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Abstract
The growing global energy demand and strict environmental policies motivate the use of technology and performance 
improvement techniques in drilling operations. In the traditional drilling method, the effort and time required to optimize 
drilling depend on the effectiveness of human driller in selecting the optimal set of parameters to improve system performance. 
Although existing work has identified the significance of upscaling from manual drilling to autonomous drilling system, little 
has been done to support this transition. In this paper, predictive optimization model is proposed for autonomous drilling 
systems. To evaluate optimized operating procedure, a comparative study of surface operating parameters using weight on 
bit (WOB), rotary speed (RPM) versus drilling mechanical specific energy (DMSE), and feed thrust (FET) is presented. 
The study used a data-driven approach that uses offset drilling data with machine learning model in finding a pair of input 
operating variables that serves as best tuning parameters for the topdrive and drawwork system. The results illustrate that 
derived variables (DMSE, FET) gave higher prediction accuracy with correlation coefficient (R2) of 0.985, root mean square 
error (RMSE) of 7.6 and average absolute percentage error (AAPE) of 34, whilst using the surface operating parameters 
(WOB, RPM) delivered an R2, RMSE and AAPE of 0.74, 28 and 106, respectively. Although previous researches have 
predicted ROP using ANN, this research considered the selection of tuning control variables and using it in predicting 
the system ROP for an autonomous system. The model output offers parameter optimization and adaptative control of 
autonomous drilling system.

Keywords Autonomous drilling system · Penetration rate prediction · Artificial neutral network · Machine learning

Abbreviations

List of symbols
db  Diameter of the bit (in.)
D  Depth (m)
DTOR  Downhole torque (Kft.Ibs)
WOB  Weight on bit (Klbs)
FD  Footage drilled by bit (ft.)
k  Drillability constant (N)
DMSE  Drilling mechanical specific energy (Kpsi)
Q  Mud flow-in-rate (Gpm)
R  Coefficient of correlation
R2  Coefficient of determination

ROP  Rate of penetration (ft/hr)
RPM  Revolution per minutes (Rev/min)
UCS  Unconfined compressive strength (Kpsi)
ν  Cutter’s radius
Vf  Transfer function
Wif  Connection length
Xf  Input data (in.)
�  Feed rate
yi  Output function of the ith hidden node (ft/sec)

Abbreviations
Term  Acronyms
AAPE  Average absolute percentage error
ANN  Artificial neutral network
ASP  Actual surface parameter
DCV  Derived controllable variable
Dia  Diameter
DMSE  Drilling mechanical specific energy
ELM  Ensemble
FET  Feed thrust
GA  Genetic algorithms
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GR  Gamma-ray
ML  Machine learning
MLP  Multilayer perceptron
PDM  Predictive data-driven modelling
QRP  Quantitative real-time prediction
ROP  Rate of penetration
RPM  Revolution per minute
SVR  Support vector regression

Introduction

Hydrocarbons are formed on earth’s subsurface by the 
decomposition of organic sediments deposited several 
millions of years ago. Upon increasing burial with depth, it 
becomes subjected to increasing temperature and pressure 
forming kerogen which later produces hydrocarbons 
within the pore spaces of the rock. A rock material is a 
naturally occurring aggregate of minerals, constituting an 
important part of earth crust. According to Emery (1966), 
a rock is defined as a composition of granular material and 
glue. Formation rock is a heterogeneous and anisotropic 
material and therefore a complex material to study from 
the mechanical viewpoint (Alfreds 1983). One of the most 
used classification of rocks is based on their origin, which 
classified rocks into three types of igneous, sedimentary, 
and metamorphic rocks Alfreds (1983). Hydrocarbons are 
commonly found in sedimentary rocks enclosed within a 
geologic trap. Drilling a borehole is the only way to harness 
the hydrocarbon deposited several thousands of feet beneath 
the subsurface. In oil-well drilling, the process involves 
creating a borehole achieved by simultaneous rotary action 
of the topdrive and the application of axial force by the 
drawwork hoist, wherein the former transmits torque to the 
drill bit via the drill string, and the latter facilitates drill 
string longitudinal motion, thereby establishing drill bit 
normal force commonly referred to as weight on bit (WOB) 
(Akgun 2002). During the drilling operation, the drill bit 
cuts the rock material and the resulting drill cuttings are 
removed from the borehole by the circulation of drilling 
fluid which is pumped into a well through the rotary hose 
and drill string; Fig. 1 shows the schematic of a topdrive 
rotary drilling rig.

There are two main modes of rotary drilling system: 
manual drilling and autonomous drilling system. The 
traditional manual mode of drilling system is manned by 
the driller who controls the rotary action of the topdrive 
and the axial force of the drawwork. The driller determines 
the operating parameters either by intuition, previous 
experience, or by trial-and-error approach. Alternatively, 
the autonomous rotary drilling system is designed to 
reduce mental and physical workload of human operator. 
There are several other benefits that could be derived from 

autonomous drilling system including efficiency, health, 
safety and environmental factors. First, automation responds 
faster to problems with fast and small corrections versus 
large corrections or costly remedial actions of conventional 
system. Also, autonomous drilling system will offer a step 
change in downhole monitoring of drilling conditions 
improving operation safety. Economic benefits emanate from 
operating closer to constraints and reducing well delivery 
time and cost and improve operational health and safety by 
elevating the driller from direct involvement in the drilling 
operation into a supervisory role, thereby eliminating the 
trial-and-error methods which in turn improve efficiency 
in terms of manpower and operational cost. This research 
supports the initiative in modelling and optimizing rate of 
penetration (ROP) of an autonomous rotary drilling system 
using predictive data-driven (PDM) modelling.

Literature review

The drive to optimize oil and gas portfolios through 
automation dates backs to the late 90’s. According to 
Norwegian Oil Industry Association (2006), Norway 
Scientific Council and Statoil developed a program called 
integrated operation to take the advantage of exploiting 
deeper subsea fields under a new information and 
communication technology program. Autonomous drilling 
system consists of three parts: the real-time monitoring, 
decision-making, and actuator as presented in Amadi et al. 
(2022). The real-time monitoring provides the environmental 
information for decision-making and control execution. 

Fig. 1  Schematic of a topdrive rotary drilling rig with bottom-hole 
assembly (BHA) (Šprljan et al. 2020)
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Amer et al. (2017) used the application of control system 
and information technology to operate both the topdrive and 
the drawwork system. McKenna et al. (2015). Chiranth et al. 
(2017) discussed the different established drilling models, 
which were classified into two groups: physics-based models 
and data-driven models.

The physics-based empirical models are commonly used 
in ROP prediction (Soares et al. 2016) including Graham 
and Muench model, Maurer model, Maurer (1962), Bingham 
model, Bingham (1965), Warren model, Warren (1987), 
Bourgoyne and Young model. Bourgoyne and Young (1974), 
Soares and Gray (2019) showed the disadvantages of the 
physics-based models, which includes the use of empirical 
constants such as the bit design constants, mud properties 
and formation constants, as well as low prediction, accuracy 
and their conformality to a homogenous formation. In 
contrast to the physics-based model, the contemporary 
data-driven models used the surface drilling parameters 
such as the weight on bit (WOB), rotary speed (RPM) and 
flowrate to predict ROP, Khoukhi and Ibrahim (2012). 
The implementation of the data-driven model overcame 
the limitations of the traditional physics-based models 
making optimization task less complex. Mckenna et al. 
(2015) investigated the concept of a search logic optimizer 
to emulate experienced human controller using a typical 
“hill-climber” algorithm in a statistical model (Buntine 
1992) for formation drilled whilst optimizing the setpoint 
combinations. However, it was reported that the primary 
challenge to the stochastic modelling systems was the non-
homogeneity and the continuous change in the formation 
being drilled Hedge et al. (2015).

Bilgesu et al. (2017) tested the technology of neural 
network with the data-driven models to predict ROP and bit 
wear with different operating parameters. In their study, nine 
input parameters were used and result achieved a correlation 
coefficient (R2) that ranged from (0.902 to 0.982). A 
similar study was conducted by Moran et al. (2010), using 
artificial neural network (ANN) to predict ROP with six 
input parameters including RPM, WOB, mud weight, rock 
strength, abrasion, and rock type from offset well data. The 
ROP prediction attained a coefficient of determination of 
R2 value of 0.8. Manshad et al. (2017) created a multilayer 
ANN to model ROP with genetic algorithm (GA) with 
332 datapoints and ten input parameters. Several other 
investigators including Jiang and Samuel (2016); Bhowmik 
et al. (2017); Arabjamaloei and Shadizadeh, (2011); Bataee 
and Mohseni (2011) and Manshad et al. (2017) have used 
ANN to predict ROP with five to ten input parameters. 
Table 1 shows the summary of penetration rate models and 
their respective model performance parameters.

Ahmed et al. (2019) performed a ranking of the 19 input 
parameters used in predicting ROP from the various studies 
based on parameters with the greatest influence on ROP 
using the feature extraction rule, which is used to evaluate 
the effect of input drilling parameters on ROP as shown in 
Fig. 2. The analysis showed that WOB, RPM and flow rate 
were the first, second and third most influencing factors. The 
application of machine learning (ML) for ROP prediction 
is widely supported by many researchers; out of the 53 
reviewed works, 47% of the researchers used ANN followed 
by the Ensemble at 15% and SVR at 12% as shown in Fig. 3.

Data and methods

This section presents the procedures used in preparing 
dataset; it shows the defined input–output data relationship 
using a graphical representation. In addition, calculation 
of the derived controllable variables using appropriate 
established correlation and finally steps used in ANNs 
modelling and sensitivity studies were presented. Well-P05 
has a total of 246 datapoints from 7400 to 10630 ft measured 
depth. The following drilling surface parameters were 
collated: weight on bit (WOB), rotary speed (RPM), torque 
(Tor) and penetration rate (ROP) as shown in Table 2.

Data gathering and reprocessing

Data collection and quality checks were the most challenging 
and time-consuming process in the study. During the study 
actual field drilling mechanics data from already drilled 
well, well-P05 was collected and resampled at 30-ft interval 
to reduce the data density as the data acquisition was done 
at every 0.5ft. This was done to check the influence of lesser 
data density on the accuracy of the prediction. Table 3 shows 
the summary of the statistics of the data.

Calculation of derived controllable variables.

The calculation of derived controllable variables was 
performed using established empirical relationship that 
relates the penetration rate with the derived input variables. 
A brief description of the derived variables and their 
empirical relationship is presented.

Feed thrust (FET)

This represents the force that keeps the drill bit in contact 
with the formation. This is controlled by the distance of 
drilling line released by the drawwork hoisting system. It is 
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a representation of the weight on bit (WOB) or axial thrust 
force. Equation (1) used to calculate feed thrust force (FET) 
was derived from earlier work of Lindqvis (1982) on the 
indentation force of hemispherical carbide buttons in rock 
and discussed in Cavanaugh et al (2008)

where FET is feed thrust force (klbs), Tor is surface torque 
(Kft.lbs), � is cutter radius (in), � is penetration rate per 
revolution (ft), Dia is drill bit or hole diameter (in) and RPM 
is revolution per minute.

Drilling mechanical specific energy (DMSE)

The concept of drilling mechanical specific energy was first 
introduced by Teale (1965), defined as the amount of energy 
required to destroy a unit volume of rock. Equation (2) is 
the mathematical relationship for DMSE in oilfield units. 
The DMSE is a representation of the energy from topdrive.

where DMSE is drilling mechanical specific energy (Kpsi), 
Tor is surface torque (Kft.lbs), RPM is revolution per minute, 
bit factor is 0.125 for PDC bit and 0.25 for roller cone bit, 
WOB is weight on bit (klbs), ROP is rate of penetration (ft/
hr), and Dia = hole diameter (in),

Figure 4 shows the graphical presentation of the data 
points from well-P05 showing the effect of the respective 
tuning parameters on ROP. An explicit relationship is 
observed with the derived variable as seen in tracks [C&D].

In track D, an inverse relationship is observed between 
DMSE and ROP, whilst in track C, a direct relationship is 
observed between FET and ROP. No explicit relation was 
observed in track A and track B.

Statistical analyses

The influence of the input surface drilling parameters 
on ROP (output) in the drilling system was studied by 
performing statistical analysis of the dataset. The statistical 
analysis was useful in identifying outliers (data outside the 
acceptable limits) which were subsequently deleted from 
the dataset. Table 3 shows summary of input parameters 
for well-P05. Understanding the relationship between the 

(1)FET =
1.5 ∗ Tor

Dia

� − 2v
√

(�v − v2)

(2)

DMSE =

(

480 ∗ TOR *RPM

Dia
2 ∗ ROP

+
4 ∗ WOB

� ∗ Dia
2

)

× Bit factor

41

41

28

24

18

15

13

10

0 5 10 15 20 25 30 35 40 45

WOB

RPM

Depth

Flow rate

Mud density

Bit diameter

UCS

Bit wear

ANNs Modelling Inputs

Fig. 2  Frequency of input variables used in ROP prediction

ANN
47%

Other
15%

Ensemble
15%

SVR
12%

Neutro-fuzzy
11%

Fig. 3  Distribution of researchers and machine learning methods

Table 2  List of drilling mechanics data used for this study

Surface drilling data Symbol Unit

Weight on bit (WOB) (klbs)
Rotary Speed (RPM) (rev/min)
Rotary Torque (TOR) (Kft-lb)
Penetration rate (ROP) (ft/hr)

Table 3  Range of input parameters and statistics (Dataset-P05)

Parameters Min Max Mean Median

Database counts 246 246 – –
Depth (ft) 7400 10,630 9308 9345
ROP (ft/hr) 1.03 163.39 26.42 17.06)
Torque (Kft-lb) 0 28 21.40 3.7
SWOB (Klbs) 1 70 38.0 38.70
RPM (rev/min) 1 70 119 120
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input and output variables is of primary importance when 
developing ANN models.

Artificial neural networks

ANNs are information processing structures that are 
universal function approximator and simplify simulation 
of a biological learning process with performance features 
like those of biological neural networks. Neural network 
consists of groups of nodes, or artificial neurons, that 
are linked in a way that allows them to be a universal 
function approximator, which means that given the 
right combination of nodes and connections, ANNs can 
simulate any input and output relationship. This is because 
they are adaptive, parallel information processing systems, 
which can build associations and mappings between 
objects or data and have been proven in solving problems 

in automation and pattern recognition Shadizadeh et al 
(2010). A multilayer perceptron (MLP) network can 
learn the behaviour and trends of earlier events with 
valid dataset. Therefore, the quality and accuracy of the 
datasets are very crucial in the accuracy of the prediction 
and subsequent decisions made by the ANNs technique. 
The processing elements of ANNs are artificial neurons. 
These neurons consist of four basic components that 
include input data (xf), connection lengths (wf), a transfer 
function (vf), and output value (y) (Ahmed et al 2019) as 
shown in Fig. 5

Artificial neural networks configuration

Artificial neutral networks (ANNs) are interconnected in 
multilayer network topology that comprise three layers: 
(1) input layer, (2) one or more hidden layers, and (3) 

(a) 
(b) 

(c) (d) 

Fig. 4  Plot showing relationship between the selected tuning parameters with ROP A SWOB versus ROP B RPM versus ROP C FET versus 
ROP and D DMSE versus ROP for Dataset of Well P05

ANN Parameters                       
Number of hidden layers                         1 

03snortuenforebmuN

Type of network function        FEED FORWARD 

Type of transfer function  PURELIN

Maximum number of iterations 1000 

tdrauqraMgrebneveLnoitcnuFgniniarT

Minimum performance gradient 15.4 

00100.0uMrofeulavmumixaM

Fig. 5  ANNs structure with 2 hidden layers showing input data (xf), transfer function (vf), and output value (y)
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an output layer as shown in Fig. 5. The hidden layer(s) 
are the coefficients that provide the relationship between 
the input and output layers. The most common types of 
ANNs are feed-forward networks, which are the most 
efficient ones Abbas et  al (2018). In the feed-forward 
ANNs structure, the information will transmit in one 
direction from input neurons through the transfer function 
of the hidden neurons to the outputs. Depending on the 
relative contribution of each unit in the hidden layer 
to produce the original output, these units will receive 
only a fraction of the total error signal. The neurons use 
transfer functions to create their output from the network 
input. The most used transfer functions are the PURELIN, 
TANSIG, and LOGSIG. The number of neurons in the 
input layer is equal to the number of parameters being fed 
into the network as input and vice versa for the target layer. 
However, a variation of neutrons in the hidden layers was 
used in the optimization and detailed discussed provided 
in the sensitivity analysis section below. Furthermore, the 
parameters used in the ANN modelling are summarized 
in Table 4. The model was built using ANNs with two 
neurons in the input layer and only one neuron in the 
output layer, the optimized number of thirty (30) neutrons. 
Different hidden layers of varying numbers of neurons 
were simulated with the PURELIN transfer functions, 
whilst the output layer was one neuron. The optimum 
number of neurons and layers was selected based on an 
iterative process by performing sensitivity analysis on the 
number of neutrons that provide the highest accuracy with 
respect to correlation coefficient (R2) as recommended by 
Haykin and Hakin (1998). In the modelling process, the 
database was randomly divided into two parts: A training 
dataset was used to develop and adjust the weights in a 
network, whilst the testing dataset was applied to examine 
the final performance of the ANNs. A 70:30 ratio was used 
for training and testing, respectively, as recommended in 
literature as more datapoint is required for training the 
model.

ANNs Simulation Cases.
Two simulation cases were studied, the first case “Case 

1” was with input variables of WOB and RPM and ROP as 

the single output variable. However, in “Case 2” the input 
variables were DMSE and FET with ROP as the single output 
parameter. To effectively compare the performance of the 
input variables in ROP prediction, the same ANNs network 
configuration, number of hidden layers and transfer function 
were used in the scenarios modelling.

ANNs model performance assessment criteria

The criteria applied for assessing performance of the two 
cases are the three commonly used in engineering analysis 
benchmark to align with the best practice. The predicted 
performances of neural network models were assessed 
by correlation coefficient (R2), root mean square error 
(RMSE), and absolute average percentage error (AAPE).

Correlation coefficient (R2) is a measure of the 
similarity between the actual and the predicted values. The 
range of value of (R2) varies between 0 and 1. Whilst the 
value of 0 suggests no similarity, 1 signifies an excellent 
correlation between the model output and the actual 
predicted values. It is mathematically expressed using 
Eq. (3):

where yi presents actual data, f(xi) is the predicted data, 
xi are the input parameters, and n is the total number of 
records. The higher R2 shows a close approximation between 
the actual and predicted values. The range of value of (R2) 
varies between 0 and 1. Whilst the value of 0 suggests no 
similarity, 1 signifies an excellent correlation between the 
model output and the actual predicted values.

The root means square error (RMSE) is a measure of 
error between the actual and the predicted values. It is 
used as an error function for the quality evaluation of the 
model. It is mathematically expressed in Eq. (4);

The average absolute percentage error (AAPE) is a 
statistical measure of the relative accuracy of the model 
prediction expressed in percentage. It can be calculated 
as the ratio of the mean of the absolute error as shown in 
Eq. (5)

(3)R2 = 1 −

∑n

i=1
(f (xi) − yi)2

∑n

i=1
f (xi)2 −

∑n

i=1
f
(yi)2

n

(4)RMSE =

√

√

√

√

1

n

n
∑

i=1

(f (xi) − yi)2

(5)AAPE =
1

n

n
∑

i=1

[

∕xi − yi∕.

xi

]

∗ 100

Table 4  ANN modeling and tuning parameters

ANN parameters

Number of hidden layers 1
Number of neutrons 30
Type of network function Feed-forward
Type of transfer function PURELIN
Maximum number of iterations 1000
Training function Levenberg–Marquardt
Minimum performance gradient 15.4
Maximum value for Mu 0.00100
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Methodology

As illustrated in Fig. 7, a step-wise procedure is used in 
evaluating tuning functionality for autonomous system. 
Two options investigated include [WOB, RPM] and 
[DMSE, FET]. All the steps of the methodology were 
coded in the MATLAB version R2019a. The steps include:

Step 1: Calculation of the derived controllable variables
The feed thrust (FET) and drilling mechanical specific 

energy (DMSE) were computed using Eqs. (1 and 2), 
respectively.

Step 2: Statistics and graphical analysis was performed to 
identify and eliminate outliers from the dataset

Step 3: The dataset was divided in the ratio of 70:30 for 
training and testing, respectively. A total of 246 datapoints 
were used for well-P05 and 4185 datapoints for well-W1

Step 4: The ANN model was constructed with input 
layer, one hidden layer and the output layer. The number 
of neutrons in the hidden layer was varied in the sensitivity 
analysis to optimize the model result. Figure 6 shows the 
model configuration

Results

The summary of results of the step-wise procedure shown in 
Fig. 7 for ROP prediction using the actual surface parameters 
(ASP) and derived controllable parameters (DCP) for well 
P05 is shown in Table 5.

Result of prediction using actual surface parameter 
(Case 1):

The application of two actual surface parameters: (i) the 
weight on bit (WOB) and (ii) rotary speed (RPM) to predict 
the actual measured ROP obtained during the drilling 
process is presented in Fig. 8. The input data gave a poor 
prediction with R2 values of 0.74, RMSE of 28, and AAPE 
of 106. The cross-plot of actual measured ROP versus 
predicted ROP (a), the error distribution curve (b), and the 

comparison of actual versus predicted plotted along depth 
(c) are presented in Fig. 8, whilst samples of numerical 
values comparison of the actual measured ROP and the 
ANN predicted values are presented in Table 6. This result 
revealed that as the value of weight on bit increases, the 
value of ROP increases and vice versa. However, the overall 
prediction accuracy using surface operating parameters 
was poor as shown in Table 6. This may be due to impact 
of downhole condition such wellbore tortuosity and hole 
cleaning on the effective transfer of weight to the drill bit.

Fig. 6  ANN configuration with two input and an output variable

Fig. 7  Research flowchart showing the step-by-step approach
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Result of prediction using derived controllable 
variables (case 2)

The use of derived controllable variables to predict ROP 
was also performed keeping the same ANN configurations 

as in case 1. The modelling results delivered an excellent 
prediction with correlation coefficient (R2) of 0.985, RMSE 
of 7.6, and AAPE of 34. The model (a) the cross-plot of the 
actual versus predicted ROP, (b) error distribution curve, and 
(c) the comparison plot of actual versus predicted ROP with 
depth are shown in Fig. 9.

Table 5  Summary of the 
quantitative prediction and 
accuracy

Well name Variable type Correlation 
Coefficient

Root Mean 
Square Error

Average Absolute 
Percentage Error

(R2) (RMSE) (AAPE)

Well, P05 ASP [WOB, RPM] 0.74 28 106
DCV [DMSE, FET] 0.985 7.6 34

Well, W1 ASP [WOB, RPM] 0.28 25 115
DCV [DMSE, FET] 0.98 3.8 21

RMSE=2

(a) 
(b) 

R2= 0.74 
(C) 

Fig. 8  Plot of a cross-plot predicted versus actual data: b Error distribution curve c Complot with depth with [WOB, RPM

Table 6  Sample of predicted 
versus actual ROP data using 
[WOB, RPM]

Depth (ft) WOB (Klbs) (RPM) (rev/m) Actual (ROP) 
(ft/hr)

ANN predicted 
ROP (ft/hr)

Prediction quality

7460 25 115 22.83 11.6 Poor
7550 35 125 50.92 22.92 Poor
7780 48 140 82.96 139.54 Poor
8160 48 115 17.91 23.02 Average
8550 42 115 28.70 15.05 Poor
8670 40 115 7.73 1.05 Poor
8790 36 130 10.06 22.8 Poor
9000 36 100 9.24 18.76 Poor
9400 12 130 51.94 25.23 Poor
9800 20 130 9.85 22.76 Poor
10,310 37 100 25.78 21.62 Average
10,630 46 115 9.50 11.80 Average
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The numerical values comparison of the actual ROP 
and ANN predicted ROP using [DMSE, FET] is presented 
in Table 7. It can be observed that derived controllable 
variable predicted the ROP within acceptable level of 
accuracy across the heterogeneous lithologic columns, 
which implies that the performance of autonomous system 
can be better modelled using derived variables as a tuning 
parameter.

Discussion of result

The study used ANN modelling in the determination of 
appropriate tuning parameters for autonomous rotary 

drilling system in a complex heterogeneous formation 
by performing ROP prediction using proposed tuning 
variables. The adaptative self-optimizing capability of the 
system was investigated by evaluating the variation of the 
tuning parameters with changes in penetration rate across 
the heterogeneous rock. The following characteristics were 
maintained: (1) The ANN model was designed only for 
two input parameters each acting as a tuning parameter 
for the topdrive and the drawworks, respectively. (2) The 
predictive optimization model proposed two sets of tuning 
parameters: the actual surface operating parameter [WOB, 
RPM] and the derived energy parameters of [DMSE, FET] 
and tested their effectiveness as a controller variable with 

(a) (b) 
R2=0.98

RMSE=7.6 

(C) 

Fig. 9  a Cross-plot predicted versus Actual ROP: b Error distribution c Complot with depth with [DMSE, FET]

Table 7  Sample of predicted 
versus actual ROP data using 
[FET, DMSE]

Depth (ft) FET (Klbs) MSE (Psi) Actual ROP 
(ft/hr)

ANN Predicted 
ROP (ft/hr)

Prediction quality

7460 0.308 25.85 22.83 31.82 Average
7550 0.42 14.70 50.92 59.10 Average
7780 0.48 12.23 82.96 80.15 Very good
8160 0.18 35.58 17.91 19.15 Very good
8550 0.26 22.00 28.70 29.40 Excellent
8670 0.13 87.60 7.73 7.21 Excellent
8790 0.12 67.78 10.06 9.05 Excellent
9000 0.15 54.66 9.24 11.20 Very good
9400 1.63 16.85 51.94 52.00 Excellent
9800 0.22 75.48 9.85 10.38 Very good
10,310 0.14 32.67 25.78 28.64 Very good
10,630 0.13 71.22 9.50 9.21 Excellent
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ROP predictions. (3) The actual surface parameter [WOB, 
RPM] could not accurately predict the drill rate in a complex 
heterogeneous formation because of the influence of 

downhole conditions such as wellbore tortuosity and torque 
and drag. Armentia (2008) identified these conditions for 
inefficient drilling. Therefore, ASP are not effective as an 

Fig. 10  Sensitivity analysis for the selection of optimal number of neutrons
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adaptive input parameter in autonomous system (4) The 
derived energy variable (DCV) performed excellently in 
effectively predicting the ROP with a high level of accuracy 
with a well-established trend with drill rate performance, 
thus proven to be an effective adaptive input parameter in 
autonomous system. 5) It was observed that the accuracy of 
the model depends on the quality and number of datapoints. 
The accuracy increases with increasing number of datapoint 
available. 6) The problem of overfitting in the model was 
avoiding by Splitting the datasets in 70:30 ratio for training 
and testing, respectively. Also, a new dataset was used in the 
validation of the model.

Sensitivity analysis

Sensitivity analysis was performed in the selection of 
optimum number of neutrons for the hidden layers. Results 
showed that the optimum number of 30 neutrons gave 
the highest accuracy which cannot be further improved. 
Figure 10 shows the results of the sensitivity analysis with 
number of neutrons at 1000 iterations performed using the 
derived controllable variable (DCV) at 10, 20, 30, and 40 
neutrons, respectively.

Fig. 11  a Cross-plot predicted versus actual data: b Error distribution c Complot with depth with [DMSE, FET] for Well W1

Fig. 12  a Cross-plot predicted versus actual data: b Error distribution c Complot with depth with [WOB, RPM] for Well W1
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Model verification

Verification of the model was performed with dataset 
from a different wellbore (well-W1) which has total of 
4185 datapoints. The performance result using the DCV 
and ASP is shown in Figs. 11 and 12, respectively. The 
prediction error of the DCV variable decreased with higher 
data density. Similarly, the performance of ASP was worst 
with higher data density with R2 value of 0.28 and RMSE 
of 25 and AAPE of 115, conversely the DCV variables, 
precisely predicted the actual measured ROP in a complex 
heterogeneous formation column with R2, RMSE, and 
AAPE values of 0.98, 3.4, and 34, respectively. The overall 
summary of result is presented in Table 5. 

Conclusions

This research aimed at identifying appropriate tuning 
parameters and their predictive performance for self-
optimizing autonomous rotary drilling systems using 
an artificial neural network with actual surface drilling 
parameters and derived controllable parameters. The 
following conclusions are reached based on the study;

1. The direct use of actual surface parameters (WOB, 
RPM) as tuning parameter for autonomous system 
produced a poor ROP prediction for drill rate with 
coefficient of determination (R2) of 0.74, RMSE of 28, 
and AAPE of 106 with well-P05 dataset, suggesting the 
inadequacy of using these two parameters alone.

2. The use of derived variables (DMSE, FET) as tuning 
parameter gave an excellent prediction accuracy with 
coefficient of determination (R2) of 0.98, RMSE of 7.6, 
and AAPE of 34 using same well-P05 dataset.

3. The result supports the decision to use the data-driven 
(ANN) model with derived controllable variables in the 
quantitative prediction of drilling rate for an autonomous 
drilling system.

4. Establishing a precise quantitative relation between 
derived variables and rate of penetration will improve 
parameter optimization, operational efficiency, and 
equipment reliability.

5. In achieving an optimized operating procedure, the auto-
controller should monitor the resulting DMSE for the 
topdrive rotary speed an adjust parameter with the aim 
of achieving the lowest DMSE values.

6. Similarly, auto-controller will monitor the resulting 
feed thrust (FET) from the drawwork hoist and adjust 
parameter to attain a higher FET value provided all other 
drilling conditions such as hole cleaning and slick slip 
are within acceptable range.
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