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Abstract—The integration of the Industrial Control System
(ICS) with corporate intranets and the internet has exposed the
previously isolated SCADA system to a wide range of cyber-
attacks. Interestingly, the vulnerabilities in the Modbus protocol,
with which the ICS communicates, make data obfuscation and
communication between component entities less secure. In this
work, we propose a Common Features Technique (CFT) for
Lightweight Intrusion Detection based on an ensembled feature
selection approach. Our Common Features Technique, which
used fewer features, was able to detect intrusion at the same
level as models using information gain, Chi-Squared, and Gini
Index feature selection techniques datasets after fitting Random
Forest (RF), Support Vector Machine (SVM), and K-Nearest
Neighbour (KNN) models. More importantly, when p-values
were computed, the CFT model computation time and memory
usage were statistically significantly different at 95% and 90%
Confidence Interval (CI) when compared to the model on the
other techniques.

Index Terms—Intrusion Detection, Industrial Control Systems,
Machine Learning, Feature selection, SCADA

TABLE I
NOTATION TABLE

Abbreviations
ICS Industial Control System
SCADA Supervisory Control and Data Acquisition
CFT Common Features Technique
NIDS Network Intrusion Detection System
RF Random Forest
SVM Support Vector Machine
KNN K-Nearest Neighbour
Ci Confidence Interval
RTU Remote Terminal Unit
HMI Human Machine Interface
DCS Distributed Control Systems
PLC Programmable logic Controller
Inf Gain Information Gain

I. INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) sys-
tems, Distributed Control Systems (DCSs), and Programmable
Logic Controllers (PLCs) are all examples of Industrial Con-
trol Systems (ICSs) [1]. They are legacy systems that run
on proprietary control protocols. The SCADA system was

designed to collect data from Remote Terminal Units (RTU)
and send it to the Human Machine Interface (HMI) station
via a communication channel. Previously, these systems were
typically isolated from corporate network connections [2],
and the isolation made the systems less vulnerable to cyber
security issues except for deployment errors and security flaws.
However, as technology advanced and improved, the SCADA
system transitioned from serial network communication to
TCP/IP-based network communication, particularly with its
integration into the corporate network [3]. As a result of
this change, the system has become vulnerable to a slew of
cyber attacks, jeopardising its effectiveness. Interestingly, the
Modbus protocol, which is widely used in SCADA systems,
has been found to be deficient in terms of data authentication,
ineffective intrusion detection, data encryption, authorization,
and effective threat identification [4]. Because of the numerous
flaws in ICS firmware and software, an effective lightweight
intrusion detection mechanism based on the proper feature
selection approach is required, especially given that some
constituent devices, such as edge devices and PLCs, have
memory constraints and limited computational resources.

A lightweight intrusion detection technique based on
feature reduction is one that is concerned with selecting
the appropriate features while also filtering out redundant
features. There are two approaches to achieving effective
feature reduction: (a) the dimensionality reduction approach
and (b) the feature selection method. In the dimensionality
reduction approach, t he entire feature space of a dataset is
transformed and a set of new features is created from the
original features [5]. The feature selection approach, on the
other hand, is made up of three methods: (i) the filter method,
(ii) the wrapper method, and (iii) the embedded method.
According to Kuncheva [6], the filter feature selection
method is classifier independent and resistant to overfitting.
Furthermore, the filter method employs statistical techniques
to investigate the relationship between the independent and
dependent variables, with the statistical score derived from
the evaluation being used to select the relevant features [7].
In this paper, we used filter selection level aggregation to



identify a subset of common features among the results of
various feature selection techniques applied to a dataset.
Following that, a model is fitted to the subset to classify the
data. Because a large volume of data is frequently generated,
and learning algorithms typically take a long time to train,
generalise, and classify attacks, the filter feature selection
approach is therefore, very important.

The remainder of this paper is organised as follows. Section
II discusses additional related issues, studies, and propos-
als on the subject. It also discusses the work’s motivation
and contribution. Section III describes the dataset and the
methodology we used to implement our approach. Section IV
discusses models application as well as the evaluation’s results.
Section V summarises the work and highlights areas that need
further research.

II. RELATED ISSUES AND WORK

Because the Modbus protocol lacks data encryption and
authentication, it is difficult for the SCADA system to pro-
vide an identity verification mechanism for session hijacking
or IP spoofing if a device’s IP is hijacked and malicious
programmes are injected. McLaughlin et al. [10] proposed a
design of a PLC malware that can dynamically generate a
malicious payload based on observations of internal processes
in an Industrial Control Systeme. However, Mayor et al. [11],
had proposed the use of the Metasploit framework for the
identification of vulnerabilities such as those enumerated by
McLaughlin and the detection of intrusion in ICS. Although
Mayor’s approach appears lofty, it is incapable of detecting
the attacks highlighted by McLaughlin. This is premised on
the fact that PLCs and other Edge devices have resource
limitation which therefore necessitates the use of lightweight
intrusion detection. To this end therefore, Aljawarneh et al.,
[12] proposed A hybrid of vote algorithm and information gain
for the selection relevant features that could positively aid in
effective lightweight label classification. In a similar vein, Ayo
et al., [13] proposed a NIDS based on a deep learning model
that is optimised using a hybrid of rule-based feature selection
techniques. According to the authors, the architecture is organ-
ised into three stages: rule-based hybrid feature selection, rule
evaluation, and detection. Following that, search algorithms
and feature evaluators are then combined to improve feature
selection and model fitting.

Similarly, Zhou et al., [14] propose a model based on feature
selection and ensemble learning techniques. The CFS-BA
heuristic algorithm is used to reduce dimensionality and select
an optimal subset of features based on feature correlation.
Thereafter, an ensembled model comprised of C4.5, Random
Forest (RF), and Forest by Penalizing Attributes (Forest PA)
is then used to classify the labels. Similarly, Li et al., [15],
proposed a model in which the Gini index is used to select
the best subset of features, and the gradient boosted decision
tree (GBDT) model is fitted and optimised using swarm
optimization (PSO) for effective classification.

While all of the approaches listed above have demonstrated
a high classification rate, it is worth noting that, according
to Zhang et al., [8], using a single feature selection method
may result in the generation of a sub-optimal feature subset,
compromising the learning algorithm’s performance. This may
also explain why some learning algorithms perform better with
some datasets and poorly with others. As a result, [9] suggests
that combining multiple feature ranking techniques to select
a subset of common features is a more dependable approach
for improving classification and overall accuracy.

A. Motivation

ICS are prone to attacks due to the vulnerabilities in their
structure. The vulnerabilities revolve around the lack of any
mechanisms for authentication of the communicating entities,
as well as the lack of basic security and data protection
mechanisms. To that end, we are motivated, among other
things, to discover:

• How to make intrusion detection effective in Industrial
Control Systems. This is because of the fact that suc-
cessful breaches have the possibility of annihilating the
System and its constituent devices.

• How to achieve intrusion detection with minimal com-
putation cost in minimal time and at a lower resource
overhead.

B. Contribution

• We propose a lightweight intrusion detection technique
based on a shared subset of features from different feature
selection techniques.

• We demonstrated that our approach can achieve the same
overall accuracy, sensitivity, and specificity with fewer
features as it can with more.

• We demonstrated that our approach is capable of signif-
icantly lowering CPU computational costs and time.

III. DATASET AND METHODOLOGY

The datasets used in this work are a laboratory simulated
cyber-attacks on Industrial Control System Network Traffic on
gas pipeline and water storage tank. Basically, two datasets
were used and they are in [16], [17].

A. Gas pipeline dataset

This dataset is made up of 8 instant classes consisting of 7
different kinds of malicious classes and 1 benign traffic. The
distribution of the classes are displayed in Table II.

TABLE II
INSTANT CLASSES DISTRIBUTION FOR GAS PIPELINE DATASET
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From Table II, we could observe that the distribution of
the instant classes is highly skewed towards the benign traffic.
This is because the number of observations of the other classes



are lower than the number of observations in the majority
class. As a result, we augmented the dataset by oversampling
the minority classes to the number of the majority class by
using the approach by [18]. The number of observations in the
benign class was used as the baseline for the oversampling of
the minority classes. Furthermore, prior to the oversampling
of minority classes, the dataset contained 10,618 observations
and 27 features. The total number of observations in the dataset
increased to 53,359 after the minority classes were augmented.
A min - max normalization approach was used to scale the
values in order to eliminate bias and to ensure that all the
features contribute equally (see equation 1).

(x−min(x))/(max(x)−min(x)) (1)

B. Water Tank dataset

This is another dataset originating from laboratory simu-
lation, and it contains seven different types of malicious as
well as benign traffic. As shown in Table III, the distribution
is heavily skewed towards the Normal class, resulting in a
highly imbalanced dataset. In light of this, we augmented the
minority classes using the approach proposed by [18]. Also,
the number of observations in the benign class formed the
threshold for oversampling the minority classes. Furthermore,
prior to the oversampling of minority classes, the dataset
contained 27,199 observations and 23 features. However, after
the minority classes were augmented, the total number of
observations in the dataset increased to 155,675. and scaling
was done using the min - max normalisation approach in order
to eliminate bias and ensure that all features contribute equally.
(see equation 1)

TABLE III
INSTANT CLASSES DISTRIBUTION FOR WATER TANK DATASET
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C. Methodology

The following features selection techniques were used:
Information Gain, Chi-Squared, and Gini-Index. Using all
of the approaches, each dataset’s features were ranked in
order of importance. The cumulative variance of the values
returned by each technique for the features was then used to
eliminate redundant and less contributing features. A threshold
is assumed at the point where cumulative variance is saturated,
with further addition not resulting in further increment. This
resulted in three (3) datasets being generated from the Gas
pipeline and water tank datasets. The datasets obtained are
as follows: (a) the Information Gain dataset, (b) Chi-Squared
dataset, and (c) Gini-Index dataset. However, from these three
(3) datasets, a fourth (4th) (Common Features Technique)
dataset is generated. This is achieved by selecting a subset
of the features held in common by the three other datasets.

Based on the threshold, 18 features were retained for each
of the Information Gain, Chi-Squared, and Gini-Index datasets
for the Gas pipeline dataset after ranking and elimination
of redundant features. However, for the Common Features
Technique (CFT) dataset, 14 features were common and
they formed the CFT dataset’s features. Similarly, after re-
moving the redundant features from the water tank dataset, 17
features were retained for modeling of information Gain, Chi-
Squared, and Gini-Index approaches. The Common Features
Techniques had 14 features which were the common features,
and they constituted the CFT dataset.

Algorithm For Feature Selection and CFT Approaches

1: Load dataset
2: For dataset, T
3: rank features (vi, vi+1, , , vn )
4: order i ← ai, , , ,: magnitude in descending order
5: compute Cumvar ← V ar(ai+1, ...an)
6: exit if Cumvar + ai ̸> Cumvar

7: save Ai ← vi: save selected features based on Cumvar

8: Repeat k ← 1 to N
Do: step 2 - 7 with new F selector

9: If x ∈ (Ai ∩Aii ∩Aiii)
10: select xi, ..., xn

11: save Y ← xi

12: repeat step 9 - 11
13: end if
14: Return (Y )

IV. MODEL FITTING AND DISCUSSION

Upon completion of data augmentation and sub-dataset
generation, we proceeded to fit RF, SVM, and KNN models on
the 4 datasets. Fitting a variety of models was done to ensure
consistency across models and also to test the effectiveness
of our technique. However, before the fitting of the models,
we split the dataset 80:20% for training and validation and
then ran 20 iterations with a script. 70% of the training
dataset was used without replacement for each iteration. For
each iteration, metrics such as overall accuracy, sensitivity,
specificity, computation time, and memory consumed were
recorded. The models were evaluated on datasets containing
Information Gain, Chi-Squared, Gini-index, and Common Fea-
tures Technique (CFT) feature selection techniques datasets.
In all, on each table, 80 iterations (20 on each dataset) were
performed. The average performance metrics values for each
model on each dataset were computed and summarised in
tabular form for comparison. Tables IV through VI display
the average values of the metrics for Random Forest, Support
Vector Machine and K-Nearest Neighbour models. Similarly,
Tables VII displays the summary of the average values of the
metrics from the fitting of a random forest model on the sub-
datasets of the Water tank.



TABLE IV
SUMMARY OF AVERAGE METRICS VALUES WITH SVM MODEL ON GAS PIPELINE DATASETS
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CFT 87.1 99.5 60.7 95.5 98.55 92.08 96.6 57.34 100 99.7 100 100 99.95 100 88.68 94.47 100 5.01 27.57
Info Gain 88.7 99 68.12 95.3 99.03 93.39 96.49 56.64 100 99.79 100 100 99.93 99.99 92.47 94.91 100 6.04 30.26
Chi Sqd 89.83 99.3 77.82 95.4 99.11 93.33 97.38 57.15 100 99.73 100 100 99.93 99.99 93.42 95.35 100 5.97 29.85
Gini Index 88.72 99.1 71.31 95.4 98.69 92.15 96.17 55.98 100 99.75 100 100 99.94 99.99 92.45 94.96 100 6.11 29.93

TABLE V
SUMMARY OF AVERAGE METRICS VALUES WITH RANDOM FOREST MODEL ON GAS PIPELINE DATASETS
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CFT 93.09 99.6 81.53 86.8 98.99 98.14 93.32 97.53 100 99.67 100 100 99.88 90.07 90.27 99.02 100 0.12 15.57
Info Gain 95.76 99.9 84.39 96.2 98.75 93.67 94.73 98.31 100 99.79 98 100 99.93 99.99 97.85 99.4 100 0.15 18.32
Chi Sqd 96.76 99.6 92.63 96.2 98.56 93.8 95.37 98.27 100 99.79 98 100 99.93 99.93 98.91 99.34 100 0.15 18.11
Gini Index 95.82 99.7 86.39 95.5 99.19 92.69 94.91 97.77 100 99.7 98 100 99.96 100 98.13 99.36 100 0.16 18.35

TABLE VI
SUMMARY OF AVERAGE METRICS VALUES WITH KNN MODEL ON GAS PIPELINE DATASETS
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CFT 88.10 98.23 76.67 100 99.51 92.62 63.05 78.57 100 99.90 97 99.30 99.81 99.85 96.98 93.68 100 5.96 20.86
Info Gain 87.87 98.27 77.8 100 99.47 93.73 62.43 75.65 100 99.89 100 100 99.82 99.87 97.07 93.72 100 6.54 23.79
Chi Sqd 87.87 98.27 77.8 100 99.47 93.73 62.43 75.65 100 99.89 97 99.1 99.82 99.87 97.06 93.72 100 7.37 23.71
Gini Index 87.87 98.27 77.8 100 99.47 93.73 62.43 75.65 100 99.89 97 99.1 99.82 99.87 97.06 93.72 100 7.46 23.73

TABLE VII
SUMMARY OF AVERAGE METRICS VALUES WITH RANDOM FOREST MODEL ON WATER TANK DATASETS
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CFT 91.32 52.95 94.58 100 99.94 96.85 98.13 99.97 100 99.29 90.56 100 100 99.99 99.98 98.76 100 0.38 44.30
Info Gain 98.42 92.48 99.23 100 99.97 96.93 98.65 100 100 99.45 99.87 100 100 100 99.99 98.90 100 0.40 48.93
Chi Sqd 98.30 90.83 99.34 100 99.95 97.10 99.05 100 100 99.69 99.60 100 100 100 99.98 98.83 100 0.45 49.10
Gini Index 98.21 90.83 99.33 100 99.99 96.96 98.52 99.97 100 99.69 99.50 100 100 100 99.99 98.75 100 0.45 48.87

A. Measure of Significance - Hypothesis testing

The hypothesis is to use the Common Features Techniques
(CFT) approach for a lightweight intrusion detection model.
This is due to the lower computational cost of the approach
while providing the same classification rate as traditional
feature selection approaches. Because of the small size of our
data sample (n = 20), we chose the two-tailed t-test to test
our hypothesis in this study. To determine whether the null
hypothesis should be rejected or accepted, a statistical test is
used. The t-test is an inferential statistical test that is used to
determine whether there is a statistically significant difference
between the means of two variables. Using information gain,
chi-squared, gini index, and CFT as variables with computed
average memory usage and computation time, we went on to
compute the p-values for average memory usage and average
computation time as follows: Common Features Technique
vs Information Gain - (CFT vs Inf-Gain), Common Features
Technique vs Chi-Squared - (CFT vs Chi-Squared), and Com-
mon Features Technique vs Gini-index (CFT vs Gini-index).

The Two-Sample t-Test
H0 : µ1 − µ2 = ∆0

Two test value : t =
x̄− ȳ −∆0√

S2
1

m +
S2
2

n

(2)

The p-value indicates the likelihood that the statistical mea-
sure, which determines whether an observed outcome should
be accepted or rejected based on a 90% or 95% confidence
interval (CI), will be accepted or rejected. The smaller the
p-value, the more evidence there is in a sample of data to
reject the null hypothesis and accept the alternative hypothesis.
Statistical significance is established and defined when the p-
value is 0.05 or less. First, we calculated the p-values for the
computation time and memory in Tables IV through VII.

TABLE VIII
P-VALUES FOR TIME AND MEMORY FOR TABLE III

P-values
CFT-vs-Inf Gn CFT-vs-Chi Sq CFT-vs-Gini In

Time 4.41E-09 5.78E-09 7.52E-09
Memory 2.20E-16 2.20E-16 2.20E-16



TABLE IX
P-VALUES FOR TIME AND MEMORY FOR TABLE IV

P-values
CFT-vs-Inf Gn CFT-vs-Chi Sq CFT-vs-Gini

Time 2.23E-04 2.76E-04 3.03E-06
Memory 2.20E-16 2.20E-16 2.20E-16

TABLE X
P-VALUES FOR TIME AND MEMORY FOR TABLE V

P-values
CFT-vs-Inf Gn CFT-vs-Chi Sq CFT-vs-Gini

Time 5.33E-11 5.17E-14 2.20E-16
Memory 6.81E-02 2.20E-16 2.20E-16

B. Discussion

Table IV shows that, while the SVM model with the three
other feature selection approaches had an overall accuracy of
88%, the model with the CFT features selection technique had
an overall accuracy of 87%. Except for the Normal traffic,
the table also showed that the sensitivity, which are the True
Positives of the classes, indicated high classification. More
importantly, the p-values in Table VIII show that within a
95% confidence interval, there is a statistically significant
difference in the computation time and memory used by the
CFT feature selection technique and the other approaches. As
a result, we can conclude that the CFT technique achieved
the same level of classification as traditional feature selection
approaches while consuming far less computational resources.

According to the results shown in Table V, the random forest
model with the CFT features selection technique achieved
an overall accuracy of 93%, with the p-values in Table IX
indicating a statistically significant difference in computation
time and memory used. When compared to the model’s clas-
sification using the other feature selection approaches, which
was 95%, we can conclude that the random forest model fitted
on the CFT dataset achieved a high classification comparable
to the other feature selection approach at a lower computation
cost.

Similarly, when the KNN model was fitted on datasets from
the four feature selection approaches (Table VI), the CFT
approach achieved 88% classification. This rate is comparable
to the classification rate of the model using the other feature
selection techniques. Interestingly, while the computation time
difference between the model’s CFT approach and the other
approaches is statistically significant at 95% confidence in-
tervals, the p-value for the memory difference between the
CFT vs Information gain approach indicates that it should
be rejected at 95% confidence intervals but accepted within

TABLE XI
P-VALUES FOR TIME AND MEMORY FOR TABLE VI

P-values
CFT-vs-Inf Gn CFT-vs-Chi Sq CFT-vs-Gini

Time 8.12E-03 2.55E-08 4.60E-09
Memory 2.20E-16 2.20E-16 2.20E-16

90% confidence intervals (Table X). As a result, we can
conclude that the CFT features model achieved the same
classification rate as the other techniques while incurring a
lower computation cost.

Finally, as shown in Table VII, the random forest model
with the CFT technique had a 91% classification rate. This is
a lower classification than the model’s other approaches, which
achieved 98%. This drop in classification could, interestingly,
be attributed to the CMRI class’s 52% sensitivity classification.
The p-values in Table XI, on the other hand, show that the
p-values for computation time and memory used are less
than 0.05, indicating that the CFT technique can achieve high
intrusion classification at a low computational cost.

V. CONCLUSION

In this paper, we propose a lightweight intrusion detection
technique based on the Common Features Technique (CFT).
The technique involves ranking features in order of importance
using feature selection techniques, and then selecting a subset
of the features to form new datasets using saturated cumulative
variance as the threshold. Following that, a subset of common
features between the sub-datasets was generated. The fitting of
RF, SVM, and KNN models on a multiclass ICS dataset was
performed, and the model’s outcome was evaluated using a
two-tailed t-test statistical significance technique. The models
using the CFT techniques achieved a high classification with
fewer features as the models utilising Information Gain, Chi-
Squared, and Gini-index feature selection techniques. More
importantly, the CFT technique accomplished the classification
of the data at a lower computation cost to the devices. In terms
of future work, additional opportunities to address the low
sensitivity classification observed in some of the classes should
be explored. In addition, we also hope to explore how we can
use deep learning models to fit on the dataset and then optimise
the deep learning model using 8 and 16 bits quantisation. The
essence is to further cause a reduction in the size of the data.
Interestingly, we have applied this approach to IoT binary
datasets and obtained comparable classification results when
compared to traditional feature selection approaches. Finally,
the feature selection approaches could be expanded beyond
the three techniques that we used.
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