
FENG, R., WANG, S., YU, C., ZHOU, H. and FERNANDEZ, C. 2023. High-precision state of charge estimation of urban-
road-condition lithium-ion batteries based on optimized high-order term compensation-adaptive extended Kalman 

filtering. Journal of the Electrochemical Society [online], 170(5), article 050539. Available from: 
https://doi.org/10.1149/1945-7111/acd303  

 
 

This document was downloaded from 
https://openair.rgu.ac.uk 

High-precision state of charge estimation of 
urban-road-condition lithium-ion batteries based 

on optimized high-order term compensation-
adaptive extended Kalman filtering.  

FENG, R., WANG, S., YU, C., ZHOU, H. and FERNANDEZ, C. 

2023 

https://doi.org/10.1149/1945-7111/acd303


High-Precision State of Charge Estimation of Urban-Road-
Condition Lithium-Ion Batteries Based on Optimized High-

Order Term Compensation-Adaptive Extended Kalman 
Filtering

Journal: Journal of The Electrochemical Society

Manuscript ID JES-109909.R1

Manuscript Type: Research Paper

Date Submitted by the 
Author: 19-Apr-2023

Complete List of Authors: Feng, Renjun; Southwest University of Science and Technology, 
Wang, Shunli; Southwest University of Science and Technology
Yu, Chun-Mei; Southwest University of Science and Technology, School 
of Information Engineering
Zhou, Heng; Southwest University of Science and Technology
Fernandez, Carlos; Robert Gordon University

Keywords: Batteries – Li-ion, Batteries - Lithium, Batteries

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society



High-Precision State of Charge Estimation of Urban-Road-Condition Lithium-Ion Batteries 
Based on Optimized High-Order Term Compensation-Adaptive Extended Kalman Filtering 

Renjun Feng,1 Shunli Wang,1,2,z Chunmei Yu,1 Heng Zhou,1 and Carlos Fernandez3 

1School of Information Engineering, Southwest University of Science and Technology, Mianyang 

621010, China 

2School of Electrical Engineering, Sichuan University, Chengdu 610065, China 

3School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom 

zE-mail: wangshunli1985@qq.com 

Abstract 

It is significant to improve the accuracy of estimating the state of charge (SOC) of lithium-ion 

batteries under different working conditions on urban roads. In this study, an improved second-order 

polarized equivalent circuit (SO-PEC) modeling method is proposed. Accuracy test using 

segmented parallel exponential fitting parameter identification method. Online parameter 

identification using recursive least squares with variable forgetting factors(VFFRLS). An optimized 

higher-order term compensation-adaptive extended Kalman filter (HTC-AEKF) is proposed in the 

process of estimating SOC. The algorithm incorporates a noise-adaptive algorithm that introduces 

noise covariance into the recursive process in real-time to reduce the impact of process noise and 

observation noise on the accuracy of SOC estimation. Multiple iterations are performed for some of 

the processes in the extended Kalman filter(EKF)  to compensate for the accuracy impact of missing 

higher-order terms in the linearization process. Model validation results show over 98% accuracy. 

The results after comparing with the EKF algorithm show a 4.1% improvement in SOC estimation 

accuracy under Hybrid Pulse Power Characterization(HPPC) working conditions. 2.7% 

improvement in accuracy in Dynamic Stress Test(DST) working conditions. 2.1% improvement in 

Beijing Bus Dynamic Stress Test(BBDST) working conditions. The superiority of the algorithm is 

demonstrated. 
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1. Introduction

Out of concern for the energy crisis and environmental protection, the development and 

promotion of new energy vehicles, especially electric vehicles, has made a certain degree of progress 

and breakthrough [1, 2]. The power lithium-ion battery has the advantages of high single-cell 

voltage, high energy, long cycle life, low self-discharge rate, and no pollution, which is the core 

power source of choice for various electric vehicles [3]. The charge state of lithium-ion batteries 

directly reflects the remaining capacity of the battery, and therefore to a certain extent reflects the 

range of electric vehicles [4, 5]. Nowadays, with the development of urban transportation systems, 

various road conditions have emerged to put the performance of lithium-ion batteries to a new test. 

Accurate estimation of the SOC of lithium-ion batteries under different operating conditions is 

essential to achieve effective management of battery power, avoid overcharging and discharging of 

batteries, and extend battery life [6]. 

Current methods for estimating lithium-ion battery SOC include the ampere-time integration 

method, open-circuit voltage method, data-driven method, and model-based method [7-9]. The 

ampere-time integration method is simpler, but the method requires the initial state of the SOC to 

be accurate, and once the error exists it will keep accumulating, resulting in a lack of accuracy in 

the estimation results [10-12]. The open-circuit voltage method is a common method used in 

lithium-ion battery testing experiments, this method is mainly based on the fitted OCV-SOC 

relationship curve to determine the relevant state of the power lithium-ion battery [13], and it is 

necessary to ensure that the power battery is in an open-circuit state and resting for too long before 

estimating the SOC [14, 15]. The data-driven method requires a large amount of experimental data 

with data training, which is too computationally intensive and difficult to meet the real-time nature 

of powered vehicles [16-18]. The model-based method includes an electrochemical model and an 

equivalent circuit model [19, 20]. The electrochemical model is modeled based on the charged ion 

transfer relationship, but the complex electrochemical partial differential equations are difficult to 

analyze and calculate [21]. The equivalent circuit model uses a linear transformation parameter 

method to simulate the nonlinear operating characteristics of the power battery, which has linear 

characteristics and is easy to implement for calculation [22-24]. From the above study, it is clear 

that the equivalent circuit-based model is more suitable for real-time online systems. The accuracy 

of the SOC estimation method based on the extended Kalman filter algorithm is limited by the 
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accuracy of the battery equivalent model parameters [25]. A variable forgetting factor recursive 

least squares method is used to update each parameter of the second-order model equivalent circuit 

in real time [26, 27]. The noise covariance magnitude of the extended Kalman filtering algorithm is 

constant and cannot be updated in real time according to the changes in the SOC estimation process. 

The Taylor expansion of the linearization process for nonlinear systems is to discard the higher order 

terms, resulting in a lack of accuracy [28]. Both of these factors can lead to inaccurate SOC 

estimation results [29]. 

In order to solve the above two problems and improve the accuracy of SOC estimation under 

the condition of multi-road cities. The SO-PEC circuit model was constructed. VFFRLS algorithm 

is used for model parameter identification. On the basis of the traditional extended Kalman filter, 

the adaptive process of noise and the iterative calculation of higher-order compensation are added 

to make up for the original shortcomings of the algorithm. 

2. Mathematical Analysis

2.1 The SO-PEC Modelling Method 

Battery charging and discharging is a complex nonlinear process. To accurately estimate the 

remaining battery charge, it is especially important to establish a suitable battery performance model 

[30]. The Rint model does not take the polarization characteristics into account, so the model 

accuracy is not sufficient. The PNGV model is only suitable for the analysis of battery 

characteristics in transient environments [31, 32]. The Thevenin model takes into account the cell 

polarization effect. The dynamic characteristics are better represented, but the accuracy needs to be 

improved [33]. Therefore, an RC parallel circuit was added to the Thevenin equivalent circuit model 

to construct the SO-PEC model. The model consists of two parallel RC circuits, which can simulate 

the internal polarization reaction of a lithium-ion battery during charging and discharging more 

realistically. Also, the dynamic and static characteristics of the Li-ion battery can be characterized 

in this model. The SO-PEC model is shown in Fig 1. 
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Fig.1 The SO-PEC model 

Fig. 1 shows the SO-PEC model, which OCU  represents the battery open-circuit voltage, LU

represents the terminal voltage. 0R   is the ohmic internal resistance of the Li-ion battery. RU

indicates the transient voltage drop caused by a sudden change in the current of the lithium-ion 

battery. The circuit is composed of 1R  and 1C  represents the stage in which the voltage changes 

rapidly during the chemical reaction inside the battery. The circuit is composed of 2R   and 2C

represents the phase in which the voltage changes slowly during the chemical reaction inside the 

battery. The terminal voltage LU  in the circuit is shown in Equation (1). 

0 1 2= − − −L OCU U IR U U (1) 

According to the equivalent model of the second-order circuit shown in Fig.1. According to 

Kirchhoff's circuit law, the obtained circuit dynamic model is shown in Equation (2). 

1 1 1 1
1

1 1 1 1

2 2 2 2
2

2 2 2 2

L
L

L
L

dU U I dU UI C
dt R C C dt R

dU U I dU UI C
dt R C C dt R

  
= − + ⇐ = +  

  

  = − + ⇐ = +  

(2) 

SOC is defined as the ratio of the remaining capacity of the battery to the rated capacity, and 

the classical SOC estimation generally uses the ampere-time integration method [34]. The ampere-

time integration method estimates the remaining capacity of the battery on the basis of the SOC 

value at the initial moment [35]. By calculating the integral of the corresponding time of the charge 

and discharge current within a certain period of time, the percentage change in power can be 

calculated [36]. The formula of the commonly used ampere-time integration method is shown in 

Equation (3). 

0
1 ( )

n

SOC SOC I t tdt
Q

η= − ∆∫ (3) 

In Equation (3), 0SOC  is the SOC  value of the initial state of the battery. nQ is the rated 

capacity of the battery. ( )I t  represents the magnitude of the discharge current in the circuit. η
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represents the Coulomb efficiency, often taken as 1η ≈ Δ𝑡𝑡 is the sampling period. The SOC is 

calculated by the ampere-hour integration method, and compared with the SOC value obtained by 

the HTC-AEKF algorithm. 

The parameters SOC , 1U  and 2U  form the parameter matrix [ ]1 2  TSOC U U  as the state 

variable[37]. The state space equation and observation equation of lithium-ion battery can be 

obtained through the above expression, and the calculation process is shown in Equation (4). 

( )
( )
( )

( )
( )
( )

( )

( ) ( ) ( ) ( ) ( )

1 1 1 1

2 2

2 2

1 1 1

2 2

2

1 2 0

1 0 0
1

0 0 1 1 1
1

0 0
1

n
t t

R C R C

t
R C t

R C

L OC

t
Q

SOC k SOC k
U k e U k R e I k
U k U k

e
R e

U k U k U k U k I k R

η

∆ ∆
− −

∆
−

∆
−

  ∆  −
   
 −              = − + − −          −               −       
 = − − −

(4) 

2.2 Segment parallel exponential fitting parameter identification 

The subject of this experiment is a ternary lithium-ion battery with a rated capacity of 45Ah. 

But its actual capacity is 43.58Ah. The experiments were conducted using hybrid pulse power 

characterization (HPPC). This experiment conducts regular charging and discharging of analog 

circuits within a certain time interval. At this point, it is necessary to record the SOC value of the 

lithium-ion battery in real time. It is also necessary to record the changes in open circuit voltage and 

circuit current at each stage. The equation of the state of the equivalent analog circuit is then used 

to obtain the internal parameters of the circuit. HPPC experimental process is: first of all, the lithium 

battery is discharged for 10s, left for the 40s, and then charged for 10s, and then left for 40s. The 

whole process is 1C intermittent constant current discharge of the lithium battery. The voltage and 

current during charging and discharging of the whole HPPC experiment are shown in Fig.2. Fig.2 

shows the HPPC experiments at points where the SOC was between 1.0 and 0.1. 

(a) Current response curve (b) Current response curve

Fig. 2 The voltage and current curve of the whole HPPC process. 
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Fig.3 shows the variation process of charge and discharge voltage at SOC=0.9. In this 

experiment, there is a violent chemical reaction inside the lithium-ion battery due to the charge and 

discharge. So the lithium-ion battery needs to be left to stand for 30 minutes after the experiment. It 

is necessary to wait until the internal chemical and thermal reactions have gradually smoothed out. 

At this point, SOC = 0.9 read out the voltage value can only be used as the open circuit voltage 

value. Fig.3 reflects both the transient and steady-state characteristics of the lithium battery. The 

battery voltage drops instantly at the beginning of the pulse discharge. Then the voltage slowly 

declines over time during the discharge. When the discharge ends instantly, the battery voltage 

springs back up immediately. There is a tendency for the voltage to gradually rise back up and level 

off during the shelving period. The charging process is the opposite of the voltage response of the 

discharging process.

(a) Voltage curve (b) Current curve
Fig. 3 HPPC curve at SOC=0.9 

To verify the feasibility and accuracy of the SO-PEC model. At the same time, in order to 

obtain the variation of external parameters characterizing the operating characteristics of lithium-

ion batteries. In this paper, a segmented parallel exponential fitting parameter identification method 

is proposed. The zero-state response of the charge/discharge phase was selected by segmented 

parallel exponential fitting at the point of the 10 SOC sections. The simulated voltage calculated 

from the parameter identification results is compared with the actual voltage of the model, the 

voltage error of the cross section is analyzed, and the actual characteristics of the model are 

evaluated. The calculation process of this method is shown below. 

In the two time periods of 1 2t t and 3 4t t , the ohmic resistance is affected by the sudden 

change of current, which causes a transient change of voltage. The formula for calculating ohmic 

resistance is shown in Equation (5). 
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During the period 2t  to 3t , the terminal voltage of the battery does not change substantially 

during this period due to the zero state response. Time domain analysis is performed for the time 

period from 2U  to 3U . The time-varying functional relationship between LU  and time t is obtained. 
1 21/ 1/

1 2( ) (1 ) (1 )L OCU t U IR e IR eτ τ− −= − − − −  (6) 

Equation (5) can be written as a multi-parameter unknown functional relationship, as shown in 

Equation (7). 

1 2

1 2
1 2

,

,

x x
c dy a b e
a bR R
I I

c dC C
R R

− −

 = + +

 = =

 = =


(7) 

By collecting 10 pulse data under HPPC operating conditions, the parameters a , b , c , d , 

and e  can be fitted in the simulation software. The parameters of the SO-PEC model can be 

identified through Equation (7). 

2.3 Variable Forgetting Factor Recursive Least Squares Method 

After the accuracy verification of the SO-PEC model, the VFFRLS algorithm is used for online 

parameter identification of the model. The VFFRLS algorithm uses a variable forgetting factor 

adaptive to find the optimal value of the forgetting factor and improve the adaptability of the 

algorithm [38]. The algorithm's parameter discrimination estimation capability does not overly 

depend on the current data as the model parameters change in real time [39, 40]. 

The least squares method is a simple and effective fitting algorithm that can give more accurate 

parameter fitting results for nonlinear systems, calculated as in Equation (8). 
( ) ( ) ( )Ty k k e kθ= +  (8) 

In Equation (8), the ( )y k  is the value of the system output quantity at moment k and ( )T k  

is the observed quantity. θ  is the matrix of the waiting discrimination parameters, ( )e k  is the 

estimation error of the RLS Model output comparison verification at moment k . ( )T k  and θ  are 

calculated as shown in Equation (9). 

[ ]
[ ]1 2 1 2

( ) ( 1) ( ) ( ) ( )T

n n

k y k y k n u k u k n
a a a b b bθ

 = − − ⋅ ⋅ ⋅ − − ⋅ ⋅ ⋅ −
 = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅


 (9) 

In the above Equation (9), the ( )u k  is the input value of the system at k  times. The criterion 

function ( )J θ  is shown in Equation (10). 

( ) [ ]
2

1
( ) ( ) ( ) ( ) ( )

TT T

k
J e k y k k y k kθ θ θ

∞

=

   = = − −   ∑    (10) 
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When ( )J θ  taking the minimum value, the least squares estimate is obtained. The estimation 

is calculated as shown in Equation (11). 
1ˆ ( ) ( ) ( ) ( )T k k k y kθ
−

 =      (11) 

The above Equation (8) ~ (11) is the derivation process of parameter identification of the RLS 

algorithm. RLS has a short memory time. As the number of recursions increases, historical data 

continues to accumulate, and it is difficult to correct the new data that follows. Therefore, it is 

necessary to add a forgetting factor to weaken data saturation. 

The recursive correction of the forgetting factor is introduced, and the specific formula is 

shown in Equation (12). 

( ) 1

ˆ ˆ ˆ( 1) ( ) ( 1) ( 1) ( 1) ( )

( 1) ( 1) ( 1) ( ) ( 1)

1( 1) ( 1) ( 1) ( )

T

T

T

k k K k y k k k

K k P k k k P k k

P k I K k k P k

θ θ θ

λ

λ

−

  + = + + + − +  
  + = + + + +  

  + = − + + 



  



(12) 

From this, the RLS algorithm was improved into the FFRLS algorithm. In Equation (12), 

( 1)K k +  is the gain of the operation at k -time and ( 1)P k +  is the covariance at 1k + . λ  is the 

forgetting factor, in general, λ =0.98, but this is only an empirical value. It cannot adjust the size of 

the value in time according to the recognition error. This is the main cause of FFRLS parameter 

identification errors. It is necessary to improve the time variability of the forgetting factor[41, 42]. 

The following recursive formula for adding the variable forgetting factor to the FFRLS is 

shown in (13) and (14). 

2

1( )

k

i i
i k M

e e
L k

M
ρ = − += −
∑

(13) 

Equation (13), ie   the estimation error at moment i   and M  is the window size . ρ   is the 

Sensitive factor. The calculation formula of the variable forgetting factor is shown in Equation (14). 
( )

min 0 min( ) ( ) 2L kkλ λ λ λ= + − ⋅  (14) 

A large or small value of the forgetting factor can cause a decrease in the estimation accuracy 

of the algorithm. If the adaptive value of the forgetting factor is taken close to the value 1, the 

algorithm cannot keep track of the changes in the model parameters in time. If the forgetting factor 

approaches the value 0, the data of the current moment will dominate. This can weaken the ability 

of the algorithm to discriminate the model parameters. The algorithm will have a lag effect. minλ  is 

the minimum value of the forgetting factor. ( )kλ  is the value of the forgetting factor at the moment 

k. To prevent ( )kλ  from taking a value of 1, replace 1 in the formula with a constant 0λ  less than
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1. The value ( )kλ  is determined by the mean squared value of the estimation error of M  sample

points before the present moment k . 

2.4 High-order Term Compensation-Adaptive Extended Kalman Filtering 

The extended Kalman filter has two disadvantages. On the one hand, the extended Kalman 

filtering algorithm is cyclically iterative. The process noise covariance kQ  and the measurement 

noise covariance kR  are usually treated as constant values. However, nonlinear systems usually 

operate with disturbances. The values of these two covariances are always changing. Therefore, it 

causes inaccurate estimation of SOC of Li-ion battery and the estimation accuracy is not up to the 

requirement. On the other hand, the extended Kalman filter discards higher order terms during the 

Taylor series expansion of the linearization of the nonlinear system, but at the same time causes a 

lack of estimation accuracy [43]. 

To solve these two problems it is necessary to improve the traditional Kalman filtering 

algorithm. To resolve the error caused by constant noise covariance. In this paper, the adaptive noise 

algorithm is introduced on the basis of the original Kalman filter. The noise covariance is added as 

a variable to the iterative process that is continuously updated. Regarding the loss of estimation 

accuracy caused by discarding higher-order terms in the linearization process. In this paper, iterative 

computation is used to repeat some of the processes of the extended Kalman filtering algorithm. At 

the end of each cycle, the values of the posterior estimates are reintroduced into the observation 

equation to obtain the new Jacobi matrix. This method reuses the collected information to make the 

estimated value closer to the true value. 

Kalman filter is usually used for linear systems or nonlinear systems, the Kalman filter needs 

to be discretized, and the discretized spatial equation of state is shown in Equation (15). 

1 1k k k k k k

k k k k k k

x A x B u w
y C x D u v

− −= + +
 = + +

(15) 

The equations above are the system state equation and the measurement equation, which kx

represents the system state at moment k . 1kx −  is the system state at moment 1k − . 1ku −  is the 

system input at moment 1k − . ky  is the system process noise. kv  is the observation noise. kA

represents the transfer matrix to describe the mapping between the system states between the before 

and after moments. kB represents the input matrix to represent the effect of external inputs on the 

system. kC is the output matrix to describe the effect of state vectors on the observations. kD  is the 

feedforward matrix to describe the effect of external inputs on the predicted observations. 
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The system state space equations of the extended Kalman filter algorithm can be expressed as 

Equation (16). 

( )
( )

1,
,

k k k k

k k k k

x f x u w
y h x u v

− = +
 = +

(16) 

In Equation (16), ( )1,k kf x u− the system equation of state ( ),k kh x u is the system equation of 

observation. kw and kv  are independent Gaussian white noises and are not correlated with each 

other, kQ and kR  are the covariances of kw and kv , respectively. 

The following is the specific calculation procedure of the high-order term compensation-

adaptive extended Kalman filtering algorithm. 

(1) The initialization formula is shown in Equations (17). 0P+  is the mean square deviation matrix,

0x̂+ is the state variable. 

[ ]
( )( )

0 0

0 0 0 0 0

ˆ

ˆ ˆ
T

x E x

P E x x x x

+

+ + +

 =
  = − −   

(17) 

(2) The Jacobian matrix formula for calculating the equation of state is shown in Equation (18).

( )1
1

,k k
k

f x u
A

x

−
−

−

∂
=

∂
(18) 

(3) The error update formula of state variable and mean square estimation is shown in Equation (19).

( )1 1

1 1 1

ˆ ˆ ,k k k
T

k k k k k

x f x u
P A P A Q

−
− −

− +
− − −

 =


= +
(19) 

In Equation (19), ˆkx− represents the prior estimate of the state variable at moment k  . kP−

represents the prior error estimation of the covariance matrix at moment k . 

(4) for i= 1:c, the calculation of the i-th iteration is shown in Equation (20).

( )1 1

1 1 1

ˆ ˆ ,i i
k k k

i i Ti
k k k k k

x f x u
p A P A Q

− +
− −

− +
− − −

 =


= +
(20) 

In Equation (20), ˆ i
kx− is the i-th a priori estimate of the state variable ˆkx−  at this moment in time 

k. 1ˆ i
kx+
− is the posterior estimate of the state variable 1ˆkx−

− at moment 1k − .  1ku − is the input current at

moment 1k − . i
kp− is the i-th a priori estimate of the covariance at moment k . 

The estimation error of the state variable is not guaranteed to decrease continuously in the 

iterative calculation process due to the presence of uncertainties such as noise, so the prediction 

covariance matrix needs to be adjusted. Therefore, the covariance during each round of iterations 

can be rectified by finding a damping factor ω  of the suitable size to reduce the error and improve 

the accuracy, and the specific adjustment formula is shown in Equation (21). 
1ˆ i i i i

k k k b kP I p p I p
ω

− − − −  = − +    
(21) 
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(5) Calculate the Jacobi matrix of the observation equation as shown in Equation (22).

( )ˆki
k

h x
C

x

+∂
=

∂
(22) 

(6) The gain matrix is shown in Equation (23), where i
kL  is the Kalman gain. 

i iT
i k k
k i i iT

k k k k

P CL
C P C R

−

−=
+

(23) 

(7) The optimal estimation of state variables is shown in Equation (24).

( )ˆ ˆ ˆ ,i i i i
k k k k k kx x L y h x u+ − − = + −  (24) 

(8) The mean square deviation optimal estimate is shown in Equation (25).

( ) ˆi i i i
k k k kP I L C P+ −= − (25) 

(9) Get the calculation result.

When the number of iterations in a single step period reaches the set threshold c or the

difference between the estimated values of successive iterations is less than the preset threshold ϖ , 

the iteration process is exited. Continue the recursive calculation at the time of 1k − , and input the 

final state variable ˆkx+  and covariance estimate kP+  at the time of k , as shown in Equation (26). 
ˆ ˆ i

k k
i

k k

x x
P P

+ +

+ +

 =
 =

(26) 

(10) The noise adaptive algorithm is shown in Equation (27).

( )
1 1

1

1

ˆ ,
1

i i T
k k k k

i
i k k k

i
i T

k i i
j i M

i i i i iT
k k k k k

Q L A L
e y h x u

F e e
M

R F C P C

+ −
−

= − −
−

+

 =
 = −
 =


= +

∑
(27) 

In Equation (27), 1
i
kQ + is the iterative value of the process noise covariance for update Equation 

(20). 1
i
kR + is an iterative value that measures the noise covariance for the updated Equation (23). ie

is the difference between the true value and the predicted value of the algorithm. M  is the matching 

window size. The algorithm flow is shown in Fig.4. 

In this paper, root means square error (RMSE) and mean absolute error (MAE) are used as 

metrics for judging the accuracy of the algorithm. Evaluate whether the algorithm meets the 

accuracy improvement requirements. ( )SOC t′  is the estimated value, and ( )SOC t  is the calculated 

value of the ampere-hour integral. N  is the total number of data. 

( )
2

1
( ) ( )

N

t
SOC t SOC t

RMSE
N

=

′ −
=
∑

(28) 
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( )
1

( ) ( )
N

t
SOC t SOC t

MAE
N

=

′ −
=
∑

(29) 

Fig. 4 Algorithm flow chart of parameter identification and SOC estimation 

3. Analysis of results

3.1 Experimental platform construction 

During the data analysis and processing, valid data segments are extracted from the original 

experimental data. Then, the data segments are sampled in an effective manner. Finally, the 

relationship between the internal parameters of the SO-PEC model and the SOC data collected from 

the experiment was obtained. So as to achieve an accurate description of the working characteristics 

of the lithium battery. The experimental process is shown in Fig.5. 

Fig. 5 Data processing and model validation 

The experimental data for HPPC, DST, and BBDST working conditions were measured on the 

following experimental platform. The experimental platform is shown in Fig.6. 
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Fig. 6 Experimental test platform 

In order to obtain more accurate experimental data, the BTS200-100-104 instrument was used 

in this experiment. This device includes battery data testing equipment and temperature control 

devices. The function of a computer terminal is to control the working conditions setting, charging 

and discharging, and testing data collection of testing equipment. The function of a thermostat is to 

maintain a constant temperature in the testing environment during lithium-ion battery testing. The 

original data of DST and BBDST are shown in Fig. 7 and Fig.8. 

(a) Voltage data (b) Current data
Fig. 7 DST measurement data 
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(a) Voltage data (b) Current data
Fig. 8 BBDST measurement data 

3.2 SO-PEC model accuracy validation 
A 30-minute window period should be set after the end of each cycle in this experiment. The 

purpose of doing so is to ensure that the electrochemical and thermal reactions inside the lithium-

ion battery become stable. The experimental conclusion drawn in this way is more convincing. The 

SOC values for this HPPC operating condition were taken from 10 points. The identification results 

of each parameter of the SO-PEC model are shown in Table 1. 
Table.1 Results of the model parameters. 

( )100%SOC  ( )VOCU  ( )0R Ω ( )1R Ω ( )2R Ω ( )1 FC ( )2 FC
1 4.184 0.002412 0.001688 0.0001 5997 1.026e+06 

0.9 4.057 0.002160 0.001203 0.0001167 8707 8.71e+05 
0.8 3.949 0.002552 0.001871 0.0001 5003 9.257e+05 
0.7 3.847 0.002105 0.001191 0.0001 8048 1.206e+06 
0.6 3.723 0.002749 0.001239 0.000259 7092 3.915e+05 
0.5 3.657 0.002372 0.001141 0.0001003 6749 9.251e+05 
0.4 3.618 0.002669 0.001086 0.0001001 9092 1.056e+06 
0.3 3.585 0.002011 0.001291 0.001064 8841 9.63e+04 
0.2 3.544 0.002849 0.001009 0.000163 10090 1.127e+06 
0.1 3.378 0.001258 0.001141 0.0001 6093 4.171e+06 

The data shown in Table 1 is imported into the simulation software and the equivalent circuit 

model is simulated. Obtain the simulated voltage for the SO-PEC model. The simulated voltage of 

the model is then compared with the actual voltage. To identify whether the model has high accuracy. 

The voltage and actual voltage comparison graph and error graph are shown in Fig.9. 

(a) Terminal voltage comparison diagram (b) Terminal voltage error diagram
Fig. 9 Parameter identification results under HPPC working conditions 
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From Fig.9, it can be seen that the maximum error between the actual voltage and the simulated 

voltage is 0.0617V. The accuracy of the model reaches 98.25%. The calculation formula is shown 

in Equation (30). 

,1

rr
rr

OC

UE
U

= (30) 

rrE  is the estimation accuracy. rrU  is the value of the estimation error. ,1OCU  is the open-

circuit voltage when the SOC is 1. 

3.3 Validation of VFFRLS parameter identification results 

After verification of model feasibility and accuracy, in order to verify the accuracy of the 

VFFRLS online parameter identification results, the experimental data of DST and BBDST working 

conditions were extracted at the end of the working condition experiment. Through the iterative 

calculation of online parameter identification, the parameter identification results of the SO-PEC 

equivalent circuit model are obtained. The voltage error is obtained by comparing the actual terminal 

voltage of each working condition with the analog voltage. The results are shown in Fig.10 and 

Fig.11. 

(a) Terminal voltage comparison diagram (b) Terminal voltage error diagram
Fig.10 Parameter identification results under DST working conditions 

(a) Terminal voltage comparison diagram (b) Terminal voltage error diagram
Fig.11 Parameter identification results under BBDST working conditions 
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0 1500 3000 4500 6000 7500 9000
3.2

3.4

3.6

3.8

4.0

4.2

U
(V

)

t(s)

Ureal
Usimulation

5520 5760 6000 6240 6480
3.44

3.52

3.60

3.68

0 1500 3000 4500 6000 7500 9000
-0.075

-0.050

-0.025

0.000

0.025

Er
r(

V
)

t(s)

-0.0464

-0.0626

0 2600 5200 7800 10400 13000 15600
3.45

3.60

3.75

3.90

4.05

4.20

U
(V

)

t(s)

Ureal
Usimulation

10050 10200 10350 10500
3.72
3.76
3.80
3.84

0 2600 5200 7800 10400 13000 15600

-0.035

0.000

0.035

0.070

0.105

0.140

Er
r(

V
)

t(s)

0.0381
10620 10800 10980 11160

-20
-10

0
10

Page 15 of 22

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



controlled within the allowed error range. The VFFRLS method matches the analog voltage well 

with the true terminal voltage for each working condition. It is shown that the method can adaptively 

adjust the value of the forgetting factor according to the magnitude of the estimation error in the 

parameter identification process to avoid data oversaturation. The purpose of improving the 

accuracy of parameter identification is achieved. Table 2 shows the error data analysis results of 

DST and BBDST working conditions. 
Table 2. Identification results of DST and BBDST working conditions parameters. 

Working conditions MAXErr MAE RMSE 

DST -6.26% 0.95% 0.72% 

BBDST 3.18% 1.12% 1.01% 

It can be seen from Table 2 that the mean absolute error under DST working conditions is 

0.95%. This indicates a high degree of fit between predicted and true values. The root means square 

error is only 0.72%. Under BBDST working conditions, the mean absolute error is 1.12%. The root 

means square error is 1.01%. 

3.4 Validation of SOC estimation results with HTC-AEKF algorithm 

After the model validation in section 3.2, the SO-PEC model proposed in this paper can 

accurately characterize the operating state of the lithium-ion battery. The parameter identification 

results in section 3.3 show that the online parameter identification accuracy of the VFFRLS 

algorithm meets the requirements. Next, the accuracy of the SOC estimation of the HTC-AEKF 

algorithm needs to be verified under HPPC operating conditions, DST operating conditions, and 

BBDST operating conditions. The initial error of the algorithm is also set to 10% and 50% to verify 

the robustness of the algorithm. To check whether the HTC-AEKF algorithm can meet the 

improvement requirements. It is examined whether the adaptive algorithm and the higher-order 

compensation algorithm can improve the accuracy of SOC estimation. The estimation results and 

estimation errors are shown in Fig.12, Fig.13, and Fig.14.

(a) Graph of SOC estimation results (b) Error plot of SOC estimation
Fig.12 SOC estimation results under HPPC working condition 
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(a) Graph of SOC estimation results (b) Error plot of SOC estimation
Fig.13 SOC estimation results under DST working condition 

(a) Graph of SOC estimation results (b) Error plot of SOC estimation
Fig.14 SOC estimation results under BBDST working condition 

Fig.12 shows the SOC estimation results of the HTC-AEKF algorithm for the HPPC working 

condition. Fig.13 shows the SOC estimation results of the HTC-AEKF algorithm for the DST 

working condition. Fig.14 shows the SOC estimation results of the HTC-AEKF algorithm for the 

BBDST working condition. The convergence speed of the HTC-AEKF algorithm is significantly 

faster and the convergence time is shorter than that of the EKF and AEKF algorithms, as can be 

seen from the three working condition result plots. At initial errors of 10% and 50%, the algorithm 

still converges quickly to the vicinity of the value of the Ansatz integral, demonstrating its 

robustness. 

 From Fig.14, it can be learned that the EKF algorithm shows a large algorithm error at the 

beginning of the discharge, with the error reaching 2.23% at one point. The main reason for the large 

error is the failure to find a suitable noise covariance when noise is involved in the recursion at the 

beginning of the algorithm. This situation affects the accuracy of the Kalman gain and leads to an 

increase in the algorithm error. The error continuously starts to converge under the correction of the 

observations and the error remains stable in the later stages of the algorithm. In contrast, the AEKF 

algorithm shows large fluctuations in the late stage of SOC estimation, which is caused by the fact 

that the AEKF algorithm does not compensate for the missing higher-order terms in the linearization 

of the nonlinear system. The comparison of data obtained from the improved algorithm in Table 3 

can also further illustrate the advantages of the algorithm. 
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Table 3. Estimation results of EKF, AEKF, and HTC-AEKF algorithms. 

Working conditions Algorithm MAXErr MAE RMSE 

EKF -4.23% 1.05% 1.65% 

HPPC AEKF 0.62% 0.42% 0.52% 

HTC-AEKF 0.13% 0.11% 0.12% 

EKF 2.82% 1.46% 2.12% 

DST AEKF 0.58% 0.41% 0.48% 

HTC-AEKF 0.12% 0.10% 0.11% 

EKF 2.23% 0.87% 1.12% 

BBDST AEKF 1.10% 0.72% 0.92% 

HTC-AEKF 0.74% 0.64% 0.66% 

As shown in Table 3, compared with the EKF algorithm and AEKF algorithm, the maximum 

error of SOC estimation of the HTC-AEKF algorithm decreased by 4.1% and 0.49% respectively 

under HPPC conditions. The average absolute error of the algorithm is only 0.11%, and the root 

mean square error is only 0.12%. This shows that the algorithm still has strong robustness and 

estimation accuracy when the initial error is 50%. Under the DST condition, the maximum SOC 

estimation error of the HTC-AEKF algorithm is less than 0.12%, which is far less than the SOC 

estimation error of the EKF and AEKF algorithms. Compared with EKF and AEKF algorithms, the 

average absolute error decreases by 1.36% and 0.31% respectively. This shows that the SOC 

prediction value of the algorithm is closer to the real value, and the prediction accuracy of the 

algorithm is higher. The root means square error is only 0.11%. Under the BBDST condition, the 

maximum error of the HTC-AEKF algorithm is not more than 0.74%, which is 0.36% less than that 

of the AEKF algorithm. The average absolute error is only 0.64%, and the root mean square error 

is reduced by 0.46% and 0.26% respectively compared with EKF and AEKF. The above results 

show that HTC-AEKF has strong accuracy and the algorithm has been improved. 

4. Conclusion

This paper presents a method that enables accurate estimation of the SOC of lithium-ion 

batteries. The following is the main work made in this paper and the innovation points. 

(1). In order to obtain the variation of external parameters characterizing the operating 

properties of lithium-ion batteries, a SO-PEC model is proposed in this paper. The accuracy of the 

model was verified using the parameter identification method of segmented parallel exponential 

fitting. 
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(2). After the model feasibility and accuracy verification, the VFFRLS algorithm is used to 

identify the parameters of the model. The identification results show that the average absolute error 

is only 0.95% in the DST working condition. The maximum error between real and simulated 

voltage does not exceed 3.18% under BBDST working conditions. The average absolute error does 

not exceed 1.12%. 

(3). For errors caused by the loss of higher order terms due to the linearization process. This 

paper proposes to introduce an iterative computation method to perform some processes in the 

classical extended Kalman filtering algorithm multiple times. The HTC-AEKF algorithm is 

obtained by improving it in this way. The results show that the maximum SOC estimation error does 

not exceed 0.74% for HPPC, DST, and BBDST working conditions. 

In summary, the HTC-AEKF algorithm proposed in this study can accurately estimate the SOC 

of lithium-ion batteries. It has a strong practicality to detect and estimate the battery status of electric 

vehicles in real-time under different road working conditions. This has important implications for 

extending battery life and improving driving safety. 
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