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Abstract: Capacity estimation plays a significant role in ensuring safe and acceptable energy delivery, especially under 7 

real-time complex working conditions for whole-life-cycle lithium-ion batteries. For high-precision and robust capacity 8 

estimation, an improved sliding window-long short-term memory (SW-LSTM) modeling method is proposed by introducing 9 

multiple time-scale charging characteristic factors. The optimized feature information set is extracted by constructing an 10 

optimized differential integration-moving average autoregressive (DI-MAA) model, which is introduced as the input matrices 11 

of the whole-life-cycle capacity estimation model. With the constructed DI-MAA model, the relevant features are effectively 12 

extracted, overcoming the data limitation problem of the long-term dependence capacity estimation. For the experimental 13 

test, the maximum capacity estimation error is 3.56%, and the average relative error is 0.032 under the complex Beijing bus 14 

dynamic stress test working condition. The proposed SW-LSTM estimation model with optimized DI-MAA-based data pre-15 

processing treatment has high stability and robust advantages, serving an effective safety assurance for lithium-ion batteries 16 

with real-world complex working condition adaptation advantages. 17 
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 The optimized DI-MAA strategy is formed for feature extraction and data pre-processing 23 

 The high-accuracy results are obtained with the real-world capacity estimation error of 3.56% 24 

 The proposed model has high stability and accuracy for real-world capacity estimation 25 

1. Introduction 26 

With the advantages of fast charging ability, high energy density, low self-discharge rate, no memory effect, and a long 27 

lifespan, lithium-ion batteries are widely used in new energy vehicles (EVs), communication facilities, electrical equipment 28 

in aeronautics, smart devices such as mobile phones, laptops, grids, etc. [1, 2]. However, the battery’s capacity performance 29 

decreases inevitably along with an increasing number of charge-discharge cycles, which results in capacity and power fade 30 

in addition to electrochemical instabilities causing thermal runaways and fire accidents. Consequently, accurate capacity 31 

estimation by the battery management systems (BMS) is not only crucial for the safety assurance of lithium-ion batteries but 32 

also plays a significant role in the real-time application of EVs [3-5].  33 

Most of the capacity estimation methods are limited by the length of the training data, which cannot adapt to robust real-34 

world applications. Also, their value is difficult to estimate accurately when the testing and training datasets are different 35 

under various working conditions [6-8]. Many battery-based industrial applications suffer from a lack of maintenance, 36 

adverse working conditions, and poor operation, which leads to an accelerated battery degradation process. It is the reason 37 

why online capacity estimation is becoming a hot research topic [9-12]. Using the dynamic impedance changes can realize 38 

the capacity estimation purpose, including the model-based and data-driven methods. The data-driven methods do not need 39 

to establish a specific battery model based on the complex electrochemical and degradation mechanisms [13-17]. Only the 40 

monitoring data is used in the cyclic charge-discharge processes to fit the degradation law of battery performance, which is 41 

more universal than the model-based methods. To realize reliable energy and safety management, high-precision capacity 42 

estimation plays an important role in the BMS along with the battery system application. 43 

Along with the development of cloud computing, data-driven methods are becoming increasingly attractive for online 44 

capacity estimation. However, existing data-driven methods still have low accuracy and weak robustness [18]. Due to the 45 
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characteristics of capacity regeneration, nonlinearity, and random fluctuation of lithium-ion batteries, the generalization 46 

ability is poor when only a single-scale feature is used to realize the capacity estimation. Consequently, the convolutional 47 

neural network (CNN) is introduced into the degradation model as an effective deep learning (DL) method. It realizes capacity 48 

estimation using sparse data segmentation through cloud computing and extracts hidden feature information of different 49 

depths effectively [19-21]. The hybrid validation dataset-based induced order weight geometric averaging operator is also 50 

constructed to precisely capture the extracted features, which are related to the health status and remaining useful life (RUL) 51 

of lithium-ion batteries based on a variant long short-term memory (LSTM) neural network [22]. The data-driven support 52 

vector machine (SVM), LSTM network, and Gaussian process regression are introduced to realize the capacity estimation 53 

with the support of the extracted health features. The spatiotemporal relationships are extracted using the random forest 54 

algorithm to capture nonlinear characteristics for multi-step-ahead capacity estimation [22-27]. The hybrid model based on 55 

an attention mechanism and bidirectional (Bi) LSTM model is established for the RUL prediction using whole-life-cycle 56 

datasets [28], constructing new hidden layer discarding techniques. This modeling strategy prevents the model overfitting 57 

phenomenon and enables accurate RUL prediction based on capacity traction combined with soft perception, accommodating 58 

local regeneration and fluctuations [29-31]. The deep domain adversarial networks are constructed with an unsupervised 59 

feature alignment metric by considering the maximum mean discrepancy and correlation alignment [32]. However, due to 60 

insufficient data pre-processing, the model is disturbed by the noise component of the original input data [33, 34]. With the 61 

continuous enhancement of artificial intelligence algorithms, the deep learning theory has been gradually popularized and 62 

applied, especially the LSTM-based model construction concept, which has become a significant methodology for the 63 

capacity estimation of lithium-ion batteries. 64 

Due to the enhanced capabilities of the LSTM network and other modeling methods, they have been constructed to 65 

improve the accuracy of capacity estimation for lithium-ion batteries [35-37]. The LSTM network performs well at time 66 

series estimation, which is used to establish a capacity estimation framework. A controllable deep transfer learning (CDTL) 67 

model is constructed for the short- and long-term charge state estimations at early stages of degradation based on improved 68 
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LSTM architectures, making it have better generalization ability in the estimation process under different stress conditions 69 

[38]. A hybrid approach for online cycle lifetime estimation has been proposed by combining a Bi-LSTM model with the 70 

attention mechanism (Bi-LSTM-AM) in comparison to a support vector regression (SVR) model [39]. The proposed method 71 

is based on the initial temperature data measured online, which is updated using the SVR model to obtain advanced multi-72 

step temperature estimation. Then, the Bi-LSTM-AM model is constructed to predict the cycle life status. Parallel attention 73 

networks are constructed by combining multivariate time series to extract the relationship between the selected health features 74 

and the state of health (SOH) factor [40, 41]. Finally, a novel parallel learning framework is constructed by integrating an 75 

attention mechanism and the LSTM network, which can fully utilize the health features and help to solve the challenging 76 

issues of estimation accuracy and robustness [42]. Combining the characteristics using an adaptive gated recurrent unit (GRU), 77 

a DL-based RUL prediction network is constructed to describe the uncertainty of estimation results through a Monte Carlo 78 

optimization. An integrated capacity estimation method is proposed by conducting the local tangent space alignment (LTSA) 79 

feature extraction and adaptive sliding window (ASW)-LSTM model [43]. The indirect health indicator (HI) is extracted 80 

automatically by the LTSA to replace the immeasurable capacity. Then, its strong correlation is verified by the Spearman 81 

correlation coefficient. For high-precision capacity estimation, multiple optimization strategies are proposed with the LSTM-82 

based main modeling structure that is suitable for whole-life-cycle capacity estimation. 83 

To improve model accuracy, an improved LSTM-RNN model is employed to express the long-term dependencies among 84 

the degraded capacities of lithium-ion batteries. Consequently, the procedure is optimized adaptively using the resilient mean 85 

square backpropagation calculation and the dropout technique [44]. DL-based prognostic methods are introduced with online 86 

validation, according to which the effective variety of RNNs with the LSTM architecture is constructed with variable input 87 

dimensions that facilitate the network training process with additional labeled samples [45-47]. An attention-based RNN 88 

model is constructed to improve the prognostics and health management effect, which enables a more accurate estimation of 89 

output voltage degradation using the original long-term dynamic cycle durability test data [48]. In contrast, the DL-based 90 

method is easy to operate, overcoming the whole-life cycle capacity estimation problem effectively [49-52]. Higher inter-91 
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cycle aging resolutions are realized for faster and more accurate estimation by considering the temporal patterns and cross-92 

data correlations in the raw data of terminal voltage, current, and cell temperature [53-58]. Considering the whole-life-cycle 93 

characteristics of battery-based energy supply conditions, lots of inner and outer factors should be considered in the iterative 94 

calculation processes. 95 

In the present DL-based capacity estimation methods, the whole-life-cycle information effect on multiple inner-state 96 

factors is not considered comprehensively. Therefore, by considering the internal parameter coupling mechanism of capacity, 97 

impedance, and temperature, this paper presents an improved sliding window-long short-term memory (SW-LSTM) model 98 

for accurate cycle-to-cycle capacity estimation, which is adaptive to complex working conditions for lithium-ion batteries. 99 

In the proposed SW-LSTM-based iterative calculation and capacity estimation process, an optimized differential integration 100 

- moving average autoregressive (DI-MAA) modeling strategy is introduced for feature extension to realize the feature 101 

information optimization and optimize the historical data together with the estimation models of formulations, improving the 102 

estimation accuracy even despite short-term test data containing insufficient global degradation information. The optimized 103 

iterative calculation strategy is introduced into the capacity estimation process and characterizes the degradation patterns 104 

simultaneously through uncertainty estimation and variational inference, improving the capacity estimation effect and fault 105 

diagnosis performance for high-efficiency predictive maintenance.  106 

The remaining sections of this article are organized as follows: Section 2 is the mathematical analysis, in which the 107 

proposed improved SW-LSTM model and the established DI-MAA modeling strategy for feature extraction and optimization 108 

are described. Section 3 presents the experimental battery tests, the capacity estimation, and the validation results. Finally, 109 

the conclusion and future research plans are presented in Section 4. 110 

2. Mathematical analysis 111 

2.1. Upgraded sliding window - long short-term memory modeling framework 112 

The improved SW-LSTM model is constructed, the framework of which involves three main stages for achieving the 113 

capacity estimation objectives. (1) The charging capacity is selected as the health factor innovatively, reflecting the 114 
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degradation trend for the cycle-to-cycle capacity estimation. In the real-world application process, it is easier to measure the 115 

charging capacity with the constant current-constant voltage (CC-CV) charging process than with the complex varying 116 

current in the discharging process. Also, to make the result more accurate, the fluctuation caused by the capacity recovery 117 

phenomenon in the original data is removed by using the adaptive sliding window method with smoothing techniques. Then, 118 

the capacity series is obtained from a relatively stable degradation trend. (2) Using the smoothed capacity sequence, the 119 

residual and finite modal components are extracted to reflect the main degradation trend. (3) The residuals are extracted to 120 

form the training dataset, which is combined with the LSTM network to establish the mapping relationship between early 121 

and late capacities to estimate the unknown capacity series. According to this designed framework, the cycle-to-cycle capacity 122 

is estimated during the iterative calculation process after the starting point is determined. 123 

The features of the real-world parameters are considered to express the aging characteristics, mainly including current 124 

magnification, SOC, temperature, and other parameters. Then, the processing model is constructed accordingly to reflect the 125 

influence of the operating conditions effectively, realizing the weight coefficient preset effectively. Considering the 126 

instantaneous voltage drop and the degradation processes that occur when the load current is formed, the variation law is 127 

explored to obtain the influencing factors of internal ohmic resistance and polarization effects. Then, it is combined with the 128 

phased expression of instantaneous voltage rise, deceleration, and stabilization after the current interruption. With the concept 129 

of pre-processing treatment for state evaluation, the iterative calculation and correction procedure of the SW-LSTM model 130 

is constructed for the cycle-to-cycle capacity estimation, as shown in Figure 1. 131 
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Figure 1. Capacity correction and estimation based on the SW-LSTM model 133 

In Figure 1, the original input data are normalized firstly. Then, the optimized feature subset performance evaluation is 134 

extracted as the input of the LSTM model by introducing the sliding window smoothing strategy. When all functional subsets 135 

are evaluated by levels, the best output is obtained. Exceptionally, the cell-to-cell LSTM estimation model is an improved 136 

version of the recurrent neural network (RNN), which is introduced to eliminate the gradient vanishing and explosion 137 

problems during the backpropagation through time to retain the ability of the network to solve long sequence dependence 138 

prediction [59, 60]. The key element of LSTM is the memory cell, which is at the center of each linearly activated neuron. It 139 

can be thought of as a channel for the addition of new information or the removal of some information. Using "gates" and 140 

other structures in this process, the flow of information is successfully handled [61].  141 

The status of the memory cell is saved and controlled through three determined gates, including the forget gate, the input 142 

gate, and the output gate, which are expressed by 𝑓𝑡 , 𝑖𝑡 , and 𝑜𝑡 , respectively. The forget gate is used to decide what 143 

information should be discarded from the cell state in the capacity estimation process, as shown in Equation (1). 144 
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𝑓𝑡 = 𝜎(𝑊𝑓ℎℎ𝑡−1 +𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓) (1) 

In Equation (1), 𝑓𝑡 is the output of the forget gate; 𝜎 is the sigmoid function; 𝑊𝑓ℎ and 𝑊𝑓𝑥 are the weight matrices of 145 

the forget gate used for the training of the network. ℎ𝑡−1 is the median hidden state of the output gate for the present LSTM 146 

unit; 𝑥𝑡 is the input of the neuron at time point 𝑡 and 𝑏𝑓 is the bias vector of the network. Similarly, the input gate is 147 

constructed to output the computational calculation result of the sigmoid and the hyperbolic tangent functions to the next 148 

layer. The mathematical calculation processes of the input gate and the memory cell are shown in Equation (2). 149 

{
𝑖𝑡 = 𝜎(𝑊𝑖ℎℎ𝑡−1 +𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖)

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐ℎℎ𝑡−1 +𝑊𝑐𝑥𝑥𝑡 + 𝑏𝑐)
 (2) 

In Equation (2), 𝑖𝑡 is the input gate; 𝜎 is the sigmoid function; 𝑊𝑖ℎ and 𝑊𝑖𝑥 are the weight matrices attached to the 150 

input gate during the training of the network; ℎ𝑡−1 is the median hidden state of the present LSTM unit. 𝑏𝑖 and 𝑏𝑐 are the 151 

bias vectors for the input gate and cell memory, respectively; 𝐶̃𝑡 is the call state at the present time point; 𝑡𝑎𝑛ℎ is the 152 

hyperbolic tangent function; 𝑊𝑐ℎ and 𝑊𝑐𝑥 are the weight matrices attached to the memory cell during the update of the 153 

current relevant information that needs to be stored in it. Finally, the output layer is constructed to update the old cell state to 154 

the new cell state, as shown in Equation (3). 155 

{

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶̃𝑡
𝑜𝑡 = 𝜎(𝑊𝑜ℎ𝑡−1 +𝑊𝑜𝑥𝑡 + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑡)

 (3) 

In Equation (3),  𝐶𝑡  is the cell state information at the present time point; 𝑓𝑡  is the forget gate and the functional 156 

relationship (∙) is the Hadamard point-by-point multi-application component. 𝐶𝑡−1 is the memory state at the last time 157 

point. 𝑖𝑡 is the input gate. 𝐶̃𝑡 is the cell state factor of the neuron state at the present point and 𝑜𝑡 is the information of the 158 

output gate. 𝑊𝑜 is the weighting matrix for the output gate after the training process. ℎ𝑡−1 is the output of the hidden layer 159 

for the previous time point 𝑡 − 1. 𝑏𝑜 is the bias vector of the output gate. ℎ𝑡 is the output of the hidden layer for the 160 

previous time point 𝑡.  161 

In the proposed SW-LSTM model, the learning ability of the long-order dataset treatment is greatly improved with front 162 

and back dependencies by considering the learning effects, which include past and future states on the current capacity state 163 
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parameters simultaneously. With this treatment, the disadvantages in the training and testing processes, including only 164 

studying the impact of past state factors on current state factors, are effectively overcome for the LSTM network, by ignoring 165 

the role of future states. Also, the inefficient use of the pre-dependence and post-dependence of time series is retarded, as it 166 

is the limited ability of data learning. The improved SW-LSTM network can benefit from the time-series data independently 167 

through the recurring process in the step-by-step gating layers. The feed-forward processing results from the input and forget 168 

layers are introduced into the output layer simultaneously, which can make full use of the life information contained in the 169 

past and future time data sequences. 170 

In the form of cyclic iteration for the pre-treatment to the evaluation and prediction steps, the model parameters, state 171 

variables, and variance are modified in real-time to improve the accuracy of the capacity estimation, which is used to enhance 172 

the model’s adaptability under complex working conditions. When the noise is unknown, the internal resistance is estimated 173 

by controlling the error range to improve stability and convergence in the capacity estimation process. The LSTM-RNN-174 

based estimation network is constructed for feature optimization, as shown in Figure 2. 175 
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Figure 2. Construction of the LSTM-RNN-based estimation network for feature optimization 177 

In Figure 2, based on the constructed LSTM-RNN estimation network framework, the capacity is calculated synchronously 178 

to ensure the modeling accuracy. The optimized structure for the time domain expansion is introduced to improve the accuracy 179 

of the estimation results, according to which the computational complexity is effectively reduced for the characterization 180 

process. As the estimation accuracy is limited by the current time stage, the data provided by the measurement system in the 181 

early stages is also limited, including the parameters of current, voltage, and temperature. Therefore, it is relatively difficult 182 
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to deeply explore the implicit relationship between aging inducement, multi-parameter estimation, and cycle life during the 183 

capacity estimation process. Over time, the data scale and quality available for the network’s training set are supposed to 184 

increase gradually by flowing through the constructed LSTM-RNN framework, which improves the capacity estimation 185 

accuracy synchronously. To solve the RNN-based gradient explosion or disappearance problems, the LSTM-based network 186 

is introduced into the calculation procedure, in which the state unit of the RNN is replaced by the cyclic unit structure of the 187 

LSTM network. When constructing the LSTM-RNN-based estimation model, the structural bi-directional design is 188 

considered for the input, output, and hidden layers, as well as the training and estimation of the network, including the forward 189 

direction and backward direction computation processes, as shown in Figure 3. 190 
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Figure 3. An illustrative framework of the power battery for time series estimation based on LSTM-RNN 192 

In Figure 3, each gate in the network has a weight 𝑊𝑓, 𝑊𝑖, 𝑊𝑐, and 𝑊𝑜 associated with the forget gate, input gate, 193 

memory cell, and output gate, respectively. Also, the network possesses a bias 𝑏𝑓, 𝑏𝑖, 𝑏𝑐, and 𝑏𝑜 vector attached to each 194 

gate. This pre-treatment is conducted to enhance the network flexibility and make it adaptive to the training data for accurate 195 

battery characterization by filtering out the observation noise and process noise, which are affected by environmental 196 

conditions and restricted by the computing power of BMS processors. The main structure of the optimized bidirectional SW-197 

LSTM model is constructed by the combination of two unidirectional recurrent networks, in which the inputs are the same, 198 

and the information is transmitted in opposite directions with symmetrical structures. Correspondingly, the multiple LSTM 199 

components are introduced to extract the bidirectional spatiotemporal feature information, as shown in Equation (4). 200 
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{

ℎ𝑡
′ = 𝑓(𝑊1𝑥𝑡 +𝑊3ℎ𝑡−1

′ + 𝑏𝑡
′)

ℎ𝑡 = 𝑓(𝑊2𝑥𝑡 +𝑊4ℎ𝑡−1 + 𝑏𝑡)

𝐻𝑡 = ℎ𝑡
′ ⊕ℎ𝑡

 (4) 

In Equation (4), ℎ𝑡
′  is the hidden layer state output, ℎ𝑡 is the hidden layer state information, 𝑓 is the activation function 201 

of the hidden layer, and ⊕ is the vector concatenation operator.  202 

To eliminate the influence of the measurement unit and its magnitude in the input data for the vector of current, voltage, 203 

and temperature, it is normalized to improve the robustness, convergence rate, and acceleration of the gradient descent for 204 

the LSTM network. Specifically, before the input data are introduced into the LSTM network for real-time capacity estimation 205 

and iterative calculation, [-1, 1] is used to normalize the index data, including voltage, current, temperature, and SOC, as 206 

shown in Equation (5). 207 

𝑥𝑛𝑜𝑚 =
2(𝑥 − 𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
− 1 (5) 

In Equation (5), 𝑥𝑛𝑜𝑚  is the normalized data and 𝑥 is the original data for the input vector of current, voltage and 208 

temperature. 𝑥𝑚𝑎𝑥 is the maximum value in the original data. 𝑥𝑚𝑖𝑛  is the minimum value in the original data.  209 

In the early estimation stage, a multivariate hidden Markov model (HMM) is constructed to conduct a multi-factor real-210 

time weighted correlation of aging incentives, state parameters, and rated capacity to achieve accurate short-term SOC 211 

estimation and error correction, which is also used as one input parameter for the real-time capacity estimation. In the latter 212 

estimation process, combined with the LSTM-RNN network framework, the improved dual feedback correction mechanism 213 

of features and time series is introduced to conduct the capacity estimation considering both the long-term and short-term 214 

memory time series. The correlation and time dependence are used to improve the estimation accuracy. The correlation 215 

relationship is extracted between characteristic parameters, environmental conditions, and operation data. After that, the real-216 

time correction of auxiliary information is realized by independently optimizing key time points and enhancing mathematical 217 

expressions, which is used to improve the estimation effect and stability over a long period. 218 

2.2. Differential integration - moving average autoregressive modeling method 219 

The LSTM component only considers the influence of past states on current states by ignoring the role of future state 220 
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parameters, so it does not consider the pre- and post-dependent time series problem and has a limited ability to learn the data 221 

information. The proposed SW-LSTM model learns the effects of past and future states on the current state simultaneously, 222 

which greatly improves the learning ability of the model for long-order data with front and rear dependencies. The DI-MAA 223 

model is constructed to process the time series data independently through the forward and backward layers, which feed the 224 

processing results of the two layers to the output layer. Consequently, it can make full use of the life information contained 225 

in the past and future time sequence data. By constructing the deep neural network with a recursive architecture, the higher-226 

level data features are extracted from the original data. With the existence of the gate structure, the DI-MAA model can judge 227 

and screen the past information flow itself. Then, the full learning of the training set is completed. Finally, the nonlinear 228 

mapping relationship between the early and later stages of capacity is established. The unreasonable interval in the original 229 

capacity series is eliminated. The program operation has little correlation with the amount of data, so the execution time is 230 

constant. 231 

With the DI-MAA pre-processing of the measured datasets, the SW-LSTM-based capacity estimation model has a strong 232 

learning ability for time series data and can achieve higher accuracy. The result of the model is interval estimation rather than 233 

point-to-point, which reflects the uncertainty. After the DI-MAA-based data treatment, the SW-LSTM model is introduced 234 

into the model to describe the uncertainty of the estimation results. The parameters of the SW-LSTM model are regarded as 235 

random variables subject to a certain distribution, in which 𝑋  represents the training dataset and 𝑌  represents the 236 

corresponding real capacity value. As for the nonlinear characteristics of the lithium-ion batteries, the sliding time window 237 

is constructed to extract the new feature of the measured dataset, which is then introduced into the SW-LSTM model as an 238 

input, and the DI-MAA-based pre-processing architecture is designed, as shown in Figure 4. 239 
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Figure 4. The DI-MAA-based new dataset construction process for the input pre-processing of the SW-LSTM model 241 

In Figure 4, the dataset is pre-processed using the DI-MAA-based pre-processing architecture as well as the fixed sliding 242 

window with a window length of 𝐾 − 1. The first data sequence from 𝑋(𝑡 − 𝐾) to 𝑋(𝑡 − 1) in the processing window is 243 

used as the input of the SW-LSTM model. The last data vector is taken as the corresponding output. Using the sliding window, 244 

multiple sets of features are extracted for the input and output data sequences. It reduces the role of irrelevant parts by 245 

designing various weighting coefficients for different calculation parts. This " many-to-one" structure can improve the 246 

utilization ability of the estimation model for the historical discharge data. Even if the discharge data at different historical 247 

times in the input sample have different effects on the current state parameters, they are equally treated using this modeling 248 

structure effectively. Therefore, to improve the filtering effect of the window data as model input, an effective attention 249 

mechanism is designed to make the model give priority to the discharge data that has a great impact on the current state 250 

parameters. Consequently, it further improves capacity estimation accuracy, which is adaptive to complex working conditions. 251 

The steps of the attention mechanism are designed accordingly. 252 

Firstly, a scoring function is used to calculate the correlation score of the eigenvector between ℎ𝑡,𝑖  and ℎ𝑡  for the 253 

discharge data at each time in the hidden state. This step is realized by a full connection layer with the number of output 254 

nodes τ, and its input is the hidden state ℎ𝑡
𝑇  after transposition, as shown in Equation (6). 255 

𝑠𝑐𝑜𝑟𝑒([ℎ𝑡,𝑖 , ℎ𝑡]) = W𝑠ℎ𝑡
𝑇 + 𝑏𝑠 (6) 

In Equation (6), W𝑠 is the weight matrix and 𝑏𝑠 is the bias vector of the full connection layer. 𝑠𝑐𝑜𝑟𝑒([ℎ𝑡,𝑖 , ℎ𝑡]) is the 256 
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relevant information between ℎ𝑡,𝑖 and ℎ𝑡. Then, the attention weight 𝛼𝑖 of each time input data in the sample is obtained 257 

by using the softmax function. Its weighted aggregation with ℎ𝑡,𝑖 is used to obtain the output ℎ𝑡
∗ of the attention layer, as 258 

shown in Equation (7). 259 

{
 
 

 
 𝛼𝑖 =

𝑒𝑥𝑝{𝑠𝑐𝑜𝑟𝑒([, ℎ𝑡])}

∑ 𝑒𝑥𝑝{𝑠𝑐𝑜𝑟𝑒([ℎ𝑡,𝑖 , ℎ𝑡])}
𝜏
𝑗=1

ℎ𝑡
∗ =∑𝛼𝑖ℎ𝑡,𝑖

𝜏

𝑗=1

 (7) 

Finally, ℎ𝑡
∗ is input into the full connection layer with one output node, obtaining the estimation value of the state factor, 260 

as shown in Equation (8). 261 

𝑦̂𝑡 = 𝑊ℎ𝑡
∗ + 𝑏 (8) 

In Equation (8), 𝑊 is the weight matrix of the full connection layer, and 𝑏 is the bias vector. The random variable 𝜃 =262 

{𝑊, 𝑏} is constructed to represent the model parameters. Considering the complexity of calculating the key divergence when 263 

there are many neurons, the objective function is optimized under the L2 regularization condition using the equivalence 264 

between the dropout layer and Bayesian variational inference, as shown in Equation (9). 265 

𝐿𝑑𝑟𝑜𝑝𝑜𝑢𝑡 =
1

𝑝
∑𝐸(𝑌, 𝑌̂)

𝑡∈𝑆

+∑[𝜆‖𝑊‖2 + 𝜆‖𝑏‖2]

𝐻

ℎ=1

 (9) 

In Equation (9), 𝑆 is the subset of training samples and 𝑝 is the number of subsets. 𝐻 is the total number of model 266 

parameters, 𝑌̂ is the model output obtained by dropout, and 𝜆 is the attenuation coefficient of regularization. This objective 267 

function is optimized using the adaptive moment estimate (ADAM) optimizer. When the optimal approximate distribution of 268 

the posterior distribution of the model parameters is obtained, the distribution of the model capacity estimation results for the 269 

newly obtained input sample 𝑋∗ is extracted, as shown in Equation (10). 270 

𝑝(𝑌𝑡
∗|𝑋𝑡

∗, 𝑋, 𝑌) = ∫𝑝(𝑌𝑘
∗|𝑋𝑘

∗, 𝜃)𝑞∗(𝜃) 𝑑𝜃 =
1

𝑇
∑𝑝(𝑌∗|𝑋∗, 𝜃̂𝑡)

𝑇

𝑡=1

 (10) 

In Equation (10), 𝜃̂𝑡 is the specific sampling value of 𝑞∗(𝜃), and 𝑇 is the cyclic sampling number. 271 
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2.3. Uncertainty quantification and evaluation criteria 272 

To evaluate the capacity estimation effect of the proposed SW-LSTM model, the mean absolute error (MAE), root mean 273 

square error (RMSE), mean absolute percentage error (MAPE), and 𝑅2 (coefficient of determination) metrics are introduced 274 

for critical analysis in real-world applications, as shown in Equation (11). 275 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝐸𝑡 = 𝑦𝑡 − 𝑦̂𝑡

𝑀𝐴𝐸 =
1

𝑚
∑|𝑦𝑡 − 𝑦̂𝑡|

𝑚

𝑡=1

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(𝑦𝑡 − 𝑦̂𝑡)

2

𝑚

𝑡=1

𝑀𝐴𝑃𝐸 =
1

𝑚
∑|

𝑦𝑡 − 𝑦̂𝑡
𝑦𝑡

|

𝑚

𝑖=1

𝑅2 = 1 −
∑ (𝐸𝑡)

2𝑁
𝑡=1

∑ (𝑦𝑡 − 𝑦̅)
2𝑁

𝑡=1

 (11) 

In Equation (11), 𝑚 is the total number of data points. 𝑦𝑡  represents the real capacity value of the lithium-ion batteries 276 

at the 𝑡th time point. 𝑦̂𝑡 represents the estimated capacity value and 𝑦̅ is the average value of the actual SOC of the model 277 

at the 𝑡th time point. 278 

3. Experimental Section 279 

3.1. Experimental platform design 280 

The instruments include charge-discharge battery test equipment, a temperature chamber, and other supporting 281 

experimental equipment, providing a suitable and safe battery test environment. The experimental battery test platform is 282 

designed, as shown in Figure 5. 283 
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Figure 5. Experimental test platform for complex current-temperature working condition tests 285 

In Figure 5, the experimental test procedure is designed and embedded in the host computer that is connected to the CT-286 

4016-5V100A-NTFA charge-discharge battery tester using a TCP/IP channel. According to the platform design, the signals 287 

of U/I/T are measured accurately online. All the testing batteries are fixed in the chamber, according to which the time-288 

varying current, voltage, and temperature variables under the test working conditions are constructed. As the model 289 

parameters vary along with the changing temperature, trials are conducted at an ambient temperature of 25 ℃. Meanwhile, 290 

the reference performance test is conducted at 0, 25, and 45 ℃ temperature conditions with a current rate of 0.3, 1, and 2 C. 291 

Then, the varying-temperature model parameters are further improved and applied in the iterative calculation process 292 

according to the complex working condition requirements.  293 

3.2. Capacity estimation effect and analysis 294 

The whole-life-cycle experimental test is conducted for the capacity estimation and verification effect of the proposed 295 

SW-LSTM model. The shared link of the original dataset is https://www.researchgate.net/project/Battery-life-test. It is the 296 

whole-life-cycle experimental data carried out by the research team members in the early stages. It is completed in 297 

cooperation for the whole year, even including the early-stage experimental design process and Origin graphing software. In 298 

https://www.researchgate.net/project/Battery-life-test
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this verification, the battery cell numbered 007 is selected, and the charging capacity recording dataset is introduced into the 299 

training and testing processes. 300 

As for the whole-life-cycle variation in adaptive ability, the 20*25 = 500 cycling Beijing bus dynamic stress test (BBDST) 301 

experimental data are considered. During the application process, the discharging process is determined by the realistic 302 

application requirements, and only the parameters of the charging process are recorded. The charging capacity is used for the 303 

main variation analysis to make the proposed SW-LSTM model suitable for real-time application. The charging capacity is 304 

not only influenced by the aging process, but also influenced by working conditions and the environment, so it has a large 305 

and complex change, which will make the capacity estimation difficult, as shown in Figure 6. 306 
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(a) Charging capacity variation curve (b) Charging capacity estimation with W5_T300P200 
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(c) Charging capacity estimation with W10_T300P200 (d) Charging capacity estimation with W20_T300P200 

Figure 6. Charging capacity variation and estimation curves with varying window length comparison under the real-world BBDST working conditions 307 
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In Figure 6, 𝑊𝑚 is the window width of 𝑚, including 5, 10, and 20, and 𝑇𝑥𝑃𝑦  is the origination with a training dataset 308 

length of 𝑥 = 300 and an estimation dataset of 𝑦 = 200. Also, 𝐹 and 𝑃 denote filtering and predicting, respectively. For 309 

filtering, the dataset is directly used when measured by the sensors. For prediction, the capacity is estimated using the existing 310 

dataset from the previous time points after training the network. The blue and green curves represent the cycle-to-cycle 311 

capacity estimated by the SW-LSTM model, respectively. Compared with other window width values, these values have a 312 

better estimation effect. For the comparison of subfigures (b), (c), and (d), the 𝑊10 has an optimal estimation effect with 313 

an overall best RMSE value of 3.2453%, an MAE value of 1.7065%, a MAPE value of 1.0189%, and an R-squared value of 314 

92.722% showing high adaptability and robustness in accurately estimating the capacity of lithium-ion batteries using this 315 

parameter value. Meanwhile, using a sliding window size of 20, it can be observed that the capacity estimate loses track of 316 

the actual capacity with high levels of fluctuation near the end of discharge. Using the RMSE, MAE, MAPE, and R-squared 317 

metric values for the charging capacity estimation by the proposed SW-LSTM model is shown in Figure 7. 318 
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(c) MAPE histogram (d) R-squared histogram 

Figure 7. Evaluation metric curves for different capacity estimations using different sliding window sizes 

In Figure 7, compared with the estimation result using different sliding window sizes, it can be observed that the metric 319 

values of W10 are relatively optimal, and the charging condition capacity estimation of the battery is consistent. Its RMSE, 320 

MAE, MAPE, and R-squared values are 3.2453%, 1.7065%, 1.0189%, and 92.722%, respectively. The results of the proposed 321 

SW-LSTM estimation model show a high level of robustness, especially for these metrics when using different sliding 322 

window sizes at the same training and testing cycles. 323 

3.3. Varying training-estimation length adaptive analysis 324 

The charging capacity is affected by various uncertain factors in the working process, so the collected data contains a lot 325 

of noise and fluctuation. If the original data is directly used for modeling without pre-processing, the model’s accuracy is 326 

highly reduced. The necessary data pre-processing improves the accuracy of the estimation model. Through the adaptive data 327 

pre-processing method proposed in this paper, the original capacity data is smoothed and denoised, so the processed data has 328 

a steady trend of monotonic decline. The proposed SW-LSTM model is constructed to learn the degradation trend in early 329 

life to establish the estimation model, which is then introduced into the capacity estimation process to obtain accurate results. 330 

The estimation effects of the SW-LSTM and LSTM models are conducted and analyzed under different operating conditions 331 

to test the adaptive ability of the varying training and testing lengths. By conducting different starting time tests for the effect 332 

verification using different sliding window sizes, it is observed that the estimation model has the same adaptive ability except 333 

for sliding window size 10, which showed optimal results. Upon selecting a W10 as the optimal sliding window value, the 334 

degradation trend for the real-world dataset with good evaluation effects at different training and prediction cycles is shown 335 

in Figure 8. 336 
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(a) Charging capacity estimation with W10_T200P300 (b) Charging capacity estimation with W10_T300P200 
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(c) Charging capacity estimation with W10_T250P250 (d) Charging capacity estimation with W5_T350P150 

Figure 8. Charging capacity estimation adaptive to varying training-testing datasets under the real-world BBDST working condition 337 

In Figure , different conditions for the training and testing datasets are designed and realized with high accuracy. The blue 338 

and green lines represent the cycle-to-cycle capacity estimated by the SW-LSTM model. The estimation results are obtained 339 

for four types of datasets with four starting cycle-number points. It can be observed that when the battery's capacity is 340 

estimated by the proposed SW-LSTM model, the result fluctuates around the actual capacity curve, and there is only a slight 341 

difference between the two curves is slightly different under the two conditions. The estimation result has the same changing 342 

trend compared with the filtered capacity variation when using a window width of 10. To verify the estimation effect of the 343 

SW-LSTM model adapting to different starting points, the W10_T300P200, W10_T300P200, W10_T250P250, and 344 
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W5_T350P150 experiments are conducted. For different conditions, the predicted effect has a good estimation effect and a 345 

similar degradation trend to the original capacity fading trend. The results show that the estimation effect has an overall best 346 

RMSE value of 3.2453%, an MAE value of 1.7065%, a MAPE value of 1.018%, and an R-squared value of 92.72%. These 347 

estimation results demonstrate how adaptable and accurate the SW-LSTM model is for estimating lithium-ion battery capacity. 348 

The final comparative performance results using the RMSE, MAE, MAPE, and R-squared for the results presented in Figure 349 

8 are shown in Figure 9. 350 

  

(a) RMSE histogram (b) MAE histogram 

  

(c) MAPE histogram (d) R-squared histogram 

Figure 9. Evaluation metric curves for different training and prediction cyclic capacity estimation 

In Figure 9, comparing the values of the various metrics, it can be observed that, using a sliding window size of 10, the 351 

values are highly optimal for real-time application under conditions with different training and prediction cycles. Using a 352 

sliding window of W10 for different training and prediction cyclic capacity estimations, the proposed SW-LSTM model 353 

shows results with overall best RMSE, MAE, MAPE, and R-squared values of 3.2453%, 1.7065%, 1.0189%, and 92.722%, 354 
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respectively, exhibiting high robustness for real-world capacity estimation of lithium-ion batteries. 355 

3.4 Comparison of the proposed model with other existing methods 356 

In this section, the estimation performance of the proposed model is compared with that of other machine learning methods, 357 

such as deep transfer convolutional neural network (DTCNN), Fiber Bragg Grating-Gaussian Process Regression (FBG-358 

GPR), and sine cosine algorithm-salp swarm algorithm-extreme learning machine (SCA-SSA-ELM), using the MAE, RMSE, 359 

MAPE, and R-squared to verify the model’s superiority and demonstrate the indispensable contribution, as shown in Table 360 

1. 361 

Table 1. Comparison of the proposed SW-LSTM with other existing methods 362 

Methods MAE RMSE MAPE R-squared 

DTCNN [62] - 2.20% 2.47% - 

FBG-GPR [63] 1.02% 0.62% - - 

SCA-SSA-ELM [64] 0.538% 1.156% 0.887% 99.98% 

HFCM-LSTM [65] 0.46% 0.91% - - 

Proposed SW-LSTM 0.019656% 0.033242% 1.1833% 92.08% 

It can be observed from Table 1 that the capacity estimated by the proposed SW-LSTM model is optimally compared to 363 

the other existing methods using the same metrics as the reference value, which indicates that the proposed SW-LSTM model 364 

has high levels of robustness and low error. The findings of the current study and a few pertinent, recently published research 365 

studies are summarized in Table 1, which makes it clear that the proposed SW-LSTM prediction model offers good prediction 366 

accuracy over an extended period. This also serves as further evidence that the SW-LSTM model has distinct advantages in 367 

estimating lithium-ion battery capacity and has a strong capacity for generalization in real-world conditions. 368 

4. Conclusion 369 

Efficient and accurate capacity estimation plays an important role in battery health management. To overcome the 370 

difficulties with accurate capacity estimation, the improved SW-LSTM model is constructed by considering multiple time 371 

scale factors, in which the convolutional calculation and data distribution model are optimized by constructing an optimal 372 

DI-MAA model, thus building a DL network with both speed and accuracy for high-precision capacity estimation only using 373 
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the high-randomness charging characteristics. The typical dynamic time is expanded statically to obtain the complete 374 

characteristics of time and space as two-dimensional information, forming a strong adaptive estimation algorithm combined 375 

with iterative optimization exploration. In the experimental verification process, the maximum capacity estimation error is 376 

3.56%, and the average relative error is 0.032 under the complex real-world BBDST working conditions when only taking 377 

the rich-noise charging dataset as input. It has high accuracy, reduces estimation error, and has good stability, which provides 378 

a reference for the capacity estimation research of lithium-ion batteries. The proposed SW-LSTM estimation model deeply 379 

analyzes the battery characteristics by revealing the modeling and optimization mechanisms with the DI-MAA dataset pre-380 

processing strategies. Consequently, a robust cycle life estimation model that is adaptive to complex working conditions has 381 

been established, which lays the theoretical foundation for the industrial application and promotion of lithium-ion batteries. 382 
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