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Abstract: Accurate state-of-charge (SOC) estimation is essential for fully utilizing the battery performance of 8 

electric vehicles. Considering the demand for algorithms with the advantages of simplicity, fewer calculations, 9 

good stability, and high accuracy in practical applications, this paper proposes a novel error covariance correction-10 

adaptive extended Kalman filter (ECC-AEKF) for accurate and robust SOC estimation. In this paper, the 11 

maximum likelihood function of the probability density function of the error series (conditional on the priori 12 

covariance) is calculated by mathematical derivation to obtain a new priori error covariance, which is used to 13 

obtain a more appropriate Kalman gain. The ECC-AEKF can minimize the estimation error and reduces the effect 14 

of process noise characteristics and inappropriate error covariances on priori estimates. Meanwhile, a piecewise 15 

forgetting factor recursive least square (PFFRLS) is presented for model parameter identification. The PFFRLS 16 

using error feedback for real-time adaptively adjusts the forgetting degree of data based on the principle of integral 17 

separation. Furthermore, a comparative analysis of SOC estimation in PFFRLS-ECC-AEKF and commonly used 18 

methods is presented for validation of the performance of the proposed method under different temperatures and 19 

operating conditions. The results prove that the PFFRLS-ECC-AEKF achieves higher accuracy with less 20 

computation time than other methods. 21 
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1 Introduction 25 

At present, the world is facing a serious situation of severe environmental damage and tightening resource 26 
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constraints [1, 2]. The rise in crude oil prices has urged the development of alternative fuel-driven vehicles [3]. 27 

Therefore, the implementation of Electric Vehicles (EVs) has garnered tremendous attention, and its energy 28 

management has become an important development direction in the automobile industry [4]. As the main energy 29 

source of an EV, power batteries determine the cruising range, dynamic performance and use cost of the EV [5, 30 

6]. Accurate state of charge (SOC) estimation of lithium-ion batteries in electric vehicles has many advantages, 31 

such as efficient vehicle-to-grid methods can be accurately established from SOC-related knowledge, SOC 32 

estimation can accurately estimate the range of the other battery states and system parameters, SOC accurate 33 

estimation can extend battery life and ensure the safety of the battery system, etc. [7]. At present, there have been 34 

some pioneering works on SOC estimation for lithium-ion batteries, which mainly include three main categories: 35 

direct calculation methods, model-based methods and data-driven methods [8]. 36 

In the first category, the more representative methods are the ampere-time integration method [9], the open-37 

circuit voltage method [10] and the ultrasonic transmission method [11]. These methods are widely used in 38 

practice for their simplicity, low computational effort, stability and guaranteed accuracy [12]. For example, Yu et 39 

al. [13] experimentally obtained Open-circuit voltage (OCV) -SOC curves at different temperatures and aging 40 

stages, which were used to investigate the sensitivity of eighteen OCV battery models to ambient temperatures, 41 

aging stages, the amount of data and SOC region. However, these methods ignore battery internal variation and 42 

estimate SOC from a simple relationship between external parameters and SOC. Also, the direct calculation 43 

methods are extremely dependent on accurate OCV values and initial SOC values. 44 

In the second category, the best-known methods involve Kalman Filter (KF) [14], Extended Kalman Filter 45 

(EKF) [15-17], Unscented Kalman Filter (UKF) [18, 19], Fading Kalman Filter (FKF) [20], Cubature Kalman 46 

Filter (CKF) [21, 22], Unscented Particle Filter (PF) [23], H-infinity Observer [24], Sliding Mode Observer (SMO) 47 

[25] and so on. They utilize the battery equivalent model to describe the state-space equations, which has the 48 

advantages of adaptively reducing the influence of noise characteristics, simple calculations, and high accuracy 49 

[26]. Liu et al. [27] proposed an improved CKF using Singular Value Decomposition (SVD) and a Forgetting 50 

Factor Recursive Least Square (FFRLS) with a Recursive Gradient Correction (RGC) strategy for high-precision 51 

SOC estimation. Takyi-Aninakwa et al. [28] propose a Strong Tracking Adaptive Fading-Extended Kalman Filter 52 

(STAF-EKF), which is capable of high accuracy SOC estimation at temperatures as low as -10°C. Lai et al. [29] 53 

combined a discrete Arrhenius Aging Model (DAAM) with a Sequential Extended Kalman filter (SEKF) to 54 

improve the accuracy and reliability of battery capacity estimation. Wei et al. [30] proposed a novel parameter 55 

identification method combining an Instrumental Variable (IV) and the bilinear principle to compensate for noise-56 



 

 

induced biases in the parameter identification of the battery model, and further parameterisation using the 57 

Luenberger Observer (LO). However, the estimation accuracy of those methods directly depends on the accuracy 58 

of the equivalent model and the influence of noise characteristics. 59 

In recent years, the third category of methods has attracted a great deal of interest from many researchers 60 

[31], including Backpropagation Algorithm (BP) [32, 33], Support Vector Machine (SVM) [34], Long Short-Term 61 

Memory (LSTM) [35, 36], Gaussian process regression (GPR) [37], Multilayer Perceptron (MLP) [38], Hybrid 62 

Electrochemical-Thermal-Neural-Network model (ETNN) [39] and many others. These methods do not require 63 

consideration of the complex coupling relations between the estimated states and the influencing factors, and 64 

ignore the effects of model accuracy and noise characteristics [40]. Jiao et al. [41] trained the Regularized Extreme 65 

Learning Machine (RELM) with a Spectral Fletcher-Reeves (SFR) algorithm and used a Beetle Antenna Search 66 

algorithm (BAS-SFR-RELM) to parameterize the model for fast and accurate SOC estimation. Bian et al. [42] 67 

introduced a stacked multilayer and bidirectional recursive structure to the LSTM model to propose a Stacked 68 

Bidirectional Long Short-Term Memory (SBLSTM) model, which can accurately estimate the battery SOC 69 

exclusively using historical information. Lipu et al. [43] proposed an optimal nonlinear autoregressive with 70 

exogenous input (NARX) based on a neural network (NARXNN) and used a Lighting Search Algorithm (LSA) 71 

to find delayed values and hidden layer neurons to achieve accurate and robust SOC estimation. However, these 72 

approaches rely on a large amount of experimental data to train the Neural Network (NN), which is 73 

computationally intensive and requires a high level of equipment and has certain limitations in practical 74 

applications. 75 

In summary, model-based approaches and data-driven approaches have been widely studied by many 76 

researchers for their high accuracy and robustness. However, in practical vehicle applications, considering the 77 

economic cost, calculation and overall efficiency, the look-up table method and KF-based method are most often 78 

used for battery SOC estimation, which are simple and practical, with fewer calculations, good stability and 79 

suitable accuracy [44]. Even so, to facilitate the rapid development of the new energy industry, traditional simple 80 

algorithms do not meet the needs of further practical production applications [45]. It is crucial to strike a balance 81 

between traditional methods and optimal algorithms so that the optimization algorithms are also applicable to 82 

practical applications while taking into account realistic issues. Therefore, this paper chooses to optimize the 83 

model-based methods which have the advantages of low computational effort, good stability and high accuracy. 84 

Considering the importance of model accuracy and noise characteristics to model-based methods. If these 85 

two factors are incorrectly set, the estimation error will be large or even divergent [46]. Among them, the accuracy 86 



 

 

of the equivalent model is closely related to its complexity, and the noise characteristics are related to the model 87 

uncertainty and measurement error [47]. According to [48], the model uncertainty proved to be inevitable. 88 

Measurement deviations are generally caused by external disturbances and sensor deviations. Therefore, the 89 

Kalman gain is closely related to the noise covariance and error covariance. The key is to accurately characterize 90 

the coupling between the noise covariance and error covariance to obtain a suitable Kalman gain to estimate the 91 

accurate battery SOC and reduce the estimation errors. 92 

To obtain high-precision state parameters of lithium-ion batteries. in this paper, a new priori error covariance 93 

is obtained by mathematical derivation to optimize the widely used EKF, and then a novel error covariance 94 

correction-adaptive extended Kalman filtering (ECC-AEKF) is proposed. The ECC-AEKF can minimize the 95 

estimation error without directly considering the effect of process noise characteristics and reduces the impact of 96 

inappropriate error covariances on priori estimation. Specifically, this paper solves the maximum likelihood 97 

function of the probability density function of the error series (conditional on the priori covariance) by 98 

mathematical derivation, to find a new coupling relationship between the priori error covariance and the state 99 

covariance. In addition, the priori error covariance of the ECC-AEKF can be adaptively selected according to the 100 

estimation effect, resulting in a more appropriate Kalman gain for better battery SOC estimation. Meanwhile, 101 

since the selection of different forgetting factors directly affects the effectiveness of parameter identification and 102 

the discrimination of model accuracy. To solve the issue that a fixed forgetting factor will reduce the accuracy, 103 

stability and topicality of the parameter identification. Therefore, a piecewise forgetting factor recursive least 104 

square (PFFRLS) is presented for model parameter identification, which uses error feedback for real-time adaptive 105 

selection of the forgetting factors based on the principle of integral separation. Ultimately, the PFFRLS-ECC-106 

AEKF method is used for accurate and robust SOC estimation. The accuracy, efficiency and robustness of the 107 

proposed method are evaluated under HPPC, BBDST and DST operating conditions at different ambient 108 

temperatures, and a comparative analysis of the proposed method with commonly used SOC estimation methods 109 

is carried out. The results prove that the PFFRLS-ECC-AEKF achieves higher accuracy with less computation 110 

time than other widely used SOC estimation methods under different ambient temperatures and drive cycles. The 111 

proposed method has the advantages of simplicity of use, low computational effort and good stability of the EKF, 112 

as well as the advantages of high accuracy and robustness of the optimization algorithm, and also bringing the 113 

possibility of obtaining more accurate SOC estimates for practical applications. 114 



 

 

2 Battery modeling 115 

2.1 Second-order RC circuit network model 116 

Establishing a battery equivalent circuit model is the premise for the SOC estimation of lithium-ion batteries 117 

[49]. Typical battery circuit models are mainly divided into electrochemical models (EM), equivalent circuit 118 

models (ECM) and NN models [50]. Among them, ECM-based methods have been widely used because of their 119 

moderate computation and good accuracy, which are divided into the integer-order model [51] and the fractional-120 

order model [52]. The complexity, modeling accuracy and difficulty of these two types of models increase in 121 

descending order [53]. This paper considers the process of ohmic voltage drop, polarization and expansion inside 122 

the actual lithium-ion batteries, and chooses to add a capacitor-resistance (RC) loop based on the Thevenin model, 123 

which can better express the static and dynamic characteristics of the batteries, thus improving the accuracy of 124 

battery SOC estimation. This equivalent circuit model applies to most types of batteries and meets the 125 

requirements of the model for accuracy, complexity, and computational complexity. The second-order RC network 126 

model is shown in Figure 1. 127 
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Figure 1. Second-order RC network model  129 

As shown in Figure 1, 𝑅0  is the internal resistance of the lithium-ion battery; 𝑅1  and 𝑅2  are the 130 

electrochemical polarization internal resistance and the concentration polarization internal resistance, respectively; 131 

𝐶1  and 𝐶2  are the electrochemical polarization capacitance and concentration polarization capacitance, 132 

respectively; 𝑅1𝐶1  characterizes the charge change of the electric double layer of the power battery, and the 133 

voltage at both sides is the interface overpotential 𝑈1 ; 𝑅2𝐶2  characterizes the diffusion phenomenon of the 134 

battery, which is equivalent to an RC loop, and the voltage of which is the cross-interface potential 𝑈2; 𝑈𝑂𝐶𝑉 135 

and 𝑈𝐿 are the output voltage and load current of the battery, respectively. 136 

2.2 Model-based state space representation 137 

According to Kirchhoff's circuit law, circuit physical quantities can be described as 138 
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Equation (1) is transformed into Equation (2) by projecting it into the discrete time domain. 139 
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where 𝑇𝑠 is the sampling time of the parameter estimator. The recursive formula for the lithium-ion batteries 140 

SOC is calculated by the ampere-hour integration in the discrete-time domain as follows 141 
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(3)  

Where 𝑆𝑂𝐶𝑘0  is the initial value of the battery SOC estimation; 𝐶  is the battery capacity; 𝜂  is the 142 

Coulombic efficiency during charging and discharging. Combining Equation (2) and Equation (3), the state-space 143 

equation of the ECM can be obtained 144 
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Where 𝑈1,𝑘 and 𝑈2,𝑘 are the voltages flowing through the polarized capacitors 𝐶1 and 𝐶2, respectively; 145 

𝑈𝐿,𝑘 and 𝑈𝑂𝐶𝑉,𝑘 are the battery terminal voltage and open-circuit voltage, respectively; 𝐼𝑘 is the main circuit 146 

current; 𝑤𝑘 and 𝑣𝑘 are the process noise and measurement noise, respectively, which are uncorrelated zero-147 

mean Gaussian white noise. The nth-order polynomial fitting function OCV of SOC is expressed as 148 
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(6)  

where the fitting coefficient 𝑎𝑖 can be obtained from a polynomial fitting of data through MATLAB. 149 

From Equations (4)–(6), the state equation and observation equation of a nonlinear discrete system are 150 

expressed by 151 
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where 𝑥𝑘 and 𝑦𝑘 are the state variables and measurement variables of the system at time 𝑘, respectively; 𝑢𝑘 152 

is the input variable of the system at time 𝑘; 𝐴𝑘, 𝐵𝑘, 𝐶𝑘 and 𝐷𝑘 are the state transition matrix, input matrix, 153 



 

 

output matrix and feedforward matrix, respectively. From Equations (4)-(5) and (7), the state variable 𝑥𝑘 of the 154 

filter algorithm can be defined as 155 
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Through calculation, Equations (9)-(10) are obtained. 156 
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where 𝑈𝑘 = 𝐼𝑘 , 𝑦𝑘 = 𝑈𝐿,𝑘 , 𝑆𝑂�̂�𝑘  is the predicted value of 𝑆𝑂𝐶𝑘 . The fitting OCV and SOC curve is 157 

shown in Figure 2.  158 

 159 
Figure 2. Function fitting curve of open-circuit voltage and SOC 160 

3 SOC estimation methods development 161 

3.1 Forgetting factor recursive least squares method 162 

The model-based approaches are greatly dependent on the accuracy of the ECM, and the variable model 163 

parameters affect SOC estimation. Therefore, it is crucial to use a suitable method to accurately calculate the 164 

model parameters. The frequency domain expression of Equation (1) can be written as 165 
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where 𝜏1 = 𝑅1𝐶1 and 𝜏2 = 𝑅2𝐶2 are the time constants. Then, the transfer function of Equation (12) can be 166 

written as 167 

2

0 1 2 0 1 0 2 1 2 2 1 0 1 2

2

1 2 1 2

( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) 1

OCV LU s U s R s R R R R s R R RY s
G s

I s I s s s

     

   

− + + + + + + +
= = =

+ + +  
(13) 

The bilinear transformation equation 𝑠 =
2

𝑇
⋅

1−𝑧−1

1+𝑧−1 is used to discretize Equation (13), and obtain its discrete 168 

transfer function as 169 
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Then, the difference equation form of Equation (14) is obtained as 170 
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where 𝑎1~𝑎5 are unknown coefficients, from which the parameters of the second-order RC network model can 171 

be derived. The single in- output process described by a generic higher-order autoregressive system is shown 172 

below 173 
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where 𝛿 is zero-mean random noise. Suppose that 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5 are 174 
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Substituting Equation (17) into Equation (14) yields 175 
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where 𝑇 is the sample time. By the above calculation, the parameter of the ECM can be expressed as 176 
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The real-time parameters of the ECM can be obtained by analyzing the discharge terminal voltage of the 177 

lithium-ion batteries, along with the above derivation process and the input experimental data. 178 

3.2 Optimized piecewise forgetting factor strategy 179 

The forgetting factor is mainly utilized to increase the weight of new data, thereby enhancing the adaptability 180 

to non-stationary signals. It characterizes the ability of the adaptive filter to quickly reflect changes in the input 181 

characteristics. According to Equation (20), when the forgetting factor is large, the historical data account for a 182 

large, but it cannot track the changes of system parameters in real-time. When the forgetting factor is small, the 183 

historical data are easily forgotten to a large extent, and the tracking output changes are better, but the stability is 184 

poor. Therefore, the forgetting factor is generally between 0.95 and 0.995 according to previous research [54]. To 185 

sum up, a single forgetting factor cannot precisely implement the model identification process in a system with 186 

time-varying parameters. 187 
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According to the characteristics of different sizes of forgetting factors, it can be regarded as the integration 188 

link in proportional integral differential (PID) regulation. Therefore, a piecewise forgetting factor recursive least-189 

squares (PFFRLS) method based on integral separation is used in this paper, which can segment the forgetting 190 

factors according to the absolute error between the current estimated output and the actual output. When the error 191 

is large, the integral action is canceled to avoid reducing the stability of the system. When the error is small, the 192 

integral action is introduced to eliminate the net difference and improve the control accuracy. Searching for 193 

several error points 𝜗1, 𝜗2, ⋯ 𝜗𝑛  in the range of absolute errors, and when the error range is [𝜗𝑖, 𝜗𝑖+1] , it 194 

corresponds to forgetting factors 𝜆 = 𝜆𝑖, 𝑖 = 1,2, ⋯ , 𝑛, respectively. The error point 𝜗𝑖 is obtained by the error 195 

feedback from the previous round of parameter identification. The number and size of 𝜗𝑖 depend on the actual 196 

estimation effect. Generally, the first error point is taken to be 𝜗1 = 0 and the last error point 𝜗𝑛 should be 197 

slightly smaller than the maximum absolute error. A correction function 𝜆 is given as 198 
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From Equation (21), the forgetting factor is adaptively adjusted by the absolute error between the current 199 

estimated output and the actual output. When the absolute error is large, a smaller forgetting factor should be 200 

selected to improve the tracking speed of the estimated parameters when the parameters are abruptly changed. 201 



 

 

When the absolute error is small, a larger forgetting factor should be selected, so that the parameters have better 202 

steady-state performance. The purpose of the PFFRLS algorithm is to accurately value the forgetting factors in 203 

real-time, to provide the system with better stability and accuracy. The flowchart of the PFFRLS algorithm is 204 

shown in Table 1. 205 

Table 1. The flowchart of the PFFRLS algorithm 206 

Step 1. Initialize estimation parameter and error posterior covariance at step 𝑘 = 0.  

ˆ(0) ( (0))E =  (22) 

ˆ ˆ(0) [( (0) (0))( (0) (0)) ]TP E    = − −  (23) 

Step 2. Update priori estimation parameters and covariance.  

ˆ ˆ( ) ( 1)k k = −  (24) 

( ) ( )P k P k=  
(25) 

Step 3. Update algorithm gain.  

1( 1) ( ) ( )[ ( ) ( ) ( )]TL k P k k k P k k    −+ = +  (26) 

Step 4. Update output prediction and estimation error.  

( ) ( 1) ( )TE k k k = −  (27) 

( ) ( 1) ( 1) ( )Te k y k k k 


= + − +  (28) 

Step 5. Update posteriori estimation parameters and covariance.  

( 1) ( ) ( 1) ( 1)k k L k e k 
 

+ = + + +  (29) 

1( 1) [ ( ) ( ) ( ) ( )]TP k P k L k k P k −+ = −  (30) 

Among them, the piecewise forgetting factor is introduced and calculated as follows.  

1 1 2

2 2 3

1

,

,

,i i i

e

e

e

  

  


  −

  


 
= 

  

 (31) 

3.3 Error covariance correction-adaptive extended Kalman filter  207 

The ordinary EKF algorithm is used to deal with the estimation problem of a nonlinear system that is closely 208 

related to the system noise characteristics. Compared to many improved filtering algorithms and artificial 209 

intelligence algorithms, the EKF is widely used in practical engineering because of its affordability, easy to use, 210 

and acceptable error. The detailed steps of the EKF can be summarized as follows: 211 



 

 

Step 1. Initialize state variable and error covariance matrix at step 𝑘 = 0. 212 

 0 0

0 00 0 0( )( )T

x E x

P E x x x x

 =


 = − −  

 (32) 

where 𝑥0 and 𝑃0 are the estimated initial state variable and error covariance matrix. 213 

Step 2. Update the predicted estimates of the state variables and the error covariance. 214 

1 1 1 1( , )k k k k kx f x u− − − −=  (33) 

1 11 1 1

T

k k kk k k k
P A P A Q− −− − −

= +  (34) 

Step 3. Calculate the Kalman gain. 215 

1

1 1
( )T T

k k k k kk k k k
L P C C P C R −

− −
= +  (35) 

where 𝑄𝑘 and 𝑅𝑘 are the covariances of the process noise 𝜔𝑘 and the measurement noise 𝑣𝑘, respectively. 216 

Step 4. Perform optimal estimation of the state variables and the error covariance. 217 

1 1( , )
k

k k k k k kk kx x L y g x u− − = + −
 

 (36) 

1
( )k kk k k k

P E K C P
−

= −
 

(37) 

However, the EKF still has some limitations. There is a truncation error in the linearization process due to 218 

replacing the infinite Taylor calculation process with a finite one. However, truncation error is an unavoidable 219 

method error inherent in numerical calculation methods. In addition, the filter assumes the system noise has a 220 

fixed white Gaussian noise. However, the statistical characteristics of the battery system noise are unknown, which 221 

will result in a large estimation error in practical application. Furthermore, arbitrary adjustments of the noise 222 

covariance may over- or underestimate the measured values, leading to stable divergence or too noisy filter 223 

behavior, respectively. In the latter and worst conditions, the filter estimate becomes an open-loop prediction 224 

process since the Kalman gain is minimized. Similarly, if the initial value is set unreasonably, divergence occurs. 225 

The noise covariance 𝑄𝑘 and 𝑅𝑘 are usually kept constant to meet the real-time requirements of the BMS, 226 

which greatly affect the filter response. They make the filtering algorithm include a large amount of uncertainty 227 

to cover erroneous initial value, error or noise, and model inaccuracies. With this general analysis at hand, it is 228 

necessary to try to avoid the effect of artificially adjusted noise covariance on the error covariance and to reset a 229 

novel priori error covariance that is unaffected by the noise characteristics to obtain a more appropriate Kalman 230 

gain, so that the SOC estimation results can be optimized. 231 

In this paper, we consider minimizing the error objective function and establishing a conditional probability 232 

density function for the error sequence conditional on the priori error covariance to seek the coupling between 233 



 

 

both. In addition, a new priori error covariance characterized by the state variables is obtained by solving the 234 

maximum likelihood function of this probability density function, and then the ECC-AEKF method is proposed. 235 

The specific steps are shown below. 236 

In this optimal adaptive estimator, the error sequence is the crucial data used to adaptively update the ECM 237 

parameters, which is defined by 238 

1
ˆ( , )k k kk k

e y h x u
−

= −  (38) 

We expand 𝑒𝑘 into the set of error sequences from time 𝑖0 to 𝑘 − 1 as given by 239 

0 0 1 1{ , , , }k i i ke e e + −=    (39) 

where 𝑒𝑖0
, 𝑒𝑖0+1, ⋯ , 𝑒𝑘−1 are independent of each other, 𝑘 is the total length of time and 𝑖 is the length of time 240 

of the error sequence. 241 

If the parameters of the lithium-ion batteries change slowly during the system operation and the filter can be 242 

initialized correctly, and the priori error covariance is convergent. Therefore, the estimation of the priori error 243 

covariance can be corrected in real-time by finding a local optimal but explicit and efficient way. �̂�𝑘|𝑘−1 244 

represent the estimated value of the priori error covariance 𝑃𝑘|𝑘−1 , as well as 𝑝(𝜉𝑘|�̂�𝑘|𝑘−1) represent the 245 

probability density function of the historical error sequence 𝜉𝑘  conditional on the priori covariance �̂�𝑘|𝑘−1 . 246 

𝑝(𝜉𝑘|�̂�𝑘|𝑘−1) can be transformed into the probability density function of the error sequence 𝑒𝑘 conditional on 247 

the priori covariance �̂�𝑘|𝑘−1 as expressed by 248 

0 0

0

1
1 1

1 1

1 1

({ , , , })( )ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

k
i i kk

k ik k k k
i ik k k k

p e e ep
p P p e P

p P p P




−
+ −

− −

=− −

= = =  (40) 

Next, the maximum likelihood function of �̂�𝑘|𝑘−1 can be expressed as 249 

0

1

1 1 1
ˆ ˆ ˆ( ) ln ( ) ln ( )

k

k ik k k k k k
i i

L P p P p e P
−

− − −
=

= =  (41) 

Then, the logarithm of the probability density function can be extended to 250 

1

1 1

[ln(2 ) ln ]
ˆ ˆln ( ) ln ( )

2

i i

n T

e i e i

i ik k i i

I e I e
p e P p e P

 −

− −

+ +
= = −  (42) 

where 𝑛 is the measurement number; 𝐼𝑒𝑖
 is the covariance matrix associated with the error sequence 𝑒𝑘. In 251 

order to make Equation (41) effective as well as simplify its calculation, the evaluation factor of Equation (42) is 252 

taken 253 



 

 

0

1
1(ln )

i i

k
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k e i e i

i i

MAX I e I e
−

−

=

= +  (43) 

Since 𝐼𝑒𝑖
= 𝐼𝑖𝑃𝑘|𝑘−1𝐼𝑖

𝑇 + 𝑅. We now find the maximum likelihood function of the evaluation factor, and 254 

make its derivative value equal to zero, which is expressed as  255 

0

1
1 11 1 1

1 1

( ) [ ( ) ] 0
ˆ ˆi i i

k
i i i iT T T

K e i i i e i i e i

i i k k k k

P P
L MAX tr I I I e I I I I e

P P

−
− −− − −

= − −

 
= − =  (44) 

With the gradual iteration of the EKF algorithm, the estimation error converges to zero. During the same 256 

time, the priori error covariance 𝑃𝑘|𝑘−1 converges rapidly, that is, a constant approximation. Meanwhile, 
𝜕𝑃𝑖|𝑖−1

�̂�𝑘|𝑘−1
 257 

is approximately equal to the identity matrix 𝐼. Equation (44) can be transformed into 258 

0

1
1 1 1( ) [ ( ) ] 0

i i i

k
T T T

K e i i i e i i e i

i i

L MAX tr I I I e I I I I e
−

− − −

=

= − =  (45) 

For Equation (45) to hold, Equation (46) must be satisfied. 259 

1 1 1( ) 0
i i i

T T T

e i i i e i i e itr I I I e I I I I e− − −− =  (46) 

From Equation (28) and Equation (38), it can be known that 𝐼𝑒𝑖
  and 𝑒𝑖  are 1 1   matrix. Thereupon, 260 

Equation (46) can be transformed into 261 

1 1 1

1 1
( ) 0

i i i

T T

i e e i i e ii i i i
P I I I e e I I P− − −

− −
− =  (47) 

Since (𝐼𝑒𝑖
−1)𝑇 = 𝐼𝑒𝑖

−1 , and 𝑃𝑖|𝑖−1  is a symmetric positive definite matrix, substituting Equation (35) into 262 

Equation (47) yields 263 

1
( ) 0T T

i i i i ii i
L I P e e L

−
− =  (48) 

Let increment 𝛥𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖|𝑖−1 = 𝐿𝑖𝑒𝑖 , and Equation (37) is 𝑃𝑖|𝑖 = (𝐼 − 𝐿𝑖𝐶𝑖)𝑃𝑖|𝑖−1  at time 𝑖 . 264 

Substituting them into Equation (48) yields 265 

1
ˆ ˆT

i ii i i i
P P x x

−
= +    (49) 

Then Equation (49) is transformed into the form of accumulating from time 𝑖0 to 𝑘 − 1, as shown by 266 

0 0

1 1

1
ˆ ˆ( )

k k
T

i ii i i i
i i i i

P P x x
− −

−
= =

= +     (50) 

Assuming the approximate value 𝑃𝑘|𝑘−1 = 𝑃𝑖|𝑖−1, (𝑖 < 𝑘), then the estimated covariance 𝑃𝑘|𝑘−1 can be 267 

approximated as the average value of 𝑃𝑖|𝑖−1 from time 𝑖0 to 𝑘 − 1, as shown by 268 



 

 

( ) ( )
0 0

1 1
1 1

0 01 1
ˆ ˆ ˆ( )

k k
T

i ik k i i i i
i i i i

P k i P k i P x x
− −

− −

− −
= =

= − = − +     (51) 

Similarly, the estimated covariance 𝑃𝑘−1|𝑘−2 is calculated by 269 

( ) ( )
0 0

2 2
1 1

0 01 2 1
ˆ ˆ ˆ1 1 ( )

k k
T

i ik k i i i i
i i i i

P k i P k i P x x
− −

− −

− − −
= =

= − − = − − +     (52) 

Furthermore, the recursive calculation of 𝑃𝑘|𝑘−1 is calculated by 270 

( )
1

0 1 1 01 1 1 1 2
ˆ ˆ ˆˆ ˆ[ ( 1 ) ]T

k kk k k k k k
P k i P x x k i P

−

− −− − − − −
= − +   + − −  (53) 

Substituting Equation (37) into Equation (53), the recursive formula for estimating the priori error covariance 271 

�̂�𝑘|𝑘−1 can be obtained. 272 

1 1 1 1 1 2

1 1 2

0

ˆˆ ˆ
ˆ ˆ

T

k k k k k k

k k k k

x x L C P
P P

k i

− − − − − −

− − −

  −
= +

−
 (54) 

Combining Equation (34) with Equation (54), and taking the filter convergence time 𝑘0 as the segment 273 

point, we obtain the final priori error covariance recursion formula. 274 

1 1 1 01 1 1

1

0 1 1 1 1 01 1 2 1 2

ˆ ,

ˆ ˆ ˆˆ ˆ( ) ( ),

T

k k kk k k k

T

k k k kk k k k k k

P A P A Q k k

P P k i x x L C P k k

− − −− − −

−

− − − −− − − − −

 = + 


= + −   − 

 (55) 

The complete flowchart of the ECC-AEKF algorithm includes Equations (32), (33), (35)–(37), and (55), 275 

which are shown in Table 2. 276 

Table 2. The flowchart of the ECC-AEKF algorithm 277 

Step 1. Initialize state variable 𝑥𝑘 and error covariance matrix 𝑃.  

 0 0

0 00 0 0( )( )T

x E x

P E x x x x

 =


 = − −  

  

Step 2. Update the predicted estimates of the state variables.  

1 1 1 1( , )k k k k kx f x u− − − −=   

Step 3. Update the predicted estimates of the state covariance at the filter convergence time 𝑘0.  

1 1 01 1 1

1

0 1 1 1 1 01 1 2 1 2

ˆ ,

ˆ ˆ ˆˆ ˆ( ) ( ),

T

k k kk k k k

T

k k k kk k k k k k

P A P A Q k k

P P k i x x L C P k k

− −− − −

−

− − − −− − − − −

 = + 


= + −   − 

  

Step 4. Calculate the Kalman gain.  

1

1 1
( )T T

k k k k kk k k k
L P C C P C R −

− −
= +   

Step 5. Perform optimal estimation of state variables.  



 

 

1 1( , )
k

k k k k k kk kx x L y g x u− − = + −
 

  

Step 6. Perform optimal estimation of the error covariance.  

1
( )k kk k k k

P E K C P
−

= −   

The ECC-AEKF algorithm obtains the functional relationship between the feedback information 𝛥𝑥𝑖 and 278 

the priori error covariance 𝑃𝑘|𝑘−1 through the maximum likelihood method. The new priori error covariance can 279 

not only avoids the effect of noisy characteristics but also reduces the effect of inappropriate error covariance on 280 

the priori estimation. This covariance uses the state information from the previous moment to correct the current 281 

value to obtain a more appropriate Kalman gain to conduct accurate and robust SOC estimation. In addition, the 282 

statistical characteristics of the process noise can be indirectly estimated to reduce the effect of artificially adjusted 283 

noise covariance on the a priori error covariance. Furthermore, the new priori error covariance constructed is 284 

predicated on the minimization of the error objective function and the convergence of the filter, and hold at time 285 

𝑘0 when the filter first converges to zero, which is used to correct the Kalman gain after time 𝑘0, so that the 286 

estimate values follow the true values as closely as possible, as well as the accuracy and robustness of the battery 287 

SOC estimate is improved. 288 

3.4 Framework of SOC estimation approach 289 

Figure 3 illustrates the flowchart of battery SOC estimation using PFFRLS-ECC-AEKF method. The left of 290 

Figure 3 shows the process of ECM parameter estimation using PFFRLS method, and the right of that one shows 291 

the iterative calculation process of battery SOC estimation using the ECC-AEKF algorithm. 292 
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Figure 3. The flowchart of the SOC estimation with the proposed method 294 

The ECC-AEKF algorithm has some limitations. Its derivation is suboptimal on the premise that the priori 295 

error covariances of the battery SOC estimation are approximate in the steady state. In addition, the experiment 296 

did not take into account the effects of battery aging. However, this experiment shall be used as a simulated 297 

attempt to study the reliability of battery SOC estimation under conditions where accurate noise parameters are 298 

not available and applications, so as to further avoid the failure of Kalman gain due to over- or underestimation 299 

of noise covariance. In practice, it is difficult to obtain the accurate noise parameters of the state equation and the 300 

observation equation for the battery system, so the optimal estimation cannot be achieved. The proposed method 301 

shall be seen as an alternative to the limitation mentioned above. 302 

4 Experiments and discussion 303 

4.1 Description of experiment data 304 

A 3.7 V/70 Ah ternary lithium-ion battery was selected as the test object, with the specification shown in 305 

Table 3. The Neware battery test equipment is the CT-4016-5V100A-NTFA. The constant temperature box is a 306 

DGBELL BTT-331C. The experimental platform of the lithium-ion battery test equipment is shown in Figure 4. 307 

Table 3. The specification of the 3.7 V/70 Ah ternary lithium-ion battery 308 

Parameter Value Parameter Value 



 

 

Cell nominal capacity (Ah) 70 Peak discharge current 3 C 

Cell nominal voltage (V) 3.7 Maximum load current 2 C 

Charge cut-off voltage (V) 4.5±0.05 Internal resistance (mΩ) 0.5–1 

Discharge cut-off voltage (V) 2.75±0.05  Working temperature (°C) 20⁓60 

Standard charge current 1 C Dimension: l×w×h (mm) 148×27×93  

Computer

Charging and Discharging power supply

Storage Battery

Date Acquistion

Control signal

Current 

Voltage

Constant Temperature Box

 309 

Figure 4. The experimental platform of lithium-ion battery test equipment  310 

4.2 Battery model verification 311 

4.2.1 HPPC operating condition 312 

The hybrid pulse power characterization (HPPC) experiment records the battery SOC value, the open-circuit 313 

voltage and the main circuit current of the analog circuit under the current state by performing regular charge and 314 

discharge experiments on the analog circuit. The HPPC experiment was conducted as follows. Firstly, the lithium-315 

ion battery was discharged for 10 s, then charged for 10 s after standing for 40 s, and finally left for 40 s. The 316 

whole process used 1 C to perform intermittent constant current discharge on the lithium-ion battery. 317 

In this experiment, the forgetting factor 𝜆 of the FFRLS algorithm was chosen to be 0.99, 0.98, and 0.97 318 

respectively. In addition, the current is used as input to the battery model to obtain the terminal voltage of its 319 

output. Figure 5 shows the experimental results of the FFRLS algorithm (𝜆 = 0.99) and the PFFRLS algorithm 320 

under the HPPC operating condition. 321 



 

 

  

(a) Terminal voltage estimation results (b) Terminal voltage estimation errors 

Figure 5. Identification results 

The errors between the estimated terminal voltage and the actual terminal voltage of the ECM were compared, 322 

and the accuracy of the identification algorithm was analyzed, with the MaxAE, MAE and RMSE metrics shown 323 

in Table 4. 324 

Table 4. Error evaluation of identification results 325 

Identification methods MaxAE (%) MAE (%) RMSE (%) 

Single forgetting factor ( 0.99 = ) 7.023 1.642 1.920 

Single forgetting factor ( 0.98 = ) 11.034 1.878 2.130 

Single forgetting factor ( 0.97 = ) 14.813 2.210 2.320 

PFFRLS 6.410 1.430 1.878 

Figure 5 and Table 4 indicate that the discriminant accuracy of the PFFRLS algorithm is higher than that of 326 

the FFRLS algorithm with a single forgetting factor, and the MaxAE, MAE and RMSE under the HPPC operating 327 

condition are 6.410%, 1.430% and 1.878%, respectively. The recognition error for every single forgetting factor 328 

differs little. By contrast, the single forgetting factor requires the artificial adjustment of parameters, which is 329 

time-consuming, labor-intensive, and difficult to accurately control the value. Therefore, in a system with time-330 

varying parameters, a single forgetting factor remains a challenging issue for the accurate implementation of 331 

system identification. The PFFRLS algorithm can adaptively adjust the value of the forgetting factor, according 332 

to the residual of the terminal voltage, which has a better recognition effect. 333 

4.2.2 BBDST operating condition 334 

The Beijing bus dynamic stress test (BBDST) experiment is conducted using the statistical method of power 335 

battery dynamic test conditions based on actual vehicle operation data. A complete BBDST test includes five 336 

0 5000 10000 15000 20000 25000 30000
3.2

3.4

3.6

3.8

4.0

4.2

1000 2000 3000 4000
3.9

4.0

4.1

4.2

4.3V
o

lt
a

g
e 

(V
)

t (s)

 Measured value

 FFRLS value

 PFFRLS value

0 5000 10000 15000 20000 25000 30000
-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

V
o
lt

a
g
e 

E
rr

o
r 

(V
)

t (s)

 FFRLS

 PFFRLS



 

 

working steps of start, acceleration, coasting, braking, and rapid acceleration, which takes 300 s. The battery was 337 

tested under BBDST operating condition for 140 times. 338 

Compared with the HPPC operating condition, the BBDST operating condition was conducted under a 339 

relatively complicated operating condition. We still select the single forgetting factor 𝜆 as 0.99, 0.98, and 0.97, 340 

respectively. Figure 6 dedicates the experimental results of the FFRLS algorithm (𝜆 = 0.99) and the PFFRLS 341 

algorithm under BBDST operating condition. 342 

   

(a) Terminal voltage estimation results (b) Terminal voltage estimation errors 

Figure 6. Identification results 

The accuracy of the ECM is analyzed by comparing the error between the estimated terminal voltage output 343 

and the actual value. Maximum Absolute Error (MaxAE), Mean Absolute Error (MAE) and Root Mean Square 344 

Error (RMSE) metrics are shown in Table 5. 345 

Table 5. Error discussion of identification results 346 

Identification method MaxAE (%) MAE (%) RMSE (%) 

Single forgetting factor ( 0.99 = ) 4.874 1.450 1.291 

Single forgetting factor ( 0.98 = ) 8.435 1.648 2.130 

Single forgetting factor ( 0.97 = ) 17.175 2.210 6.501 

PFFRLS 1.756 0.610 1.210 

From Figure 6 and Table 5, the accuracy of the PFFRLS algorithm is better than the FFRLS algorithm with 347 

a single forgetting factor under the BBDST operating condition. The MaxAE, MAE and RMSE of the PFFRLS 348 

algorithm are 1.756%, 0.610% and 1.210%, respectively, with the smallest error. Moreover, the error of the single 349 

forgetting factor increases as the forgetting factor decreases. The identification process of each parameter for the 350 

ECM based on the PFFRLS algorithm is shown in Figure 7. 351 
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(a) 𝑅0 change curve 

  
(b) 𝑅1 change curve (c) 𝐶1 change curve 

  
(d) 𝑅2 change curve (e) 𝐶2 change curve 

Figure 7. The identification process of each parameter 

Figure 7 indicates that the PFFRLS algorithm can quickly follow the real-time changes of model parameters 352 

and effectively achieve accurate model identification under the BBDST operating condition. The experiment 353 

shows that the established ECM has high accuracy and can better reflect the output characteristics of lithium-ion 354 

batteries. 355 

0 5000 10000 15000 20000 25000 30000
0.0

5.0x10-4

1.0x10-3

1.5x10-3

2.0x10-3

2.5x10-3

R
0

(W
)

t(s)

0 5000 10000 15000 20000 25000 30000
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

R
1

(W
)

t(s)
0 5000 10000 15000 20000 25000 30000

0.0

2.0x103

4.0x103

6.0x103

8.0x103

1.0x104

1.2x104

1.4x104

C
1

(F
)

t(s)

0 5000 10000 15000 20000 25000 30000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

R
2
(W

)

t(s)
0 5000 10000 15000 20000 25000 30000

0

20000

40000

60000

80000

C
2

(F
)

t(s)



 

 

4.3 Battery SOC estimation results 356 

4.3.1 SOC estimation under HPPC operating condition 357 

This subsection validates the effectiveness of the proposed algorithm for the battery SOC estimation under 358 

HPPC operating condition at 15℃, 25℃ and 35℃, respectively. Among them, the initial value of SOC was set to 359 

the correct value (100%). Comparison is made among FFRLS-AEKF (𝜆 = 0.98 ) algorithm, PFFRLS-AEKF 360 

algorithm, FFRLS-ECC-AEKF (𝜆 = 0.98) algorithm and PFFRLS-ECC-AEKF algorithm. The SOC estimation 361 

results are shown in Figure 8. 362 

  
(a) SOC estimated change curves under HPPC at 15℃ (b) SOC estimation errors under HPPC at 15℃ 

  

(c) SOC estimated change curves under HPPC at 25℃ (d) SOC estimation errors under HPPC at 25℃ 
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(e) SOC estimated change curves under HPPC at 35℃ (f) SOC estimation errors under HPPC at 35℃ 

Figure 8. SOC estimation results under HPPC operating condition 

To assess the performance of the SOC estimation methods more intuitively, the four algorithms are evaluated 363 

using MaxAE, MAE, RMSE and time cost (TC). The error properties corresponding to the four methods are 364 

detailed in Table 6. 365 

Table 6. Performance evaluation of the SOC estimation methods  366 

Estimation method Temperature (℃) MaxAE (%) MAE (%) RMSE (%) TC (s) 

FFRLS-AEKF (λ =0.98) 

15 2.25 0.85 1.00 2.1687 

25 1.29 0.49 0.55 2.1108 

35 1.81 0.56 0.72 2.3202 

PFFRLS-AEKF 

15 1.86 0.62 0.73 2.0018 

25 1.20 0.43 0.49 1.9773 

35 1.82 0.52 0.65 2.1288 

FFRLS-ECC-AEKF (λ =0.98) 

15 0.60 0.27 0.29 1.9692 

25 0.84 0.24 0.28 1.8106 

35 0.52 0.41 0.43 1.5233 

PFFRLS-ECC-AEKF 

15 0.43 0.21 0.23 1.5167 

25 0.17 0.18 0.11 1.8941 

35 0.20 0.21 0.15 1.7552 

From Figure 8, under the HPPC operating condition at 15℃, 25℃ and 35℃, respectively, the proposed 367 

algorithm not only converges to approximately 0 at the fastest speed but also has a good following degree of the 368 

estimated curve. The SOC estimation curve is almost coincident with the true SOC curve and has good stability. 369 

The AEKF algorithm performs noise adaptation based on the EKF algorithm, which has large randomness and 370 
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instability for the battery SOC estimation du e to the influence of noise characteristics. The ECC-AEKF algorithm 371 

re-adjusts the priori error covariance, which both avoids the effect of noisy characteristics and reduces the effect 372 

of inappropriate error covariance on the priori estimation, and uses the state information from the previous 373 

moment to correct the current value for a more appropriate Kalman gain, so as to conduct accurate and robust 374 

SOC estimation. In addition, compared to the FFRLS method, the PFFRLS method is able to obtain more accurate 375 

ECM parameters to improve the accuracy and stability of the battery SOC estimation. Because of its ability that 376 

adaptively adjusts the forgetting degree of historical data. Furthermore, as the temperature decreases/increases, 377 

the electrochemical reactions, capacity and discharge voltage inside the battery change, which will affect the 378 

accuracy and robustness of the SOC estimation. From Figure 8, the SOC estimation errors of all four algorithms 379 

increase in varying degrees at 15°C and 35°C. However, the proposed algorithm still ensures better estimation 380 

accuracy and stability compared to the other comparison algorithms. 381 

From Table 6, The MaxAE, MAE and RMSE values of the proposed algorithm are 0.43%, 0.21% and 0.23% 382 

at 15℃, 0.17%, 0.18% and 0.11% at 15℃, 0.20%, 0.21% and 0.15% at 35℃, respectively, which are the lowest 383 

among the four algorithms. From the TC values, the proposed algorithm increases the accuracy and stability with 384 

little increase in the computational effort of the algorithm, which has a lower TC value compared to the AEKF 385 

algorithm with the addition of the Sage-Husa adaptive filter. 386 

4.3.2 SOC estimation under BBDST operating condition 387 

This subsection validates the effectiveness of the proposed algorithm for the battery SOC estimation under 388 

BBDST operating condition at 15℃, 25℃ and 35℃, respectively. The BBDST operating condition is little more 389 

complex than the HPPC operating condition. Therefore, it can verify the feasibility of the proposed algorithm in 390 

complex conditions. The initial value of SOC was set to the correct value (100%). The algorithms used for 391 

comparison are the same as those in section 4.3.1. The SOC estimation results of the lithium-ion battery are shown 392 

in Figure 9. 393 
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(a) SOC estimated change curves under BBDST at 15℃ (b) SOC estimation errors under BBDST at 15℃ 

  
(c) SOC estimated change curves under BBDST at 25℃ (d) SOC estimation errors under BBDST at 25℃ 

  

(e) SOC estimated change curves under BBDST at 35℃ (f) SOC estimation errors under BBDST at 35℃ 

Figure 9. SOC estimation results under BBDST operating condition 

In BBDST operating condition at 15℃, 25℃ and 35℃, the error properties corresponding to the four 394 

methods are presented in Table 7. 395 

Table 7. SOC estimation error properties  396 

Estimation method Temperature (℃) MaxAE (%) MAE (%) RMSE (%) TC (s) 

FFRLS-AEKF (λ =0.98) 

15 1.35 0.41 0.50 1.1688 

25 1.47 0.47 0.62 1.4983 

35 1.96 0.91 1.04 1.2265 

PFFRLS-AEKF 

15 1.00 0.40 0.47 1.1776 

25 1.17 0.36 0.44 1.4831 

35 1.41 0.55 0.64 1.6166 

FFRLS-ECC-AEKF (λ =0.98) 

15 0.65 0.39 0.42 0.8480 

25 0.33 0.18 0.2 0.8136 

35 0.71 0.50 0.53 0.9278 
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PFFRLS-ECC-AEKF 

15 0.45 0.27 0.30 0.8475 

25 0.20 0.11 0.12 0.8721 

35 0.24 0.15 0.16 0.9236 

From Figure 9, the PFFRLS-ECC-AEKF method still has good estimation results under BBDST operating 397 

conditions, which is almost close to the true SOC curve and has better accuracy and stability. Although the 398 

estimation errors of the four methods gradually increase with time, the proposed method still converges to a certain 399 

value that is close to zero and has better estimation results compared to the other comparison methods. In addition, 400 

due to the effect of lower or higher temperatures on the battery activity at 15°C and 35°C, resulting in the accuracy 401 

and stability of the battery SOC estimation were slightly reduced. Although the estimation results of the four 402 

methods were affected to varying degrees, the overall results remained positive, especially the PFFRLS-ECC-403 

AEKF method performed the best among the four estimation methods. From Table 7, the MaxAE, MAE and 404 

RMSE of the PFFRLS-ECC-AEKF method are all less than 0.45%, 0.27% and 0.30%, respectively. The proposed 405 

method has not only the lowest error properties of the four battery SOC estimation methods but also the lowest 406 

TC value, which combines both high accuracy and low computational effort. 407 

4.3.3 SOC estimation under DST operating condition 408 

This subsection validates the effectiveness of the proposed algorithm for estimating the battery SOC under 409 

dynamic stress test (DST) operating condition at 15℃, 25℃ and 35℃, respectively. The DST operating condition 410 

is a simplified dynamic driving test profile according to the Federal Urban Driving Schedule (FUDS) operating 411 

condition, which is widely used in the driving cycle testing of batteries, vehicle performance evaluation, control 412 

strategies, etc. The DST operating condition test for the lithium-ion battery in this research has 84 cycles, and the 413 

battery SOC varies from 1 to 0.1. 414 

The initial value of SOC was set to the correct value (100%). The algorithms used for comparison are the 415 

same as those in section 4.3.1. The SOC estimation results of the lithium-ion batteries are shown in Figure 10. 416 
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(a) SOC estimated change curves under DST at 15℃ (b) SOC estimation errors under DST at 15℃ 

  
(c) SOC estimated change curves under DST at 25℃ (d) SOC estimation errors under DST at 25℃ 

  

(e) SOC estimated change curves under DST at 35℃ (f) SOC estimation errors under DST at 35℃ 

Figure 10. SOC estimation results under DST operating condition 

Under DST operating condition at 15℃, 25℃ and 35℃, the error properties corresponding to the four 417 

algorithms are shown in Table 8. 418 

Table 8. Performance evaluation of the SOC estimation methods  419 

Estimation method Temperature (℃) MaxAE (%) MAE (%) RMSE (%) TC (s) 

FFRLS-AEKF (λ =0.98) 

15 1.56 0.78 0.82 0.9834 

25 1.32 0.63 0.74 1.1448 

35 2.14 0.86 1.02 1.3156 

PFFRLS-AEKF 

15 1.39 0.57 0.67 2.0021 

25 1.23 0.54 0.65 1.2969 

35 1.81 0.85 0.98 1.4514 

FFRLS-ECC-AEKF (λ =0.98) 

15 0.7 0.57 0.58 0.9975 

25 1.12 0.25 0.35 0.804 

35 0.10 0.81 0.63 0.9510 
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PFFRLS-ECC-AEKF 

15 0.52 0.37 0.38 0.8344 

25 0.97 0.20 0.310 0.8781 

35 0.76 0.61 0.63 0.8205 

From Figure 10, the four battery SOC estimation methods have the best estimation results at 25°C compared 420 

to 15°C and 35°C. Temperature affects the battery SOC estimation to some extent. Therefore, a good SOC 421 

estimation method should be able to adapt to different ambient temperatures and have good accuracy and stability. 422 

At ambient temperature of 25°C, the estimation error of the PFFRLS-ECC-AEKF method gradually decreases 423 

with time, and the error curve converges quickly to zero. The estimated results are better than other comparison 424 

methods. Although the SOC estimation errors of the four methods gradually increase with time at 15°C and 35°C, 425 

the overall effects remain positive. The proposed method performs well among the four SOC estimation methods, 426 

which is gradually adapting to changes in ambient temperature and following the true SOC value as soon as 427 

possible, with better accuracy and stability. 428 

From Table 8, the error properties of four SOC estimation methods increase to varying degrees compared to 429 

the HPPC operating condition and the BBDST operating condition due to the increase in the complexity of the 430 

conditions and the number of cycling steps. However, the MaxAE, MAE and RMSE of the PFFRLS-ECC-AEKF 431 

method all are less than 0.97%, 0.61% and 0.63% at different temperature, respectively, and have a low TC value. 432 

4.3.4 Comparison with other existing methods  433 

In this subsection, for examining the superiority of the PFFRLS-ECC-AEKF algorithm, the proposed 434 

algorithm is compared with the PFFRLS-DEKF algorithm [55], the PFFRLS-AUKF algorithm [56], the PFFRLS-435 

CKF algorithm [57] and the PFFRLS-PF algorithm [58] under HPPC operating condition at 15℃, 25℃ and 35℃, 436 

respectively, with the initial value of SOC being the correct value (100%). The SOC estimation results of the 437 

lithium-ion battery are shown in Figure 11. 438 

  
(a) SOC estimated change curves under HPPC at 15℃ (b) SOC estimation errors under HPPC at 15℃ 
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(c) SOC estimated change curves under HPPC at 25℃ (d) SOC estimation errors under HPPC at 25℃ 

  

(e) SOC estimated change curves under HPPC at 35℃ (f) SOC estimation errors under HPPC at 35℃ 

Figure 11. Comparison results of SOC with different filtering algorithms 

Under HPPC operating condition at 15℃, 25℃ and 35℃, the error properties corresponding to the five 439 

methods are listed in Table 9. 440 

Table 9. Performance evaluation of the SOC estimation methods  441 

Estimation method Temperature (℃) MaxAE (%) MAE (%) RMSE (%) TC (s) 

PFFRLS-DEKF 

15 1.12 0.25 0.33 3.1243 

25 1.13 0.36 0.46 2.9972 

35 1.18 0.62 0.69 3.0233 

PFFRLS-AUKF 

15 3.74 0.88 1.22 8.7395 

25 2.78 0.80 1.12 8.1773 

35 2.83 0.98 1.19 7.9834 

FFRLS-CKF 

15 1.25 0.4 0.47 2.4142 

25 1.14 0.36 0.46 2.8154 

35 1.23 0.39 0.48 2.3608 
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PFFRLS-PF 

15 1.02 0.51 0.57 9.1755 

25 0.88 0.41 0.48 8.2502 

35 1.50 0.95 1.02 8.8657 

PFFRLS-ECC-AEKF 

15 0.43 0.21 0.23 1.5167 

25 0.17 0.18 0.11 1.8941 

35 0.20 0.21 0.15 1.7552 

From Figure 11, the five battery SOC estimation methods have the best estimation results at 25°C compared 442 

to 15°C and 35°C. Besides, the PFFRLS-AUKF further biasing the SOC estimation results due to the random 443 

selection of the sigma that leads to a bias in the mean and covariance of the output near the discontinuity. The 444 

PFFRLS-PF is a little better than PFFRLS-AUKF in terms of SOC estimation, but the importance sampling of PF 445 

leads to a huge amount of computation. Sacrificing computational power for only a small improvement in accuracy, 446 

it is clear that PFFRLS-PF is not suitable for practical applications. The PFFRLS-DEKF and PFFRLS-CKF have 447 

better estimation accuracy and stability than the above two methods. However, the PFFRLS-ECC-AEKF has the 448 

best SOC estimation effect, with an estimation curve that almost coincides with the true SOC curve and an error 449 

curve that converges to approximately zero as soon as possible. In addition, the SOC estimation effect of each 450 

method is affected in varying degrees as the temperature decreases or increases. Of these, the PFFRLS-AUKF 451 

and the PFFRLS-PF are most affected by temperature change, and the PFFRLS-DEKF and the PFFRLS-CKF are 452 

only second to the two above. However, the accuracy and stability of the proposed algorithm are less affected by 453 

temperature change. The estimated values of the proposed method can still track the change of the true SOC value 454 

as the temperature increases or decreases, which can provide better temperature adaptation and estimation effects 455 

compared to other methods. 456 

From Table 9, the PFFRLS-AUKF and the PFFRLS-PF have the highest error properties, while the PFFRLS-457 

DEKF and the PFFRLS-CKF have more optimistic error properties and better estimation results than the two 458 

above. It is noteworthy that the proposed algorithm obtains the best estimates at the most optimistic TC value, 459 

with MaxAE, MAE and RMSE values all less than 0.43%, 0.21% and 0.23% at three temperatures, respectively. 460 

5 Conclusion 461 

Considering realistic issues such as economic cost, computational cost and overall effectiveness, It is crucial 462 

to balance the traditional algorithms and optimal algorithms so that the optimal algorithms are also applicable to 463 

practical vehicle applications. In this paper, the widely used EKF is optimized and a new priori error covariance 464 

is obtained by mathematical derivation, and then a novel ECC-AEKF is proposed. The ECC-AEKF can not only 465 



 

 

minimizes the estimation error and reduces the effect of process noise characteristics and inappropriate error 466 

covariances on priori estimation, but also adaptively select the priori error covariance according to the estimation 467 

effect. Thus, a more suitable Kalman gain was obtained for better battery SOC estimation. Meanwhile, considering 468 

that a fixed forgetting factor will lead to reduce the accuracy, stability and topicality of the parameter identification. 469 

A PFFRLS method is presented for model parameter identification to adaptively adjust the forgetting level of 470 

historical data, which uses error feedback for real-time adaptive selection of the forgetting factor based on the 471 

principle of integral separation. Ultimately, the PFFRLS-ECC-AEKF is used for accurate and robust SOC 472 

estimation. The accuracy, efficiency and robustness of the proposed method are evaluated using HPPC, BBDST 473 

and DST operating conditions at different ambient temperatures, and a comparative analysis of the proposed 474 

method with commonly used SOC estimation methods is carried out. The results prove that the PFFRLS-ECC-475 

AEKF achieves higher accuracy with less computation time than other commonly used SOC methods under 476 

different ambient temperatures and operating conditions. The MaxAE, MAE and RMSE are all less than 0.97%, 477 

0.032% and 0.33%, respectively. Under DST operating conditions with an initial error of 20%, the proposed 478 

algorithm still tracks and converges quickly with an RMSE of less than 1.76%. The PFFRLS-ECC-AEKF has the 479 

advantages of simplicity of use, low computational effort and good stability of the EKF, as well as the advantages 480 

of high accuracy and robustness of the optimization method. Therefore, the proposed method can bring the 481 

possibility of obtaining more accurate SOC estimates for practical applications. 482 
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