivalent. These results were 
therefore supplemented using a one-stage IPD meta-analysis, 
whereby outcomes were incorporated simultaneously using 
multilevel modelling. Adopting this approach allowed for the 
data to be synthesised in their raw units and for results to be 
presented in a practically relevant format using both kg and 
%1RM units.

5  Conclusion

It was identified earlier in this review that a principal limi-
tation of existing literature was the range of different crite-
ria adopted to describe model performance. Not only has 
this meant that the practical relevance of primary research 
has often been difficult to identify, but it has also hampered 
the number of evidence synthesis projects attempting to 
quantitatively summarise the literature. Given the broad 
range of statistics previously used to evaluate model per-
formance, future research may seek to adopt an approach 
similar to this review, whereby results are presented both 
in absolute terms (e.g. kg) and in standardised (e.g. SEE%) 
units. Not only would this increase the practical relevance 
of research, but it may also facilitate future evidence syn-
thesis projects. Researchers may also wish to explore addi-
tional factors influencing model performance such as the 
spread of loads used. Whilst some evidence may already 
provide limited insight into the spread of loads used, firm 
conclusions cannot be made as changes in the spread of 
loads often occur concurrently with changes in other char-
acteristics such as the number of loads used. Therefore, 
future researchers should ensure they adopt well-designed 
comparative studies whereby the independent variable is 
manipulated whilst other key model characteristics (e.g. 
exercise assessed or number of loads used) are held con-
stant across conditions.

On the basis of limited evidence favouring any one 
load–velocity approach to predict 1RM, practitioners seek-
ing to obtain higher-frequency 1RM estimates should select 
the approach that best suits them, their error tolerance and 
the individual needs of their athletes. This means that suita-
ble 1RM predictions can likely be derived using a minimum 
of two evenly spread loads (e.g. 40% and 85%1RM) with a 
group average MVT used as the point of extrapolation. How-
ever, on the basis of the evidence available thus far, prac-
titioners adopting this approach may also wish to calculate 
MVT values based on group averages from the population of 
interest, instead of adopting the values used in previous stud-
ies, where the population may not be representative. Prac-
titioners adopting these methods for the purposes of daily 
1RM estimation and subsequent load prescription should 
also remain cognisant of the likely systematic overestimation 
evident across all methods. While the magnitudes of these 
errors appear to be—on average—acceptable, it is likely that 
the systematic overestimation of loads is less desirable than 
systematic underestimation, and that such errors may lead 
to undesirable training effects if training prescriptions are 
consistently and/or frequently made on the basis of these 
unadjusted estimates. Practitioners may also wish to explore 
alternative VBT methods for monitoring fluctuations in 
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performance such as the assessment of movement velocity 
against a standardised load which may be more feasible.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40279- 023- 01854-9.

Declarations 

Funding No funding was received during, before or after completion 
of the project herein.

Availability of data and material Aggregate data are available on the 
Open Science Framework, and can be accessed using the following 
link https:// osf. io/ 6dxp5/.

Code availability All code produced as part of this review can be found 
at the following link https:// osf. io/ 6dxp5.

Author contributions LG and PS conceptualised the work. LG and PS 
designed the methodology. LG performed all searches. LG and AH 
screened all eligible studies. Data were curated by LG and RA, and all 
formal analyses were then conducted by LG. LG wrote the first draft 
with initial critical input from PS, AH and RA. All authors provided 
critical feedback, appraised the intellectual content provided herein, 
and contributed to subsequent versions of the manuscript. All authors 
read and approved the final manuscript. 

Conflicts of interest Leon Greig, Rodrigo Aspe, Andy Hall, Paul Com-
fort, Kay Cooper and Paul Swinton declare that they have no conflicts 
of interest relevant to the content of this review.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Maestroni L, Read P, Bishop C, Papadopoulos K, Suchomel TJ, 
Comfort P, et al. The benefits of strength training on musculoskel-
etal system health: practical applications for interdisciplinary care. 
Sports Med. 2020;50:1–20.

 2. Suchomel TJ, Nimphius S, Stone MH. The importance of muscular 
strength in athletic performance. Sports Med. 2016;46:1419–49.

 3. Crewther B, Keogh J, Cronin J, Cook C. Possible stimuli for 
strength and power adaptation. Sports Med. 2006;36:215–38.

 4. Haff GG, Triplett NT. Essentials of strength training and condi-
tioning 4th edition. Human kinetics; 2015.

 5. Grgic J, Lazinica B, Schoenfeld BJ, Pedisic Z. Test-Retest reliabil-
ity of the one-repetition maximum (1RM) strength assessment: a 
systematic review. Sports Med Open. 2020;6:31.

 6. Thompson SW, Rogerson D, Ruddock A, Barnes A. The effec-
tiveness of two methods of prescribing load on maximal strength 
development: a systematic review. Sports Med. 2020;50:919–38.

 7. Greig L, Stephens Hemingway BH, Aspe RR, Cooper K, Comfort 
P, Swinton PA. Autoregulation in resistance training: addressing 
the inconsistencies. Sports Med. 2020;50:1873–87.

 8. Pérez-Castilla A, Jerez-Mayorga D, Martínez-García D, Rod-
ríguez-Perea Á, Chirosa-Ríos LJ, García-Ramos A. Comparison 
of the bench press one-repetition maximum obtained by different 
procedures: direct assessment vs. lifts-to-failure equations vs. two-
point method. Int J Sports Sci Coach. 2020;15:337–46.

 9. Brzycki M. Strength testing—predicting a one-rep max from reps-
to-fatigue. J Phys Educ Recreat Dance. 1993;64:88–90.

 10. Reynolds JM, Gordon TJ, Robergs RA. Prediction of one repeti-
tion maximum strength from multiple repetition maximum testing 
and anthropometry. J Strength Cond Res. 2006;20:584–92.

 11. Weakley J, Mann B, Banyard H, McLaren S, Scott T, Garcia-
Ramos A. Velocity-based training: from theory to application. 
Strength Cond J. 2021;43:31–49.

 12. Scott BR, Duthie GM, Thornton HR, Dascombe BJ. Training 
monitoring for resistance exercise: theory and applications. Sports 
Med Springer. 2016;46:687–98.

 13. Jovanović M, Flanagan EP. Researched applications of velocity 
based strength training. J Aust Strength Cond. 2014;22:58–69.

 14. González-Badillo JJ, Sánchez-Medina L. Movement velocity as 
a measure of loading intensity in resistance training. Int J Sports 
Med. 2010;31:347–52.

 15. Jiménez-Alonso A, García-Ramos A, Cepero M, Miras-
Moreno S, Rojas FJ, Pérez-Castilla A. Velocity performance 
feedback during the free-weight bench press testing proce-
dure: an effective strategy to increase the reliability and one 
repetition maximum accuracy prediction. J Strength Cond Res. 
2022;36:1077–83.

 16. Nickerson BS, Williams TD, Snarr RL, Garza JM, Salinas G. 
Evaluation of load-velocity relationships and repetitions-to-failure 
equations in the presence of male and female spotters. J Strength 
Cond Res. 2020;34:2427–33.

 17. Hughes LJ, Banyard HG, Dempsey AR, Scott BR. Using a load-
velocity relationship to predict one repetition maximum in free-
weight exercise: a comparison of the different methods. J Strength 
Cond Res. 2019;33:2409–19.

 18. Hughes LJ, Banyard HG, Dempsey AR, Peiffer JJ, Scott BR. 
Using load-velocity relationships to quantify training-induced 
fatigue. J Strength Cond Res. 2019;33:762–73.

 19. García-Ramos A, Pérez-Castilla A, Villar Macias FJ, Latorre-
Román PÁ, Párraga AJ, García-Pinillos F. Differences in the one-
repetition maximum and load-velocity profile between the flat and 
arched bench press in competitive powerlifters. Sports Biomech. 
2018;20:1–13.

 20. Thompson SW, Rogerson D, Ruddock A, Greig L, Dorrell HF, 
Barnes A. A novel approach to 1RM prediction using the load-
velocity profile: a comparison of models. Sports. 2021;9:88.

 21. Kilgallon J, Cushion E, Joffe S, Tallent J. Reliability and validity 
of velocity measures and regression methods to predict maximal 
strength ability in the back-squat using a novel linear position 
transducer. Proc Inst Mech Eng Part P J Sports Eng Technol. 
2022.

 22. Janicijevic D, Jukic I, Weakley J, García-Ramos A. bench press 
1-repetition maximum estimation through the individualized 
load–velocity relationship: Comparison of different regression 
models and minimal velocity thresholds. Int J Sports Physiol 
Perform. 2020;16:1–8.

 23. Ruf L, Chery C, Taylor K-L. Validity and reliability of the load-
velocity relationship to predict the one-repetition maximum in 
deadlift. J Strength Cond Res. 2018;32:681–9.

 24. Jukic I, García-Ramos A, Malecek J, Omcirk D, Tufano JJ. Valid-
ity of load–velocity relationship to predict 1 repetition maximum 
during deadlifts performed with and without lifting straps. J 
Strength Cond Res. 2020;36:902–10.



1707Validity of Individualised Load-Velocity Relationships for Predicting 1RM

 25. Benavides-Ubric A, Diez-Fernandez DM, Rodriguez-Perez MA, 
Ortega-Becerra M, Pareja-Blanco F. Analysis of the load-velocity 
relationship in deadlift exercise. J Sports Sci Med. 2020;19:452–9.

 26. Dahlin M. The use of velocity-based training in strength and 
power training—a systematic review. 2018;

 27. McBurnie AJ, Allen KP, Garry M, Martin M, Thomas D, Jones 
PA, et al. The benefits and limitations of predicting one repetition 
maximum using the load-velocity relationship. Strength Cond J. 
2019;41:28–40.

 28. Palmer PB, O’Connell DG. Regression analysis for predic-
tion: understanding the process. Cardiopulm Phys Ther J. 
2009;20:23–6.

 29. Aromataris E, Munn Z. JBI manual for evidence synthesis [Inter-
net]. 2020. https:// jbi- global- wiki. refin ed. site/ space/ MANUAL

 30. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stew-
art G, et al. Preferred reporting items for a systematic review and 
meta-analysis of individual participant data: The PRISMA-IPD 
statement. JAMA J Am Med Assoc. 2015;313:1657–65.

 31. Munn Z, Stern C, Aromataris E, Lockwood C, Jordan Z. What 
kind of systematic review should I conduct? A proposed typology 
and guidance for systematic reviewers in the medical and health 
sciences. BMC Med Res Methodol. 2018;18:5.

 32. Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, 
Collins GS, et al. PROBAST: a tool to assess the risk of bias 
and applicability of prediction model studies. Ann Intern Med. 
2019;170:51.

 33. Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood 
M, Collins GS, et al. PROBAST: a tool to assess risk of bias 
and applicability of prediction model studies: Explanation and 
elaboration. Ann Intern Med. 2019;170:W1-33.

 34. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Intro-
duction to meta-analysis. New York: Wiley; 2011.

 35. Cheung MW-L. A guide to conducting a meta-analysis with non-
independent effect sizes. Neuropsychol Rev. 2019;29:387–96.

 36. Pustejovsky J. clubSandwich: Cluster-robust (sandwich) vari-
ance estimators with small-sample corrections (0.4. 2)[R pack-
age]. 2020;

 37. Viechtbauer W. Conducting meta-analyses in R with the metafor 
package. J Stat Softw UCLA Statistics. 2010;36:1–48.

 38. Hedges LV, Tipton E, Johnson MC. Robust variance estimation 
in meta-regression with dependent effect size estimates. Res 
Synth Methods. 2010;1:39–65.

 39. Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA, 
Kontopantelis E, et al. A comparison of heterogeneity variance 
estimators in simulated random-effects meta-analyses. Res 
Synth Methods. 2019;10:83–98.

 40. Chen B, Benedetti A. Quantifying heterogeneity in individual 
participant data meta-analysis with binary outcomes. Syst Rev. 
2017;6:243.

 41. Zourdos MC, Klemp A, Dolan C, Quiles JM, Schau KA, Jo 
E, et al. Novel resistance training–specific rating of perceived 
exertion scale measuring repetitions in reserve. J Strength Cond 
Res. 2016;30:267–75.

 42. Ormsbee MJ, Carzoli JP, Klemp A, Allman BR, Zourdos MC, 
Kim J-S, et al. Efficacy of the repetitions in reserve-based rating 
of perceived exertion for the bench press in experienced and 
novice benchers. J Strength Cond Res. 2019;33:337–45.

 43. Fu R, Gartlehner G, Grant M, Shamliyan T, Sedrakyan A, Wilt 
TJ, et al. Conducting quantitative synthesis when comparing 
medical interventions: AHRQ and the Effective Health Care 
Program. J Clin Epidemiol. 2011;64:1187–97.

 44. Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest 
package: tests in linear mixed effects models. J Stat Softw. 
2017;82:1–26.

 45. Viechtbauer W. Conducting meta-analyses in R with the meta-
for. J Stat Softw. 2010;36:1–48.

 46. Swinton PA, Hemingway BS, Saunders B, Gualano B, Dolan E. 
A statistical framework to interpret individual response to inter-
vention: Paving the way for personalized nutrition and exercise 
prescription. Front Nutr. 2018;41.

 47. Medrano NF, Park K-S, Nickerson BS. Validation of various 
load-velocity relationships for estimation of bench press 1-rep-
etition maximum. Int J Exerc Sci Conf Proc. 2020. p. 4.

 48. Balsalobre-Fernández C, Kipp K. Use of machine-learning and 
load–velocity profiling to estimate 1-repetition maximums for 
two variations of the bench-press exercise. Sports. 2021;9:39.

 49. Banyard HG, Nosaka K, Haff GG. Reliability and validity of 
the load-velocity relationship to predict the 1rm back squat. J 
Strength Cond Res. 2017;31:1897–904.

 50. Lake J, Naworynsky D, Duncan F, Jackson M. Comparison of 
different minimal velocity thresholds to establish deadlift one 
repetition maximum. Sports. 2017;5:70.

 51. Haff GG, Garcia-Ramos A, James LP. Using velocity to pre-
dict the maximum dynamic strength in the power clean. Sports. 
2020;8:129.

 52. Berton R, Soriano M, da Silva DD, dos Santos ML, Teixeira 
G, Reiser F, et al. Concurrent validity and reliability of the 
load-velocity relationship to predict the one-repetition maxi-
mum during three weightlifting derivatives. Kinesiology. 
2021;53:215–25.

 53. Caven EJG, Bryan TJE, Dingley AF, Drury B, Garcia-Ramos 
A, 67 A, et al. Group versus individualised minimum velocity 
thresholds in the prediction of maximal strength in trained female 
athletes. Int J Environ Res Public Health. 2020;17.

 54. García-Ramos A, Haff GG, Pestaña-Melero FL, Pérez-Castilla A, 
Rojas FJ, Balsalobre-Fernández C, et al. Feasibility of the 2-point 
method for determining the 1-repetition maximum in the bench 
press exercise. Int J Sports Physiol Perform. 2018;13:474–81.

 55. Williams TD, Esco MR, Fedewa MV, Bishop PA. Bench press 
load-velocity profiles and strength after overload and taper micro-
cyles in male powerlifters. J Strength Cond Res. 2020;34:3338–45.

 56. Luis Pestana-Melero F, Haff GG, Javier Rojas F, Perez-Castilla 
A, Garcia-Ramos A. Reliability of the load-velocity relation-
ship obtained through linear and polynomial regression mod-
els to predict the 1-repetition maximum load. J Appl Biomech. 
2018;34:184–90.

 57. Jidovtseff B, Harris NK, Crielaard J-M, Cronin JB. Using the 
load-velocity relationship for 1RM prediction. J Strength Cond 
Res. 2011;25:267–70.

 58. Garcia-Ramos A, Janicijevic D, Gonzalez-Hernandez JM, Keogh 
JWL, Weakley J. Reliability of the velocity achieved during the 
last repetition of sets to failure and its association with the velocity 
of the 1-repetition maximum. PeerJ. 2020;8: e8760.

 59. Perez-Castilla A, Piepoli A, Garrido-Blanca G, Delgado-Garcia 
G, Balsalobre-Fernandez C, Garcia-Ramos A. Precision of 7 com-
mercially available devices for predicting bench-press 1-repetition 
maximum from the individual load-velocity relationship. Int J 
Sports Physiol Perform. 2019;14:1442–6.

 60. Jiménez-Alonso A, García-Ramos A, Cepero M, Miras-Moreno 
S, Rojas FJ, Pérez-Castilla A. Velocity performance feedback dur-
ing the free-weight bench press testing procedure: an effective 
strategy to increase the reliability and one repetition maximum 
accuracy prediction. J Strength Cond Res. 2020;36:1077–83.

 61. Balsalobre-Fernandez C, Marchante D, Munoz-Lopez M, Jimenez 
SL. Validity and reliability of a novel iPhone app for the measure-
ment of barbell velocity and 1RM on the bench-press exercise. J 
Sports Sci. 2018;36:64–70.

 62. Macarilla CT. The accuracy of predicting one-repetition maxi-
mum from submaximal velocity in the back squat and bench press. 
Florida Atlantic University; 2020.



1708 L. Greig et al.

 63. Callaghan D, Guy J, Stanton R, Scanlan A, Kean C. Validation 
of two mobile apps to predict maximal strength. ISBS Proc Arch. 
2019;37:511.

 64. Garcia-Ramos A, Barboza-Gonzalez P, Ulloa-Diaz D, Rodriguez-
Perea A, Martinez-Garcia D, Guede-Rojas F, et al. Reliability 
and validity of different methods of estimating the one-repetition 
maximum during the free-weight prone bench pull exercise. J 
Sports Sci. 2019;37:2205–12.

 65. Pérez-Castilla A, Suzovic D, Domanovic A, Fernandes JFT, 
García-Ramos A. Validity of different velocity-based methods 
and repetitions-to-failure equations for predicting the 1 repetition 
maximum during 2 upper-body pulling exercises. J Strength Cond 
Res. 2021;35:1800–8.

 66. Gelman A, Hill J, Vehtari A. Regression and other stories. Cam-
bridge: Cambridge University Press; 2020.

 67. Pérez-Castilla A, Piepoli A, Garrido-Blanca G, Delgado-García 
G, Balsalobre-Fernández C, García-Ramos A. Precision of 7 com-
mercially available devices for predicting bench-press 1-repetition 
maximum from the individual load–velocity relationship. Int J 
Sports Physiol Perform. 2019;14:1442–6.

 68. McBurnie AJ, Allen KP, Garry M, Martin M, Jones PA, Comfort 
P, et al. The benefits and limitations of predicting one repetition 
maximum using the load-velocity relationship. Strength Cond J. 
2019;41:28–40.

 69. Hesterberg T. Bootstrap. Wiley Interdiscip Rev. Comput Stat. 
2011;3:497–526.

 70. Van den Noortgate W, López-López JA, Marín-Martínez F, 
Sánchez-Meca J. Three-level meta-analysis of dependent effect 
sizes. Behav Res Methods. 2013;45:576–94.

Authors and Affiliations

Leon Greig1  · Rodrigo R. Aspe1 · Andy Hall1 · Paul Comfort2,3,4 · Kay Cooper1 · Paul A. Swinton1

 * Leon Greig 
 l.greig4@rgu.ac.uk

1 School of Health Sciences, Robert Gordon University, 
Garthdee Road, Aberdeen AB10 7QG, UK

2 Directorate of Psychology and Sport, University of Salford, 
Frederick Road, Salford, Greater Manchester, UK

3 Institute for Sport, Physical Activity and Leisure, Carnegie 
School of Sport, Leeds Beckett University, Leeds, UK

4 Centre for Exercise and Sport Science Research, Edith 
Cowan University, Joondalup, Australia


	coversheet_template
	GREIG 2023 The predictive validity (VOR)

