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Abstract. State-of-the-art autonomous AI algorithms such as reinforcement 

learning and deep learning techniques suffer from high computational complex-

ity, poor explainability ability, and a limited capacity for incremental adaptive 

learning. In response to these challenges, this paper highlights the TMGWR-

based algorithm, developed by the present authors, as a case study towards self-

adaptive unsupervised learning in autonomous developmental AI, and makes the 

following contributions: it presents and reviews essential requirements for to-

day’s autonomous AI and includes analysis for their potential for Green AI; it 

demonstrates that, unlike these state-of-the-art algorithms, TMGWR possesses 

explainability potentials that can be further developed and exploited for autono-

mous learning applications. In addition to shaping researchers’ choice of metrics 

for selecting autonomous learning strategies, this paper will help to motivate fur-

ther innovative research in autonomous AI. 

Keywords: Autonomous AI, Green AI, unsupervised learning. 

1 Introduction 

A great deal of effort has been invested in autonomous artificial intelligence utilising 

high-performing machine learning algorithms, such as deep learning. However, these 

techniques continue to suffer from high computational costs, lack of explainability, and 

a limited capacity for incremental adaptive learning – which can lead to catastrophic 

forgetting and lack of self-recoverability in dynamic contexts. With the increasing 

adoption of AI in the global economy, a responsible application of Green AI techniques 

(with reduced carbon footprint) has become an important consideration alongside per-

formance. In addition, there have been reports of catastrophic failures leading to casu-

alties in the use of self-driving cars (Schmelzer, 2021). Therefore, to achieve a safe 

autonomous intelligent system, the system should be computationally efficient and 

meet Green AI criteria, be adaptable to changes in its environment, and should provide 

explainable outputs. 

This study is amongst AI papers recommending a strategy based on the unsupervised 

learning paradigm as the way towards truly autonomous AI (LeCun, Bengio and Hin-

ton, 2015; Marcus, 2018). The Temporospatial Merge Grow When Required 

(TMGWR) network has recently been proposed to address the challenges of self-organ-

ising approaches and can compete favourably with traditional reinforcement learning 

in autonomous agent behaviours when incorporated with value iteration (Ezenkwu and 
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Starkey, 2019, 2022). TMGWR and other self-adaptive unsupervised mechanisms are 

suitable for autonomous agents and neurorobotics due to their ability to support lifelong 

learning (Tenzer, Rasheed and Shafique, 2022). 

While previous research into TMGWR has demonstrated that it is sample-efficient, 

self-adaptive, and can cope with unpredictable scenarios through dynamic planning, its 

explainability potential has not been explored further. With our belief in self-adaptive 

unsupervised learning as an effective approach to true autonomous agents, this paper 

makes the following contributions: 

1. it reviews essential requirements for today’s autonomous AI. 

2. it demonstrates that, unlike reinforcement learning, TMGWR can be developed to 

give explainable outputs to a human observer that can be further developed and ex-

ploited for important autonomous learning applications. 

Although this paper emphasises TMGWR, it is due to its superiority over other sen-

sorimotor map learning strategies as presented in our previous paper (Ezenkwu and 

Starkey, 2019). Moreover, TMGWR is only a case study for reviewing the potential of 

self-adaptive unsupervised learning as well as discussing general desiderata for today’s 

autonomous AI. 

2 Requirements for today’s autonomous Artificial Intelligence 

Despite the significant successes recorded by sophisticated AI algorithms such as deep 

learning and reinforcement learning, they are neither safe nor suitable for autonomous 

learning due to the following reasons: (a) the environmental risks associated with high-

performing but expensive AI techniques, (b) the inflexibility of these techniques due to 

their data-hungry nature, (c) their lack of explainability due to their black box architec-

tures. These challenges can be presented under categories such as data intensiveness, 

task inflexibility, explainability, bias, and societal integration. 

Based on the above challenges with the state-of-the-art AI techniques, the goal of all 

autonomous AI research should be to realise an AI technique with the potential to ad-

dress these limitations as detailed in the following sections. 

2.1 Computational efficiency of learning algorithms 

Some sophisticated AI techniques have revealed promising results in different areas of 

application. For example, in 2015 DeepMind Technologies developed AlphaGo, a deep 

reinforcement learning algorithm that became the first to defeat a master in the game 

of Go (Silver et al., 2016); deep learning has also proven to be a popular method in 

different classes of AI problems such as computer vision, natural language processing 

(NLP), self-driving cars and so on (LeCun et al., 2015).  Another example is that despite 

being reported as the best performer in natural language processing (NLP) tasks in 

terms of accuracy (Edwards, 2021; Wang, Niu, Zhao, Wang, Hao and Che, 2021), the 

carbon dioxide emissions of training and applying a transformer are even more 
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substantial than the lifetime emissions of an automobile (Strubell, Ganesh and 

McCallum, 2019). 

The success of AlexNet in the 2010 ImageNet Large-Scale Visual Recognition Chal-

lenge (ILSVRC) has demonstrated that the depth of a deep learning model is significant 

for its high performance (Krizhevsky, Sutskever and Hinton, 2012), hence leading to 

competition in achieving the deepest neural networks in the field. The number of pa-

rameters a deep neural network has appears to correlate with the performance accuracy, 

with deeper neural network architectures emerging in recent times. For example, with 

175 billion parameters and 96 total layers, GPT-3 has been ranked the best in NLP 

(Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell 

et al., 2020). Similarly, EfficientNet-L2 has been ranked the best performing image 

classifier to date, with 480 million parameters trained on 130 million images (Xie, Lu-

ong, Hovy and Le, 2020).  

These requirements raise clear concerns around the cost and the carbon footprint due 

to the use of energy-intensive hardware (Strubell et al., 2019; Anthony, Kanding and 

Selvan, 2020; Justus, Brennan, Bonner and McGough, 2018) and do not meet require-

ments for a Green AI. 

Table 1. Summary of computational costs of learning algorithms.  N=number of observations, 

D=vector size, M=number of hidden neurons, O=number of output values, C=number of clusters, 

S=size of state space, P=population size, G=size of chromosome 

Learning algorithm Time complexity Order of complexity 

SVM with Newton N3 O(n3) 

Feed-forward neural networks D.M.O.N O(n4) 

Decision tree N 2.D O(n3) 

K-means C.N.D O(n3) 

SOM N.D O(n2) 

Growing SOM N.D O(n2) 

Q-learning S3 O(n3) 

Value iteration S2 O(n2) 

Genetic algorithms P.log(P).G O(n.log(n2))  

 

Table 1 summarises the time complexities of the most common learning algorithms 

(Kearns, 1990; Koenig and Simmons, 1993; Nicolas, 2017; Kearns, Vazirani and 

Vazirani, 1994). The computational complexities of algorithms are crucial in deciding 

which best fits a given scenario. 

SOM and growing SOM have computational advantage over most of the methods in 

Table 2. The number of nodes affects the speed of the algorithm, with the correct num-

ber of nodes crucial for improving the efficiency and representational ability of the 

algorithm. For the two planning algorithms in Table 1, model-based RL algorithms 

such as value iteration have a better time complexity than model-free RL algorithms 

such as Q-learning. Unlike Q-learning, which does not know the effect of an action 
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before it is executed at least once, value iteration only needs to enter a state at least once 

to discover all of its successor-states (Koenig and Simmons, 1993). However, the model 

of an environment may not always be available or constant for that environment — in 

these cases, model-based RL will fail. 

2.2 Self-adaptation 

A desirable attribute of an autonomous system is the ability to cope with changing sce-

narios, especially when the environment is unpredictable. Because the real world is 

very complex and uncertain, it is probable that an agent designer will not capture all the 

possibilities of a given task during design time. 

For example, a notorious consequence of lack of self-adaptation is the catastrophic 

failure of self-driving cars (Schmelzer, 2021). Self-driving cars make judgments based 

on their perceptions of their surroundings and pre-set traffic rules (Kang, Zhao, Qi and 

Banerjee, 2018). As a result, road construction, traffic signal failures, challenging 

weather conditions, confusing parking signs, and further unimagined circumstances 

could cause a self-driving car to fail (Kang et al., 2018). Gheibi et al have studied the 

extent to which different machine learning paradigms have been applied to self-adap-

tion tasks (Gheibi et al, 2021), and shown that reinforcement learning (RL), specifically 

model-free RL, is the most used learning method for self-adaption, followed by super-

vised learning, with little attention paid to unsupervised learning. 

However, each of these popular methods has inherent problems that can restrict their 

self-adaptivity. For example, RL agents require a task-dependent reward function. A 

reward function is an indirect way in which the agent designers infuse their domain 

expertise into the design. The design of the reward function often requires understand-

ing of the environment and can pose a challenge if the agent’s world changes in a man-

ner not anticipated during the design. Unlike RL agents, supervised learning agents 

require explicit provisions of ground truths by a teacher, meaning that they need hu-

mans in the loop to adapt to new changes. So, with a slight change in a task, a RL or 

supervised learning agent may need modification in its learning mechanism and retrain-

ing to overwrite the previous knowledge for the new task. This problem is known as 

catastrophic forgetting (Kirkpatrick et al., 2017). 

2.3 Explainability of learning algorithms 

One perspective adopted in the explainability of a learning algorithm is transparency 

(Belle and Papantonis, 2021). Transparency is the extent to which a human can under-

stand the learning mechanisms of an algorithm (Lipton, 2018). It is possible to achieve 

the explainability of an already trained model through post-hoc processing (Tan et al., 

2020; Belle and Papantonis, 2021). Since post-hoc processing adds computational over-

heads to the process of training and deploying a learning algorithm, this paper favours 

an inherently transparent learning model. 

Belle and Papantonis present and compare three aspects of learning transparency — 

simulatability, decomposability, and algorithmic transparency (Belle and Papantonis, 

2021). Simulatability is a model’s ability to be replicable in human thought. 
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Decomposability is the ability of a human to break down a model into inputs, parame-

ters and computations and then explain these parts, while algorithmic transparency is 

the ability of a human to understand and explain the mechanism by which a model 

generates its output. While complex methods such as SVM, ensemble learning and 

multilayer neural networks are opaque and require post-hoc processing for explainabil-

ity, simpler methods such as logistic regression, K-nearest neighbour algorithm, and 

rule-based learners are inherently transparent and do not require any post-hoc pro-

cessing to understand the model. 

In addition to the models considered in the paper by Belle and Papantonis, SOM and 

other neighbourhood-based algorithms such as K-means algorithm and Vector Quanti-

sation have been considered transparent (Tan et al., 2020; Aliyu, 2018). While the trans-

parency of evolutionary algorithms such as genetic algorithms is dependent on the cost 

function they are meant to optimise, they have been used for post-hoc processing (Pick-

ering and Cohen, 2021). RL has the same explainability issue as evolutionary algo-

rithms. Explainable RL, especially in complex environments, is an open research ques-

tion (Kuhnle, May, Schafer and Lanza, 2021). Works by Belle and Papntonis (Belle 

and Papantonis, 2021) and Chazette et al (Chazette, Brunotte and Speith, 2021) have 

provided in-depth reviews on explainability. 

2.4 Summary of desired learning attributes 

The above sections describe the problems with current approaches; they are computa-

tionally intensive and do not satisfy Green AI, cannot adapt to changes, and cannot 

explain their decision making processes.  These attributes then form the goals for a truly 

autonomous method: low compute satisfying Green AI; adapting automatically to 

changes; and explainable to the human operator. 

3 Case study of self-adaptive unsupervised learning: TMGWR 

A sensorimotor map is an agent’s self-model of the world. Using the learned sensorimo-

tor map of an environment or an agent’s experiences, the agent can exhibit autonomous 

behaviours — either self-motivated or goal-directed.  Previous work described the lim-

itations of unsupervised learning approaches for sensorimotor map learning, such as 

Connectionist World Model (CWM) (Toussaint, 2004) using Growing Neural Gas 

(GNG) (Fritzke, 1995).  This motivated the proposal of the TMGWR (Ezenkwu and 

Starkey, 2019), which is an adaptive neural architecture that learns the topological map 

and the sensorimotor links (Butz et al., 2008) between neurons using a time series self-

organising strategy (Strickert and Hammer, 2005a). The TMGWR network connects 

nodes based on their sensorimotor proximities, such that these edges can encode the 

transition possibilities as well as the motor signals that can cause transitions between 

nodes. 

The experiment for this case study was designed on a simple maze environment, with 

a randomly changing goal within this maze and also new walls being added to the maze 
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on a random basis.  Although this is a simple problem, current solutions require human 

design and highlight the lack of adaptive learning properties described above. 

The performance of the TMGWR-based agent with those of model-free and model-

based RL agents was compared (Ezenkwu and Starkey, 2022). Although the TMGWR-

based agent can be classified as a model-based RL agent, it differs from the traditional 

model-based agent in the sense that instead of requiring a human designer to encode 

the dynamics of the environment, it self-learns its world model using the TMGWR 

algorithm. The work by the authors evaluated the algorithms’ sample complexities and 

their abilities to self-adapt to a sudden change in the environment or goal state.  This 

work has shown that the TMGWR network gave more efficient representations of the 

environment in a computationally more efficient manner, and that it also showed the 

potential for online adaptation to changes in goal state or changes in the environment.  

However, the approach did not meet the requirements for Explainability as discussed 

in earlier sections. 

The TMGWR framework consists of four main modules - the sensorimotor map 

learning module, the sensory preprocessor, the motivation estimator and the action se-

lector (Ezenkwu and Starkey, 2022). An autonomous agent is equipped with suitable 

sensors and actuators which enable it to observe the environment and react to these 

observations using the actuators. The observations or sensory inputs can be prepro-

cessed or transformed into a form that conveys meaningful or contextual information 

to the agent. The preprocessed sensory observations are passed on to the sensorimotor 

map learning module which enables the agent to develop or refine its mental model of 

the scenario. The sensorimotor map learning occurs continually in an open-ended man-

ner to enable the agent to keep track of changes in the environment by continuously 

updating the sensorimotor map. The motivation estimator provides the motivation sig-

nal that enables the agent to plan towards a goal or behave in a given manner in the 

environment. The action selector considers the current observation and the agent’s mo-

tivation in selecting the best action using the sensorimotor map. Execution of this action 

causes a change in the environment and the cycle continues. 

3.1 Sensorimotor map learning 

This section examines the TMGWR algorithm as a sensorimotor map learning method. 

The key features of TMGWR are that: 

─ the nodes are linked based on their sensorimotor proximities to one another; 

─ it uses the temporal context vector similar to Merge Grow Neural Gas (MNG) 

(Strickert and Hammer, 2005b) to keep track of the sensorimotor history; 

─ the GWR strategy of adding new nodes is employed to enable the system to keep 

track of changes in the environment; 

─ all the hyperparameters are kept constant throughout the lifetime of the agent to en-

courage continual learning. 

The action map learns the codebook vector for each motor activity while the sen-

sorimotor map learns the input weight vectors and the possible action vectors linking 

them to each other. At each time step, the activated action vector on the action map is 
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associated with the sensorimotor-link from the previous winning node i to the current 

winning node j in the sensorimotor map.  The algorithm uses a similarity function that 

compares the activated action vector at a given time with the action vector that has 

already been associated with the sensorimotor-link from node i to node j. This similarity 

function has been chosen to be a Gaussian function so that if the two activation vectors 

are similar then it tends towards 1 otherwise it will tend towards 0. 

The advantage of introducing this similarity function in the update equation is that 

it increases the weight of the sensorimotor-link if the same action vector results in the 

same transition all the time and decreases it if the transition is possible with different 

action vectors. This modification is motivated by Hebbian associative learning, which 

reinforces the association between two neurons that fire together and discourages those 

which do not (Frolov and Murav’ev, 1993). This is a way of representing reliability in 

the agent’s mental model and it is useful during planning as the agent is more likely to 

select reliable actions for each experience in the environment. 

A full description of the TMGWR algorithm is presented in in Ezenkwu and 

Starkey, 2022 and the reader is directed there for further information on the algorithm. 

3.2 Suitability for autonomous learning 

Compared to both model-free and model-based RL agents, the TMGWR-based goal-

directed agent has proven to be far more self-adaptive in situations of changing envi-

ronment or changing goal state.  In addition, the experiments demonstrated that the 

TMGWR-based algorithm shows a similar sample complexity to the model-based RL 

agent but is better than the model-free RL agent. The TMGWR-based agent requires 

less time to self-adapt to changing goal states than the model-free RL agent and a 

change in the environment, than the other algorithms, with the model-based agent being 

completely intolerant to a slight change in the environment. 

Short demonstrations of the change of goal scenario for the Model-free RL1, 

TMGWR-based2 and the Model-based RL3 agents, and for the responses of the Model-

free RL4, TMGWR-based5 and model-based RL6 agents to dynamic environments are 

available on YouTube for view. 

 
1  Demonstration: response of the model-free RL agent to change in goal state: https://www. 

youtube.com/watch?v=_j0z6B1RFjs  
2  Demonstration: response of the TMGWR-based agent to change in goal state: https://www. 

youtube.com/watch?v=x9U0r-6Sct0 
3  Demonstration: response of model-based RL agent to change in goal state: https://youtu. 

be/4GNbxYvJPhM 
4  Demonstration: response of the model-free RL agent to change in the environment: https: 

//youtu.be/aRr4Ja9TspQ 
5  Demonstration: response of the TMGWR-based agent to change in the environment: https: 

//youtu.be/-YpxGEjRoXA 
6  Demonstration: response of model-based RL agent to change in the environment: https: 

//www.youtube.com/watch?v=peEYriVEK2k 

https://www
https://www
https://youtu
http://www.youtube.com/watch?v=peEYriVEK2k
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3.3 Explainability in the TMGWR-based algorithm 

This section discusses the development of the explanation mechanism of the TMGWR-

based algorithm, exploiting the transparent nature of the algorithm and thereby how it 

can provide explanations to a human observer.  

The TMGWR-based agent makes decisions using the sensorimotor map. An effec-

tive sensorimotor map should be able to represent the reality of the agent’s environ-

ment. One benefit of this representation is that the agent can anticipate the outcome of 

its actions. For example, if the sensorimotor map represents that the agent takes action, 

aik, at node i, its next state will be a node, k, then the agent can anticipate this next state 

each time action, aik, is to be executed at node i. If the environment does not change as 

expected following this action, then this means that the sensorimotor map no longer 

represents the reality of the agent’s world and can imply a change in the environment.  

This then represents the main contribution of this paper and the changes made to the 

algorithm that permits feedback to the human observer in terms of any change in the 

environment or goal state, since any expected change in the environment that is not met 

means that the TMGWR’s internal representation of the environment is no longer cur-

rent and will require to be changed.  This change can be communicated to the human 

observer and more importantly can be described in terms of the actions and environ-

ment states that the algorithm expected to take place.  As an example, if a new wall is 

introduced into the maze, then the previous learning will predict that the agent can move 

into the space now occupied by the wall.  The algorithm will detect the lack of change 

in the sensor values (i.e. position in the maze) following the action having been taken 

(i.e. move to space now occupied by the wall).  This can immediately be communicated 

to the human observer by the agent: I expected to be able to move forward; the world 

has changed since I cannot. 

Therefore, the procedure for keeping track of a change in the environment is as fol-

lows: 

─ after selecting action aik at the current node i; 

─ use the sensorimotor map to anticipate the next state node k as follows: k = 

argmaxnV(n), for all node n in the sensorimotor neighbourhood of node i, while V(n) 

is the motivation potential at node n; 

─ execute action aik and identify the actual resulting node r; 

─ if k does not equal r (i.e. a different node has been activated) then the world has 

changed; 

─ otherwise, no observable change in the world. 



9 

 

 

Fig. 1. TMGWR-based agent’s response to a change in the world. 

Fig 1 demonstrates how a TMGWR-based agent responds to a change in the envi-

ronment.  After the agent’s world changes, the agent will lose its ability to anticipate 

the outcomes of its actions. To the agent, these anticipation failures mean that the world 

has changed. However, the agent will self-adapt its mental model to correctly anticipate 

the outcomes of its actions to cope with the new state of the world. The rate of change 

for the TMGWR algorithm depends on a single parameter that can be modified so that 

it is more sensitive to changes in the environment, otherwise it will gradually change 

its model so that eventually it will choose a different action in order to reach its goal.  

The TMGWR approach thereby meets the requirements for explainability in terms 

of...... 

Learning paradigms such as RL and supervised learning lack this explainability po-

tential because their world models are not interpretable. A video demonstration of this 

procedure has been provided here7. 

Explanation mechanism in the TMGWR-based agent during a change of goal.  

The TMGWR-based algorithm uses a motivation estimator to compute motivation 

potentials of all the nodes in the sensorimotor map.  The motivational potential of a 

node is a function of how similar the node is to the goal node and the availability of 

sensorimotor links from that node to the goal node. Therefore, after each run of the 

motivation estimator, the goal node will always have the highest motivation potential 

because it is the most similar to itself and the most easily reachable from itself. Based 

on this, the TMGWR-based agent can keep track of a change in goal by computing 

motivation potentials after each step and identifying any changes in the node with the 

largest motivation potential. 

 
7 Demonstration: Change in environment: https://www.youtube.com/watch?v=CSooq2abq4g  

https://www.youtube.com/watch?v=CSooq2abq4g
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Fig 2 demonstrates how the sensorimotor map due to TMGWR can therefore imme-

diately and correctly reflect a change in goal following the above procedure. There is 

no straightforward way of realising a similar interpretation of goal change in RL agents. 

The video demonstration can be found in this link8. 

 

 

Fig. 2. Identification of change in goal state using TMGWR-based approach 

4 Conclusions 

This paper has highlighted the requirement for a learning framework that is self-adap-

tive, sample efficient, and requires less compute power thereby meeting requirements 

for Green AI. Currently popular AI techniques such as deep learning and deep rein-

forcement learning are sample inefficient, inflexible, and require significant designer 

input and huge compute power and so do not meet these requirements. The paper re-

views different learning algorithms with respect to considerations such as computa-

tional efficiency, self-adaptivity and explainability. Based on this review, growing 

SOM has been identified as the most suitable learning paradigm for future autonomous 

learning agents. It is unsupervised, self-adaptive and inherently transparent and has an 

efficient computational cost when compared to popular methods such as deep learning, 

SVM and ensemble learning. The paper recommends an autonomous agent architecture 

based on the TMGWR network for continuous sensorimotor map learning and shows 

how improvements to this meet the requirements above by giving an effective demon-

stration of the explanation potential of the TMGWR-based framework for changes in 

goal and also changes in environment.  Future work will focus on applying the 

 
8 Demonstration: Change in goal - https://www.youtube.com/watch?v=Mv0s79CFBtI 

https://www.youtube.com/watch?v=Mv0s79CFBtI
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TMGWR approach to more sophisticated environments and to different domain prob-

lems. 
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