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A B S T R A C T

As the transition to electric mobility accelerates, charging infrastructure is rapidly expanding. Publicly
accessible chargers, also known as electric vehicle supply equipment (EVSE), are critical not only for further
promoting the transition but also for mitigating charger access anxiety among electric vehicle (EV) users.
It is essential to install the proper EVSE configuration that meets the EV user’s various considerations. This
study presents a multi-criteria decision-making (MCDM) framework for determining the best performing public
EVSE type from multiple EV user perspectives. The proposed approach combines a new MCDM model with an
optimal public charging station model. While the optimal model outputs are used to evaluate the quantitative
criteria, the MCDM model assesses EV users’ evaluations of the qualitative criteria using nonlinear Bonferroni
functions extended by rough Dombi norms. The proposed MCDM has standardization parameters with a flexible
rough boundary interval, allowing for flexible and rational decision-making. The model is tested using real
public EVSE charging data and EV users’ evaluations from the field. All public EVSE alternatives are studied.
Among the five EVSE options, DCFC EVSE is found to be the best performing, whereas three-phase AC L2
is the least performing option. In terms of EV user preferences, the required charging time is found to have
the highest degree of importance, while V2G capability is the least important. The comparative analysis with
state-of-the-art MCDM methods validates the proposed model results. Finally, sensitivity analysis verified the
ranking order.
1. Introduction

Transitioning to electric mobility as an alternative mobility option
helps to achieve the desired climate change targets. With the prolifera-
tion of electric vehicles (EVs), the number of EV chargers, also known
as electric vehicle supply equipment (EVSE) is rapidly increasing [1].
EVSE can be deployed in various public or private locations. Public
EV charging stations refer to EVSE charging units that are available
to all EV drivers and located in publicly accessible areas, such as city
streets, car parks, shopping locations, and along highway corridors.
Currently, AC Level-2 EVSEs constitute most of the public charging
infrastructure, while public DC fast charging (DCFC) infrastructure is
also expanding. Both types of EVSE are expected to grow at a faster
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rate by 2030 [2]. The projected rapid growth in EV sales, as well as
the availability of EVSE infrastructure capacity, can unlock the true
potential of public charging. Furthermore, the need to use EVs more
frequently and, in some cases, for intra-city travel throughout the day
boosted the market trend for public EVSEs. Providing an adequate num-
ber of EVSE, especially in publicly accessible areas, helps to promote
more rapid adoption of EVs since this is essential to reducing EV users’
charger access anxiety [3]. Public EV charging characteristics differ
significantly from the workplace or home charging. The distribution of
charging behavior throughout the day, as well as EV dwell times make
the public charging design unique. In addition, interoperability in terms
of communication and data-driven services, which are designed to meet
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Nomenclature

𝐴𝐹 Annuity factor
𝐶𝑑𝑐 Demand charge
𝐶𝐸𝑉 𝑆𝐸 EVSE unit hardware cost
𝐶𝑖𝑛𝑠 EVSE installation and maintenance cost
𝐶𝑜𝑝 Daily charging energy cost
𝐶𝑢𝑛𝑖𝑡 Daily levelized unit cost of charging
𝐶𝐿𝐼𝐶 Daily levelized EVSE infrastructure cost
𝐸𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 the charging energy served of 𝑖th EV
𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑,𝑖 Required charge energy of 𝑖th EV
𝐻𝐶 Hosting capacity of EVSE
𝐹 Electricity pricing vector
𝑁 The number of EVs served at a public charging

station
𝑆𝑗 The number of EVSE units
𝑡𝑝𝑙𝑢𝑔−𝑖𝑛,𝑖 The plug-in time of 𝑖th EV
𝑡𝑝𝑙𝑢𝑔−𝑜𝑓𝑓 ,𝑖 The plug off time of 𝑖th EV
𝑃𝑐ℎ,𝑖 The optimized charging rate of 𝑖th EV
𝑃 𝑟𝑎𝑡𝑒𝑑𝑖 The on-board charger power rate of 𝑖th EV
𝑃 𝑟𝑎𝑡𝑒𝑑𝐽 EVSE charging power rate
𝑃𝑙𝑖𝑚 Demand power limit
𝜂𝑖 The efficiency of the on-board charger of 𝑖th EV
𝜂𝐽 The efficiency of the EVSE unit
𝑇 The number of time slots of 1 min resolution
𝑚 Number of alternatives
𝑛 Number of criteria
𝑒 Number of experts
𝓁𝑞𝑖𝑗 Lower limit of rough number
𝓁
𝑞
𝑖𝑗 Upper limit of rough number

C Vector of comparative values
𝛹𝑖 Rough score function
̄̄R(1)𝜒1 ,𝜒2 ,𝓁 RDB function
̄̄R(2)𝜒1 ,𝜒2 ,𝓁 RDB function
𝜁𝑖 Weight of criterion

the needs of public charging operations and payment settlement tasks,
is another set of challenges for public charging. Hence, planning EVSE-
related tasks is becoming an essential part of the work of city planners,
utilities, and private companies interested in investing in this segment.
Making the optimal design possible in terms of location, size, and type
of charging station has been one of the most important planning tasks
to complete.

Optimal placement and sizing of public charging stations have
attracted significant research attention in recent years. Many technical
and economic parameters are included in the design approach [4,5].
In [6], the major parameters in the problem are identified as EV energy
consumption to reach the closest charging station and charging station
infrastructure costs, followed by the electric grid loss. In [7], the impact
of EV user behaviors on the economic evaluation of public charging
stations is investigated. Arrival and dwell times are found to have a
strong impact on different utilization patterns of the charging demand
served. However, many factors linked directly to the charging station
economics, such as charging speed or the number of charging stations,
are not considered in the evaluation. In [8], charging behavior and
service range have been identified as critical parameters in optimizing
the locations and sizes of public charging stations to maximize prof-
itability. In [9], by considering several EV user behaviors, an optimal
model is developed to determine the optimal layout and types of public
charging stations for a community. The optimal layout suggests a mix
2

of EVSE types, with more Level-2 chargers and fewer DCFC. In [10],
the impact of EV user travel and charging behaviors on the planning
and operation of charging stations is investigated. L. Adenaw and S.
Krapf in [11] investigate the impact of a variety of influencing factors
used in the literature to locate public charging stations on charging
demand. Saravanan et al. in [12] develop models to evaluate EV
drivers’ preferences for charging services as charging behavior varies
among users. In [13], battery capacity, charging time, and the initial
state of charge (SOC) are identified as the main factors influencing EV
users’ charging and location choices. Hardman et al. in [14] present
a literature review on the preferences of EV users’ perspectives on
charging stations, while technical aspects are not included. As the
planning of public charging stations involves multi-criteria decision
making involving many conflicting criteria, Liu et al. in [15] propose
an integrated multi-criteria decision making (MCDM) model with a
heuristic multi-objective optimization model for determining the most
suitable charging station site. While many technical and economic
aspects are considered for optimally placing the charging stations,
optimal EVSE configurations in terms of EV users’ preferences are
still unexplored. Some work has attempted to identify technical and
economic EV user considerations at workplaces. The optimal workplace
charging scheduling algorithm from EV users’ qualitative and quantita-
tive multicriteria perspective is identified in [16]. All cost aspects in a
workplace EVSE, from the charging station owner, EV users, and grid
perspectives, are quantified in [17]. Based on the identified quantita-
tive parameters, an integrated multi-objective optimization and MCDM
model is developed to determine the most feasible EVSE configuration
at workplaces in [18]. However, the charging behavior of workplace
EVSE differs from that of public EVSE in terms of mobility patterns and
uncertainties. Moreover, this study specified the optimal EVSE types
from the charging station operator perspective. As a result, the optimal
public EVSE configurations meeting EV user preferences need to be
explored in order to establish publicly accessible and efficient charging
stations.

Since this work involves many technical, economic, and social
factors, we define EVSE type selection as an MCDM problem. By
incorporating both quantitative and qualitative evaluation, an MCDM
framework can yield the best-performing EVSE option that meets EV
users’ considerations at public charging stations. Various EVSE con-
siderations can be defined from the multi-criteria perspectives of EV
users for both quantitative and qualitative evaluation. The MCDM ap-
proach can handle both quantitative and qualitative parameters using
optimal values by incorporating EV users’ opinions into the decision-
making process. Rough sets have been successfully applied to ad-
dress uncertainty in the information [19–21]. The MCDM methods
with Dombi Bonferroni have been used to better handle uncertainty
in various decision-making applications. Pamucar in [22] proposed
a normalized weighted geometric Dombi Bonferroni mean operator
under interval grey numbers to solve decision making applications.
Wei et al. in [23] developed some novel Dombi Bonferroni mean
operators to aggregate 2-tuple linguistic neutrosophic information. Liu
et al. [24] presented some novel intuitionistic fuzzy Dombi Bonferroni
mean operators, such as the intuitionistic fuzzy based Dombi geomet-
ric Bonferroni mean and the weighted Dombi geometric Bonferroni
mean, to deal with the aggregation of intuitionistic fuzzy numbers.
The proposed operators are tested on a multi-attribute group decision-
making problem. Peng and Smarandache [25] investigated the novel
operations on single-valued neutrosophic number based on Dombi Bon-
ferroni mean and Dombi geometric Bonferroni mean operators. Saha
et al. [26] integrated the generalized Dombi operators and Bonferroni
mean (BM) operator to handle multi-criteria group decision-making
problems. Wang and Peng [27] improved new aggregation operators,
including q-rung orthopair fuzzy Bonferroni mean Dombi averaging
and geometric Bonferroni mean Dombi averaging operators for decision
making. An overview of the studies on Rough Dombi Bonferroni (RDB)
mean operators based MCDM models is summarized in Table 1.

The contribution of this study is based on the evaluation of the

following research questions:
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Table 1
Overview of the studies on Rough Dombi Bonferroni mean operators based MCDM models.

Author(s) Method Sets Application

Azam et al. [28] Multiple-criteria decision making Complex intuitionistic fuzzy sets Information security management evaluation
Erdogan et al. [16] Multi-criteria decision-making Power Heronian functions Workplace charging scheduling algorithms
Fan et al. [29] Multi-criteria decision-making Single-valued triangular neutrosophic sets Green supplier selection
Jana and Pal [30] Multiple-criteria decision making Single-valued neutrosophic number Road construction companies selection
Liu et al. [15] Multi-attribute group decision-making Intuitionistic fuzzy numbers Numeric example
Mondal and Roy [31] DEMATEL and MABAC method Interval type-2 Pythagorean fuzzy Supply chain management problem
Pamucar [22] Grey number based decision making Interval grey numbers –
Peng and Smarandache [25] Multiple criteria decision making Single-valued neutrosophic number Mobile cloud computing industry evaluation
Saha et al. [26] Multicriteria group decision-making Dual probabilistic linguistic Biomass feedstock selection
Sarkar and Biswas [32] Multiple criteria decision making Dual hesitant q-rung orthopair fuzzy Numeric example
Tanrıverdi et al. [33] Best–worst method Triangular fuzzy numbers Airport selection for air cargo carriers
Wei et al. [23] Multiple attribute decision making 2-tuple linguistic neutrosophic information Green supply chain management
Yahya et al. [34] TODIM method Fuzzy Credibility information Analysis of medical diagnosis
Yang et al. [27] Multiple criteria decision making Q-rung orthopair fuzzy numbers New campuse selection
Yaran Ögel et al. [35] Best–worst method Triangular fuzzy numbers Prioritizing of the drivers of retail food waste
1. What are the EV users’ perspectives at public charging stations?
2. What is the order of importance of EV users’ perspectives at

public charging stations?
3. What is the optimal EVSE configuration at public charging points

to meet EV user considerations?
4. Do EV users’ behaviors differ from the public EVSE configura-

tion?

To investigate the above-mentioned research questions, this study first
identifies and ranks the order of importance of EV users’ qualitative
and quantitative considerations from technical, economic, and social
aspects based on the interview with EV users at public charging sta-
tions. Second, a new methodology is developed to determine the best
performing public EVSE configuration that meets the needs of the
EV user. The proposed methodology is based on joint co-simulation
models: an EVSE cost optimization model integrated with a public
charging behavior model and an improved MCDM model. The proposed
MCDM model utilizes nonlinear Bonferroni functions, which are ex-
tended using Dombi norms. It has stabilization parameters that enable
flexible decision-making and objective result analysis. Moreover, it has
an original algorithm for the standardization of the elements of the
criteria-alternatives matrix that enables the preservation of the dispo-
sition of natural and normalized attribute values. The standardization
algorithm also eliminates the displacement of the area of normalized
values for the cost and benefit attribution criteria. Lastly, the proposed
model has an original aggregation mechanism for the fusion of RDB
functions that makes the aggregation process more flexible. Overall,
the main salient advantages of the proposed MCDM model can be
summarized as follows:

• It transforms inaccuracies in EV user estimates using rough num-
bers. Unlike the conventional algorithm for generating rough
numbers, the proposed algorithm has a flexible rough boundary
interval that contributes to objective and rational reasoning in a
dynamic environment.

• It uses the reverse sorting mechanism to standardize information,
enabling the preservation of the disposition of multidimensional
data and the absence of displacement in the areas of normalized
values.

• An original aggregation mechanism for the fusion of RDB func-
tions is presented.

• It enables flexible decision-making and consideration of mutual
connections between attributes. This feature enables the simula-
tion of various levels of risk via scenarios, as well as adequate
verification of the robustness of the results.

The remainder of the paper is structured as follows: Section 2
resents the proposed methodology, including public EVSE alterna-
ives, and EV users’ preferences as decision-making criteria. In Sec-
3

ion 3, an optimal public EVSE cost model is developed. Section 4
develops the rough Dombi Bonferroni based MCDM model. Section 5
presents experimental results with sensitivity and comparative analy-
ses. Section 6 provides the concluding remarks.

2. Methodology

The proposed methodology combines an optimization public charg-
ing station model with a new MCDM model as shown in Fig. 1. In
order to determine the best-performing EVSE type, this study first
specifies quantitative and qualitative criteria that consider various EV
user perspectives at the public charging station. While the proposed op-
timization model can yield optimal values for the quantitative criteria
that are directly fed into the decision-making process, the qualitative
criteria are then evaluated by EV users using a 9-point linguistic scale.
Finally, the RDB MCDM is applied to determine the weights for the
qualitative criteria and to evaluate the public charging station alterna-
tives based on the weighted qualitative and deterministic quantitative
criteria.

2.1. Description of public charging station alternatives

As public charging station alternatives, this study considers five
EVSE configurations that are currently available in publicly accessible
areas. The first and second alternatives, 𝐴1 and 𝐴2 are AC Level-2
or Mode-3 EVSEs. While 𝐴1 is a single-phase EVSE (L2-1P) offering
a medium-speed charging up to 7.36 kW (230 V-32A), 𝐴2 is a three-
phase EVSE (L2-3P) that allows fast charging at a rate of 22 kW
(400 V-32A) [18]. The third alternative, 𝐴3 is the dual-port option of
the three-phase EVSE which allows two EVs to charge simultaneously
by sharing the supply across the ports. The last two alternatives are
DCFC EVSEs that provide rapid charging. 𝐴4 is single-port DCFC at the
charging rate of 50 kW while 𝐴5 is the dual-port option of the DCFC.
In order to deliver charging electricity to an EV, the Level-2 EVSEs
requires standardized AC connectors called Type 1, Type 2, and Type
3 [36] while DCFC utilizes either Combo-2 [37], CHAdeMO [38], or
GB/T connectors [39].

2.2. Description of decision-making criteria

Based on EV users’ considerations at public charging stations, this
study specifies 13 evaluation criteria that entail technical, economic,
and social aspects of public charging stations, and are attributed as
either benefits or costs. As reported in Table 2, it comprises five quan-
titative techno-economic criteria whose values are calculated through
the developed optimal public charging station model given in Section 3.
In addition to the quantitative parameters, 8 qualitative criteria are in-
cluded to address technical and social considerations of public charging
that affect the EV user’s convenience. The degree of importance of the

qualitative criteria is evaluated individually by the EV users who use
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Fig. 1. Flow Chart of the proposed Dombi Bonferroni based MCDM.
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Table 2
The evaluation criteria.

Evaluation criteria Unit Type Attribute

C1 Electrical peak power kW Quantitative Cost
C2 Unit cost of charging Cents/kWh Quantitative Cost
C3 Required charging time min Quantitative Cost
C4 Number of EVSE units unit Quantitative Benefit
C5 EVSE Hosting capacity % Quantitative Benefit
C6 EVSE reliability – Qualitative Benefit
C7 Technological and market maturity – Qualitative Benefit
C8 Connector & ICT interoperability – Qualitative Benefit
C9 V2G capability – Qualitative Benefit
C10 Visibility and Aesthetic – Qualitative Benefit
C11 EVSE installation requirement – Qualitative Cost
C12 Impact on EVs battery life – Qualitative Cost
C13 EVSE space requirement – Qualitative Cost
4

c

public charging stations. The EV driving experience of the users who
participated in the study ranged from 1 year to 5 years.

Electrical peak power is the key technical parameter since EV
charging loads can make it fluctuate that increases power systems
operational cost and transmission level operation [40]. Therefore, it
is included in the optimal charging station model which is set not
to exceed a peak power limit. Herein, 𝐶1 refers to the peak of total
harging power within a public charging station which includes the
equired number of EVSEs to serve EV charging needs. As it is usually
easured in 15-min, the peak power is the averaged power of 15 min

ntervals. In terms of the peak power, the optimal behavior of the public
harging station alternatives is reported in Table 3. It is obtained that
CFC EVSEs (𝐴4 and 𝐴5) achieve lower peak power as compared to
C EVSE types in which 𝐴2 causes the highest peak power. This is
ainly due to the more effective use of low-cost energy charge time

ntervals in the utility’s provided tariff. The second criterion, 𝐶2 is
he unit cost of charging which is the rate of the total cost to total

harging energy served within a public charging station. As detailed in
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Table 3
Optimal values of quantitative criteria from the model run (Results are averaged among
100 random mobility trials).

Criterion # A1 A2 A3 A4 A5

C1 154.207 158.204 155.659 151.034 151.322
C2 25.965 28.005 26.495 29.460 29.285
C3 99.463 78.668 87.647 13.112 25.720
C4 8.790 14.120 7.735 2.600 2.350
C5 0.437 0.190 0.347 0.480 0.516

Section 3, the unit cost incorporates the daily levelized EVSE cost and
the utility’s cost for being able to meet the peak power into the charging
cost. The optimal unit cost behavior of the public charging station
alternatives is shown in Fig. 2. L2-1P EVSE (𝐴1) achieves the lowest
unit cost followed by dual-port L2-3P EVSE while DCFC EVSEs 𝐴4 and
5 are the least cost-effective. The primary cost factor is found to be
VSE cost which includes hardware, installation, and maintenance cost.
hile DCFC EVSEs achieve a lower charging cost and peak power, their

VSE cost is considerably higher as compared to AC EVSE alternatives.
he required charging time, 𝐶3 is one of the main concerns for EV
sers. In this respect, DCFC EVSEs outperforms due to their higher
harging capacities. As the optimal values are given in Table 3, the
verage required charging time per EV with 𝐴4 and 𝐴5 is reduced by
and 4-fold, respectively as compared to AC EVSE alternatives. The

umber of EVSE units is considered as another benefit criterion, 𝐶4
ince higher number of units increases availability. In order to charge
00 EVs, the optimal number of EVSE units for the public charging
tation alternatives considered is calculated as in Table 3. It should be
oted that the number of EVSE units is the average value of 100 runs,
hich results in decimal numbers. The heuristic charging algorithm to

olve the optimal model imposes that EV is plugged off whenever its
harging process is completed and the subsequent EV is plugged in. As
his may decrease convenience for some EV users due to the need to
e unplugged quickly, the AC EVSE alternatives outperform from this
egard. The last quantitative criterion, 𝐶5 is hosting capacity which is
measure of efficient use of EVSE. It is calculated by

C =

𝑁
∑

𝑖
𝐸𝑠𝑒𝑟𝑣𝑒𝑑 (𝑖)

𝑆𝑗 ⋅ ∫

𝑚𝑎𝑥(𝑡𝑝𝑙𝑢𝑔−𝑜𝑓𝑓 (1∶𝑁))

𝑚𝑖𝑛(𝑡𝑝𝑙𝑢𝑔−𝑖𝑛(1∶𝑁))
(𝑃 𝑟𝑎𝑡𝑒𝑑𝑗 ⋅ 𝜂𝑗 ) 𝑑𝑡

, (1)

where 𝐸𝑠𝑒𝑟𝑣𝑒𝑑,𝑖, 𝑡𝑝𝑙𝑢𝑔−𝑖𝑛,𝑖 and 𝑡𝑝𝑙𝑢𝑔−𝑜𝑓𝑓 ,𝑖 are the charging energy served,
the plug-in and plug off of 𝑖th EV, respectively. 𝑆𝑗 is the number of
EVSE units, 𝑃 𝑟𝑎𝑡𝑒𝑑𝑖 is the on-board charger power rating of 𝑖th 𝐸𝑉 . 𝜂𝐽
are the efficiency of the EVSE unit. The optimal 𝐶5 values are found
to be as in Table 3. DCFC EVSEs 𝐴4 and 𝐴5 displays superior hosting
capacity performance as compared to AC alternatives. In this regard,
𝐴2 has the lowest hosting capacity of 0.19 due to the inefficient use
of their charging capacity of 22 kW by the onboard charging rates of
the EVs considered. This is because EV onboard charger rates limit the
actual charging capacity of AC EVSEs, whereas the DCFCs have direct
access to EV’s battery and can charge at their actual charging power
rate.

The qualitative criteria are specified to address various EVSE fea-
tures and requirements which affect the usability and accessibility from
the EV user perspective. EVSE reliability at public charging stations is
seen critical to EV adoption. 𝐶6 refers to the frequency of failure oc-
currences and maintenance. EVSEs can be down due to either software
or hardware issues. In [41], public AC L2 and DCFC EVSE downtimes
were observed 18% and 13% per year, respectively. Technological and
market maturity, 𝐶7 is another consideration for EVSE adoption in such
early stages of EVSE development. Charging with public EVSEs requires
EVs to compatible with their available connectors. While AC L2 EVSEs
utilizes standardized SAE J1772 connectors which is supported by most
5

EV manufacturers, a single standard connector for DCFCs compatible
Fig. 2. Distributions of optimal unit cost values for 100 random mobility trials with
respect to public EVSE alternatives.

with all EVs is not available. 𝐶8 is therefore an important criterion
for public EVSE type selection. As the vehicle-to-grid (V2G) technology
enables EVs to use the stored energy in their batteries for other services
such as peak shaving, frequency regulation, etc. [40], V2G capability of
EVSEs, 𝐶9 is considered as one of the decision-making criteria. In this
respect, the V2G through AC EVSEs depends on the onboard charger
capability of EVs while DCFC EVSE alternatives make it possible. EVSE
installation requirement, 𝐶11, refers to whether EVSE requires extensive
installation work in terms of cost, time, electrical network upgrade etc.
Furthermore, public sites can mostly be limited to installing a higher
number of EVSEs. Therefore, EVSE space requirement, 𝐶13 is considered
as another cost criterion in the decision-making. In these regard, DCFC
EVSEs require more electrical upgrades and are subject to more site
factors including visibility and aesthetics that increase the installation
cost and time significantly as compared to AC EVSE alternatives [18].
The durability and health of EV batteries are of primary interest to
EV users. The criterion, 𝐶12 is selected to consider how the charging
rate affects the durability and safety of EV’s battery. It is demonstrated
in [42] that higher charging rates with DCFCs significantly affects the
durability and thermal safety of lithium batteries.

3. An optimization model for public charging station

3.1. Public charging behavior

The optimization model requires EVs’ charging behaviors at public
charging stations. The behavior is characterized by three elements,
i.e., charge start and end times, and charging energy need. In order
to model realistic public charging behavior, this study utilizes real
EV charging data from public charging stations [43]. The data set
includes 7891 charging events at several public charging stations in
Netherlands in 2019. It provides the charge start, end, total charging
energy delivered, and maximum power supplied. The data set does not
include the types of EVs served. Based on EV market availability in
Netherlands for 2019, five most sold EV models are assumed for the
public charging station events and assigned to the recorded charging
events by considering total charging energy and the vehicles’ battery
capacities. The usable battery capacity and charging rate of the EV
models considered are as follows: (i) 95 kWh, 16.5 kW, (ii) 84.7 kWh,
7.4 kW, (iii) 28 kWh, 3.3 kW, (iv) 28 kWh, 6.6 kW, (v) 41 kWh, 22 kW.

3.1.1. Charge start time
EV users’ charging behaviors at public charging stations are usually

random and their distributions cannot be fitted to normal distribution.
Various probability density functions (pdf) such as Kernel Density
Estimation (KDE), Gaussian Mixture Models (GMM), and Weibull dis-

tributions have been used to model EV charging behaviors [44–46].
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Fig. 3. Distribution of EVs’ charging behaviors at public charging stations: (a) charge start time, (b) charge end time, (c) charging energy need.
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he pdf alternatives may demonstrate different performances in each
ehavior and the best fit can be checked with goodness-of-fit. The plug-
n or charge start of the events are modeled using Matlab Statistics
nd Machine Learning Toolbox™ [47] with GMM as the best fit. GMM
s a parametric estimator that includes the combinations of several
eighted normal distributions (2). GMM requires to define the number
f normal distribution components (3). Each are weighted, 𝜔, for best

fit and sum of the weights is unity (4), [48]. The number of components
is decided as three by the min value of Bayesian Information Criterion
(BIC) for a wide range of number of components.

𝑓 (𝑥) =
𝑧
∑

𝑖=1
𝜔𝑖𝑓𝑁𝐷(𝜇,𝜎2)(𝑥), (2)

𝑁𝐷(𝜇,𝜎2)(𝑥) =
1

√

2𝜋𝜎2𝑖

𝑒
− (𝑥−𝜇𝑖 )2

2𝜎2𝑖 . (3)

𝑀
∑

𝑖=1
𝜔𝑖 = 1, (4)

3.1.2. Charge end time and charging energy need
For the charge end time and energy need modeling of the data

set, Kernel Density Estimator (KDE) demonstrated better performance
in terms of goodness-of-fit. KDE is a non-parametric estimator that
provides a kernel function and bandwidth of a random variable and
formulated for any real values of 𝑥 as in (5) where 𝑛 is the sample size,
(⋅) is the kernel smoothing function, and ℎ is the bandwidth [48].
aussian (normal) kernel given in (6) is commonly used for Kernel
stimation [49]. The kernel bandwidth, ℎ, needs to be optimized for the

smoothness of the estimation. Matlab Statistics and Machine Learning
Toolbox™ [47] is used for kernel density estimation. The distributions
of the three behaviors with their fits are demonstrated in Fig. 3.

𝑓 (𝑥) = 1
𝑘ℎ

𝑘
∑

𝑖=1
𝐾

(𝑥 − 𝑥𝑖
ℎ

)

, (5)

𝐾(𝑥) = 1
√

2𝜋
𝑒−𝑥

2∕2. (6)

.2. The cost optimization model for public charging station

For public EVSE, the cost optimization model is adapted from [50].
he objective is set to minimize the daily levelized unit cost of charging,
𝑢𝑛𝑖𝑡, as a linear programming in (7). It is defined as the rate of the

otal cost to total charging energy served, 𝐸𝑠𝑒𝑟𝑣𝑒𝑑(8). Herein, total cost
s considered as the sum of daily charging energy cost, 𝐶𝑜𝑝, demand
harge, 𝐶𝑑𝑐 , and daily levelized EVSE infrastructure cost, 𝐶𝐿𝐼𝐶 , which
ncludes EVSE unit hardware (𝐶 ), installation, and maintenance
6

𝐸𝑉 𝑆𝐸 o
𝐶𝑖𝑛𝑠) costs. The cost elements are defined in (9) through (11). The
emand charge is considered to reflect the contribution of EV charging
oads to power demand. It is calculated as the product of peak of
verage charging load in 15 minute resolution and a demand charge
ate, 𝐶𝑑𝑟𝑎𝑡𝑒 as in (10). The electricity pricing vector, 𝐹 = {𝑓 (1)…𝑓 (𝑇 )},
nd demand charge rate 𝐶𝑑𝑟𝑎𝑡𝑒, considered are offered by a utility
ompany as a general demand time-of-use (ToU) tariff with three
ifferent rates [51]. In calculating daily levelized EVSE infrastructure
ost that considers time value of money, a discount rate of 5% is used
or the annuity factor, 𝐴𝐹 as in (11) [52]. EVSE unit hardware (𝐶𝐸𝑉 𝑆𝐸),
nstallation, and maintenance (𝐶𝑖𝑛𝑠) costs are taken from [53].

min
𝑃𝑐ℎ,1…𝑃𝑐ℎ,𝑛

𝑆𝑗

𝐶𝑢𝑛𝑖𝑡, (7)

with,

𝐶𝑢𝑛𝑖𝑡 =
𝐶𝑜𝑝 + 𝐶𝑑𝑐 + 𝐶𝐿𝐼𝐶
∑𝑁
𝑖=1 𝐸𝑠𝑒𝑟𝑣𝑒𝑑,𝑖

, (8)

𝐶𝑜𝑝 =
𝑠𝑗
∑

𝑠𝑗=1

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

(

𝐹 (𝑡) × (𝑃𝑐ℎ,𝑖,𝑠𝑗 (𝑡) ⋅
𝛥𝑡
60

)
)

, (9)

𝐶𝑑𝑐 = 𝐶𝑑𝑟𝑎𝑡𝑒 ⋅ (𝑚𝑎𝑥(
96
∑

𝑘=1

15
∑

𝑡=1
𝑚𝑒𝑎𝑛(

𝑠𝑗 ,𝑛
∑

1
𝑃𝑐ℎ,𝑖,𝑠𝑗 ((𝑘 − 1) ⋅ 15 + 𝑡)))), (10)

𝐿𝐼𝐶 = 𝑠𝑗 ⋅ 𝐴𝐹 ⋅
(

𝐶𝐸𝑉 𝑆𝐸 + 𝐶𝑖𝑛𝑠
)

. (11)

he objective function is subject to constraints given in (12) through
14). The required charge energy of an EV, 𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑,𝑖, is satisfied in (12)
ith the optimized charging rates 𝑃𝑐ℎ,𝑖 = {𝑃𝑐ℎ, 𝑖(1)…𝑃𝑐ℎ, 𝑖(𝑇 )}. (13)

mposes a maximum charging rate of either onboard charger rate 𝑃 𝑟𝑎𝑡𝑒𝑑𝑖
f 𝑖th 𝐸𝑉 with an efficiency of 𝜂𝑖 or EVSE charging rate, 𝑃 𝑟𝑎𝑡𝑒𝑑𝐽 with an
fficiency of 𝜂𝐽 . The total charging power is limited to 500 kW, which
s the demand limit, 𝑃𝑙𝑖𝑚 in (14) based on the tariff requirements.
𝑇

𝑡=1
𝑃𝑐ℎ,𝑖(𝑡) ⋅ 𝜂𝑖 ⋅

𝛥𝑡
60

= 𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑,𝑖, (12)

⎧

⎪

⎨

⎪

⎩

0 ≤ 𝑃𝑐ℎ,𝑖(𝑡) ≤ min
(

𝜂𝑖𝑃 𝑟𝑎𝑡𝑒𝑑𝑖 , 𝜂𝐽𝑃 𝑟𝑎𝑡𝑒𝑑𝐽

)

,∀𝐽 ∈
{

1, 2, 3
}

0 ≤ 𝑃𝑐ℎ,𝑖(𝑡) ≤ 𝜂𝐽 ⋅ 𝑃 𝑟𝑎𝑡𝑒𝑑𝐽 ,∀𝐽 ∈
{

4, 5
}

,
(13)

𝑇

𝑡=1

𝑠𝑗
∑

𝑠𝑗=1

𝑁
∑

𝑖=1
𝑃𝑐ℎ,𝑖,𝑠𝑗 (𝑡) ≤ 𝑃𝑙𝑖𝑚. (14)

ased on EVs’ plug-in times, a heuristic uninterrupted charging algo-
ithm is employed for scheduling an EV set of 𝑁 = {1, 2,… 𝑛} for the
ublic EVSE set of 𝑆 = {1, 2,… 𝑠}. Fig. 1 presents the algorithm as part

f the proposed model flow.
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4. Rough Dombi Bonferroni multi-criteria decision-making frame-
work

This section presents the preliminary settings of the proposed RDB
methodology. Suppose that in a multi-criteria model, there is a set of
𝑚 alternatives (𝐴𝑖) and 𝑛 criteria (𝐶𝑗 ) for evaluation. Assume that 𝑒 EV
users ℘ =

{

℘1,℘2,… ,℘𝑒
}

participate in the research. Then we can
define an algorithm for applying the RDB methodology as follows:

Step 1. Transformation of qualitative home matrix information into
rough values. Suppose that in the home matrix ℵ =

[

𝓁𝑖𝑗
]

𝑚𝑥𝑛, there is
a set of 𝑈 qualitative criteria whose values are defined using EV user
estimates. Assume that 𝑌 is an arbitrary criterion from the set 𝑈 , and
𝑅 is a set of 𝑒 classes (𝓁1

𝑖𝑗 ;𝓁
2
𝑖𝑗 ;… ;𝓁𝑒𝑖𝑗 ), which includes all qualitative

criteria from the 𝑈 . If the classes are ordered as 𝓁1
𝑖𝑗 < 𝓁2

𝑖𝑗 < ⋯ < 𝓁𝑒𝑖𝑗 ,
then ∀𝑌 ∈ 𝑈 , 𝓁𝑞𝑖𝑗 ∈ 𝑅, (1 ≤ 𝑞 ≤ 𝑒), the lower approximation 𝐴𝑝𝑟

(

𝓁𝑞𝑖𝑗
)

and upper approximation 𝐴𝑝𝑟
(

𝓁𝑞𝑖𝑗
)

groups of qualitative criteria 𝓁𝑞𝑖𝑗 can
be expressed as follows:

𝐴𝑝𝑟
(

𝓁𝑞𝑖𝑗
)

= ∪1≤𝑞≤𝑒

{

𝑌 ∈ 𝑈∕𝑅(𝑌 ) ≤ 𝓁𝑞𝑖𝑗

}

,

𝐴𝑝𝑟
(

𝓁𝑞𝑖𝑗
)

= ∪1≤𝑞≤𝑒

{

𝑌 ∈ 𝑈∕𝑅(𝑌 ) ≥ 𝓁𝑞𝑖𝑗

}

,
(15)

here 𝓁𝑞𝑖𝑗 can be represented as a rough number ̄̄𝓁𝑞𝑖𝑗 , which is de-
ermined based on the corresponding lower and upper limit (𝓁𝑞𝑖𝑗 and
𝓁
𝑞
𝑖𝑗 ) by (19) and (20). As a result, we can define a rough number
̄̄𝓁𝑞𝑖𝑗 =

[

𝓁𝑞𝑖𝑗 ,𝓁
𝑞
𝑖𝑗
]

(1 ≤ 𝑞 ≤ 𝑒). By fusing rough values of ̄̄𝓁𝑞𝑖𝑗 , herein, we
obtain an aggregated home matrix ̄̄ℵ =

[ ̄̄𝓁𝑖𝑗
]

𝑚𝑥𝑛.
Step 2. Home matrix standardization. Since different units of mea-

surement represent the elements of the home matrix, it is necessary
to unify the matrix’s ̄̄ℵ =

[ ̄̄𝓁𝑖𝑗
]

𝑚𝑥𝑛 information. The elements [ ̄̄𝓁𝑖𝑗 ] are
tandardized to present all the same interval range. By applying (16),
e obtain a standardized matrix ℵℵ =

[ ̄̄𝜂𝑖𝑗
]

𝑚𝑥𝑛.

̄̄ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

̄̄𝜂 =
[ 𝓁𝑖𝑗
∑𝑚
𝑖=1 𝓁𝑖𝑗

,
𝓁𝑖𝑗

∑𝑚
𝑖=1 𝓁𝑖𝑗

]

if 𝑗 ∈ 𝐵𝑒𝑛𝑒𝑓𝑖𝑡

̄̄𝜂 =

⎡

⎢

⎢

⎢

⎣

−
𝓁𝑖𝑗

∑𝑚
𝑖=1 𝓁𝑖𝑗

+ max
( 𝓁𝑖𝑗
∑𝑚
𝑖=1 𝓁𝑖𝑗

)

+ min
( 𝓁𝑖𝑗
∑𝑚
𝑖=1 𝓁𝑖𝑗

)

− 𝓁𝑖𝑗
∑𝑚
𝑖=1 𝓁𝑖𝑗

+ max
(

𝓁𝑖𝑗
∑𝑚
𝑖=1 𝓁𝑖𝑗

)

+ min
(

𝓁𝑖𝑗
∑𝑚
𝑖=1 𝓁𝑖𝑗

)

⎤

⎥

⎥

⎥

⎦

if 𝑗 ∈ 𝐶𝑜𝑠𝑡

(16)

here ̄̄𝓁𝑖𝑗 represents elements of the home matrix ℵ.
Step 3. Calculation of criterion weight coefficients. Using a prede-

ined scale, EV users ℘ =
{

℘1,℘2,… ,℘𝑒
}

evaluate the criteria.
Step 3.1. Based on EV user evaluations 𝜕𝑘𝑗 (1 ≤ 𝑘 ≤ 𝑒; 𝑗 = 1, 2,… , 𝑛),

the comparative significance of the criteria was defined. We obtain
aggregate values of 𝜕𝑗 (𝑗 = 1, 2,… , 𝑛) by averaging the users’ estimates,
on the basis of which the vector of comparative values of the criteria
is defined (17).

C =
(

C1,C2,… ,C𝑛
)

, (17)

where C𝑗 = max1≤𝑗≤𝑛 =
(

𝜕𝑗
)

∕𝜕𝑗 . The rank of the criterion is defined
by the value of C𝑗 , provided that a higher value C𝑗 implies a greater
significance of the criterion.

Step 3.2. The final values of the weighting coefficients of the criteria
are calculated using the model (18). The final values of the weighting
coefficients should satisfy the condition of mathematical transitivity of
information, which is defined by the constraints of the model (18).

min 𝜓 s.t.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|

|

|

|

|

𝜁𝑗(𝑏)
𝜁𝑗(𝑏+1)

− C𝑏+1
|

|

|

|

|

≤ 𝜓, ∀𝑗

|

|

|

|

|

𝜁𝑗(𝑏)
𝜁𝑗(𝑏+2)

− C𝑏+1 ⊗𝐶𝑏+2
|

|

|

|

|

≤ 𝜓, ∀𝑗 ,
∑𝑛
𝑗=1 𝜁𝑗 = 1, 𝜁𝑗 ≥ 0, ∀𝑗

(18)
7

here 𝑏 represents the rank of the criterion.
Step 4. Determining utility functions of alternatives. From the ap-
endix expressions (A.1) to (A.6), we can derive expressions for cal-
ulating the sequential scores of alternatives. Based on the Bonferroni
eighted function and Definitions A.1 and A.2, and A3, we can de-

rive the RDB rough weighted averaging function,
( ̄̄R(1)𝜒1 ,𝜒2 ,𝓁

)

and the
RDB rough weighted geometric function

( ̄̄R(2)𝜒1 ,𝜒2 ,𝓁
)

by (22) and (23).
Herein, 𝜁𝑗 represents the weighting coefficients of the criteria defined in
the previous step, while 𝑓

(

𝜂
𝑖

)

= 𝜂
𝑖
∕
∑𝑛
𝜒=1 𝜂

(𝜒)
𝑖

and 𝑓
(

𝜂𝑖
)

= 𝜂𝑖∕
∑𝑛
𝜒=1 𝜂

(𝜒)
𝑖

(See Box I).
Step 5. Determining rough score functions (𝛹𝑖), (21).

𝛹𝑖 =
̄̄R(1)𝜒1 ,𝜒2 ,𝓁 + ̄̄R(2)𝜒1 ,𝜒2 ,𝓁

1 +
{

𝜛
(

1− ̄̄R(1)𝜒1 ,𝜒2 ,𝓁

̄̄R(1)𝜒1 ,𝜒2 ,𝓁

)𝛿
+ (1 −𝜛)

(

1− ̄̄R(2)𝜒1 ,𝜒2 ,𝓁

̄̄R(2)𝜒1 ,𝜒2 ,𝓁

)𝛿}
(21)

where 𝛿, 𝜛 ≥ 0.
The coefficient 𝜛 has values from the interval 𝜛 ∈ [0, 1]. A value

of 𝜛 = 0.5 is applied when calculating the initial values, which allows
the RDB function

( ̄̄R(1)𝜒1 ,𝜒2 ,𝓁 and ̄̄R(2)𝜒1 ,𝜒2 ,𝓁
)

to have an equal effect on
the initial results. Alternatives are ranked based on the value of 𝛹𝑖 (See
Box II).

5. Experimental results

A case study involving the evaluation of five public EVSE alterna-
tives was used to demonstrate the application of the proposed multi-
criteria methodology. The criteria were divided into two categories:
quantitative and qualitative. The values of qualitative criteria are de-
fined based on the assessments of EV users, whereas the optimal values
for quantitative criteria are calculated by running the optimization
model. The EV users used a nine-point scale for evaluation: Extremely
Low (EL) — 1, Medium Low (ML) — 2, Low (L) — 3, Medium (M)
— 4, Medium High (MH) — 5, High (H) — 6, Very High (VH) — 7,
Extremely High (EH) — 8, and Perfect (P) — 9.

Step 1. Formation of an aggregated home matrix. The study involved
seven EV users who evaluated alternatives for the set of qualitative
criteria (𝐶6–𝐶13) as given in Table 4.

Using (15)–(20), the group of qualitative criteria in Table 4 was
transformed into rough numbers. Thus, we obtain the final aggregated
home matrix ̄̄ℵ =

[ ̄̄𝓁𝑖𝑗
]

5×13 as in Table 5.
Step 2. Following the formation of the aggregated home matrix, the

atrix elements ̄̄ℵ were standardized using (16). As a result, Table 6
isplays a standardized home matrix in which all elements belong to
he interval ̄̄𝓁𝑖𝑗 ∈ [0, 1].
Step 3. The criteria evaluation was performed using a two-point

scale presented in Step 1. EV user comparisons of the criteria are given
in Table 7.

Step 3.1. Based on EV users’ comparisons in Table 6, a vector of
comparative significance criteria was defined. The criteria in vector
(17) are ranked from most significant to least significant.

Step 3.2. Based on the vector ℑ, a model (18) is formed based on
hich the optimal weighting coefficients of the criteria are defined.

min𝜓 𝑠.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|

|

|

|

|

𝜁3
𝜁6
− 1.038

|

|

|

|

|

≤ 𝜓,
|

|

|

|

|

𝜁6
𝜁12

− 1.058
|

|

|

|

|

≤ 𝜓,
|

|

|

|

|

𝜁12
𝜁2

− 1.122
|

|

|

|

|

≤ 𝜓,
|

|

|

|

|

𝜁2
𝜁4
− 1.122

|

|

|

|

|

≤ 𝜓 ;

|

|

|

|

|

𝜁4
𝜁5
− 1.122

|

|

|

|

|

≤ 𝜓,
|

|

|

|

|

𝜁5
𝜁8
− 1.122

|

|

|

|

|

≤ 𝜓,
|

|

|

|

|

𝜁8
𝜁7
− 1.196

|

|

|

|

|

≤ 𝜓,
|

|

|

|

|

𝜁7
𝜁1
− 1.150

|

|

|

|

|

≤ 𝜓 ;

;… ;
|

|

|

|

|

𝜁8
𝜁1
− 1.495

|

|

|

|

|

≤ 𝜓,
|

|

|

|

|

𝜁7
𝜁11

− 1.677
|

|

|

|

|

≤ 𝜓,
|

|

|

|

|

𝜁1
𝜁13

− 1.845
|

|

|

|

|

≤ 𝜓,
|

|

|

|

|

𝜁11
𝜁10

− 1.990
|

|

|

|

|

≤ 𝜓 ;

|

|

|

|

|

𝜁13
𝜁9

− 2.274
|

|

|

|

|

≤ 𝜓 ;

∑13
𝑗=1 𝜁𝑗 = 1, 𝜁𝑗 ≥ 0, ∀𝑗
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0

𝓁𝑞𝑖𝑗 =

∑𝑒
𝑡=1 𝓁

𝑞
𝑖𝑗𝑡

1 +

{

1
𝛽1+𝛽2

𝑒(𝑒−1)
∑𝑒
𝑥,𝑦=1
𝑥≠𝑦

1
(

𝛽1
((

1−𝑓
(

𝓁(𝑥)𝑖𝑗

))

∕
(

𝑓
(

𝓁(𝑥)𝑖𝑗

))𝛼
+𝛽2

((

1−𝑓
(

𝓁(𝑦)𝑖𝑗

))

∕
(

𝑓 (𝓁(𝑦)𝑖𝑗

))𝛼)

}1∕𝛼
|𝓁(𝑥)
𝑖𝑗 ,𝓁

(𝑦)
𝑖𝑗 ∈ 𝐴𝑝𝑟

(

𝓁𝑞𝑖𝑗
)
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𝓁
𝑞
𝑖𝑗 =

∑𝑒
𝑡=1 𝓁

𝑞
𝑖𝑗𝑡

1 +

{

1
𝛽1+𝛽2

𝑒(𝑒−1)
∑𝑒
𝑥,𝑦=1
𝑥≠𝑦

1
(

𝛽1
((

1−𝑓
(

𝓁(𝑥)𝑖𝑗

))

∕
(

𝑓
(

(𝓁(𝑥)𝑖𝑗

))𝛼
+𝛽2

((

1−𝑓
(

𝓁(𝑦)𝑖𝑗

))

∕
(

𝑓 (𝓁(𝑦)𝑖𝑗

))𝛼)

}1∕𝛼
|𝓁(𝑥)
𝑖𝑗 ,𝓁

(𝑦)
𝑖𝑗 ∈ 𝐴𝑝𝑟

(

𝓁𝑞𝑖𝑗
)

(20)

Box I.
̄̄R(1)𝜒1 ,𝜒2 ,𝓁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑𝑛
𝑗=1 𝜂𝑖𝑗

1+
{

1+ 1
𝜁𝑖𝜁𝑗 (𝜒1+𝜒2)

1−𝜁𝑖
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1
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))

∕
(

𝑓
(

𝜂𝑖

))𝓁
+𝜒2
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(

𝜂𝑗

))

∕
(

𝑓 (𝜂𝑗

))𝓁)

}

1∕𝓁
,

∑𝑛
𝑗=1 𝜂𝑖𝑗

1+
{

1+ 1
𝜁𝑖𝜁𝑗 (𝜒1+𝜒2)

1−𝜁𝑖
∑𝑛
𝑖,𝑗=1
𝑖≠𝑗

1

𝜒1
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1−𝑓
(

𝜂𝑖
))

∕
(

𝑓
(

𝜂𝑖
))𝓁

+𝜒2
((

1−𝑓
(

𝜂𝑗
))

∕
(

𝑓 (𝜂𝑗
))𝓁)

}

1∕𝓁
,

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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̄̄R(2)𝜒1 ,𝜒2 ,𝓁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑𝑛
𝑗=1 𝜂𝑖𝑗 −

∑𝑛
𝑗=1 𝜂𝑖𝑗

1+
{

1+ 1
𝜁𝑖𝜁𝑗 (𝜒1+𝜒2)

1−𝜁𝑖
∑𝑛
𝑖,𝑗=1
𝑖≠𝑗

1

𝜒1
(

𝑓
(

𝜂𝑖

)

∕
(

1−𝑓
(

𝜂𝑖

)))𝓁
+𝜒2

(

𝑓
(

𝜂𝑗

)

∕
(

1−𝑓
(

𝜂𝑗

)))𝓁)

}

1∕𝓁
,

∑𝑛
𝑗=1 𝜂𝑖𝑗 −

∑𝑛
𝑗=1 𝜂𝑖𝑗

1+
{

1+ 1
𝜁𝑖𝜁𝑗 (𝜒1+𝜒2)

1−𝜁𝑖
∑𝑛
𝑖,𝑗=1
𝑖≠𝑗

1
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(

𝑓
(

𝜂𝑖
)

∕
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1−𝑓
(

𝜂𝑖
)))𝓁

+𝜒2
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𝑓
(

𝜂𝑗
)

∕
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1−𝑓
(

𝜂𝑗
)))𝓁)

}

1∕𝓁
,

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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Box II.
Table 4
EV users’ assessment of alternatives under a group of qualitative criteria.

Criteria A1 A2 A3 A4 A5

C6 L; MH; H; EH; P; MH; EH M; H; MH; EH; P; H; EH ML; VH; MH; EH; P; EH; EH EH; P; MH; P; VH; P; H EH; P; MH; P; VH; P; H
C7 L; MH; MH; EH; P; MH; L M; VH; H; H; P; H; H ML; VH; MH; H; P; EH; VH EH; P; MH; H; VH; P; H EH; P; M; VH; VH; P; H
C8 L; H; H; EH; MH; MH; VH M; VH; H; H; MH; H; EH ML; EH; H; H; MH; EH; VH EH; P; H; VH; M; P; MH EH; P; H; VH; M; P; MH
C9 L; MH; H; MH; EL; MH; L M; VH; M; MH; EL; H; H ML; VH; M; M; EL; EH; H EH; P; MH; H; P; P; P EH; P; MH; H; P; P; EH
C10 L; H; H; VH; P; MH; EH M; VH; MH; H; P; H; MH ML; H; MH; H; P; EH; M EH; P; MH; EH; MH; P; MH EH; P; MH; EH; M; P; MH
C11 L; M; M; EH; EL; MH; P M; VH; L; VH; ML; H; EH ML; VH; M; EH; ML; EH; EH EH; H; M; P; EH; P; P EH; H; M; P; VH; P; EH
C12 L; VH; H; MH; EL; MH; L M; VH; H; EH; ML; H; H ML; EH; H; P; ML; EH; H EH; H; H; P; P; P; P EH; H; H; P; VH; P; EH
C13 L; VH; L; M; EL; MH; L M; VH; M; H; ML; H; VH ML; H; L; P; ML; EH; VH EH; H; L; EH; P; P; EH EH; H; M; P; VH; P; VH
Table 5
Home matrix.

Crit. A1 A2 A3 A4 A5

C6 [3.59, 5.78] [4.07, 5.9] [3.41, 6.11] [4.94, 6.59] [4.94, 6.59]
C7 [3.04, 4.99] [4.19, 5.43] [3.17, 5.83] [4.69, 6.26] [4.44, 6.31]
C8 [3.48, 5.13] [3.96, 5.22] [3.15, 5.49] [4.13, 6.22] [4.13, 6.22]
C9 [1.95, 3.73] [2.22, 4.43] [1.78, 4.56] [5.19, 6.74] [5.09, 6.63]
C10 [3.60, 5.76] [3.84, 5.37] [2.84, 5.44] [4.47, 6.09] [4.15, 6.15]
C11 [1.92, 4.84] [2.58, 5.06] [2.51, 5.26] [4.71, 6.61] [4.50, 6.42]
C12 [1.93, 4.12] [3.00, 5.11] [2.67, 5.51] [5.53, 6.72] [5.22, 6.44]
C13 [1.78, 3.55] [2.81, 4.72] [2.24, 5.18] [4.25, 6.43] [4.44, 6.31]

Lingo 19.0 software was used to solve the nonlinear model, and
a vector of weighting coefficients was obtained as follows: 𝜁𝑗 =
(0.0532, 01124, 0.1386, 0.1002, 0.0892, 0.1334, 0.0664, 0.0795, 0.0127,
.0199, 0.0396, 0.1262, 0.0288)𝑇 .
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Step 4. Using (22) and (23), the utility functions of the alternatives
are defined as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

̄̄R(1)𝜒1=𝜒2=𝓁=1 = [0.117, 0.159]; ̄̄R(2)𝜒1=𝜒2=𝓁=1 = [0.119, 0.164];
̄̄R(1)𝜒1=𝜒2=𝓁=1 = [0.119, 0.153]; ̄̄R(2)𝜒1=𝜒2=𝓁=1 = [0.120, 0.154];
̄̄R(1)𝜒1=𝜒2=𝓁=1 = [0.132, 0.177]; ̄̄R(2)𝜒1=𝜒2=𝓁=1 = [0.134, 0.180];
̄̄R(1)𝜒1=𝜒2=𝓁=1 = [0.204, 0.240]; ̄̄R(2)𝜒1=𝜒2=𝓁=1 = [0.206, 0.242];
̄̄R(1)𝜒1=𝜒2=𝓁=1 = [0.199, 0.237]; ̄̄R(2)𝜒1=𝜒2=𝓁=1 = [0.201, 0.238];

The value of the coefficient 𝜛 = 0.5 was used when calculating
rough score functions for the alternatives. This enables the rough
functions ̄̄R(1)𝜒1 ,𝜒2 ,𝓁 and ̄̄R(2)𝜒1 ,𝜒2 ,𝓁 to have the same influence on the
definition of rough score function alternatives. Since the alternative
should have the highest possible value 𝜓𝑖, the following rank was
obtained: 𝐴4 > 𝐴5 > 𝐴3 > 𝐴1 > 𝐴2.

In terms of EV users’ ranking of criteria, the results in Table 7

show that the required charging time is found to have the highest
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Table 6
Standardized home matrix.

Crit. A1 A2 A3 A4 A5

C1 [0.201, 0.201] [0.196, 0.196] [0.199, 0.199] [0.205, 0.205] [0.205, 0.205]
C2 [0.187, 0.187] [0.201, 0.201] [0.190, 0.190] [0.212, 0.212] [0.210, 0.210]
C3 [0.043, 0.043] [0.111, 0.111] [0.082, 0.082] [0.327, 0.327] [0.285, 0.285]
C4 [0.216, 0.216] [0.066, 0.066] [0.245, 0.245] [0.390, 0.390] [0.397, 0.397]
C5 [0.222, 0.222] [0.096, 0.096] [0.176, 0.176] [0.244, 0.244] [0.262, 0.262]
C6 [0.116, 0.187] [0.132, 0.19] [0.110, 0.197] [0.160, 0.213] [0.160, 0.213]
C7 [0.105, 0.173] [0.146, 0.188] [0.110, 0.202] [0.163, 0.217] [0.154, 0.219]
C8 [0.134, 0.220] [0.117, 0.217] [0.146, 0.207] [0.111, 0.181] [0.111, 0.181]
C9 [0.075, 0.143] [0.085, 0.170] [0.068, 0.175] [0.199, 0.258] [0.195, 0.254]
C10 [0.129, 0.200] [0.121, 0.214] [0.155, 0.211] [0.099, 0.188] [0.110, 0.186]
C11 [0.068, 0.172] [0.092, 0.180] [0.089, 0.187] [0.167, 0.234] [0.160, 0.228]
C12 [0.069, 0.148] [0.107, 0.183] [0.096, 0.197] [0.198, 0.241] [0.187, 0.231]
C13 [0.169, 0.245] [0.130, 0.201] [0.152, 0.183] [0.075, 0.136] [0.068, 0.140]
Table 7
EV users’ comparisons of criteria.

Crit. E1 E2 E3 E4 E5 E6 E7 Mean

C1 7 3 5 7 7 6 9 6.29
C2 8 5 4 8 9 6 9 7
C3 7 9 5 8 9 9 8 7.86
C4 7 9 5 6 7 7 8 7
C5 8 7 6 7 8 6 7 7
C6 6 9 6 6 9 9 8 7.57
C7 5 7 5 6 8 9 6 6.57
C8 5 9 6 7 5 9 8 7
C9 7 5 5 5 1 7 5 5
C10 7 4 6 8 1 5 7 5.43
C11 8 4 4 7 5 8 5 5.86
C12 8 7 7 8 5 9 8 7.43
C13 8 5 4 6 4 7 6 5.71

importance degree, followed by EVSE reliability and the impact on
the EV’s battery life. EVSE hosting capacity, and connector & ICT
interoperability are other main factors affecting the ranking, with V2G
capability being the least important. The primary reason that DCFC
EVSEs are superior alternatives is that they require significantly less
charging time. Furthermore, they have been found to be more reliable
as compared to AC EVSE counterparts. They also have a higher hosting
capacity. While the unit cost and the number of EVSE units have been
found to be more important, they have a minor impact on the ranking.
The main reason that 𝐴2 is the least favorable option is that it has
ignificantly less hosting capacity due to inefficient charging capacity
9

use. Moreover, the unit cost of 𝐴3 is the highest among AC EVSE
alternatives.

5.1. Checking the stability of the results

A sensitivity analysis was used to assess the robustness of the
obtained ranking. The impact of five parameters on the final ranking
was considered in the sensitivity analysis. The weighted rough function,
̄̄R(1)𝜒1 ,𝜒2 ,𝓁 and ̄̄R(2)𝜒1 ,𝜒2 ,𝓁 is calculated using three parameters. The initial
solution was computed using the parameters 𝜒1 = 𝜒2 = 𝓁 = 1. The
following section simulates the change of the mentioned parameters in
the interval 1 ≤ 𝜒1, 𝜒2 ≤ 100. The change of rough score functions of the
alternatives was monitored concurrently with the change of the stated
parameters. The parameters 1 ≤ 𝜒1, 𝜒2 ≤ 100 were changed in the first
experiment, while the parameter 𝓁 was set to one. Fig. 4 shows the
change of the rough score function of the alternatives. The behavior of
the rough score function of the alternative 𝐴1, as an example, is shown
in Fig. 5.

In the second experiment, the parameters 1 ≤ 𝓁 ≤ 100 were changed
while the parameters 𝜒1 and 𝜒2 were set to one. Fig. 6 shows the
behavior of the rough score functions of the alternatives. Similarly, the
behavior of the rough score function of 𝐴2 in the second experiment is
provided in Fig. 7. In both experiments, 100 scenarios were created.
The first experiment in Fig. 4 confirmed the initial ranking for the
parameters 1 ≤ 𝜒1, 𝜒2 ≤ 8. Changes in the ranks of alternatives 𝐴1
and 𝐴2 are caused by parameter values in the range 𝜒1, 𝜒2 ≤ 100.
Despite significant changes in the parameters 𝜒 and 𝜒 , the rank of
1 2
Fig. 4. Behavior of the rough score functions of alternatives for varying 𝜒1 , 𝜒2.
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Fig. 5. Behavior of the rough score function of the alternative 𝐴1.

Fig. 6. Behavior of the rough score functions of alternatives for varying 𝓁.

Fig. 7. Behavior of the rough score function of 𝐴2 in the second experiment.
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Fig. 8. Behavior of the rough score functions of alternatives for varying 𝜛.
Fig. 9. The analysis of the influence of the parameter 1 ≤ 𝛿 ≤ 15.
the dominant alternatives, 𝐴4 and 𝐴5 remained constant. As shown in
Fig. 6, there were no changes in the rankings of alternatives in the
second experiment. The initial ranking, (𝐴4 > 𝐴5 > 𝐴3 > 𝐴1 > 𝐴2)
is validated by this experiment, indicating that alternative 𝐴4 is the
dominant solution.

The impact of the parameters 𝜛 and 𝛿 on the rough score functions
of the alternatives was investigated in addition to the parameters 𝜒1,
𝜒2, and 𝓁. To do so, the following two experiments were carried out
as follows: In the first experiment, the value 𝜛 was first set to zero
and increased by 0.03 in each subsequent scenario. As such, thirty-
four scenarios were created. Fig. 8 shows the evolution of rough score
functions of the alternatives in response to varying 𝜛 values. The
results show that the increase in the 𝜛 parameter through thirty-
four scenarios does not significantly affect the change in rough score
functions. Because of the values of the RDB rough weighted averaging
functions ̄̄R(1)𝜒1 ,𝜒2 ,𝓁 and ̄̄R(2)𝜒1 ,𝜒2 ,𝓁 , the parameter 𝜛 is unlikely to affect
the model’s final results significantly.

In the second experiment, the parameter 𝛿 was changed in the in-
terval 1 ≤ 𝛿 ≤ 15. As shown in Fig. 9, the results display that increasing
the parameter 𝛿 has an effect on the decreasing rough score functions
of the alternatives. Simultaneously, the gap between the alternatives is
closing. To clearly see the difference between the alternatives, the value
of the parameter 𝛿 from the interval 1 ≤ 𝛿 ≤ 5 can be suggested. The
𝛿 values chosen thus allow for the selection of dominant alternatives,
which in turn leads to the making of a rational and objective decision.
11

Despite a significant narrowing of the gap between the alternatives’
score functions, the initial ranking was confirmed in all scenarios. The
results as in Fig. 9 show that alternative 𝐴4 has a clear advantage and
is the best solution.

5.2. Comparative analysis

This section presents a comparison of the RDB methodology with
multi-criteria techniques that have been developed for processing un-
certainty in information. For comparison, four studies using differ-
ent approaches for evaluating charging station locations were cho-
sen: (i) Fermatean fuzzy Einstein aggregation operators-based MULTI-
MOORA [54] (ii) Type-2 fuzzy WASPAS and TOPSIS methodology [55];
(iii) Pythagorean fuzzy SWARA and CODAS methodology [56] and
(iv) Fuzzy Entropy and VIKOR based methodology [57]. The selected
methodologies have been tested under the same conditions and on the
same data set as the RDB model. Minor changes were made to the
data in the initial matrix to adapt the data to the methods used for
the comparison. However, the modifications were formal and could not
affect the deviation of the final results to any extent. Fig. 10 displays
the comparison results of the MCDM approaches employed.

From Fig. 10, we can see that applying the discussed MCDM meth-
ods leads to similar ranking results. A complete correlation of results
was obtained with the Fermatean fuzzy Einstein MULTIMOORA and
fuzzy Entropy and VIKOR methods. Somewhat more significant devia-
tions appeared with type-2 fuzzy WASPAS and TOPSIS methodologies.
These deviations are the result of different approaches for dealing with
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Fig. 10. Comparison of various MCDM methods in the alternative ranking.
uncertainty and imprecision in the information on which a decision is
based. However, the dominance of the first-ranked alternative (𝐴4) and
the second-ranked alternative (𝐴5) was confirmed for all methodologies
considered, while alternative (𝐴2) represents the worst alternative in
the considered set.

One of the basic advantages of the RDB methodology compared to
other methods is the application of flexible non-linear Dombi Bonfer-
roni functions for group information processing, while other applied
methodologies use simple linear functions that, in certain situations,
can lead to a violation of the stability of the obtained solution. Further-
more, since rough Dombi Bonferroni functions enable flexible decision-
making due to decision makers’ risk attitudes, the RDB methodology is
more general and flexible than other methods.

The MCDM methods employed in the comparison analysis utilize
fuzzy numbers with predefined fuzzy boundary sets to handle uncer-
tainty. That is why, in the mentioned approaches, it is necessary to
apply aggregation operators for the fusion of group information, which
leads to the generalization of the information in the initial decision
matrix. On the other hand, the adaptability of the RDB approach is re-
flected in the retention of the initial uncertainties in the decision matrix
that arose as a consequence of expert subjectivity. Also, the adaptability
of the RDB methodology is reflected in the possibility of adjusting the
stabilization parameters of the non-linear Dombi Bonferroni functions.
The decision maker simulates a different risk attitude by varying the
stabilization parameters. We can conclude that the proposed multi-
criteria approach is an adequate tool for solving real problems in a
dynamic environment.

6. Conclusion

A new MCDM methodology has been presented for selecting the best
performing EVSE option from EV users’ multi-criteria perspectives at
public charging stations. The proposed methodology applies nonlinear
Bonferroni functions to weight qualitative criteria and incorporates
an optimal public charging station model for evaluating quantitative
criteria. The Bonferroni functions are extended using Dombi norms. The
evaluations of EV users in the field were used to study all possible pub-
lic charging station alternatives. In terms of EV user considerations, the
required charging time is found to have the highest importance degree,
followed by EVSE reliability, the impact on the EV’s battery life, EVSE
hosting capacity, and connector & ICT interoperability. V2G capability
was found to be the least important. The best EVSE configuration was
12
determined to be DCFC at 50 kW, while the least performing option was
the AC L2 EVSE at 22 kW. The order of preference for the other options
was found to be as follows: 𝐷𝐶𝐹𝐶 𝑀𝑃 > 𝐴𝐶 𝐿2𝑀𝑃 > 𝐴𝐶 𝐿2−1𝑃 . The
validation of the model ranking results has been done by comparing
them against those of four MCDM methods in the literature. Moreover,
the robustness of the ranking order of public charging alternatives has
been validated through various sensitivity analyses.

The RDB model has been shown to be a powerful tool for rational
and objective decision-making. The RDB model, however, has some
limitations. One of the limitations is the inability to eliminate the
impact of extreme and unreasonable arguments in the home matrix.
Therefore, additional research into implementing Power averaging (PA)
functions in the proposed methodology is required. The application of
PA functions could allow for the presentation of the interrelationships
between the criteria, increasing the flexibility of the RDB model. Fur-
thermore, further work will focus on improving the adaptability of the
RDB model by incorporating Einstein and Hamacher norms.
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Appendix

A.1. Operational laws with Dombi norms

Definition A.1. Let Q1 and Q2 be two real numbers, then, the Dombi
T-norm and T-conorm are defined as follows [58]:

𝛥 = 1

1 +
{

(

(1 −Q1)∕Q1)
𝓁 +

(

(1 −Q2)∕Q2)
𝓁
}1∕𝓁

(A.1)

𝛥𝑐 =
1

1 +
{

(

(1 −Q1)∕Q1)
𝓁 +

(

(1 −Q2)∕Q2)
𝓁
}1∕𝓁

(A.2)

where 𝓁 > 0 and Q1,Q2 ∈ [0, 1].

According to the Dombi T-norm and T-conorm, we define the Dombi
operations as given in Definition A.1.

Definition A.2. Suppose Q1 and Q2 are two real numbers, 𝓁, ℏ > 0
and 𝑓 (Q𝑖) = Q1

/
∑𝑛
𝑖=1 Q𝑖, then we can define operational lows of real

numbers based on the Dombi norms:
Q1 +Q2 =

(

Q1 +Q2
)

− Q1+Q2

1+
{(

𝑓
(

Q1
)/(

1−𝑓
(

Q1
))

)𝓁

+
(

𝑓
(

Q2
)/(

1−𝑓
(

Q2
))

)𝓁}1∕𝓁 (A.3)

Q1 ×Q2 =
Q1+Q2

1+
{(

(

1∕
(

Q1
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𝑓
(

Q1)
)

)𝓁

+
(

(
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