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ABSTRACT

Keywords:
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As a specially designed tool and technique for the detection of image steganography, image steganalysis conceals information under the carriers for
covert communications. Being developed on the BOSSbase dataset and released a decade ago, most of the Convolutional Neural Network (CNN)
architectures for spatial image steganalysis fail to achieve satisfactory performance on new challenging datasets, i.e. ALASKA#2, which was released
recently and is more complex yet consistent with the real scenarios. In this paper, we propose an enhanced residual network (ERANet) with self-
attention ability, which utilizes a more complex residual method and a global self-attention technique, to alleviate the problem. Compared to the
residual network that was widely used in the state-of-the-art, the enhanced residual network mathematically employed a more sophisticated way to
extract more effective features in the images and hence it is suitable for more complex situations in the new dataset. Our proposed Enhanced Low-
Level Feature Representation Module can be easily mounted on other CNNs in selecting the most representative features. Although it comes with a
slightly extra computational cost, comprehensive experiments on the BOSSbase and ALASKA#2 datasets at various sizes have demonstrated the
effectiveness of the proposed methodology. In short, ERANet provides an improvement of about 3.77% on average, compared to a few state-of-the-art
CNNs.

1. Introduction

Steganography is a state-of-the-art technique of hiding secure messages inside multimedia files for encrypted communications, 
which include images and audio [1–4]. In this paper, image steganalysis techniques with Convolutional Neural Networks (CNN) are 
investigated. Although CNNs are usually computationally expensive, they are currently the most effective way to detect image 
steganography and have the potential to significantly advance image steganalysis [5].

In 2014, a convolutional auto-encoder was first introduced to image steganalysis [6], in which only one steganographic 
algorithm, the Highly Undetectable steGo (HUGO) [7], was investigated. 

* Corresponding author at: National Subsea Center, Robert Gordon University, Aberdeen, AB21 0BH, UK.
E-mail address: jinchang.ren@ieee.org (J. Ren).

However, the CNN has demonstrated the potential in image steganalysis by including a high-pass kernel from the Spatial Rich 
Model (SRM) [8]. In [9], GNCNN was proposed, which shows better performance than the hand-crafted feature extractor, the Subtractive 
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Pixel Adjacency Matrix (SPAM) method [10] in  three different pay
deeper, in 2016, Xu et al. proposed their classic Xu-Net, the perform
pass, and Low-pass” steganography (HILL) [11] and the Spatial-U
0.4 bpp [13].

Since training a CNN in image steganalysis is usually time-c
image steganalysis, which showed that the parameters in the pr
low-payload stego images. In most cases, ensemble learning cou
also investigated this technique in image steganalysis in [15], an
CNNs, rather than output probabilities, could help to improve th

Previous methods only utilized a single high-pass filter in the
As a result, researchers tried to extract more different features by ut
Liner Unit (TLU)-CNN [16], which outperformed the best st
extractor, maxSRM and an ensemble classifier [17]. In contrast to
used to extract different kinds of stego noise.
1

s, i.e. 0.3 bpp (bit-per-pixel), 0.4bpp and 0.5 bpp. Aiming to go 
e of which was superior to SRM in detecting the “High-pass, Low-

ersal wavelet relative distortion (SUNI) [12] under  the payload of 

suming, Qian et al. hoped to resort to the transfer learning [14] in 
ained CNN could be utilized in fine-tuning a CNN to detect the 

boost the performance of machine learning algorithms, Xu et al. 
und that “learning from intermediate representation” of the 
erformance.

e-processing layer, which might hinder the extraction of details. 
ing multiple high-pass filters. Ye et al. proposed their Thresholded 
nalysis method implemented with the hand-crafted feature 
e previous CNN models, 30 high-pass filters from the SRM were 
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Although the dataset they used seems to be heterogeneous, 
CNN from learning more features from them. To solve this probl
results than the TLU-CNN, which suggested that the CNNs cou
requiring label-preserving flips and rotations only. With this insight
SRNet [19], which was designed with little externally introduced
SRNet could outperform the SCA-TLU-CNN, i.e. the TLU-CNN with 
selection-channel information.

Previous CNNs consist of one CNN only, and researchers 
performance or not. In the ReST-Net [20], a parallel subnet arch
the nonlinearity after SRM filtering in the pre-processing layer
improve the detection accuracy, Zhu-Net [21] managed to achieve
depth-wise separable convolutions and shortcuts. Recently, an effi
Un-like ReST-Net, the two subnets in the SiaStegNet were id
BOSSbase dataset [23], the SiaStegNet achieved comparable perfor
compared to 4.7M for SRNet.

To fullying utilize the hidden information, Lai et al. investiga
extraction of convert information [24]. Aiming to explore more c
Excitation module in the residual block in their module, which s
Different from the CNN methods, Arivazhagan et al. resorted to th
noise, which was then enhanced for classifications [26]. More detai
found in [27–29].

Due to the limitation of the diversity of the images, the existin
satisfactory performance on the more challenging datasets and t
residual network is used, i.e. a deeper or more effective fe
steganalysis further to real-life scenarios? To tackle these issues, a re
module is proposed for the effective detection of stego noise 
from a well-structured residual network while keeping the param
taken as the backbone to build our feature extractor. Meanwh
Enhanced Low-level Feature Representation Module (ELLFRM).

The main contributions of this paper can be summarized as fol

• We constructed an enhanced low-level feature representa
without significantly increasing the parameters. The prop
which can even improve the performance of other CNNs, 

• We proposed an effective residual network with the self-a
converging while providing state-of-the-art performance w
memory of GPUs.

Currently, on the ALASKA#2 dataset, most new CNN architectures 
extendable for spatial images. Our experiments have validated the e
keeping the input image size basically unchanged during the feature
feature selection stage.

The remaining paper is organized as follows. Section 2 introdu
Section 3, the details of the proposed architecture and the experi
an ablation study are provided in Section 4. The compariso
transfer learning results. Finally, some concluding remarks are dr

2. Theoretic background from the ResNet to self-attention module

In this section, we first briefly introduce the related work and
steganalysis. We will show that these CNN networks are theoretical

2.1. Image steganalysis with the ResNet

Currently, many spatial steganalysis works rely on the residual 
denote a cover image with a size of n1 × n2, and M denote the 
(Ci j  ) ∈ {0, .  . .  ,  255}n1×n2 , M = (Mi j  ) ∈ {−1, 0, +1}n1×n2 . Let X 
image or the stego image. The objective of a CNN model is to tell if 
2

was believed that the size of the dataset might prevent the 
, in [18], the Yedrouj-Net was proposed in 2018 with better 
always benefit from the “virtual augmentation” of the dataset, 
roumand et al. proposed a powerful network architecture called 

owledge, such as fixed kernels, thresholding and quantization. 
 selection-channel, and the SRNet could also benefit from the 

ndered whether using multiple CNNs could improve the 
c-ture was introduced, where the SRM filters, Gabor filters and 
ere analyzed. Different architectures were also considered to 
tter results than the SRNet by using spatial pyramid pooling and 

nt yet powerful network named SiaStegNet was proposed [22]. 
ical and shared the same parameters for efficiency. On the 
nce to the SRNet, though it had only 0.7M trainable parameters 

 the residual networks in a generative algorithm for the 
plex regional features, Fu et al. employed the Squeeze-and-
wed a better generalization ability than SRNet and Zhu-Net [25]. 
Empirical Mode Decomposition technique to extract the stego 
 the development of deep learning in image steganalysis can be 

NNs that were trained on the limited datasets can not provide a 
unseen scenarios. Moreover, one may ask if a more complex 
re representation technique, will it help to move the image 
ual network with an enhanced low-level feature representation 
the images. We aim to deliver highly discriminative features 
rs on a controllable scale. To achieve this, the Res2Net [30] is 
 the self-attention mechanism [31]  is  used to construct our 

s:

 module, which can greatly improve the feature receptive field 
d ELLFRM can effectively capture the pattern of the stego noise, 
dating its effectiveness and versatility.

ntion capability. The network has been confirmed to be fast
out introducing too many parameters or requiring too much

 developed for JPEG images, yet the proposed method is 
acy of current architectures for spatial image steganalysis, i.e. 
ocessing stage while increasing the mappings rapidly in the 

 the related work and explains why these models are used. In
ntal settings are presented. The discussion of the features and 
with the state-of-the-art is given in Section 5, including 
n in Section 6.

o explain why these CNN architectures can be applied in image 
easible for the image steganalysis tasks.

itecture proposed in [32], for example, [33], [22] and [19]. Let C 
ret message in the form of a matrix with the same size. C = 
ote the input image of a CNN, which can be either the cover 
 a cover or a stego, just as Eq. (1)  shows.
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X =
{

C + 0, cover

C + M, stego
(1)

To better illustrate the principle of the ResNet, the basic build-ing blocks from [32]  are  shown in Fig. 1 (a), in which the 
convolutional operation W (·) maps the input to the output H(X), i.e. H(X) = W (X). In a residual network, the residual 
information F (X) is calculated as shown in Eq. (2) [33].

The extremely weak stego signal M can be effectively captured by the residual mapping network [33], which will then be 
“preserved and emphasized through the whole network”. In a typical residual network, i.e. Fig. 1 (b), the residual information is 
usually computed as shown in Eq. (4), where W1(·) is the convolutional operation with a kernel size of 1 and W3(·) denote a 
kernel size of 3. The batch normalizations are not shown for simplicity.

Fig. 1. Different basic blocks in CNNs: (a) a basic convolutional block in a typical CNN model; (b) a residual block; (c) an improved residual block from the Res2Net.

We denote Y Res(X) = W3(W1(X)) as the tensor before entering the last convolutional layer in a residual block, thus H(X) can be 
written into Eq. (4) for  clarity.

F (X) := H(X) − X

Y Res(X) = W3(W1(X))

H Res(X) = W1(Y Res(X)) + X

2.2. Theoretical consistency of the Res2Net

Aiming to provide a more effective method in representing features at multiple scales, the Res2Net was proposed [30]. In [32], Gao 
et al. realized that the original 3 × 3 filters  in ResNet [32], may not provide enough receptive fields for CNNs, thus they replaced 
those filters with a set of small filter groups. The key to increasing the receptive field is these small filter groups, as typically 
illustrated in Fig. 1 (c).

In these sets of small filters, each group of filters will extract the corresponding features from the input features maps. The 
number of the feature groups is called “scales”, S . The output fea-tures from the previous group are sent to the next group of filters. 
Feature maps from all groups are concatenated for the last 1 × 1 filters to fuse the information before all the input feature maps 
are processed [30]. Let Y Res2 denote the tensor before entering the last convolutional layer in a Res2Block, we can rewrite the residual 
mapping Eq. (4) as  Eqs. (5) to  (7), where xi = W1(X), and � is concatenation operation.

(2)

(3)

(4)

(5)
�
1

�
2

H Res2(X) = W1(Y Res2(X)) + X

Y Res2(X) = y y . . . yi . . .
� yS (6)

yi =
⎧⎨
⎩

xi, i = 1;
W3(xi), i = 2;

W3(xi + yi−1), 2 < i ≤ S
(7)

3
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2.3. The self-attention mechanism

Recently, self-attention mechanism is investigated for computer 
we would like a building block in the CNN model to provide go
features are way more complex and not easy to understand, whe
convolutional operator is limited by its locality and lack o
mechanism is preferred for extraction of a statistical summar
extracting the extremely weak stego signal.

   In [36], Vaswani et al. proposed an attention function, which
pair vectors as the output. Let Wq, Wk, W v denote the weights of 
queries, Q , keys, K , and values, V in Eq. (8). With Q , K and V , w
in Eq. (9), where dk is the dimension of keys and f s(·) is a Softm
values N times is helpful and hence multiple heads are used.

By introducing the encoding of positional information in th
kind of self-attention mechanism into their multi-head projectio
content-position interaction are used. Among these architectures,
proposed. Following their idea, without changing the residual mo
Eq. (11). The sub-tensors yi in Eq. (7) is  now rewritten as Eq. (1
The calculations of the matrices Q i , Ki , V i are shown in Eq. (13), 
the input and output, respectively.

Q i = Wq X, Ki

As indicated in [39], “the memory and computation for sel
show how many BoTBlocks should be used in our architecture t
performance in Section 4.3.4.

In short, compared to the original residual information o
Res2Net, Eq. (5), and BotNet, Eq. (10), share the same formula, i.e. 
ways. One can easily find that the latter two kinds of residual infor
information for the CNN.
4

ion tasks [31]. We are considering the self-attention mechanism as 
global attention ability. This is because in deep layers of CNN, the 
a block with self-attention mechanism ability may help. As the 
nderstanding of global contexts [34], the global attention 
f the whole scene [35]. This ability is particularly helpful in 

scribes a mapping between a query vector and a set of key-value 
 query, key and value, respectively, we can calculate the matrices of 
an determine the attention function for a single head y1 as given 
 function. It is also suggested that projecting the queries, keys and 

(8)

(9)

ttention mechanism, Ramachandran et al. [37] incorporated this 
MHSA) architecture. In [38], the content-content interaction and 
[31], the Bottleneck Transformer block (BoTBlock) architecture is 

l given in Eq. (10), the output tensor Y B O  T  can be calculated in 
where di is the dimension of the keys in the ith head, i = 1, ..., N . 
ere Wq, Wk, W v ∈ Rdin×dout . din and dout represent the dimension of 

(10)

(11)

(12)

Wk X, V i = W v X (13)

tention scale quadratically with the spatial dimension”, we will 
ach the best balance between the computation complexity and 

 residual block in ResNet, Eq. (4), although the definition of 
es(X), H Res2(X), H BoT (X), they are calculated in totally different 
tion are more sophisticated and hence can yield more complicated 
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3. The proposed method

In this section, we will discuss our proposed model and its modules in detail. We will explain why these modules are used 
and how we process the features, especially explaining how the low-level features are enhanced via our ELLFRM module. Lastly, the 
implementation details are provided.
� �

Fig. 2. The overall architecture of the proposed model, ERANet. DM is short for Dow
Self-attention module. GMP represents the Global Maximum Pooling. Inside each bra
channels.

3.1. The network architecture

The overall architecture of the proposed ERANet is shown i
Highpass-filter module (HPF Module), the Enhanced Residual Mod-u
Feature Representation Module (ELLFRM). A Global Maximum Poolin

The ERANet can be roughly divided into two stages. The first is 
second ERM module. The second is the feature selection stage or ou
kept unchanged while the image size is slightly changed, which wil
number of feature maps unchanged during the image processin
accurately. To ensure the 3 ×3 kernels  can extract as much inform
images during the feature processing stage.

In the second stage, i.e. the ELLFRM module, the number o
selection. We first increase the feature maps to have more channe
we decrease the feature maps to keep the most effective features lea

3.1.1. Feature processing stage
In the feature processing stage, we deploy an HPF module in

Downsampling Module (DM). The convolutional layer is in accor-da
size of 5 × 5. This layer has been proven to help the network co
layer” can provide better performance [5,41], we set the paddin
modules, and the reasons are mainly threefold, i.e. increasing the
size of the feature maps. The modules usually contain a convolu
module, the convolutional layer has 32 channels with a kernel siz
A batch normalization layer is used for improving the convergen
selecting the initial features. In our architecture, only 3 × 3 kerne
parameters whilst providing better performance, according to [42].

Then, we use an ERM, i.e. Y E R M(X) = y 2y y 3y4, to extract fea
Res2(X) functions share the same structure as shown in Fig. 1 (c). Af
image size while ensuring the magnitude of features is normalized
complex features. Those settings are inspired by [40]. Howe
experimentally validated, as detailed in Section 4.3.2. After the fe
and dimension reduction with k = 3, s = 2, and p = 1.
5

pling Module, MSRM is the Multi-Stage Residual Module and SAM is short for the 
, the first number is the width of the image and the second is the number of output 

ig. 2, which is composed of four different modules, i.e. the 
(ERM), the Downsampling Module and the Enhanced Low-level 
yer follows after the ELLFRM module.
 feature processing stage, which runs from the HPF Module to the 
LLFRM module. In the first stage, the number of feature maps is 

e explained below. As inspired by [9] [40] and [21], keeping the 
art allows the convolutional kernels to learn the edge patterns 
n as possible, we endeavour to avoid any down-sampling to the 

ature maps and the image sizes are adjusted for better feature 
and local receptive fields for picking up different features. Then 
 from the previous stage for image classification.

e beginning. This module consists of one convolutional layer and a
 with the works [16,22], which has 30 high-pass filters, each with a
rge in the early stage of the training. As “avoid pooling in the first
p) to 0 and slide (s) to 1. This architecture utilizes multiple DM
vergence speed, downsampling the input images and adjusting the

nal layer and a batch normalization layer. In the DM of the HPF
f 3 × 3, and we set p = s = 1, which is kept the same as in [40].
 speed and stability of the CNN. The ReLU f unction is used for
are used in the convolutional layers, which can reduce the training

es as it provides more receptive fields compared to Eq. ( 3). The H
that, two DM modules are used, which will slightly decrease the 

gain. After that, two ERM modules are employed to extract the 
 the optimal number of such modules in our architecture is 
re processing part, a Maxpooling layer is used for feature selection 
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3.1.2. Feature selection with the proposed enhanced low-level feature representation module
In the feature selection stage, we propose to use our Enhanced Low-level Feature Representation Module (ELLFRM) to effectively 

select the features. In this module, firstly, we force the output images to go through two DM modules to shrink the image, for 
achieving a good balance between the performance and GPU requirement. These DMs are used for extracting features and 
selecting the effective ones, which have the same settings, with the same number of input and output channels, i.e. 32 3 × 3 kernels 
with s = 1, p = 1. Then, an average pooling layer is implemented to average each patch of the feature map. Unlike the MaxPooling 
layer which removes some features, it is used to shrink the size of the feature maps. We set s = 2, p = 0, which halves the image size 
and reduces the parameters.

We then expand the feature maps for further feature selection by using the two proposed Multi-Stage Residual Modules (MSRM). 
These MSRMs are designed to greatly increase the receptive fields so that the complex features in different shapes can be effectively 
captured, meanwhile, these MSRMs should reuse their features during the processing with the introduced residual mechanism. 

 of
ed 
s, 
Fig. 3. Proposed Multi-Step Residual Module (MSRM). The numbers after sym

H M S RM(X) = W1(X) + Y M S RM(X) +Y M S RM(W1(X) +

Y M S RM(X) = W1(W3(W1(X1))
�W3(W1(X2)))

As the CNN goes deeper, it will have smaller receptive fields 
ones in the shallower layers, hence more channels are needed 
selection. The first and the second MSRM modules will expan
experimentally validated to provide improved performance whil
residual block in Eq. (3) and the Res2Block in Eq. (6).

To enhance the capability of capturing those complex features
According to the experiments in [43], the self-attention module 
CNN without it. In our architecture, the self-attention modules 
understandable ones. Hence we could not show the difference th
with N set to 4 and the activation is set to ReLU, i.e. Y S A M (X) =

We also found that these SAMs can further improve the per-f
first SAM takes the input features with a size of 512 and will expa
512. This move is inspired by the CNN architecture in [44], wher
decreased it before classification for an effective feature selection
best performance, as detailed in Section 4.3.4. Next, these feature
a 512 × 1 feature.  Before going through the last fully connected 
overfitting with the possibility set to 0.5 [45]. Ultimately, the outp

3.2. Implementation details

An ERM has two parameters, i.e. the Basewidth and the scale
used to make sure we get 4 mappings in Eq. (6). The output of this 
SAMs, we set the N to 4 and the activation function is ReLU as re
β2 = 0.999 and ε = 0.001 [46]. The initial learning rate is set to 0.0
set to 0.1. The classic cross-entropy loss function is employed in o
rate is divided by 10 whenever the error plateaus. The network 
about 12GB of memory. The experiments are carried out on 
BOSSbase 1.01 dataset [23] and 156 hours to train on the ALASK

Lastly, these MSRMs should be deep enough to fit different sizes
Fig. 3. They can be written as in Eq. (14), where Y M S R M  is defin
dimension of channels. Note Eq. (14)shows the case of two stage
6

@ represent the number of the output channels in our first MSRM module.

M S RM(X))

� � �

 less specific features. These features are more complex than the 
capture these features. And hence the MSRM is used for feature 
he feature maps to 128 and 512 dimensions, respectively. It is 
eeping the number of the parameters low compared to the basic 

e introduce the Self-Attention Modules (SAM) into our model. 
l help the CNN to focus more on the embedding areas than the 
used in the very deep layers, where the features are not human-

gh visual explanations. A SAM module is an optimized BoTBlock 
 1 y 2 y 3 y4.
ance of CNN because of their global self-attention mechanism. The 
them to 1024, while the second SAM will then shrink them back to
hey have also increased the number of the output channels and
e have experimentally validated that two SAMs will provide the 

aps will be processed by a Global Max Pooling layer and output 
r, the feature will be processed by the dropout method to prevent 
eature will be used for classification.

he Basewidth is set to 36 and the scale is set to 4, which are 
er keeps the same dimension as the input, and hence p = s = 1. For 
mended in [31]. The Adamax optimizer is employed with β1 = 0.9, 

 L2 regularization is used to prevent overfitting. The weight decay is 
method. The network is trained for 500 epochs, and the learning 
mplemented using Pytorch, 1.7.0, and the whole model requires 

esla V100 Card, and it takes about 28 hours to train on the 
#2 dataset [5].

(15)

(14)

 images. Hence, our MSRMs have the same shape as shown in 
in Eq. (15) and X1, X2 are created by splitting X along the 

yet it can be easily extended to multiple stages.
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Fig. 4. Example of a cover image (left), its stego 

Fig. 5. The output features of the E

4. Feature analysis and ablation study

In this section, we will first introduce the datasets that w
provide a detailed analysis of the feature maps and the num
architecture in Section 3 is selected by an ablation study in sub

4.1. Dataset introduction

We have evaluated our proposed method on two data
1.01 dataset contains 10,000 grayscale images with a “.pgm”
seven cameras in the RAW format, and transformed into 
512×512. We used the MAT-LAB function imresize() to resize 
on the BOSSbase dataset, if not specified, 6,000 images were r
rest 3,000 for testing. Note that this dataset is different f rom
processed in different ways. According to Table 2 in [40
detection results. Specifically, they first cropped the images
256×256 using the “imresize” function with the bilinear interp
compare the results of this paper and the results reported in [2

The ALASKA#2 dataset is a new dataset proposed in 
dataset” for steganalysis [47]. It contains 80,005 grayscale
the images were processed in a highly heterogeneous way. In 
size of 256 × 256. We will keep the same setting as in 
validation set and the testing set are 6:1:3. There exists no
function from the Python Image Library1 to read those image
image (0.4bpp), and their difference are shown in Fig. 4.

We employ two different evaluation metrics in this paper. T
second is the area under the curve (AUC) within [0,1].

1 https://pillow.readthedocs .io /en /stable /reference /Image .html.
7

ge (middle), and their difference image (right).

et for the cover and stego image.

sed in our experiments and the evaluation metrics. Next, we 
ical results in subsection 4.2.1. Then, we will explain why the 
tion 4.3.

s, BOSSBase 1.01 [23] and ALASKA#2 [47][5]. The BOSSBase 
mat. Ac-cording to [48], these images were initially taken by 

bit grayscale images, before being cropped into the size of 
 images to 256 × 256 as in [19]. In the following experiments 
omly selected for training, 1,000 images for validating and the 
e one used in the SiaStegNet [22], as the images are pre-

different pre-processing ways have a large impact on the 
to squares based on the shorter side and then resized them to 
tion algorithm in Matlab R2017a. Therefore, one should not 
irectly.
20, which was created to provide “a large and heterogeneous 
ages from more than 40 cameras with different sensors, and 

r experiments, the images have a “.tif” format and each with a 
 SiaStegNet [22], i.e. the ratios of the training set to the 
erlap among them. For a fair comparison, we used the Image 
 the input of all detectors. One of the cover images, its stego 

first is the detection accuracy as a percentage, and the 
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4.2. Visualization of the features

4.2.1. The visualization of the output features
We show the output features in the Global Max Pooling layer in Fig. 5. For the cover image, 59.76% of features are effective 

or non-zero while for the stego image, the number is 64.45%. For a better understanding, we draw an auxiliary horizontal 
line at 0.8, which shows that nearly all the stego features (in circles) are below 0.8 while there are 32 cover features (in 
Asterisks) above 0.8. We believe the ERANet keeps the effective features above zero while keeping the silent features as zeros, and 
thus differentiates the cover and the stego images.

4.2.2. The comparisons between the cover and stego features
We first show the feature maps of the cover and stego images in Fig. 6, and they are extracted from the last DM module of the 

ERANet. The rectangle areas indicate highlighted parts of the differences. The StegoChannels 1 to 4 show more “bubbles” or black 
dots in the top and bottom areas, which indicate the embedding areas. However, these patterns are not seen in the 
CoverChannels, and we believe those patterns can help CNN to differentiate them. Note that although the majority part of the 
embedding area is not shown in the feature maps, they are not what this CNN is trained for. To highlight the difference, or to find 
the suspicious area, however, is the real purpose.

4.3. Ablation analysis

In this subsection, we provide an ablation study to explain how the parameters and the architecture are determined and also 
show how they may affect the results.

4.3.1. Trainable SRM kernels
We first investigate whether the fixed kernels in the HPF module can help to improve the detection accuracy. As explained 
before, the introduction of the high-pass filters in our CNN architecture was to help the network to converge fast. The ERANet 

will converge much slower if this layer is removed. In our experiment, these fixed kernels can help to converge fast, but with a 
slight performance loss. The fixed-SRM-kernel version of the ERANet has an accuracy of 82.07% in detecting the HILL at 0.4 bpp, i.e. 
0.42% less than the trainable one.

4.3.2. The analysis of the use of the ERM
Firstly, we investigate the number of layers in the feature pro-cessing part, and the results are shown in the upper part of 

Table 1. In the first model, ERANet#A, the last ERM module was removed. This move has slightly reduced the need for GPU 
memory from 12GB to 11GB but the accuracy is degraded by about 1.5%, thus not a good solution as the current one used. 
Similarly, in the second mode, ERANet #B, we added one more ERM before the ELLFRM, with the same setting as its previous 
module. At this time, the requested memory is increased by 1.5GB, and hence the model requires about 13.5GB to run. However, the 
accuracy is not increased further. This suggests that the current setting is the best to achieve good classification accuracy and 
modest GPU memory.

4.3.3. The analysis of the use of the MSRM
Next, we analyse the influence of changing the MSRMs in the feature selection part. As mentioned before, we use the 

proposed MSRM in the feature selection part because the MSRM can retain more effective features during the previous feature 
processing part compared to the ERM module.

Experiments including removing and increasing one MSRM, changing one MSRM into ERM, and changing all ERMs to 
MSRMs were carried out, and the results are compared in Table 1. In model ERANet #C, we change the first MSRM to the ERM and 
keep the rest untouched. This move causes a 1.25% performance loss. In the model ERANet #D, the second MSRM is changed 
in the same way. However, the size of the output image was halved in ERANet, hence we need to append a DM module to 
enlarge the feature maps to 512 and to reduce the image size. In this way, we can keep the rest layers unchanged. However, 
this move reduces the accuracy by about 1%. The situation is similar to the cases when we remove the first MSRM in ERANet #E. 
In ERANet #X, where all the ERMs are changed to MSRMs, the overfitting happens and the test accuracy has decreased by 20%. 
This step has proven the rationality of the ERM in the feature processing stage and indicated the rationality of the current settings.

4.3.4. Effect of the SAM modules
We investigate the introduction of the SAMs and show how these modules may affect the accuracy and the trainable 

parameters.
We compare four models in the current architecture, namely ERANet #F, ERANet #G, ERANet #H and ERANet. The first 

model here, ERANet #F, does not use any SAM modules, where the first SAM in Fig. 2 is replaced by ERM and the second SAM is 
replaced by the simple DM module to maintain the same number of layers and the same dimension of the feature maps. In the 
second model, ERANet #G, only the first SAM is replaced by ERM and the remaining layers are unchanged. Using the SAM in the last 
convolutional layer is also the way suggested in [31]. In the ERANet, we have only two SAMs, and we cannot use three of them 
without changing the current architecture because of the limited GPU memory. In addition, to verify the effectiveness of 
introducing the relative-position-information (RPI) into the SAMs, we removed the Rh and R w in Eq. ( 12) from  the ERANet and hence 
yi in Eq. ( 12) becomes Eq. ( 9). We named this model ERANet #H.

The comparing results are shown in Table 2, in which the model with two SAMs using relative-position-information 
achieves the highest accuracy and the least number of parameters. Removing both SAMs in the ERANet results in the largest 
performance drop and removing the relative-position-information (RPI) in these 

8
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Fig. 6. Comparison of the feature maps between the cover image and stego image in the last DM module of the ERANet.

Table 1
The analysis of the use of ERM and MSRM.

Model Action Memory Requirement Accuracy (%)

ERANet#A remove the last ERM 11GB 81.08
ERANet#B increase one EMR before the feature selection part 13GB 82.19

ERANet#C change the first MSRM to ERM 12GB 81.25
ERANet#D change both MSRMs to ERMs 12GB 81.53
ERANet#E change the last MSRM to ERM 12GB 81.63
ERANet#X change all ERMs to MSRMs 11GB 62.09
ERANet - 12GB 82.49

M

 pro

24

81.8
9

t #

d th
the
ory

To 
and
and

nog
Table 2
The analysis of the SAM modules.

Model Action

ERANet#F remove both SAMs
ERANet#G change the first SA
ERANet#H remove RPI
ERANet -

Table 3
The influence of the batch size in the

Batch size

Accuracy (%)
Memory Requirement (GB)

SAMs decreases the accuracy by about 1.2%. Although in ERANe
model is not as effective as the proposed ERANet with two SAMs.

4.3.5. Batch size
We have also investigated the influences of the batch size, an

network is not significantly influenced by the batch size, though 
can no longer provide any improvement but will require more mem

4.3.6. The effect of applying the proposed ELLFRM module in other CNNs 
ELLFRM Module to two classic CNN models, i.e. the Xu-Net [13] 
changing the layers whose size of the input features is 128 × 128 
ELLFRM and SID-ELLFRM.

Table 4
The effect of the ELLFRM on other CNN models against different stega

Model WOW

Xu-Net 80.44
Xu-ELLRM 82.10
SID 79.08
SID-ELLRM 89.11
SiaStegNet 89.56
9

Number of Param Accuracy (%)

2.71M 80.92
2.97M 81.48
2.35M 81.20
2.35M 82.49

posed model.

32 40 48

7 82.49 81.70 81.27
12 15 18

H, using only one SAM provides a comparable performance, the 

e results are shown in Table 3. As seen, the performance of the 
 best batch size is found at 32. Increasing the batch size from 32 
.

investigate the versatility of the proposed ELLFRM, we add our 
 SID [40]. We enhance the corresponding architectures by 
 the deeper layers to our ELLFRM. In this way, we created Xu-

raphic algorithms at 0.4 bpp on the sizing 512 × 512 BOSSbase dataset.

SUNI HILL

78.93 79.03
79.33 80.19
74.85 73.89
83.16 83.82
87.30 84.53
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Table 5
Performance comparisons (Accuracy) of different detectors for four payloads in bpp and different steganographic methods on the BOSSbase 1.01 dataset (in %).

WOW(bpp) SUNI(bpp) HILL(bpp)

CNN Scheme 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

SRNet 71.57 80.58 85.84 89.18 68.55 77.48 85.06 89.08 65.16 74.01 79.64 84.07
SiaStegNet 72.93 80.72 85.54 88.29 68.80 77.24 83.72 87.93 64.30 72.49 78.53 81.55
ERANet 70.17 80.02 85.56 88.80 66.00 76.03 82.89 87.18 63.34 71.16 78.43 82.49

Table 6
AUC comparisons of different detectors for four payloads in bpp and different steganographic methods on the BOSSbase 1.01 dataset (in %).

WOW(bpp) SUNI(bpp) HILL(bpp)

CNN Scheme 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

SRNet 80.38 89.92 94.20 96.75 76.48 87.81 94.09 96.98 71.84 82.37 88.73 93.18
SiaStegNet 80.93 90.91 94.11 96.38 77.35 87.33 93.29 95.45 71.77 81.86 88.10 91.51
ERANet 79.85 90.36 94.91 96.89 74.85 86.73 93.02 95.94 71.45 81.67 88.44 92.79

Table 7
Performance comparisons (Accuracy) of different detectors for four payloads in bpp and different steganographic methods on the ALASKA#2 dataset (in %).

WOW(bpp) SUNI(bpp) HILL(bpp)

CNN Scheme 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

SRNet 56.80 61.63 65.70 67.83 53.47 56.60 59.18 62.60 57.58 63.49 67.78 71.10
SiaStegNet 57.72 63.94 67.88 70.55 55.08 60.93 64.41 67.55 58.26 63.20 67.43 71.01
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For evaluation, we test on the BOSSbase 1.01 dataset for these CNNs, yet the images are not resized, hence each image has a size of 
512 × 512. The ratios of the training set to the validation set and the testing set are 4:1:5. The hyperparameters for these models are 
unchanged except that the optimizer for SID-ELLFRM was changed to Adamax, otherwise it can not converge. All the models are trained 
for 500 epochs, and the payload is set to 0.4 bpp. The results are shown in Table 4.

As seen in Table 4, our ELLFRM can improve both models without changing their pre-processing layers and the hyperparameters. For 
the Xu-Net, our modified model provides an improvement of up to 1.5%. However, for SID, the improvement is up to 9%. Note 
that SID-ELLFRM has achieved SOTA performance in detecting WOW and HILL.

These results can be explained twofold. Firstly, the single high-pass filter in the Xu-Net fails to provide sufficient complex features for 
its deeper layers yet those features are captured by the 30 high-pass filters from the SID. Secondly, the SID is deeper than Xu-Net, hence 
providing more receptive fields and more effective features for image classification.
ERANet 60.79 65.95 69.99 72.71 59.11

Table 8
AUC comparisons of different detectors and different steganographic methods on the

WOW(bpp) SUNI(bpp)

CNN Scheme 0.1 0.2 0.3 0.4 0.1

SRNet 58.58 64.14 67.61 70.36 54.76

SiaStegNet 63.30 72.95 78.09 81.48 59.19
ERANet 67.89 75.74 80.88 84.10 65.74

5. Comparing with the state-of-the-art models

We compare our work with the SRNet [19] and SiaStegNe
ALASKA datasets. The SRNet is selected for its superior perform
the ALASKA dataset. Note all CNNs were trained on the datasets 
validation for testing. For other payloads, the CNNs were all trained w

5.1. Results on the BOSSbase dataset

The first group of the data will show the detection performance
and deep learning require a big enough dataset”. The BOSSbase
data used for training. To see how different networks perform w
different detectors in Table 5 and Table 6.

In Table 5, we can see that SRNet shows the best performance
when the payload is 0.1 for WOW and SUNI. Our model only sh
insufficient training data.

The situation is similar for the AUC results in Table 6. The resu
ERANet shows the best results when the payloads are 0.3 and 0.4 bp
10
5.21 69.86 72.48 61.81 68.17 72.14 74.95

SKA#2 dataset (in %).

HILL(bpp)

.2 0.3 0.4 0.1 0.2 0.3 0.4

8.79 61.50 64.40 59.64 66.50 72.87 75.36

8.27 73.57 78.12 64.08 71.54 77.18 81.69
4.70 80.70 83.87 69.63 78.50 83.25 86.57

2], using the aforementioned two datasets, i.e. the BOSSBase and 
ce on the BOSSBase dataset while the SiaStegNet is selected for 
 scratch at 0.4 bpp, and we selected the best model during the 
 the curriculum training strategy as suggested in [19].

 the BOSSbase 1.01. However, according to [47], “neural networks 
01 itself seems not to be large enough even with 60% of the 
 these data, we did the experiments and show the results from 

r most cases in this dataset, and the SiaStegNet surpasses it 
s comparable performance to them and it suffers the most from 

 were calculated by using the “sklearn” tool offline [49]. However, 
 for WOW.
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5.2. Results on the ALASKA dataset

For the ALASKA#2 dataset, we also show how the detectors perform when they are faced with a more complicated scenario 
and report the results in Table 7 and Table 8. Note that we have to slightly lower the learning rate of SiaStegNet from 1e-3 to 8e-4 
when trained for the WOW algorithm, due to a different version of Pytorch, otherwise the network would not converge in our 
experiments. When trained for the other two algorithms, their learning rates were unchanged, i.e. 1e-3.

From Table 7, one can easily find that the least detectable alWgorithm, HILL, has become the most detectable one in this dataset. 
All detectors can achieve an accuracy higher than 70% in detecting HILL at 0.4 bpp, and the accuracy of our proposed model is about 
4% higher than the other two CNNs.

The steganographic algorithm, SUNI, has become the most undetectable where both the SRNet and SiaStegNet achieve an 
accuracy of less than 70% when the payload is 0.4 bpp. However, the ERANet is about 5% better than SiaStegNet and about 10% 
better than SRNet. In the case of WOW, the situation is similar to the SUNI, where the proposed model is about 2% better than 
the SiaStegNet and about 5% better than the SRNet when the payload is 0.4 bpp.

In Table 7, the results at the low payloads are also worth noting, especially the cases of 0.1 bpp. First of all, all three methods can 
only provide an accuracy of about 60%. For HILL and WOW, ERANet is about 4% better than the other two CNNs. For SUNI, it is about 
4% better than the SiaStegNet and 6% better than the SRNet. In short, can still significantly outperform the other two state-of-the-
art CNNs.
Fig. 7. The training processes of different CNNs for steganography HILL at 0.4 bpp on

Table 9
Performance comparisons (Accuracy) of different detectors and different stegano-g

Model WOW

SRNet 59.20
SiaStegNet 67.31
ERANet 69.74

For further comparisons between the SiaStegNet and the pro
results confirm again that our ERANet can provide overall much
processes of different CNNs for HILL at 0.4 bpp in Fig. 7. Note that t
there is a large gap between the training and validating accuracy, 
SAMs. We see that even though Fig. 7 (c) and Fig. 7 (d) are using 
when the learning rate is divided by 10 after 300 epochs. Also, the v
epoch. However, after introducing the self-attention mechanism, t
improved validation accuracy. 
11
ALASKA#2 dataset; (a) SRNet (b) SiaStegNet (c) ERANet without SAMs (d) ERANet.

ic methods on the sizing 128 × 128 ALASKA#2 dataset (in %) at 0.4bpp.

SUNI HILL

56.06 84.42
65.63 77.35
67.63 78.31

ed ERANet, we show the AUC results in Table 8. All the AUC 
proved results. To explain the results, we show the training 
curves in Fig. 7 are unsmoothed. From Fig. 7 ( a), we can see that 
ich indicates potential overfitting. In Fig. 7 ( c), the model has no 
 same training strategy, the validation accuracy does not improve 
dation curve in Fig. 7 (c) shows large perturbations after the 400th 
validation curve in Fig. 7 (d) becomes more stable along with an 
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Table 11
Transferability (Accuracy) of SiaStegNet for different stega

BOSSbase 1.01
Train / Test WOW

WOW 88.29
SUNI 88.39
HILL 83.52

ALASKA#2
Train / Test WOW

WOW 70.55
SUNI 64.04
HILL 62.28

Table 12
Transferability (Accuracy) of ERANet for different stegano

BOSSbase 1.01
Train / Test WOW

WOW 88.80
SUNI 85.96
HILL 83.37

ALASKA#2
Train / Test WOW

WOW 72.71
SUNI 67.53
HILL 66.99

Those scenarios are discussed below to further validate the supe

5.3.1. Mismatched stego sources
Mismatched stego sources mean the network was trained o

the same payload [19]. We perform the experiments on both t
in Tables 10 to 12.

From the upper parts in these tables, the CNNs trained on
consistent with the results in SRNet [19]. We also found that t
best. In the bottom parts, although the SiaStegNet achieved the se
the proposed ERANet transfers the best.

Table 10
Transferability (Accuracy) of SRNet for different stega

BOSSbase 1.01
Train / Test WOW

WOW 89.18
SUNI 90.74
HILL 83.93

ALASKA#2
Train / Test WOW

WOW 67.83
SUNI 60.68
HILL 54.85

The performance of the ERANet on the 128 × 128 dataset 
for WOW and SUNI and the second-best for HILL at the payloa

5.3. Transfer learning results

One advantage of the CNN-based steganalyzers is transferab
even when the cover or stego source mismatch with each othe
12
aphic methods on the two datasets at 0.4 bpp (in %).

SUNI HILL

81.60 64.51
87.93 71.98
78.63 81.55

SUNI HILL

63.83 64.11
67.55 63.62
57.19 71.01

phic methods on the two datasets at 0.4 bpp (in %).

SUNI HILL

74.92 61.97
87.18 67.30
76.64 82.49

SUNI HILL

62.26 63.26
72.48 65.53
59.63 74.95

ity of the proposed model.

one steganographic method and then tested on a different one at 
BOSSbase 1.01 and ALASKA#2 datasets, and the results are shown 

e least detectable algorithm (HILL) transfer the best, which is 
CNN that performed the best in this dataset usually transfers the 

nd-best in detecting WOW, it transfers the best. In other cases, 

raphic methods on the two datasets at 0.4 bpp (in %).

SUNI HILL

82.85 66.63
89.08 74.16
79.72 84.07

SUNI HILL

58.34 60.02
62.60 59.08
54.85 71.10

lso investigated in Table 9. Our ERANet achieves the best results 
.4 bpp.

, which means the trained network can be used for steganalysis 
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Data will be made available on request.
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