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ABSTRACT 
For real-time monitoring and safe control of electrical vehicles, it is important to accurately estimate the state of charge of lithium-ion 
batteries. A combined data-driven modeling approach based on Least squares support vector machine based on particle swarm 
optimization and unscented Kalman filter is proposed to obtain a better state of charge estimation accuracy. In this article, least 
squares support vector machine is used to establish the nonlinear connection between current, voltage, and SOC, and the parameters of 
least squares support vector machine are optimized by particle swarm optimization to improve the accuracy of voltage estimation, and 
the state and measurement equations are established by Least squares support vector machine in unscented Kalman filter for SOC 
estimation. The experimental results show that the maximum voltage error for the voltage prediction made with the PSO optimized 
model is 0.5 V. The maximum SOC error under various working situations is similarly kept to 0.5%, which is a significant improvement 
compared to the traditional algorithm. The above data show that the PSO considerably increases the precision of the Least squares 
support vector machine, as well as the estimation accuracy of the voltage and SOC, demonstrating the effectiveness of the model. 
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1. Introduction 
Due to the extended cycle life, lack of memory while charging, and lack of pollutants during production and recycling, 
lithium-ion batteries (LIBs) are extensively utilized in new energy electric vehicles (EVs) and lithium battery technology. 
Although LIBs have many advantages, they can also have disadvantages, such as their electrochemical nature being 
active and the side reactions during charging and discharging tend to heat up and generate heat, so there are certain safety risks 
(Nizam et al. 2020). Hence, to operate an electrical system, a safe battery management system (BMS) is required (Gabbar, 
Othman, and Abdussami 2021). The BMS may offer the driver dynamic control over the energy storage system together with 
precise battery operating status information. One of the most crucial battery management system indications is state of charge 
(SOC), and proper calculation of SOC may increase the battery’s utilization and extend its useable life. Because of the 
acquisition equipment’s precision problem and outside variables like load, voltage, temperature, etc., it is challenging to establish 
a precise model to estimate SOC. It is significant to construct a trustworthy and precise model in order to estimate SOC for 
EV security and stability. 

Several SOC estimate algorithms have recently been proposed to improve the accuracy of SOC estimation (Plett 2019). The most 
commonly used methods include the open-circuit voltage method, the internal impedance method, the ampere-time integration 
method, and methods based on different circuit models (Meng et al. 2017). The ampere-time integration method makes it 
simple to estimate SOC online, but error accumulation due to timing issues, battery capacity, and current sensor issues lower the 
accuracy of SOC estimates. Open- circuit voltage (OCV) and SOC are roughly linear in terms of OCV estimation, and SOC 
estimate is quite accurate. The method does not apply to online SOC estimates for EV, though, as the battery must run 
for a considerable amount of time to achieve a stable OCV. SOC can also be measured using the internal resistance method (Sun, 
Li, and You 2020). But to finish the SOC calculation, several impedance experiments are needed, and the SOC estimation results 
are not very good (Rodrigues, Munichandraiah, and Shukla 2000). To reduce errors, many methods based on models have 
been studied and electrochemical models have been proposed by Smith et al (Smith, Rahn, and Wang 2007), they may 
produce a variety of LIB properties, but they have drawbacks, such as sophisticated models, challenging computations, 
difficult parameter acquisition, and bad practices. In (Di Domenico, Fiengo, and Stefanopoulou 2008), proposed a Kalman 
filtering algorithm based on the electrochemical model, established a model for averaging data based on the chemistry of 
the battery, and successfully estimated the SOC, but the accuracy of the SOC was overly reliant on the averaging model. Spagnol et 
al (Spagnol, Rossi, and Savaresi 2011) studied SOC estimation using the Kalman filter (KF) and showed that SOC has good 
accuracy. However, there is a trade-off problem, where the accuracy decreases when the estimator converges quickly, and 
conversely, a high accuracy estimator makes the convergence very slow. The experimental results show that both the extended  

 

 

 

 



 

 

 

Kalman filter (EKF) and the unscented Kalman filter (UKF) are effective at estimating the SOC for the nonlinear system. 
However, EKF ignores the higher-order element when expanding the equation using the Taylor technique, which results in 
inaccurate SOC estimation (Plett 2004). The findings show that UKF, which employs the unscented transformation (UT) to turn the 
approximation linear function into the probability density function, is more precise and simpler to design than EKF (Wan and 
Van Der Merwe 2001). However, human experience determines the noise covariance in UKF, which could cause the filtering 
results to diverge.  

The battery model estimation performance has recently been improved by the application of an increasing number of machine 
learning methods. The most extensively researched data-driven approach, the neural network (NN), has had great success in 
SOC estimate (Charkhgard and Farrokhi 2010). Also based on NN many variants have been generated, corresponding to SOC 
estimation with the same considerable accuracy, such as fuzzy neural network (Xu, Wang, and Chen 2012), dual neural 
network (Dang et al. 2016), and back propagation (BP) neural network (Guo, Zhao, and Huang 2017). To lessen the effect of 
battery degradation on SOC estimate, Kang et al (Kang, Zhao, and Ma 2014) presented the radial basis function (RBF) NN 
model. In order to estimate SOC, Reference (Chaoui and Ibe-Ekeocha 2017) proposed a combined model based on 
UKF and neural network, experimental findings indicate that this approach is capable of producing an accurate SOC 
calculation in a variety of experimental circumstances. However, the NN method tends to enter the local optimum when 
obtaining parameters. A novel method built on statistical learning theory is support vector machine (SVM) (Anton et al. 2013; 
Hansen and Wang 2005). Looking for the least amount of structural risk enhances the machine’s capacity for learning and 
generalization. The results show that the model may solve nonlinear problems and produce better results by using least square-
support vector machine (LS-SVM), which replaces the inequality constraint in SVM with an equation constraint (Zhang et 
al. 2019). 

This research proposes a data-driven model for lithium battery SOC estimation using the PSO-LS-SVM algorithm. 
Although the conventional LS-SVM can handle nonlinear, high-dimensional, and small-sample problems, when dealing with 
nonlinear issues, the choice of kernel function parameters can have a significant effect on the classification outcomes. 
Therefore, by building a PSO-LS-SVM data- driven model, PSO is used to choose the ideal parameters of the kernel 
function, and the algorithm is used to establish the nonlinear connection between voltage, current, and SOC for parameter 
identification, and the voltage of model output is contrasted with the voltage of experimentally measured to identify the 
precise of the PSO algorithm, and the PSO algorithm has collaborative search (directing the search with both individual 
local information and group global information), more rapid convergence, easier to leapfrog local optimal information, 
etc. SOC estimation using the PSO-LS-SVM method to construct a new state equation and measurement equation of 
UKF, and the viability and accuracy of this improved data-driven model are confirmed. 

The structure of this paper is as follows. In the second section, the algorithm used in the data-driven model combined 
with the mathematical formula will be analyzed in detail. The principle of integrating PSO and LSSVM is presented. 
The third section uses the model to analyze the battery data under different working conditions and verifies the model 
between the PSO algorithm parameter identification results and the voltage data obtained by the experiment. The 
experimental data are carefully analyzed, and a comprehensive comparison between the SOC calculated using the 
enhanced UKF algorithm and the SOC obtained through ampere-hour integration is made. The conclusion section 
concludes this work by summarizing the findings. 

 
2. Mathematical analysis 
2.1. Particle swarm optimization algorithm 

The particle swarm optimization algorithm (PSO) is proposed by Kennedy et al (Kennedy and Eberhart 1995) an 
algorithm for population-based searches that simulates the social behavior of flocks of birds. To order to avoid errors 
caused by empirical and random choices, the particle swarm optimization algorithm is chosen to optimize the parameters of 
the kernel function in this paper (Stighezza, Bianchi, and De Munari 2021). PSO is an algorithm that continuously 
searches for the best solution while considering various possible results. The global ideal solution can be obtained 
using the present optimal value, and the fitness is used to assess the quality of the optimal solution (De Oca et al. 2009). 
By referring to the current ideal value, it can deter- mine the global ideal solution. Each particle represents a solution 
that has a velocity and position vector. In the d-dimensional search space, the position and velocity of the i-th particle 
can be represented. Individuals are referred to as particles in the PSO algorithm and are flown in hyperdimensional 
space (Poli, Kennedy, and Blackwell 2007). PSO is a search process based on particle swarm optimization, which is 
defined as the potential solution of the problem being optimized in the d-dimensional search space and maintains its 
past best position and the best position of all particles as well as the velocity. Each time the evolution is generated, the 
particle information is combined to adjust the speed of its components in various dimensions and used to calculate the 
position of the new particle. Particles change states in the multi- dimensional search space until they reach equilibrium 
or optimum states or exceed computational limits. For any particle i, the position vector is Xi=(xi1,xi2, . . .,xid), and 
Vi=(vi1,vi2, . . .,vid). The ideal position for each particle is unique. 

 
 



 
 
 
Figure 1, is evident from the PSO algorithm. The initial values need to be set first, and then the optimal parameters can be 

derived by the continuous movement of the particles to LS-SVM. 
 
In this algorithm, the following formula is used for iteration: 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The process of particle swarm optimization. 
 
 
 

 
 
 
 
 
 
 
 

Where r1j and r2j are random numbers from 0 to 1, c1 and  c2 are the learning factors, and their values are typically 
between 0 and 2, and w is the inertia weighting factor. 
In this study, a PSO-LS-SVM system for battery SOC estimation is proposed (Li et al. 2019). The goal of this system is to 
automatically solve the selection of LS-SVM models while maximizing the LS-SVM regression accuracy by predicting the ideal values 
of kernel parameters and regularization parameters. A stochastic, parallel optimization algorithm is the PSO algorithm. Its 
benefits include speedier convergence, the algorithm’s simplicity and ease of programming and implementation, and the fact that it 
does not require the optimized function to have differentiable, derivable, continuous, or other qualities (Li et al. 2019). To discover 
the best set of parameters for the LS-SVM and increase classification accuracy, PSO was used to optimize LS- SVM parameters σ and 
λ. 

 

 
 



 

 

 
 
2.2. Optimized least squares support vector machine algorithm 

Support vector machines (SVM) are binary classification models that can be distinguished from perceptrons by having  a 
fundamental model that is a linear classifier defined by maximizing the interval on the feature space, SVM also has kernel tricks, 
which make them into nonlinear classifiers (Yan 2020). The optimization algorithm to solve convex quadratic programming is the 
learning algorithm of SVM. The fundamental principle of SVM learning is to find the separated hyperplane with the biggest geometric 
separation that appropriately divides the training data set. There is an infinite number of hyperplanes for sets of data that are linearly 
divided, but the geometrically maximally spaced separating hyperplanes is unique (Adaikkappan and Sathiyamoorthy 
2022). 

Since the SVM algorithm is difficult to implement on large- scale training samples, a modified SVM was chosen for the 
experiment. When it comes to tackling small-sample learning problems, a data-driven algorithm called LS-SVM which is built on 
statistical theory has some specific advantages. It can successfully avoid the local optimal solution of the neural network and 
overcome the influence of dimensionality (Jiabo et al. 2020). The best feature of LS-SVM is to integrate the quadratic programming 
problem into a linear equation problem by changing the SVM inequality constraint to an equation constraint and using the training 
error squared to replace the slack variable. This greatly increases the accuracy and efficiency of the model eigen-value 
optimization (Dilmen and Beyhan 2017). The LS-SVM model can be constructed for any set of nonlinear samples with known 
inputs and outputs by selecting the appropriate non- linear transformation inside the following equation: 

 
 
 

Where φ(xk) is the mapping function, w is the regression function’s coefficient, and b is the error value. The following 
minimal objective can be created using the structural risk minimization principle: 

 

 
 

Where ek is the error variable, b is the error value, and γ is the regularization parameter, commonly known as the penalty 
factor. 

To solve the optimization problem, the Lagrangian multiplier method is introduced: 
 

 
Where α is the LaGrange multiplier. 

Take the partial derivative of w, b, ek, αk concerning the function of L, respectively, and make L(w; b; e; α) . The formula is as 
follows: 

 

If K ( xi; xj) satisfies Mercer’s condition, then (3) and (4) can be combined to get the following equations: 

 
The kernel function is significant in the LS-SVM. The main goal of kernel functions is to break the dimensionality curse by using 
them to map linearly inseparable samples into high-dimensional space. It is possible to divide the mapped samples linearly. A 
classification plane created in the high-dimensional space is then used to split the samples of the two classes. When building a 
classifier, the kernel function is critical since it determines the structure of the feature space (Chen et al. 2018). For the data noise, 
the radial basis function provides excellent anti-interference properties, and convergence can be achieved without further 
assumptions on the objective function (Gutmann 2001). 
 
 
 



 
 
 

 
 

As a result, LS-SVM used the value of SOC and current as the input vectors. 
Figure 2 shows the terminal voltage estimated using PSO- LS-SVM. The input vector of the LS-SVM uses the Current I(k) and 

SOC (k) of the lithium battery measured at instant k, and V(k) is the corresponding voltage value at moment k. The 
relationship between SOC, voltage, and current is established using LS-SVM due to the nonlinear relationship between the 
internal parameters of LIBs. 

 

The two most crucial LS-SVM model parameters to recognize kernel parameter σ and the penalty factor λ. The PSO method is 
used in this study to find the optimal local parameters and the ideal global parameters in order the optimal parameters (λ, σ). 

 
2.3. SOC estimation based on LS-SVM-UKF 

SOC is defined as the proportion of the battery’s remaining capacity to its nominal capacity, which is expressed as: 

 

 
 

 

 

 

 

 

 

 

 
Figure 2. PSO-LS-SVM parameter identification process. 

 

 
 

Where SOC0 is the initial value, η is the discharge and charging efficiency, i(θ) is the current at the θ sample time, and Q0 is the 
rated capacity of the LIBs. 

The discretization of Equation (10) can be used as the state equation in the KF, where xk represents the SOC at the sampling k 
time. 

 

 In this study, the Unscented Kalman Filter (UKF) was utilized, which is accurate to the third order, in the sense of a Taylor series expansion 
for any nonlinearity (Bhuvana, Unterrieder, and Huemer 2013). 

 
 
 
 
 
 
 
 

 

 

 

 
 
 

 



 

 
 
 
The unscented transform (UT), a statistical method, is directly applied in UKF. The sigma points are a collection of 

precisely selected sample points used in UT, serving as the representation of a Gaussian distribution. These sigma points 
accurately represent the mean and covariance of GRVs that are propagated through a nonlinear function. And prognostics 
Xiong et al (Xiong et al. 2014) proposed a multi-time scale-based EKF to achieve a joint estimation of parameters and SOC for 
LIBs. He et al (He et al. 2013) and Zhang et al (Zhang, Liu, and Fang 2009) utilized UKF to estimate SOC with root mean square 
error (RMSE) of less than 5% for SOC estimation. In this paper, the state and measurement equations for SOC estimation are 
established based on the principle of UKF using the RBF kernel function equation of LS-SVM and the equation for 
calculating the ampere-time integral of SOC. Equation (7) and Equation (9) are employed, respectively, as measurement 
equations and the state equation of UKF. Measurement noise and state noise are introduced into Equation (11) as a result of errors 
in  the model generation processes and data measurement. 

 

 
 

Where the state vectors and measurement vectors, xk, and yk-1, are defined as the SOC value at time k and the estimated 
voltage at time k-1, respectively. State noise and measurement noise, respectively, are denoted by Qk and rk. 

For a nonlinear discrete-time system (Julier, Uhlmann, and Durrant-Whyte 2000), the state equation and measurement 
equation are described: 

 
Where f and h, respectively, stand for the measurement model and the nonlinear process model. The unmeasurable state vector is 
represented by the vector xk, the control input vector by the vector uk, the observed output vector by the vector yk, the system 
noise vector by the vector rk, and the measurement noise vector by the vector wk. 

 
Both qk and rk are zero-mean Gaussian white sequences  that are not correlated, and Qk and Rk, respectively, 
represent their covariance. The mathematical formula UKF is  shown as follows: 

 
(1) Initialization:  

 

 
 

(2) Augmented state vector and covariance matrix are: 

 
 

(3) Generating sigma points: 

 
 
Where ( �(𝑁𝑁 + 𝛾𝛾)𝑃𝑃𝑘𝑘)i is the i-th column of the matrix. In Equation (16) the parameter λ is the scale: 
 
 
 

 

 

 

 



 

 

 

Additionally, the computation of weighted coefficients is provided: 
 
 
 
 
 
 
 
 

(4) First updating the sigma point and covariance: 

 
Measurement Update: 

 
(5) Calculating the Kalman gain: 

 
(6) Second updating the states and covariance: 

 
 

 
 

 
The whole SOC estimate flowchart is provided in this paper and is based on the aforementioned algorithm. This flowchart is 
shown in Figure 3. 

As can be seen from the flowchart in Figure 3, a complete process is divided into three steps. First, the experimentally 
obtained real SOC, current, and voltage values into the LS- SVM model optimized by PSO and use radial basis function 
estimation to obtain the simulated voltage values. Second, the LS-SVM is used as a framework to establish the states and 
measure equations for the voltages. Finally, SOC estimation was performed using the data input to the UKF algorithm. 

 
 

3. Experimental verification 
 

In this section, the relevant data of lithium-ion batteries, such as current, voltage, and SOC, will be obtained experimentally under 
different working conditions. The data of HPPC, DST, and BBDST operating conditions were obtained. In addition, three types 
of evaluation criteria are used in this article, which includes Root means square error (RMSE) and mean absolute error (MAE), and 
relative error. The mathematical definitions of the above evaluation criteria are as follows: 
 
 
 
 
 



 

 
 
 
 

 
 
 
 
 

Where yact is the actual value and yest is the estimated value. 

 
3.1. PSO program parameters selection 

Before setting the parameters for the particle swarm optimization process based on the LS-SVM algorithm, the data must first 
be normalized and the training sample space must be constructed. Following the input of the optimal parameters, LS-SVM 
outputs the results of the prediction. The particle swarm optimization algorithm produces the most optimal values for 
relevant parameters (Castanho et al. 2022). In Figure 4, the blue curve depicts how rapidly the PSO method converges, 
indicating that the PSO is highly quick at quickly and precisely determining the optimal solution, which aids in determining the 
best LS-SVM parameters and increases the model’s validity and accuracy. 

To effectively converge the search space in a specific area when tackling practical optimization problems, it is frequently 
preferable to start with a global search before switching to a local fine search to get high-precision results. Therefore, the 
strategy of adaptive adjustment is proposed, that is, the value decreases linearly as the iteration progresses (Lai et al. 
2018). According to a straightforward and widely-used linear change strategy method, the particle swarm algorithm has strong 
global convergence ability in the early stage and strong local convergence ability in the later stage as the number of iterations 
increases and the inertia weight drops. 
 
 

 
Figure 3. The process of PSO-LS-SVM-UKF. 
 

 
The PSO parameter’s local search ability is represented by the parameter c1 = 1.5 in the computer program, characterizing the 

impact of a single extreme value on the current solution, and the global search ability is represented by the parameter c2 = 1.8, 
characterizing the impact of a global extreme value on the current solution. Smaller populations are more susceptible to local 
optimums; bigger populations can improve convergence and discover the global optimum solution more quickly, but each  

 
 
 
 



 
 
 

iteration will require more computing power. Therefore, 20 particles are chosen as the particle population size and there will be 20 
tests. According to the real circumstances during the optimization process, the number of iterations needs to be modified;  
if the number is too low, the solution is unstable, and if the number is too high, the procedure is time-consuming and needless. 
As a result, 100 experiments are picked for the number of iterations. 3.2. SOC estimation under HPPC condition The experimental 
test is conducted using a ternary lithium- ion battery with a rated capacity of 45Ah and a nominal voltage of 3.7 V. The test 
platform is a BTS200-100-104 battery test device, and software installed at the PC control terminal is used to regulate the battery 
charging and discharging conditions to correspond with the test device. All of the experiments in this study are conducted at a 
constant temperature of 25 degrees Celsius to prevent the impact of temperature variability on the parameters and OCV of the 
battery. 

 

 

Figure 4. The fitness curve. 
 
 

Figure 5 shows the current and voltage curves under HPPC conditions. The experimental results are shown in Figure 6, it is 
clear that the PSO-LS-SVM has a higher accuracy for voltage estimation. Can see that the estimation capability of PSO-LS- SVM 
outperforms the original LS-SVM, and its maximum absolute error is only 0.091 V. The corresponding RMSE decreases 
by 62.6% and the MAE further decreases from 0.586% to 0.379%. Indicating that PSO successfully optimizes the LS-SVM to 
improve the accuracy and stability of voltage estimation. 

In Figure 7, the estimated voltage obtained by PSO-LS-SVM is brought into the UKF algorithm for comparison with the  real 
voltage, and the state equation and measurement equation in Equation (11) is used to finally derive the UKF estimated SOC 
value. It can be seen that the results of SOC estimation are more satisfactory, the maximum absolute error of SOC is 0.179%. The 
RMSE and MAE are 0.039% and 0.023% respectively in a good range. 

 
 

 
 

Figure 5. The real experiment data of HPPC condition.  
 
 
 
 



 

 
 
 
 

 

Figure 6. The voltage estimation in HPPC condition. 
 
 
 

 

Figure 7. The SOC estimation in HPPC condition. 
 

3.2. SOC estimation under DST condition 

Figure 8 shows the current and voltage curves under DST conditions. As can be seen in Figure 9, the maximum relative 
error of the PSO-LS-SVM voltage estimation under DST is 0.472 V, the RMSE is reduced by 27.7% and only 3.833% 
compared to LS-SVM, and the MAE is reduced by 19.4% and only 2.061%. In Figure 10, the maximum error of 0.052% 
in the SOC estimation for the DST condition is the most excellent. And its RMSE and MAE are 0.020% and 0.016% 
respectively also in the better range. 

 

 
 
 

 

Figure 8. The real experiment data of DST condition. 
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Figure 9. The voltage estimation in DST condition. 
 
 
 
 

 

Figure 10. The SOC estimation in DST condition. 
 

 

 

3.3. SOC estimation under BBDST condition 

Figure 11 shows the current and voltage curves under BBDST conditions. As can be seen in Figure 12, the maximum relative 
error of PSO-LS-SVM voltage estimation for BBDST condition is 0.046 V, which is 87.2% lower than LS-SVM, and its RMSE is 
86.1% lower than LS-SVM by only 0.208%, and MAE is 70.5% lower by only 0.232%, so it can be seen that PSO is the most 
obvious optimization for BBDST condition. In Figure 13, the maximum error of SOC estimation in BBDST condition is 
0.301% in the middle position, and the RMSE and MAE are 0.113% and 0.095% respectively, which are in the reasonable 
range. 

 

 
 

 

Figure 11. The experiment data of BBDST condition. 
 
 



 

 

 

 

Figure 12. The voltage estimation in BBDST condition. 
 
 
 

 

 

Figure 13. The SOC estimation in BBDST condition. 
 
 

In Table 1, it can be shown that the PSO algorithm can considerably enhance the estimation capability of LS-SVM and shows 
an extremely good performance in voltage estimation. The improvement in voltage estimation is no less than 50% under 
different operating conditions. And the RMSE and MAE values are always kept in a reasonable and good range. 

As can be seen in Table 2, SOC estimation using PSO algorithm optimized voltage data can also further improve the accuracy  
of SOC. The SOC estimate under different working conditions can be guaranteed within 0.5%. And the values of MAE and 
RMSE are also guaranteed at a low level of about 0.2%, indicating that the tracking ability of the estimation process is strong. 

 
 
 

Table 1. Comparison of experimental error analysis of different algorithms. 

Work Condition Model Maximum Absolute Error (V) RMSE (%) MAE (%) 
HPPC LS-SVM 0.484 1.874% 0.586% 

 PSO-LS-SVM 0.091 0.698% 0.379% 
DST LS-SVM 0.632 5.300% 2.556% 

 PSO-LS-SVM 0.472 3.833% 2.061% 
BBDST LS-SVM 0.453 2.216% 0.787% 

 PSO-LS-SVM 0.032 0.208% 0.232% 
     

 
Table 2. Comparison of experimental error analysis of different working conditions. 

Work Condition Model Maximum Absolute Error (%) RMSE (%) MAE (%) 
HPPC UKF 1.359% 0.882% 0.632% 

 LS-SVM-UKF 0.203% 0.084% 0.073% 
 PSO-LS-SVM-UKF 0.179% 0.039% 0.023% 
DST UKF 3.109% 1.713% 1.304% 

 LS-SVM-UKF 0.100% 0.050% 0.043% 
 PSO-LS-SVM-UKF 0.052% 0.020% 0.016% 
BBDST UKF 2.289% 1.961% 1.873% 

 LS-SVM-UKF 0.443% 0.207% 0.178% 
 PSO-LS-SVM-UKF 0.301% 0.113% 0.095% 

 
  



 

4. Conclusion 
In this study, a data-driven model is built to accomplish high accuracy state of charge estimation under various operating 
conditions. This model provides new energy vehicles with a more accurate remaining mileage projection, promoting safe 
driving. The root means square error distribution for particle swarm optimized least squares support vector machine charge 
state estimation under complex operating conditions is 0.039%, 0.020%, and 0.113%, which are more than half of the conventional 
UKF. In conclusion, this data-driven model and method have been shown to improve lithium-ion battery state of charge estimate. 
To ensure that drivers are operating new energy vehicles safely, it is essential to monitor the status of the vehicle in real time. The 
theoretical groundwork for battery condition monitoring is provided in this paper. However, in the real driving process, the 
temperature is complex and changes and future research directions will focus on considering the impact of real-time temperature 
changes on the battery charging state. 
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