GAZEY, R., ALI, A., AKLIL, D. and FINNEY, S. 2011. Hydrogen office: modelling an energy storage system. Presented at the 2011 All energy conference and exhibition: power storage: the holy grail, 18-20 May 2011, Aberdeen, UK.

# Hydrogen office: modelling an energy storage system.

GAZEY, R., ALI, A., AKLIL, D. and FINNEY, S.

2011



This document was downloaded from https://openair.rgu.ac.uk





Power storage - 'the holy grail' Wednesday 18th May All Energy 2011



## Hydrogen office: Modelling an energy storage system

Ross Gazey, MPhil MIET

PhD Research, Robert Gordon University







## Overview

- ENERGY CENTRE
- Introduction
- Background
- Energy Storage
- The Hydrogen Office System
- Development of a modelling tool.







## Introduction





## Introduction

- The People:
  - Dr. Dallia Ali (RGU)
  - Dr. Daniel Aklil (PEC)

Supervisory Team

- Dr. Stephen Finney (Strathclyde)
- Ross Gazey (RGU PhD Research)
- Acknowledgements to Energy Technology Partnership (ETP), Strathclyde University, Pure Energy Centre, and the Robert Gordon University IDEAS research centre





•

## Background



United States Energy Information Administration (EIA) predict global renewable energy output to increase by over 50% (excluding bio-fuels) between 2010 and 2035







## Background



 Within Scotland alone, ambitious national targets are focused on achieving renewable generation of 80% by the year 2020

# • BUT.....







## Background - Grid Locked



- "Scots windfarms paid cash to stop producing energy" – BBC News 01-05-11
  - Renewable Energy Foundation (REF) revealed that £900'000 in payments were made to power companies for a few hours between 4<sup>th</sup> and 5<sup>th</sup> April to stop producing energy from their wind farms
  - Payments were considered to be 20 times greater than the energy value.





- EVERGY CENTRE
- Why did this happen?
  - The National Grid said the network had overloaded because high winds and heavy rain in Scotland overnight on 5 and 6 April produced more wind energy than it could use.









#### • Spokes Person from DECC said:

"In future we need greater electrical <u>energy</u> <u>storage facilities</u> and greater interconnection with our EU neighbours so that excess energy supplies can be sold or bought where required"







ENERGY CENTRE

# **Energy Storage**

- It is believed by many that an increased renewable penetration of over 40% can only be achieved through the parallel integration energy storage mechanisms within the electrical grid
- This research will seek to simulate and model solutions for electrical grid problems that can arise when using storage technologies in conjunction with renewable energy and electrical distribution networks.





## Hydrogen Office – Case Study

- ENERGY CENTR
- Hydrogen office Energy system offers the opportunity to develop and verify model development of a grid connected storage solution



## Hydrogen Office – Case Study



**OBERT GORDON** 

#### Opened by the first minister for Scotland on 17<sup>th</sup> January 2011





## Hydrogen Office – How it works

- The electricity generated from the wind turbine directly provides for the electrical needs of the Hydrogen Office
- Surplus electricity is used to generate hydrogen through the process of electrolysis
- The generated hydrogen is stored for periods where there is insufficient energy from the wind to meet demands
- During calm periods a fuel cell provides electricity for the Demonstration Centre.





## Hydrogen Office – Case Study



- 1. 750 kW grid connected turbine
- 2. 30 kW alkaline electrolysis system
- 3. 126Nm<sup>3</sup> gaseous hydrogen storage
- 4. 10kW Proton Exchange Membrane (PEM) Fuel Cell
- 5. Power factor correcting power electronic interface
- 6. Hydrogen Office and demonstration centre
- System wide monitoring and automatic control
- 8. Export/Import Grid connection



ENERGY CENTRE

- What is an Electrolyser?
  - An Electrochemical device the converts electrical energy and pure water into hydrogen
  - By-products are:
    - Oxygen (O<sub>2</sub>)
    - Waste heat (P<sub>th</sub>)
  - Typical Efficiency Range 55% to 90%





ENERGY CENTRE

## **Development of Modelling Tool**

- What is a Fuel Cell?
  - An Electrochemical device the converts energy in hydrogen into electricity
  - By-products are:
    - Water vapour (H<sub>2</sub>O)
    - Waste heat (P<sub>th</sub>)
  - Typical Efficiency Range 40% to 60%





## **Development of Modelling Tool**



## **Development of Modelling Tool**

Present progress:

- Data logging operational system in real world use
  - Local Load
  - Wind turbine
  - Electrolyser
  - Fuel Cell
- High level of detail achievable
  - Cell level recording achievable
  - Fine tune data loggers to synchronise recording.



## Sample Data



University of Stratho Glasgow

energy technology partnership

U





## Sample Data



University of Strathclyde Glasgow

> energy technology partnership

> > U



Time (minutes)



ENERGY CENTRE

## **Development of Modelling Tool**

- Next steps:
  - Consolidate the energy model
    - Help to determine optimum sizes for FC, Electrolysis & Storage etc.
  - Dig deeper into the electrical 'side effects' of energy storage
    - Harmonics
    - Distortion
    - Surge Capacity.
  - Investigate the financial aspects of energy storage
  - Integrate this into modelling tools







## Conclusion



- There is a need to develop networked energy storage systems
  - Also a need to develop the modelling tools to assist in decision making
    - Where to put it
    - How large should it be
      - Power
      - Energy
  - H2 Office is a good example of what is possible.









# ...Thank you...



