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Abstract--As a fundamental task in remote sensing observation 

of the earth, change detection using hyperspectral images (HSI) 

features high accuracy due to the combination of the rich spectral 

and spatial information, especially for identifying land-cover 

variations in bi-temporal HSIs. Relying on the image difference, 

existing HSI change detection methods fail to preserve the spectral 

characteristics and suffer from high data dimensionality, making 

them extremely challenging to deal with changing areas of various 

sizes. To tackle these challenges, we propose a cross-band 2-D self-

attention Network (CBANet) for end-to-end HSI change detection. 

By embedding a cross-band feature extraction module into a 2-D 

spatial-spectral self-attention module, CBANet is highly capable of 

extracting the spectral difference of matching pixels by 

considering the correlation between adjacent pixels. The CBANet 

has shown three key advantages: 1) less parameters and high 

efficiency; 2) high efficacy of extracting representative spectral 

information from bi-temporal images; and 3) high stability and 

accuracy for identifying both sparse sporadic changing pixels and 

large changing areas whilst preserving the edges. Comprehensive 

experiments on three publicly available datasets have fully 

validated the efficacy and efficiency of the proposed methodology. 

Key words: hyperspectral images (HSI); change detection; cross-band 

self-attention network (CBANet); spatial-spectral feature extraction. 

I. INTRODUCTION

hange detection (CD) task can identify differences in

multi-temporal remote sensing (RS) imagery within the

same geographic area  [1]. In recent years, hyperspectral 

images (HSI) have been successfully applied for remote sensing 

observation of the earth [2]. With the 2-D spatial information 

and rich spectral information in the third dimension, HSI can 

acquire continuous narrow-bands with a high spectral 

resolution [3]. Compared with multi-spectral images and 

conventional color images in red-green-blue (RGB), HSI has 

the following two advantages: 1) high spectral resolution and 

wide spectral range spanning from visible light to short-wave 

infrared, even mid-infrared, where the spectral resolution can 

be 10 nm or even less along with hundreds of continuous bands 

[4]; 2) rich spatial and spectral information for effective 

detection of the region of interests [5]. Therefore, hyperspectral 

change detection (HCD) has become a research hotspot, which 

has been successfully applied in a wide range of applications 

such as precision agriculture [6], disaster monitoring [7], 

geological survey [8], and biomedical science [9], etc.   
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However, there are still some challenges for HCD tasks: 

1) Most existing change detection methods rely on the

difference between the bi-temporal hypercubes, in which the 

spectral characteristics can be damaged [10]. 

2) Existing deep learning models for HCD have a large

amount of hyper parameters, resulting in redundant information 

in both spatial and spectral domain as well as the large 

computational cost  [11]. 

3) Most of the HCD methods fail to deal with sparsely

distributed changing areas in various sizes [12]. 

To tackle these issues, a lightweight deep learning network, 

namely CBANet, is proposed, which fuses the cross-band 

module for extracting spectral domain features pixel-by-pixel 

and design a new 2-D attention module based on traditional 

self-attention mechanisms [13] for improved extraction of local 

spatial-spectral features whilst keeping the network compact for 

efficiency. The major contributions are summarized as follows. 

1) A cross-band feature extraction module is proposed to

extract the mutual and representative features from bi-temporal 

hypercubes, where a 1×1 convolutional layer is introduced to 

greatly increase the non-linear characteristics (using the 

subsequent activation function) of feature map while keeping 

the scale of the feature map unchanged.  

2) A 2-D self-attention module is proposed for focused

extraction of local spatial-spectral features and improved 

feature representation and discrimination capability, resulting 

enhanced network reliability.  

3) A novel end-to-end lightweight CBANet is proposed which

can produce higher detection accuracy but has fewer 

hyperparameters. Its efficacy and efficiency have been fully 

validated in comprehensive experiments when compared with 

a few state-of-the-art approaches.  

The remainder of this paper is organized as follows. Section 

II introduces the related work for HCD. Section III describes 

the details of the proposed CBANet. Section IV presents the 

experimental results and assessments. Finally, some remarkable 

conclusions are summarized in Section V.  

II. RELATED WORK

In the last decades, numerous supervised and unsupervised 

algorithms have been developed for HCD tasks. Generally, 

these algorithms can be categorized into the following three 
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categories, i.e., algebraic operation-based, image 

transformation-based, and deep learning-based methods. Some 

early studies on HCD focus mainly on algebraic operations. In 

[14], the changing regions are first identified by a pixel-wise 

difference based on the absolute distance (AD).  Change vector 

analysis (CVA)  [15] was proposed to compare the magnitude 

of each vector pair and calculate the Euclidean distance.  The 

spectral angle mapping (SAM)  [16] was used to determine the 

spectral similarity of corresponding pixels from dual-time HSI 

for change detection. The final decision will be made by 

thresholding of the changes or clustering. As seen, the algebraic 

operation-based methods are straightforward and have a 

relatively low computation cost. However, the redundant 

information caused by the high correlation between bands 

brings a barrier to precise HSI change detection.  

To solve these issues, image transformation-based methods 

have been widely explored in the last two decades. Typical 

methods include the principal component analysis (PCA) [17], 

Independent component analysis (ICA) [18], and Linear 

discriminant analysis (LDA) [19], in which the image 

transformation-based methods can help to convert the high-

dimensional spectral data into a new low-dimensional 

representation whilst retaining the discriminative information 

and reducing the data redundancy. However, the accuracy of 

retaining key information is susceptible to unbalanced 

distribution of the data of the distorted data statistics. To tackle 

with this issue, multivariate alteration detection (MAD)  [20] is 

developed on the basis of the canonical correlation analysis 

(CCA)  [21] to seek the linear combination of the orthogonal 

differences between the pair of corresponding bands from dual-

time images to determine the maximum variance between 

samples, dividing the features by the statistic method of the chi-

square distribution. Iteratively reweight (IR) MAD [22] is 

presented to assign each changing feature a weight, which is 

calculated by the sum of squares of the standardized MAD to 

measure the degree of change, resulting in a more accurate and 

less noisy binary change map than the MAD, that the sum of 

squared standardized MAD variates is small, large weights refer 

to little change and vice versa. Although image transformation-

based methods can effectively remove the data redundancy, it 

ignores the spectral continuity and damages the similarity 

between adjacent pixels when mapping the original image into 

the new low-dimensional spectral domain  [23]. 

Recently, it became a new trend to apply deep learning-based 

methods to HCD tasks for extracting more effective and 

representative spectral, spatial and spectral-spatial features. In 

[24], a generic end-to-end 2-D Convolutional Neural Network 

(CNN) is introduced, using a mixed affinity matrix with 

subpixel representation to mine cross-band gradient. In [25], 

Recurrent 3-D fully convolutional network is proposed, in 

which 3-D CNN layers are employed to extract spectral-spatial 

features whilst multi-temporal change features are extracted by 

combining CNN and the Long-Short-Term-Memory (LSTM) 

model.  In [26], a multilevel encoder-decoder attention network 

is proposed to extract more effective hierarchical spatial-

spectral features, where the encoder-decoder module transfers 

the feature to the LSTM for analyzing the temporal dependence. 

In [27], a CNN framework with slow-fast band selection and 

feature fusion grouping was proposed to extract changed 

features. In [28], a novel noise modeling-based unsupervised 

fully convolutional network is proposed for improved 

extraction of the discriminative CNN features. Although deep 

learning-based models produce quite good results, they often 

rely on a large volume of training data, which can be 

unavailable in real cases, and very high computational cost thus 

needs to be further addressed [29]. 

The self-attention modules are also widely adopted in DL-

based models for improved feature extraction and enhanced 

accuracy and robustness of classification. In [30], a novel cross-

temporal interaction symmetric attention (CSA) network was 

proposed, where a Siamese network was equipped to 

hierarchically extract the change information in a symmetric 

pattern. By extracting the joint spatial-spectral-temporal 

features of the bi-temporal images, a cross-temporal self-

attention module was combined to integrate the difference maps 

from each temporal feature embedding and enhance the feature 

representation ability for more accurate and reliable change 

detection. In [31], a deep multiscale pyramid network was 

proposed that aggregated the multiscale features, level by level, 

where a spatial-spectral residual attention module was applied 

to further enhance the features by making the network pay more 

attention to significant information. In [32], a pixel-level self-

supervised hyperspectral spatial-spectral feature understanding 

network was proposed for pixel-wise feature representation 

instead of 2-D band-based processing, where a powerful 

spatial-spectral attention module based on fully convolutional 

layers was employed to explore the spatial correlation and 

discriminative spectral features. In [33], a joint spectral, spatial, 

and temporal transformer network (SST-Former) was 

proposed, using multi-head self-attention modules as the input 

to improve the feature extraction, where various encoders and 

decoders were employed to extract the sequence information in 

the spectral-spatial domain before determining the changes via 

a residual structure based cross attention module. 

III. METHODOLOGY

The diagram of the proposed CBANet is presented in Fig.1, 

which is composed of main three modules, i.e., 1) cross-band 

spectral feature extraction; 2) spectral-spatial feature extraction, 

and 3) 2-D self-attention based deep feature extraction. The 

specific details of the network are shown in Table 1.  

A. Cross-band spectral feature extraction

Given a pair of spatially aligned bi-temporal hypercubes 𝑇1 ∈
ℜ𝑊∗𝐻∗𝐵 and 𝑇2 ∈ ℜ𝑊∗𝐻∗𝐵 , where 𝑊  and 𝐻  denote the width

and height of the spatial size, and 𝐵 represents the number of 

spectral bands. 𝑇1 and 𝑇2 are first concatenated to form a new

hypercube 𝑄 ∈ ℜ𝑊∗𝐻∗2𝐵, which will be divided into a group of

overlapped 3-D neighboring patches denoted as 𝑍(𝛼,𝛽) ∈

ℜ𝑆∗𝑆∗2𝐵 , where 𝑆  is the spatial size of 𝑍,  (𝛼, 𝛽)  denote the

coordinates of the patch centre in the spatial domain where 

𝛼 𝜖[1, 𝑊], 𝛽𝜖[1, 𝐻]. The total number of 3-D patches from 𝑄 

will be (𝑊 − 𝑆 + 1) × (𝐻 − 𝑆 + 1). For each patch 𝑍(.) , the

whole spectral vector may contain highly redundant 

information and cause huge computational cost in training the 

deep learning model. Thus, reducing the data dimension whilst 

keeping the discriminative information in the spectral domain 

becomes the key issue here. For this purpose, a 1×1 

convolutional layer [13] with a proper setting of 𝑘𝐶𝑜𝑛𝑣1
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kernel’s number is applied to the dual spectral bands 𝑍(.), the

weighted fusion across the whole spectral vector can help to 

compose a new feature fusion space with a much lower spectral 

dimensionality. Meanwhile, the input patch size S of the 

proposed methods is set to 7 × 7 and the number of kernels 

𝑘𝐶𝑜𝑛𝑣1 in the cross-band feature extraction module is set to 128,

as it can achieve a good balance between the computational 

efficiency and the retained principal components.  

B. Spectral-spatial feature extraction

The low-dimensional feature cube constructed after

extracting the spectral features by passing through the cross-

band fusion module, which is a 1×1 convolutional layer to 

preserve the characteristics of the bi-temporal cubes and 

remove redundant information. In the next step, a 2-D 

convolutional kernel is employed for global feature extraction 

in the spatial domain. The convolution sums up the dot product 

between the input feature map and the kernel. The 2-D kernels 

are stride over the input feature map to cover the entire spatial 

domain. The convolutional results with an adding on additional 

bias will pass through a ReLu function.  In 2-D convolution, the 

𝑗𝑡ℎ feature map in the 𝑖𝑡ℎ layer at position (𝑥, 𝑦) is denoted as

𝐹𝑖,𝑗
𝑥,𝑦

, which is calculated as follows: 

𝐹𝑖,𝑗
𝑥,𝑦

= 𝑅𝑒𝐿𝑢 (𝐵𝑁(𝑏𝑖,𝑗  + ∑  ∑ ∑ 𝑤𝑖,𝑗,r
𝑝,𝑞

𝐹𝑖−1,r
𝑥+𝑝,𝑦+𝑝

)

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑟

) (1) 

where 𝑃𝑖  , 𝑄𝑖  are the height and width of the 2-D kernel,  𝑏𝑖,𝑗  is

the bias, 𝑤𝑖,𝑗,𝑟
𝑝,𝑞

 is the weight parameter at the position (𝑝, 𝑞) of 

the kernel connected to the 𝑟𝑡ℎ feature map, where 𝑟 represents

the set of feature maps in the (𝑖 − 1)𝑡ℎ layer connected to the

𝑖𝑡ℎ layer  [34] . 𝑅𝑒𝐿𝑢(∙) is the Rectified Linear Unit [35].as an

activation function to introduce the nonlinearity, reduce 

parameter interdependence and alleviate overfitting 𝐵𝑁(∙) 

represents the batch normalization function. In this module, 2-

(a) (b) (c) (d) (e) (f) 

Fig. 2. Pseudo-colour images of the three datasets. (a) River on May 3, 2013. (b) River on December 31, 2013. (c) Hermiston on May 1, 2004. (d) Hermiston 

on May 8, 2007. (e) Yancheng on May 3, 2006. (f) Yancheng on April 23, 2007. 

TABLE 1 ARCHITECTURE DETAILS FOR PROPOSED MODEL, WHERE B IS 

THE NUMBER OF BANDS 

Layers Type No. Kernel Size 

Input - B*2 - 

Conv1 Conv2-D+BN 128 1×1 

𝐶1 Conv2-D+BN 128 3×3 

𝑃1 Average Pooling - 2*2 

𝐶2 Conv2-D+BN 32 3×3 

C3 Conv2-D+BN 32 3×3 

𝐶4 Conv2-D+BN 32 3×3 

Flatten Flatten 512 - 

𝐹𝐶1 Linear (Dropout=0.4) 64 - 

𝐹𝐶2 Linear (Dropout=0.4) 16 - 

𝐹𝐶3 Linear (Dropout=0.4) 2 - 

Fig. 1. The architecture of the proposed CBANet model 
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D convolution with a kernel size of 3×3 is used in order to 

reduce the network parameters as well as extract more 

representative local information. Afterwards, 2×2 sub-sampling 

average pooling is adopted to prevent feature from rotation and 

scale during convolution [36]. The extracted spectral-spatial 

features are represented as 𝑋 ∈ ℜℎ∗ℎ∗𝑘𝐶1 , where ℎ = 4  after

pooling. The number of kernels 𝑘𝐶1 for spectral-spatial feature

extraction is set to 128, as it reaches a good tradeoff between 

the classification accuracy and robustness. 

C. 2-D self-attention based deep feature extraction

Previous studies have found that the self-attention mechanism

has beneficial to conventional change detection tasks  [37] and 

HSI classification [38][39]. However, these self-attention 

models use the 1×1 convolutional kernel and focus on pixel-

wise band features to assign the pixel-wise weights and only 

pay attention to the spectral information, leading to insufficient 

detection performance especially when dealing with the 

changing areas in various sizes. Motivated by this issue and 

inspired by the work in [40], we propose a 2-D self-attention 

module to build adjacent pixels dependency in local space as 

well as enhancing the spatial-spectral features from middle-

level towards deeper-level.  The features  𝑋 is taken as the input 

and fed into three 3×3 2-D convolutional layers (𝐶2, 𝐶3, 𝐶4) to 

generate three new spatial feature maps, denoted as  Query (Q), 

Key (K), and Value (V), where  (𝐾, 𝑄, 𝑉) ∈ ℜ𝑚∗𝑚∗𝑘𝐶2 , we set

𝑘𝐶2 = 𝑘𝐶3 = 𝑘𝐶4= 32 in this study. Each feature map will be

converted to 2-D attention matrices denoted as 𝐾𝑅, 𝑄𝑅 , 𝑉𝑅 ,

respectively, where (𝐾𝑅, 𝑉𝑅) ∈ ℜ𝑚2∗𝑘𝐶2  and 𝑄𝑅 ∈ ℜ𝑘𝐶2∗𝑚2
.

Then the correlation can be obtained by the dot product of the 

attention matric 𝐾𝑅  and 𝑄𝑅 , from the properties of the dot

product, the higher similarity between the two matric, the value 

of the dot product will be larger that represent the more obvious 

the local change feature and will be assigned a greater weight. 

The spatial attention matrix 𝐴 is calculated by multiplication 

between 𝐾𝑅 and 𝑄𝑅 followed by Softmax operations.

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐾𝑅 ∗ 𝑄𝑅) (2) 

Finally, the 2-D attention feature map 𝐿 ∈ ℜ𝑚∗𝑚∗𝑘𝐶2   can be

obtained by multiplying 𝐴  by 𝑉𝑅 . In this process, all local

features are involved in the calculation, therefore, 2-D self-

attention not only can capture the global feature distribution, 

but also focus on the key changing features. The larger the 

weight value in feature map 𝐿, the more prominent the feature. 

Since change detection can be considered as a binary 

classification problem of distinguishing the change and non-

change pixels, the cross entropy, which is commonly used for 

classification, is adopted as the loss function. 

𝐿𝑜𝑠𝑠(𝑝𝑟𝑒𝑑,   𝑙𝑎𝑏𝑒𝑙) =  −
1

𝑢
 ∑(𝑙 ∗ log(𝑝) + (1 − 𝑙) ∗ log(1 − 𝑝))

𝑛

𝑖=1

 (3) 

where u denotes the number of samples, l represents the ground 

truth value where 0 and 1 represent unchanged and changed 

regions. p represents the probability predicted by the Linear 

function. The selected optimizer is the adaptive momentum 

(Adam) [41] with the initial learning rate of 0.0001. 

IV. EXPERIMENTS

A. Dataset Description

All the three datasets we used in the experiments were

acquired by the Hyperion sensor mounted onboard the Earth 

Observing-1 (EO-1) satellite, which offers a total of 242 bands 

ranging from 0.4-2.5 μm, with a spatial resolution of 10 m and 

a spectral resolution of 30nm  [42][43]. 

The River dataset, shown in Fig. 2(a-b), was collected over 

the Jiangsu Province, China on May 3, 2013, and December 31, 

2013 [27], respectively. After noise removal and image 

registration, this dataset contains 463×241 spatial pixels and 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

Fig. 3. Extracted change maps on the River Dataset from different methods of AD (a), CVA (b), PCA-KM (c), LSTM (d), HybridSN (e), 3-DCNN (f), 2-

DCNN (g), CSANet (h) and CBANet (i) in comparison to the Ground-truth map (j), where the false alarms and missing pixels are labelled in red and green. 

TABLE 2 QUANTITATIVE ASSESSMENT OF DIFFERENT METHODS ON THE RIVER DATASET 

OA CA NCA AA KP 

AD 0.9431 0.9423 0.9515 0.9469 0.7137 

CVA 0.9253 0.9217 0.9635 0.9425 0.6528 

PCA-KM 0.9517 0.9518 0.9505 0.9511 0.7476 

LSTM 0.9569±0.0011 0.7671±0.0074 0.9746±0.0019 0.8704±0.0038 0.7216±0.0070 

HybridSN 0.9671±0.0019 0.7605±0.0298 0.9867±0.0043 0.8736±0.0130 0.7826±0.0087 

3-D-CNN 0.9700±0.0008 0.7888±0.0299 0.9871±0.0036 0.8879±0.0124 0.8045±0.0053 

2-D-CNN 0.9682±0.0007 0.8346±0.0118 0.9806±0.0021 0.9083±0.0063 0.7946±0.0033 

CSANet 0.9743±0.0012 0.8623±0.0049 0.9847±0.0009 0.9235±0.0094 0.8360±0.0049 

CBANet 0.9765±0.0012 0.8800±0.0110 0.9865±0.0018 0.9308±0.0065 0.8526±0.0036 
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198 spectral bands, where the major changed regions are the 

substance in the river and the structure of the riverbank.  

The Hermiston dataset, shown in Fig. 2(c-d), was collected in 

the Hermiston city, Oregon, United States on May 1, 2004, and 

May 8, 2007 [44], respectively. After noise removal and image 

registration, this dataset contains 390×200 spatial pixels and 

242 spectral bands, where the changing factors are crop growth 

situation and the water content of crops that were affected by 

irrigation conditions in the farmland. 

The Yancheng dataset, shown in Fig. 2(e-f), was collected in 

the Yancheng city, China on May 3, 2006, and April 23, 2007 

[28], respectively. After noise removal and image registration, 

this dataset contains 420×140 spatial pixels and 154 spectral 

bands, where the major change is the land-cover on wetlands. 

B. Evaluation Criteria

Change detection task can be considered as a binary

classification problem where the changed pixels and unchanged 

pixels are presented as 1 and 0, respectively on the extracted 

binary change map. To quantitatively assess the performance, 

several commonly used metrics were adopted, which include 

the overall accuracy (OA), Kappa coefficient (KP), Changed 

cluster detection accuracy (CA) and Non-changed cluster 

detection accuracy (NCA), Average Accuracy (AA) represent 

the average value of CA and NCA [45]. The OA is the 

percentage of correctly classified pixels, defined as 

𝑂𝐴 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4) 

where TP, TN, FP and FN denote respectively the correctly 

detected changed pixels, correctly detected unchanged pixels, 

incorrectly detected changed pixels and incorrectly detected 

unchanged pixels. 

KP is to measure the inter-rater reliability as the degree of 

similarity between the change map and the ground truth: 

𝐾𝑃 =  
𝑂𝐴 − 𝑃𝑅𝐸

1 − 𝑃𝑅𝐸
 (5) 

𝑃𝑅𝐸 =
(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2
+

(𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2 (6) 

For more intuitive comparison, CA and NCA are used to 

represent the detection accuracy of the changed cluster and the 

non-changed cluster, respectively, as given below.  

𝐶𝐴 =
𝑀𝐶

𝑁1

, 𝑁𝐶𝐴 =
𝑀𝐺

𝑁0
(7) 

where 𝑀𝐶  and 𝑀𝐺 denote the number of the corrected detected

changed and non-changed pixels in the change map, 

respectively; 𝑁1  and 𝑁0  denote the number of changed and

non-changed pixels in the ground truth, respectively. 

C. Results and Comparison

In this session, we evaluate the effectiveness of the proposed

method by comparing it with a few start-of-the-art unsupervised 

methods, which include the change vector analysis (CVA) [22], 

principal component analysis (PCA-KM) [24] and absolute 

distance (AD) [21] as well as several deep-learning (DL) based 

methods such as 2-D-CNN [46], 3-D-CNN [47], HybridSN [35] 

CSANet [31] and Long-short-term-memory (LSTM) [48]. It is 

worth noting that the compared methods except CSANet will 

need to take the difference of the given HSI pairs as input, 

which may thus break the continuity of the spectral features. 

Thanks to the cross-band fusion module used; such image 

differencing is not needed for our proposed end-to-end network. 

The proposed CBANet and all other DL-based methods are 

trained based on the PyTorch on an NVIDIA RTX A2000, with 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 
Fig. 4. Extracted change maps on the Yancheng Dataset from different methods of AD (a), CVA (b), PCA-KM (c), LSTM (d), HybridSN (e), 3-DCNN (f), 

2-DCNN (g), CSANet (h) and CBANet (i) in comparison to the Ground-truth map (j), where the false alarms and missing pixels are labelled in red and green. 

TABLE 3 QUANTITATIVE ASSESSMENT OF DIFFERENT METHODS ON THE YANCHENG DATASET 

OA CA NCA AA KP 

AD 0.8780 0.7494 0.9365 0.8429 0.7074 

CVA 0.8755 0.7529 0.9312 0.8421 0.7025 

PCA-KM 0.8828 0.7519 0.9424 0.8471 0.7180 

LSTM 0.9555±0.0010 0.9246±0.0042 0.9702±0.0011 0.9472±0.0016 0.8967±0.0023 

HybridSN 0.9641±0.0021 0.9350±0.0191 0.9790±0.0042 0.9555±0.0052 0.9160±0.0055 

3-D-CNN 0.9665±0.0015 0.9427±0.0058 0.9774±0.0016 0.9601±0.0025 0.9221±0.0035 

2-D-CNN 0.9667±0.0014 0.9413±0.0037 0.9781±0.0016 0.9603±0.0026 0.9223±0.0030 

CSANet 0.9715±0.0009 0.9584±0.0015 0.9774±0.0020 0.9677±0.0003 0.9335±0.0023 

CBANet 0.9713±0.0006 0.9605±0.0070 0.9768±0.0041 0.9679±0.0019 0.9332±0.0014 
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the batch size set to 32 and the number of training epoch as 500. 

We randomly select 20% pixels in the changed and unchanged 

pixels as the training set, and the remaining for testing. To make 

a fairer and more reliable comparison, all DL algorithms are 

repeated ten times in each experiment, and the averaged results 

with the standard deviations are reported. In the produced 

change maps, false alarms and missing pixels are marked in red 

and green respectively for ease of comparison, white areas 

represent correctly detected and black area for true negatives. 

1) Experiments on the River Dataset

The experimental results from the River dataset are shown in

Fig. 3 and Table 2. As seen in the ground-truth map in Fig. 3

(j), the most obvious differences are the differently shaped

sediment accumulations in the river and the land-cover changes

on the riverbank, in addition to many others. In Fig. 3(a-c), most

of the non-changed pixels are detected as false alarms,

distributed in the upper and lower left corners of the maps, are

wrongly detected as changed areas by all unsupervised

algorithms. However, most false alarms can be correctly

classified by the DL-based algorithms. In the regions in the

upper left corner of the maps, although most changing pixels

can be distinguished by the 3-D-CNN and 2-D-CNN in Fig. 3

(f&g), some sporadic changing pixels are still not identified,

due possibly to that both these DL-based models only extract

the relationship between local and global spatial-spectral

features but ignoring the changing features of the independent

pixels in the spatial domain. The CSANet has produced the

second highest OA, CA, AA, and KP values among all

compared DL-based models, only slightly worse than our

CBANet, owing to the joint spatial-spectral-temporal features

extracted by the introduced self-attention module. Also, our

CBANet has a much higher CA than the CSANet in effective

detection of the changed pixels whilst maintaining the same or

even slightly lower level of false alarms as measured by NCA.

Thanks to our cross-band fusion module and the 2-D self-

attention module, both sporadic changing pixels and large 

regions can be accurately detected. As shown in Table 2, not 

surprisingly, the DL based supervised methods all have higher 

OA and KP and outperform the unsupervised ones. As for CA 

and AA, however, DL methods seem inferior to unsupervised 

ones, due mainly to the fact that the changing pixels have the 

characteristics of wide distribution and various scales. Note that 

CVA, AD and PCA-KM are all pixel-wise methods, which do 

not consider the influence of adjacent pixels thus are more 

sensitive to noise. Therefore, they tend to misclassify the 

changing pixels, resulting in a low NCA. On the contrary, DL 

algorithms are more accurate in distinguishing small changes. 

In the benchmarked DL methods, LSTM has the worst 

performance with an average KP of 0.7261 and OA of 95.69%. 

Our proposed CBANet has produced the highest OA, KP and 

NCA over all compared methods, achieving the highest CA 

value over all DL methods, which indicates the correct 

detection of changing areas in various sizes.  

2) Experiments on the Yancheng Dataset

According to the HCD results shown in Fig. 4 and Table 3, the

primarily changing area in this dataset is land-cover on

wetlands, see in Fig. 4(j). Again, all three unsupervised methods

have quite poor results as shown in Fig. 4(a-c), where many

changing pixels are missed along with false alarms in striped

lines and other occasions, resulting in low values of KP at

around 0.71 and OA less than 90% (Table 3). Obviously, all the

DL-based methods have outperformed the unsupervised ones,

as these are region-wise classification methods and more robust

to spatial noise than pixel-wise unsupervised approaches.

Although the OA from LSTM and HybridSN is relatively high,

their CA is even lower than that of the unsupervised methods,

leading to poor detection results in Fig. 4(d-e), especially the

boundaries of the changing areas. For 2-D-CNN and 3-D-CNN,

they have produced the similar OA and KP as LSTM and

HybridSN, though the visual results seem slightly better,

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 
Fig.5. Extracted change maps on the Hermiston Dataset from different methods of AD (a), CVA (b), PCA-KM (c), LSTM (d), HybridSN (e), 3-DCNN (f), 2-

DCNN (g), CSANet (h) and CBANet (i) in comparison to the Ground-truth map (j), where the false alarms and missing pixels are labelled in red and green. 

TABLE 4 QUANTITATIVE ASSESSMENT OF DIFFERENT METHODS ON HERMISTON DATASET 

OA CA NCA AA KP 

AD 0.9728 0.9781 0.9367 0.9574 0.8824 

CVA 0.9781 0.9843 0.9351 0.9597 0.9035 

PCA-KM 0.9789 0.9858 0.9322 0.9590 0.9068 

LSTM 0.9901±0.0010 0.9602±0.0074 0.9945±0.0009 0.9773±0.0036 0.9555±0.0046 

HybridSN 0.9893±0.0006 0.9580±0.0014 0.9939±0.0011 0.9759±0.0047 0.9519±0.0030 

3-D-CNN 0.9919±0.0003 0.9728±0.0081 0.9948±0.0014 0.9834±0.0033 0.9638±0.0016 

2-D-CNN 0.9912±0.0004 0.9662±0.0077 0.9949±0.0012 0.9806±0.0033 0.9606±0.0021 

CSANet 0.9923±0.0006 0.9747±0.0075 0.9950±0.0003 0.9848±0.0037 0.9659±0.0031 

CBANet 0.9928±0.0010 0.9745±0.0057 0.9955±0.0007 0.9850±0.0024 0.9678±0.0008 
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although the connected changing region in the middle of the 

maps cannot be well distinguished. CSANet has yielded almost 

the same OA, AA, and KP as our proposed CBANet, where 

both of them are the top-performed models. However, our 

CBANet has a higher CA than the CSANet in the detection of 

the changed pixels, whilst the false alarms as indicated by NCA 

remains very comparable.  

3) Experiments on the Hermiston Dataset

For the Hermiston dataset, the HCD results are shown and

compared with the ground truth in Fig. 5 and Table 4, where the

changing areas are mainly crop regions with simple round

shapes. The results of the quantitative analysis are presented in

Table 4. OA of all methods have achieved at least 97%, or over

99% for DL methods. However, unsupervised methods have

still produced quite a few false alarms, leading to lower UCA

and KP values than all DL methods. For DL-based methods, as

highlighted in Fig.5, LSTM and HybridSN fail to accurately

segment the edges of the changing area, where the boundaries

of crop regions are connected together. Though 2-D-CNN and

3-D-CNN have slightly better results than LSTM and

HybridSN, it is still difficult for them to detect the crop regions

with smooth edges. On the contrary, our CBANet can much

accurately detect the changing areas, with the KP 0.40-0.72%

higher than that of 3-D-CNN and 2-D-CNN yet a much-reduced

STD by 0.0008-0.0013, again validating the high efficacy of the

proposed approach in HCD. In this dataset, although DL

methods outperform all unsupervised ones with fewer false

alarms and missing detection, the difference in terms of

quantitative assessments is small, due mainly to the relatively

simple background hence less noise caused false alarms. Within

the DL methods, LSTM has the poorest performance, whilst the

results from 2-D-CNN and 3-D-CNN are quite similar. As the

combination of 2-D-CNN and 3-D-CNN, HybridSN can extract

spectral-spatial features of local regions, yet it fails to feature

changing pixels. Also, it may suffer from overfitting due to too

many convolutional layers contained. In addition, these three

CNN models suffer from dealing with sporadic and isolated

changing pixels because the large perceptual field in their

convolutional layers can help to extract the global features but

neglect small details. Again, CSANet and our CBANet have

about the same results in terms of OA, AA, and KP, though it

has a slightly higher CA than CBANet. In addition, it is worth

noting that in all three datasets, the proposed CBANet has a

(slightly) higher AA than the CSANet, indicating its strong

capability in characterizing both large and small features for

their accurate detection.

 For our CBA model, however, the cross-band feature 

extraction module can extract the representative spectral feature 

whilst reducing the spectral dimension. The 2-D self-attention 

module can further fuse the spatial and spectral features for 

distinguishing both sporadic changing pixels and large 

changing areas. As a result, our proposed CBANet can 

consistently produce the best results than other benchmarking 

methods on all the three datasets. 

D. Ablation experiments

1) Hyperparameter analysis

To further validate the efficiency of our proposed CBANet,

we compare the hyper-parameters, the number of floating-point 

operations (FLOPs), and the overall running time in minutes 

(m) on the River dataset in Table 5, including both the training

time and testing time. It can be observed that HybridSN, 3-D-

CNN and 2-D-CNN, CSANet have much more

hyperparameters, resulting longer running time than our

proposed method. Although LSTM has less running time and

less hyperparameters, it has the worst detection accuracy on

three datasets. Thanks to the 1×1 convolutional kernel in the

cross-band feature extraction module and 2-D self-attention

module, our proposed CBA model can be considered as a

lightweight model which has fewer hyperparameters but

performs better than other benchmarking methods.

2) Training ratio analysis

To fully validate the effectiveness of our proposed model, we

evaluate the results of all above-mentioned DL-based methods 

TABLE 5 COMPARING THE PARAMETERS OF DIFFERENT DL-BASED METHODS ON RIVER DATASET 

LSTM HybridSN 3-D-CNN 2-D-CNN CSANet CBANet 

Hyperparameters (k) 213.79 5128.74 1613.03 607.43 2452.88 319.36 

FLOPs (M) 3.51 1597.24 215.35 368.21 144.44 6.66 

Running Time (m) 10.21 130.22 55.90 32.42 101.43 20.71 

Fig. 6. Comparing the OA (top) and KP (bottom) results of all DL methods 

on the River dataset under different training ratios. 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3276589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



TGRS-2022-04517 8 

on the River dataset when the training pixels vary from 10% to 

70%. As seen in Fig. 6, more training pixels will make the deep 

learning methods achieve better detection accuracy. 

Meanwhile, our CBANet can consistently achieve the highest 

OA and KP, where the best OA and KP on the River dataset can 

reach 98.01% and 0.8765, respectively.  

3) Patch size

We tested four patch sizes of {5×5, 7×7, 9×9, and 11×11} to

analyze their impact on the CBANet. As shown in Fig. 7 (a) and 

Fig. 7(d), an increase in patch size has a very limited effect on 

the KP and OA achieved when other module parameter settings 

are unchanged, though the largest patch size of 11×11 seems to 

have slightly improved OA and KP value on Yancheng dataset. 

That is why we choose the patch size of 7×7 in our experiments 

for all three datasets to balance between the detection accuracy 

and computational efficiency. 

4) Number of spatial-spectral feature extraction kernels

To find the optimal number of kernels in the spatial-spectral

module, six different settings of {8, 16, 32, 64, 128, 256} are 

tested. As shown in Fig.7 (b) and Fig. 7(e), all three datasets 

have the highest OA and KP value when the number of kernels 

is 128. Therefore, we set the kernel number for spatial-spectral 

feature extraction as 128 throughout this paper. 

5) Number of 2-D self-attention kernels

We have also evaluated the selection of the number of 2-D

self-attention kernels, where the experiments on five different 

settings of {8, 16, 32, 64, 128} are conducted. As shown in 

Fig.7 (c) and Fig. 7(f), the variation trends of OA and KP value 

on the three datasets increase first and then decrease with the 

increasing number of kernels, and the classification result has 

the highest OA and KP value when kernel number of the 2-D 

self-attention module is 32. 

6) Key Stage analysis

In this section, compared with the traditional self-attention

mechanism with 1×1 kernel, the efficacy of 1-D convolution 

module with 1×3 or 3×1 kernel, 2-D self-attention module with 

5×5 kernel, and the proposed 2-D self-attention module with 

3×3 kernel is compared. As seen in Table 6, the 3×3 kernel 

outperforms other 1-D and 2-D kernels in the self-attention 

module. Specifically, for the River dataset, the OA and KP from 

the 3×3 kernel are 0.15% and 1% higher than those from the 

1×1 kernel, respectively. Meanwhile, comparing with the 1×1 

kernel, the standard deviation of the OA and KP in the 3×3 

kernel has been reduced by 53.8% and 56.6%, respectively. For 

the Yancheng and Hermiston datasets, an interesting finding is 

that the 5×5 kernel produces the worst results than all others. 

The possible reason is that this kernel is too large to the 

connected changed regions contained in these two datasets. In 

addition, a larger kernel in the 2-D self-attention module will 

inevitably lead to higher FLOPS and significantly more 

hyperparameters. In summary, the 2-D self-attention module 

with the 3×3 kernel can provide more accurate and robust 

results than other kernel sizes we have compared for HCD. 

V. CONCLUSIONS

In this paper, a novel lightweight end-to-end deep learning-

based network, namely CBANet, is proposed for hyperspectral 

change detection. With the CBANet, the proposed cross-band 

feature extraction module has shown very good performance to 

fully extract and fuse the spectral information from bi-temporal 

HSI data whilst using the 1×1 kernels in the convolutional layer 

for efficiency. In addition, the proposed 2-D self-attention 

module has helped to capture deep spatial-spectral features for 

(a) (b) (c) 

(d) (e) (f) 

Fig.7. Ablation experiments and results of the CBANet in different settings on the three datasets, including the Kappa values of different patch sizes (a), 
different number of spatial-spectral feature extraction kernel (b), and different number of 2D self-attention kernel (c), as well as the OA values under different 

patch size (d), different number of spatial-spectral feature extraction kernel (e), and different number of 2D self-attention kernel (f). 
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improving the feature representation and discrimination 

capabilities. The experiments on three publicly available HCD 

datasets have shown that the proposed CBANet outperforms 

other benchmarking models and has better stability and lighter 

weight than benchmarking deep learning models. This has fully 

validated the effectiveness and efficiency of the proposed 

model for the HCD task.  

There are still some limitations of our proposed method. For 

example, the NCA of CBANet is inferior to some deep learning 

methods on the River dataset. To further improve the NCA, the 

detection for edge pixels of changed areas would be the key. 

The potential solution to achieving this purpose would be to add 

skip connections and multi-scale feature extraction layers in the 

model. Meanwhile, other advanced techniques such as 

superpixel  [49,50] and U-Net  [51,52] can be also employed to 

further improve the current model, especially in HCD accuracy. 
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TABLE 6 COMPARISON OF OA AND KP FROM THREE DATASETS WITH VARIOUS KERNEL SIZES 

Kernel size 1×1 1×3 3×1 3×3 5×5 

River 
OA 0.9750±0.0026 0.9759±0.0029 0.9756±0.0009 0.9765±0.0012 0.9757±0.0008 

KP 0.8426±0.0083 0.8467±0.0005 0.8471±0.0031 0.8526±0.0036 0.8452±0.0051 

Yancheng 
OA 0.9707±0.0005 0.9700±0.0009 0.9711±0.0007 0.9713±0.0006 0.9689±0.0013 

KP 0.9319±0.0011 0.9301±0.0024 0.9325±0.0018 0.9332±0.0014 0.9276±0.0029 

Hermiston 
OA 0.9916±0.0014 0.9914±0.0009 0.9923±0.0006 0.9928±0.0010 0.9910±0.0006 

KP 0.9628±0.0017 0.9616±0.0039 0.9656±0.0016 0.9678±0.0008 0.9596±0.0027 
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