
MACKIE, N.J. 1980. Theory and application of learning automata. Robert Gordon's Institute of Technology, PhD
thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1993304

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only – re-use of any third-party content must still be cleared with the original copyright holder.

This document was downloaded from
https://openair.rgu.ac.uk

Theory and application of learning automata.

MACKIE, N.J.

1980

https://doi.org/10.48526/rgu-wt-1993304

I

THEORY APPLICATIONS OF LEAJLMING AUTOMATA

by-

Neil James Mackie

Abstract

Although the theoretical performance of many learning automata has
been considered, the practical operation of these automata has
received far less attention. This work starts with the construction
of fwo action Tsetlin and Krylov automata. The performance of these
automata has been measured in stationary and non-stationar^/
environments. The operation of a hierarchical automaton controlling
the memory size of a Tsetlin automaton is also investigated.

Two new automata are proposed with the aim of avoiding the
operational disadvantages of the Tsetlin autom^aton. These automata
have been tested using a computer simulation and in addition
theoretical performance results have been calculated and compared with
results for Tsetlin, Krylov and Lri automata.

A model of a non-autonomous environment is simulated and its
operation analysed theoretically. A more accurate model is analysed
and its operation with a Lri automaton examined and compared to
theoretical predictions. The requirements for learning autom.ata to
operate successfully in non-autonomous environments is considered and
it is shown that the Lrp and Lri automata do not converge to the
optimum for a non-autonomous environm.ent.

Three automata are proposed which are designed to operate in-
non-autonomous environments and their performances are compared to
those of the Lrp and Lri automata.

The operation of automata in a hierarchical learning system and in
cooperative and competitive games is considered. In these situations
the performance of the new automata is compared to that of the Lrp and
Lri automata.

Finally, ti</o applications of learning automata are investigated.
The first considers the Tsetlin allocation scheme, gives a
modification which increases the performance and makes a comparison
with a scheme using other learning automata. The second involves the
selection of a processor in a multiprocessor computer system and
compares a scheme using learning automata with a fixed scheduling
discipline.

R.G.l.T. ABERDEEN

0 0 0 1 5 2 8 5 9 8

0001528598

THEORY AND APPLICATION OF LEARNING AUTOMATA

by

NEIL JAMES MACKIE B.Sc

with
First Class Honours

in Electronic Engineering

A thesis submitted in partial fulfilment of the
requirements of the Council for National
Academic Awards for .the degree of Doctor of
Philosophy (Ph.D.)

School of Electronic and Electrical Engineering,
Robert Gordon’s Institute of Technology,
Aberdeen.

October 1980

DECLARATION

I hereby declare that this thesis is a record of work undertaken by
myself, that it has not been the subject of any previous application
for a degree, and that all sources of information have been duly
acknowledged.

In the course of this research the following were included in an
approved programme of advanced studies:

(1) SRC Vacation School on 'Stochastic Processes in Control Systems'
held at Warwick University, April 1978.

(2) 1st International Conference on 'Stochastic Computing and its
Applications' held at the Institute National Polytechnique de
Toulouse, France, 29 November - 1 December 1978.

(3) Joint SRC/IMC Symposium for 'Research Students in Control'
at the City University, London, 27-28 March 1980.

held

Neil J. Mackie
October 1980

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

by

Neil James Mackie

Abstract

Although the theoretical performance of many learning automata has
been considered, the practical operation of these automata has
received far less attention. This work starts with the construction
of two action Tsetlin and Krylov automata. The performance of these
automata has been measured in stationary and non-statlonary
environments. The operation of a hierarchical automaton controlling
the memory size of a Tsetlin automaton is also investigated.

Two new automata are proposed with the aim of avoiding the
operational disadvantages of the Tsetlin automaton. These automata
have been tested using a computer simulation and in addition
theoretical performance results have been calculated and compared with
results for Tsetlin, Krylov and Lri automata.

A model of a non-autonomous environment is simulated and its
operation analysed theoretically. A more accurate model is analysed
and its operation with a Lri automaton examined and compared to
theoretical predictions. The requirements for learning automata to
operate successfully in non-autonomous environments is considered and
it is shown that the Lrp and Lri automata do not converge to the
optimum for a non-autonomous environment.

Three automata are proposed which are designed to operate in
non-autonomous environments and their performances are compared to
those of the Lrp and Lri automata.

The operation of automata in a hierarchical learning system and in
cooperative and competitive games is considered. In these situations
the performance of the new automata is compared to that of the Lrp and
Lri automata.

Finally, two applications of learning automata are investigated.
The first considers the Tsetlin allocation scheme, gives a
modification which increases the performance and makes a comparison
with a scheme using other learning automata. The second involves the
selection of a processor in a multiprocessor computer system and
compares a scheme using learning automata with a fixed scheduling
discipline.

Acknowledgements

I would like to express my thanks to my project supervisors

Professor P Mars and Dr N Deans for their encouragement and guidance

throughout the project.

I am also grateful to the technical staff of the School of

Electronic and Electrical Engineering, RGIT and the staff of the

Computer Services Unit for their assistance and cooperation. In

particular I wish to thank Mr B Davidson for his assistance in

producing the diagrams.

Acknowledgements also to Mr A Brown and Dr J Eades of the School of

Electronic and Electrical Engineering, RGIT for allowing me to use

their stochastic simulation program with graphic input.

Finally I would like to acknowledge the support of an SRC research

studentship.

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

Abbreviations and Symbols

ADDIE adaptive digital element

first parameter of Lrp automaton

action of learning automaton

average penalty

second parameter of Lrp automaton

penalty probability associated with action i

computational units

expected value

a small quantity

algorithm of learning automaton

f.c.f.s. first come first served

f.s.d fixed scheduling discipline

output function of learning automaton

parameter of Lrp automaton

learning automaton states or matrix element subscripts

cx

oc ,
1

3. • p *

ß

c .
1

cu

E()

£

F

G

i j k

k.

m . .1 1
M

N

P

Pa

4>

PID

PRBS

a positive constant which specifies c_ in Kumar's
non-autonomous environment ‘

mean first passage time from state i to j

average penalty

memory size of Tsetlin automaton

probability of counting up in a random walk

action probability vector of learning automaton

state vector of learning automaton

parameter in linear or non-linear non-autonomous
environment

proportional intergral differential

pseudo-random binary sequence

Ps

Pt(x)

q

r

ro
s ♦ s •

state probability vector of learning automaton

transition matrix of learning automaton

probability of counting down in a random walk

number of actions available to a learning automaton

number of states in a random walk

step size of probabilistic Tsetlin automaton

parameter in linear or non-linear non-autonom,ous
environment

input to automaton from environment

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CONTENTS

Chapter Review of Learning Automata

Introduction

The Environment

The Learning Automaton

Types of Learning Automata

Synthesis of Learning Automata

Stationary Environments and Measures of Performance
for Learning Automata

Non-Stationary Environments and Measures of Performance
for Learning Automata

Non-Autonomous Environments and Measures of Performance
for Learning Automata

2

3

5

8

1

10

11

Chapter 2 Tsetlin and Krylov Automata

Tsetlin Automaton-Operation

Tsetlin Automaton-Hardware Synthesis

Tsetlin Automaton-Experimental Results

Tsetlin Automaton-Action Probability Results

Tsetlin Automaton-Mean Switching Time Results

Krylov Automaton-Operation

Krylov Automaton-Hardware Synthesis

Krylov Automaton-Experimental Results

Tsetlin and Krylov Automata
-Theoretical Action Probability Results

Tsetlin and Krylov Automata
-Theoretical Mean Switching Time Results

Tsetlin Automaton-Average Penalty

Tsetlin Automaton-Average Penalty Results

Optimal Memory Size Automaton-Criteria

17

17

18

20

20

21

22

22

23

25

26

27

28

Optimal Memory Size Automaton-Operation

Optimal Memory Size Automata-Results

Conclusions

Chapter _3 Modified Tsetlin Automata

Modified Tsetlin Automata-Operation

Modified Tsetlin Automata-Steady State Probability
and Mean Switching Time

Modified Tsetlin Automata-Simulation

Modified Tsetlin Automata-Simulation Results

Conclusions

Chapter _4 Non-Autonomous Environments

Linear Non-Autonomous Environments

Linear Non-Autonomous Environment-Simulation Results

The Non-Linear Non-Autonomous Environment

Steady State Conditions of the Lrp and Lri Automata

Non-linear Non-autonomous Environment-Simulation Results

Conclusions

29

30

31

64

67

69

70

73

108

no

111

112

114

116

Chapter _5 Probabilistic Tsetlin Automata

Introduction

The Tri Automaton

The Tip Automaton

The Trp Automaton

The Lrp Automaton

TrijTipjTtp and Lrp Automata-Theoretical Results

Tri-Operation

Tip-Operation

Trp-Operation

130

130

131

132

132

134

136

137

137

Non-Autonomous Environments-Results

Conclusions

Chapter _6 Multi-Action Automata and Automata Games

Introduction

The Hierarchical Learning System

The Hierarchical Learning System-Results

The Hierarchical Learning System-Conclusions

Automata Games-Introduction

Cooperative Games

Competitive Games

Automata Games-Conclusions

138

139

195

195

196

198

198

199

201

204

Chapter _7 The Tsetlin Allocation Scheme

Introduction

The Tsetlin Channel Allocation Scheme

The Tsetlin Channel Allocation Scheme-Results

The Modified Tsetlin Allocation Scheme

The Modified Tsetlin Allocation Scheme-Results

Further Improvements to Tsetlin's Allocation Scheme

Automaton Allocation Scheme-Operation

Automaton Allocation Scheme-Results

Conclusions

221

221

223

225

226

227

228

229

232

Chapter 8_ Job Allocation in _a Multiprocessor System

Introduction

Multiprocessor System Simulation

Multiprocessor System Simulation
-Identification of Environment

Multiprocessor System Simulation
-Automaton Steady State Conditions

242

243

244

244

Multiprocessor System Simulation
-Switched Environments 246

Multiprocessor System Simulation
-Interaction of Automata

Conclusions

249

251

Chapter 9_ Conclusions and Further work

Appendix Calculation of Steady State Action Probabilities

Appendix _2 Calculation of Mean Switching Times

Appendix _3 Markov Transition Matrices of Automata

References

Bibliography

THEORY AND APPLICATIONS OF LEAJINING AUTOMATA

CHAPTER 1 REVIEW OF LEARNING AUTOMATA

Introduction

The aim of constructing a machine able to control a variety of

processes with little or no prior knowledge of the process being

required is an attractive proposition. The use of learning is a

method of achieving these aims and has lead to the study of learning

automata.

The aim of a learning automaton is to select an optimal action from

a set of possible actions. An action, as selected by a learning

automaton, can consist of a single action or a number of actions which

are performed on an environment. The environment responds to the

action or actions with an output from a set of possible outputs which

is probabilistically related to the action of the autom.aton. The

automaton in turn learns by using the output of the environment to

change its internal state prior to selecting another action. The

configuration of automaton and environment is shown in Figure 1.1.

The study of learning automata involves determining the

characteristics of learning automata and the environments with which

they will be used. This enables automata to be selected to suit

different types of environment and allows the performance of automata

to be evaluated, compared and hopefully improved. This chapter deals

in general with the different types of automaton and environment while

the other chapters deal with particular automata and particular

environments and types of environment.

The process, system or medium in which the learning automaton

operates is termed the environment. The environment is defined by the

triple (oC,C,X) where oc represents the input set to the environment in

the form of an action and X represents the output set. The

environment is assumed to be stochastic so that in response to an

input j it is possible to generate any of the elements of the

output set according to c^ , an element of C, the penalty probability

set.

There are three different schemes for the output of the

environment, termed the P, Q and S models. In the S model, the output

of the environment can have a continuous range of values in the

interval [0,1]. In the 0 model, the output can have one of a finite

number of values in the interval [0,1]. However it is the P model

which is most widely used with learning automata and which will be

used in the chapters that follow. In this model there are only two

output values, namely 0 representing a reward and 1 representing a

The Environment

penalty. At time t=n c^ is defined as

c^ (n) = ProbabilityC x(n) = l | oiCn)=o<^) (1.1)
Thus c^ represents the probability of a penalty being output in

response to input o<̂ while the probability of a reward is 1-c. . The

P model has the advantage of simplicity when environments or learning

automata are being investigated either through theoretical analysis or

practical observation.

Although a learning automaton requires little a priori knowledge

about an environment, some information is required. An automaton must

know the number of allowable actions for the environment or a number

greater than the number of allowable actions. This is so that the

actions of the automaton can be matched to the actions of the

environment, with any extra automaton actions being made dumm.ies with

a penalty probability of unity. The automaton must know the form of

the environment output in terms of P, 0 or S models. Finally, the

operation of the environment and automaton must be synchronised so

that action and feedback follow each other in the correct order. Both

the automaton and the environment are assumed to operate in discrete

time with the input to the environment oc(n) being followed by output

x(n) to the automaton which after its internal operations produces

oc(n+l). Apart from the above information, a learning automaton should

be able to converge towards selecting the optimal action of the

environment by working from an initial condition where each action is

regarded as being equally favourable. The information the automaton

uses to select its actions is the favorable (reward) or unfavorable

(penalty) responses made by the environment to its past actions.

A learning automaton can be described by the quintuple (X,©«",<j>,F,G)

and falls within the classification known as the Mealy model [1,2].

The input set X has the allowable inputs to the automaton as its

elements. For an automaton operating with a P model environment, the

set will have two elements =0 and x^ =1. The set ô -is the output

set of the automaton which has as its elements the actions the

automaton can take. The set (j) is the set of states of the automaton.

The operation of the automaton is defined by its algorithm F which

The Learning Automaton

relates the state of the automaton to its next state

F(0(n),x(n)) -> 0(n+l) (1.2)

F can be a deterministic or a stochastic function and defines a set of

transition matrices, one for each element of X allowing equation (1.2)

to be written as

Pt(x) 0(n) = 0(n+l) (1.3)

If the transition matrices have only 0 or 1 as their elements the

automaton is called deterministic while if any of the elements are

probabilities the automaton is called stochastic. If the elements of

the transition matrices are constants the automaton is described as

having a fixed structure but if any of the elements is a variable the

automaton has a variable structure. G is the output function of the

automaton which relates the state of the automaton to the output,

G(0(n)) ->oc (n) (1.4)

G may be deterministic or stochastic.

There are two more quantities which are often used in describing

automata, namely Ps(n) and Pa(n). Ps(n) is the state probability

vector and its elements are defined as

probability(0(n) =0^) = ps^ (n) (1»5)

the probability that the automaton occupies state 0^ at time n.

Pa(n) is the action probability vector and its elements are defined as

(1 .6)
the probability that the action of the automaton will be action cĉ

at time n.

probability(cc(n)) = pa^ (n)

Types of Learning Automata

A large number of learning automata have been proposed and

investigated [3,4,5]. Table 1.1 gives a list of those commonly

mentioned in the literature on the subject as well as automata which

are of particular interest in later chapters. This list has been

divided into four types containing automata which have similarities in

the way they operate.

The automata included in Type 1 are all variable structure

automata. These automata are best described by their algorithm and

best observed via the action probability vector Pa. The naming of

these automata is based on the algorithm so that if the algorithm is a

linear equation the automaton has an L as the start of its name. If

the algorithm is non-linear the first letter is an N while H denotes a

hybrid algorithm. The subscripts which follow indicate whether the

automaton changes state in response to a reward (r), a penalty (p) or

remains inactive (i), while (w) indicates a weighted response.

Although the Type 1 automata are a more recent development than the

Type 2 automata, recent investigations have dealt far more with Type 1

automata than Type 2. In particular the Lrp [6] and Lri [7,8] have

been the most common automata for study. As these two automata are

used in later chapters the Lrp and Lri automata will be described

here.

The operation of the Lrp automaton is described in terms of its

algorithm as

(1.7)

(1.8)
pa. (n+1) =c<pa. (n)J / 1 J

pa. (n+1) = 1-27 . . . pa. (n+1) 1 1 ^ 1 J
in response to a reward after action cx whilei

pa^ (n+1) =/3pa^ (n) (1.9)

pa^ ^ ̂ (n+1) = pa^ (n) + (l-/3)/(r-l) pa^ (n) (1.10)

in response to a penalty after action o<i. , where c< and Q are in the

interval (0,1).

From equations (1.7)-(1.10) it can be seen that oc controls the

operation of the automaton in response to a reward while Q controls

the operation in response to a penalty. Often cxand Q are combined to

give a third parameter defined as

 ̂ = (l -o^)/(l - i3) (1 . 1 1)

By making /?=1 the action probability vector does not change in

response to a penalty and the Lrp becomes the Lri automaton. Thus the

Lri automaton is just a special case of the Lrp automaton with 13=1 but

the performance of the Lri automaton is sufficiently different from

that of the Lrp automaton for the Lri automaton to be refered to as a

distinct automaton.

While the performance of the rest of the automata in Type 1 has

been studied [9,10,11,12,13,14], none have had the consistent

performance of the Lrp and Lri automata for all penalty probabilities.

The automata included in Type 2 are all fixed structure automata

with a deterministic or stochastic algorithm and a deterministic

output function. Because of their deterministic output function each

state is associated with only one output and these automata can be

classed as Moore models [1,2,20]. These automata are best described

by a graph showing the state transitions in response to a penalty and

reward. Figure 2.1 shows the graph of the Tsetlin automaton as an

example. The capacity for changing the performance of these automata

is limited as the algorithm is fixed, only the number of states in the

automaton is variable.

The first of the Type 2 automata to be studied was the Tsetlin [15]

while the automata of Krylov [16], Krinskii [17] and Ponomarev [18]

followed the lead given by Tsetlin by devising automata similar to

Tsetlin's but with modifications designed to improve performance. All

these automata have a series of states corresponding to a single

action joined to other series of states corresponding to different

actions. The difference between the automata is in the way they

attempt to ensure the automaton stays in states corresponding to the

optimal action. The Q model is a modification by Tsetlin to his own

multi-action automaton where instead of the action of the automaton

changing in a deterministic manner it changes stochastically. These

automata have been studied by Langholz [20,21,22] and the G2n,2 has

been studied by Narendra et al [19] but nothing further will be said

here as the Tsetlin and Krylov automata are studied in Chapter 2.

Although the Type 3 automata are based on the Tsetlin automaton

they have a variable structure and so are similar to Type 1, however

the Type 1 automata have a stochastic output function while the Type 3

automata have a deterministic output. The Type 3 automata are

investigated in Chapter 3.

Although the automata included in Type 4 have a variable structure

with either deterministic or stochastic output functions [23] they are

not grouped with the Type 1 automata because of their different

approach to learning. The Type 4 automata use the output of the

environment to estim.ate the elements of the set C. The automata then

generally select the action corresponding to the lowest estimate which

should be the optimal action of the environment. These automata have

not been as widely studied as Types 1 and 2 though some work has been

done by Coutts [24,25].

Type 5 automata are fixed structure automata with deterministic

algorithms and stochastic output functions. They are similar to Type

2 automata, consisting of a series of states but cannot be classed as

Type 2 because of their stochastic output functions which give them

some of the advantages of Type 1 automata. These automata are dealt

with in more detail in Chapter 5.

Synthesis of Learning Automata

Using digital techniques, learning automata can be readily and

economically developed to run at high speed and automata have been

built using this method, for example the Tsetlin and Krylov automata

in Chapter 2. However some automata are too complex to be easily

synthesised this way and in experimentation, where comparisons have to

be made between different automata, more flexibility is required.

Microprocessors have been used to provide this without a proliferation

of hardware and a great speed penalty [26]. Where speed is not

important and the greatest flexibility is required a mainframe

computer has been used to simulate the learning automata as in Chapter

6.

Three functions that are required in the study of learning automata

are the generation of random numbers, the generation of a random bit

with a particular probability and the estimation of a probability from

a random sequence. The methods used to obtain these functions can be

implemented using any of the synthesis techniques mentioned above.

Random numbers can be obtained using independent segments of a

pseudo-random binary sequence (PRES) as a binary number. Such numbers
Nwill be uniformly distributed in the range 0->2 -1 where N is the

number of bits on the binary number. A PRES can be obtained from a

shift register operating with feedback [27,28]. A register when

8

fitted with the appropriate feedback connections will progress through

every possible register state except for the all zeros state in a

pseudo-random manner before reentering its initial state. The output

from a single bit of the register will be a PRBS with probability 0.5.

To obtain a random bit e.g. to obtain a penalty or reward with a

particular penalty probability, a random number in the range (0,1) is

compared to the probability. If the random number is less than the

probability the output is a penalty, otherwise it is a reward. Figure

1.2 shows a digital version of this which was used in Chapter 2 to

produce a sequence of bits to represent a penalty probability.

In order to estimate the value of a probability an Adaptive Digital

Element (ADDIE) is used [29,30] as shown in Figure 1.3. When

operating in the steady state the ADDIE counter contains an estimate

of the input probability. If the value in the counter is too low the

feedback from the comparator is such that the counter counts up more

often than it counts down while, if the value in the counter is too

high the inverse is true. In reaction to a sudden change in the

input, an ADDIE has a first order response with an error decaying

exponentially with time. For a fast response, an ADDIE should have a

small counter size but for the estimate of the input to have low

variance, the counter size should be large. In practice, a compromise

must be reached between these two conflicting criteria.

Stationary Environments and Measures of Performance for Learning

Automata

Stationary environments have penalty probabilities c^ which are

constant and do not vary with time. One measure of performance is the

average penalty M output by the environment. An automaton is said to

be expedient if

« < * Z l . 1 _ > r "i (1-12)
that is, if the automaton operates so that it receives an average

penalty lower than that which could be obtained by randomly selecting

actions. An automaton is said to be absolutely expedient if

E(M(n+l) I Ps(n)) < M(n) (1.13)

that is, the average penalty can be expected to decrease as the

automaton operates. If

M(n) < 1/r ^ ̂ ̂^ (1.14)

absolute expediency implies expediency and in stationary environments

absolute expediency implies £ optimality [4]. An automaton is said to

be optimal if

Lim M -> c . (min) (1.15)

and £ optimal if

Lim ^ M -> c^ (min) + £ (1.16)

When operating in a stationary environment an automaton which was

optimal would select the action corresponding to c^ (min) with

probability 1 and so receive the lowest possible average penalty. An

automaton described as having gone optimal is selecting an action with

probability 1. In a stationary environment an automaton which is

optimal or as near optimal as possible will receive the lowest average

penalty and have the best performance.

Non-stationary Environments and Measures of Performance for Learning

Automata

Non-stationary environments are defined as environments in which

the characteristics of the penalty probabilities change with time. A

switched environment is one in which one or more penalty probabilities

change instantaneously from one value to another. There are

deterministically switched environments in which the changes will

10

occur at regular time intervals and Markov switched environments in

which, at regular time intervals, there is a probability that the

penalty probabilities will change.

Unlike the stationary environment an optimal, or near optimal

automaton operating in a non-stationary environment will in most cases

not achieve the lowest average penalty. To be able to adapt to

changes in the environment, an automaton must detect these changes by

selecting non-optimal actions. A near optimal automaton will usually

take a long time to adapt to changes in the environment and during

this time the automaton will not be selecting the action corresponding

to the lowest penalty probability. Thus a measure of performance

introduced for use in non-stationary environments is the mean

adjustment or switching time [31]. This is defined for an automaton

selecting between two actions as the average number of epochs after a

sudden change in the penalty probabilities from to ĉ ̂ > c^

until the action probability pa^ changes from being less than pa^ to

being greater than pa2 •

Non-Autonomous Environments and Measures of Performance for Learning

Automata

The environments described so far have been autonomous in that the

penalty probabilities associated with an action were unaffected by the

operation of an automaton. However in many practical situations the

environment would be affected by the actions taken by the automaton.

An example would be a telephone system where the available lines would

depend on the routing of previous calls. Such environments are

described as non-autonomous.

11

In autonomous environments, a single action corresponds to the

minimum penalty probability and so the performance of an automaton can

be judged from how nearly optimal the automaton is. In a

non-autonomous environment, because the penalty probabilities vary as

the action probabilities change, no single action probability can be

described as best, and the task of the automaton changes from finding

the best action to finding the best distribution of actions. In

non-autonomous environments the degree of optimality is not an

effective measure of performance and the average penalty received by

the automaton is used.

A non-stationary non-autonomous environment is not one in which the

penalty probabilities change but one in which the relationship between

the penalty probabilities and the action probabilities change. In

non-autonomous environments the mean switching time of an automaton is

less important than in an autonomous environment. Poor mean switching

times in a non-stationary autonomous environment are caused by an

automaton selecting a single action and not detecting changes in the

second. However in a non-autonomous environment, where the best

policy is to select both actions in a particular ratio, changes are

quickly detected.

12

F(x] ; (n) ->ci)(n+1]
G ; 0 (n) > cx (n)

i n p u t

P model X =^0,1}

amodel X = {x,,x

Smodd X = [o,l]

F igu re 1-1 Automaton - environment feedback configuration

M (6)
•̂ RP

tR l,

 ̂ [̂ R-p'-RpJ

|Type1

^ P Tsellin Modified Tsellin

Type1

Lr I Krylov Type 2

'-RR Type 3

^IP

Ip p

Kr inski

•-R-WP

'-WR-I

Ponomarev

P model

N•̂ RP
•
• Type 2

Sample Meon

Modified Eshmafing

Type 4

'RP

'IP

'RI

TypeB

Table 1-1 Learning aufomala

Figure1-2 SchemaHc diagram of a PRBS probability generatar

unknown

Fi gure 1-3 Schemal'ic diagram of an ADDIE

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER 1 TSETLIN AND KRYLOV AUTOMATA

Tsetlln Automaton-Operation

In 1961 Tsetlin described a fixed structure learning automaton with

deterministic algorithm and output function [15]. The Tsetlin

automaton has been considered theoretically [32,33] and by simulation

[19,30] but a Tsetlin automaton has not been built and its practical

operation considered. The operation of the automaton is best

explained with the aid of Figure 2.1. This shows a two action

automaton with 2N states and a memory size of N. States 1 to N

correspond to one action while states N+1 to 2N correspond to the

other. When the automaton receives a penalty it m.oves towards states

N and N+1 while, in response to a reward, the automaton moves towards

end state 1 or 2N. Thus the automaton performs a random walk

determined by the penalty probabilities of the environm.ent with

reflecting barriers beyond states 1 and 2N [34].

Tsetlin Automaton-Hardware Synthesis

In order to investigate the operation of the Tsetlin automaton the

automaton was built using digital electronics. A. block diagram of the

circuitry used is shown in Figure 2.2 with more detailed circuit

diagrams of the combinational logic used shown in Figures 2.3 and 2.4.

The heart of the automaton was a 12 bit binary counter allowing up

to 4096 states or memory sizes up to 2048 with two actions. The most

significant bit of the counter was taken as the action of the

automaton and was connected directly to the environment. In response

the environment output a penalty or reward according to the

appropriate penalty probability. The output of the environment and

17

the action of the automaton were fed into combinational logic to

convert them into an up/down control signal for the counter. The

up/down control was in turn fed into more combinational logic with the

state of the automaton and signals representing the memory size to

provide a disable signal to prevent the counter exceeding the required

memory size.

An environment was constructed using the method shown in Figure 1.3

using shift registers of length 23 and 31 bits generating maximal

length sequences. The two penalty probabilities were then fed to the

circuitry shown in Figure 2.5 which was used to produce a switched

environm.ent if required and to select the action probability

corresponding to the automaton action. To monitor the operation of

the automaton, the state of the 12 bit binary counter was converted to

an analogue signal and displayed on an oscilloscope.

Tsetlin Automaton-Experimental Results

The performance of a Tsetlin automaton with a memory size of 2048

was investigated in both stationary and switched environments. Figure

2.6 shows learning curves for the automaton with action 2 the output

and changed from 0 to 7/16 in steps of 1/16. The results show

what is basically a linear movement from the central states of the

automaton to the end state. For low penalty probabilities the

movement to the end state is faster giving a shorter learning time.

Figure 2.7 shows the operation of the automaton in a

deterministically switched environment with the central trace

indicating the switching instants wiien ĉ ̂ was changed to the previous

value of c^ and C2 changed to the previous value of ĉ ̂ . Figure

2.7(a) shows the automaton operating with c^ 's of 15/16 and 1/16. It

can be seen that the automaton operates well and starts to move

18

towards states associated with the other action as soon as the

environment switches. Figure 2.7(b) shows the same as Figure 2.7(a)

initially but then the c^ ' s are changed to 15/16 and 3/4. The

performance of the automaton changes, it remains near its central

states N and N+1 and frequently changes its output between action 1

and action 2. Figure 2.7(c) also shows the same as Figure 2.7(a)

initially but the c^ 's are then changed to 3/16 and 1/16. In this

case the operation of the automaton also changes. The automaton

operates poorly as its action remains the same regardless of the

changes in the environment.

The results shown in Figure 2.7 demonstrate that the operation of

the Tsetlin automaton will fall into one of three modes depending on

the environment. If the c^ '̂s are about the value of 0.5, one action

will tend to make the automaton move towards states associated with

the other action, while the other action will tend to make the

automaton move towards the corresponding end state. Thus one action

is stable while the other is unstable and the automaton works well.

If the c^ 's are both greater than 0.5, both actions will tend to make

the automaton move towards states associated with the other action.

Thus both states are unstable, the automaton moves between states N

and N+1 frequently and works poorly. If the c^ ' s are both less than

0.5, both actions will tend to make the automaton move towards the end

state associated with that action. Thus both actions are stable, with

the automaton only moving from one action to another due to variance

in the penalty probability causing it to be temporarily greater than

0.5 over a long enough time to allow the automaton to move from one

action to the other. If the largest penalty probability is not close

to 0.5, or if the memory size is large, the automaton can output the

19

wrong action for long periods of time and the automaton works poorly.

Tsetlin Automaton-Action Probability Results

Though the Tsetlin automaton is a deterministic automaton with a

deterministic output function, over a long period of time a two action

Tsetlin automaton will output both actions. If these are recorded the

overall probability of selecting the optimal action can be calculated.

It was found that slight differences were present between the measured

and expected results which became apparent as the difference between

the penalty probabilities was reduced or the penalty probabilities

approached low values. It was found that the positioning of the

connections from the individual bits of the PRBS shift registers

affected the penalty probabilities. Rather than build a new random

number generator the best positioning of the connections was selected

and used for the later results.

Tsetlin Automaton-Mean Switching Time Results

Measurement were made of the mean switching time of the Tsetlin in

switched environments with penalty probabilities equally spaced about

0.5. For the Tsetlin and Krylov automata the mean switching time can

be defined as the average number of epochs, after a sudden reversal of

the penalty probabilities till the first output of the correct action,

assuming the automaton had rightly output the previously correct

action immediately prior to the switch in the environment. Figures

2.8(a)-(g) show the mean switching time results for various penalty

probabilities plotted against memory size with the corresponding

theoretical results. In general the results are in good agreement but

it can be seen that as the difference between the c 's is reduced the
1

measured results differ more from the theoretical results. This is

20

due to the deficiencies in the generation of the penalty

probabilities.

Krylov Automaton-Operation

The Krylov automaton [16] was proposed as an automaton which became

more nearly optimal as its memory size increased in any environment

instead of only in environments with one or both c^ 's less than or

equal to 0.5 as for the Tsetlin automaton. The Krylov automaton is

very similar to the Tsetlin automaton in that it has a series of

states 1 to 2N, with states 1 to N being associated with one action

and states N+1 to 2N being associated with the other. It is in the

movement between states that the Krylov and Tsetlin automata differ.

As Figure 2.9 shows, in response to a reward the Krylov automaton acts

as the Tsetlin and moves deterministically towards an end state but,

in response to a penalty, the automaton acts stochastically and moves

either towards states N and N+l or towards the end states with

probability 0.5.

The operation of the Krylov automaton can be related to that of the

Tsetlin automaton. If an automaton performs an action such that it

receives a penalty with probability c^ then

penalty probability = c1
reward probability = 1-c 1

If a reward response is taken as a movement towards states 1 or 2N and

if a penalty response is taken as a m^ovement towards states N and N+l

then for the Krylov automaton

penalty response probability = /2

reward response probability = (1-c^)+(c^ /2) = /2

and for the Tsetlin automaton

penalty response probability =

21

reward response probability = l-ĉ ̂

and a similar argument applies to C2 •

Equating response probabilities it is seen that a Krylov automaton

receiving penalty probabilities in the range [0,1] is equivalent to a

Tsetlin automaton receiving penalty probabilities in the range

[0,0.5] . However previous results showed that the Tsetlin automaton

did not operate well with penalty probabilities which were both less

than 0.5, and so it was expected that the Krylov automaton would not

work well.

Krylov Automaton-Hardware Synthesis

Because of the similarity between the Krylov and Tsetlin automata

the circuitry used in constructing the two automata was identical

except for combinational logic block 1, as shown in Figure 2.2.

This circuitry, which is shown in Figure 2.10, instead of

deterministically converting a penalty response from the environment

into an up/down signal for the counter, as in the Tsetlin automaton,

sampled a stochastic sequence of probability 0.5 and used this as the

control signal for the counter.

Krylov Automaton-Experimental Results

The performance of the Krylov automaton was investigated whilst

operating in both stationary and switched environments. Figure

2.11(a) shows a Krylov automaton of memory size 2045, initially with

output action 1, operating in a switched environment with penalty

probabilities of 0 and 15/16. As predicted the result is similar to a

Tsetlin automaton working with both c^ 's less than 0.5 with the

automaton action remaining unchanged even though the environment

switches. This inability to change is a function of memory size. The

22

automaton has two stable actions, with the action corresponding to the

lower c^ being more stable than the other and with stability

increasing as the memory size increases. Variance in the penalty

probabilities causes movement between the actions and the time spent

in an action depends on its stability. Thus while both actions are

stable, for small memory sizes, variance should cause movement between

the actions with the automaton spending more time in the most stable

action. This can be seen in Figure 2.11(h) which shows a Krylov

automaton, with memory size of 8, and operating with ĉ ̂ = 7/8 and =

5/8 moving from states corresponding to o.̂ to states corresponding to

Cĵ , remaining in those states for a time and then moving back.

Figure 2.11(c) shows a Krylov automaton, with memory size of 8,

operating in a switched environment with c^ 's of 3/4 and 5/8. Since

when the switching trace is high the automaton trace should be low it

can be seen that the automaton works poorly.

Tsetlin and Krylov Automata-Theoretical Action Probability Results

In order to calculate how optimal a Tsetlin or Krylov automaton is

the steady state probabilities of the states of the automaton are

required.

For a Tsetlin automaton if the environment is such that C2 ~ ’

and if the automaton is not at an end state, when the input is action

1 the probability of the automaton counting up is ĉ ̂ and the

probability of counting down is 1-c, . . o i.It xs action 2 the

probability of counting up is ^ “ ^ 2 ~ *̂1 probability of

counting down is . Thus for all states 2 to 2N-1 the

probability of counting up is ĉ ̂and the probability of counting down

is ^ random walk with reflecting boundaries [34] at 1 and

a and with a probability of going up of p and of going down of q the

23

probability of being in state k after a long time is

(1-p/q) / (l-(p/q) °) * (p/q)*̂

where r is the number of states in the random walk, o

(2.1)

Thus for the Tsetlin automaton the steady state probability of state k

is
2N k-1(l-(c^ /(1-c^)))/(l-(c^ /(1-c^)))*(c^ /(1-c^)) (2.2)

where k = 1 -> 2N

If C2 does not equal then the calculation of the steady

state probabilities is more difficult. The method used to calculate

the steady state probabilities is given in Appendix 1 and was used to

calculate the results given in Chapter 3.

Figures 3.3(a)-(d) give the theoretical degree of optimality for

the Tsetlin and Krylov automata against memory size for various

environments with penalty probabilities about 0.5. Results for the

Lrp automaton have been included as this automaton was used as a

reference. The results show that the Tsetlin and Krylov automata

become nearly optimal as the memory size approaches 10. The Krylov

automaton is also more optimal than the Tsetlin for the same memory

size.

Figures 3.5(a)-(f) show results for the Tsetlin automaton in

environments where the penalty probabilities are not constrained about

0.5. For penalty probabilities both greater than 0.5 the optimality

of the automaton levels out and does not increase to one as the memory

size is increased. When one of the penalty probabilities falls below

0.5 this measure of performance begins to approach 1 as the mem.ory

size in increased. As the penalty probabilities are decreased further

the optimality for a particular memory size increases.

24

Tsetlin and Krylov Automata-Theoretlcal Mean Switching Time Results

The method used to calculate the mean switching time of the Tsetlin

automaton used for Figure 2.8 and the results in Chapter 3 is given in

Appendix 2.

In a switched environment there is a probability that the automaton

will not be selecting the action corresponding to the lowest penalty

probability when the environment switches. When this occurs the

switching time of the automaton is zero. In taking results for the

graphs shown in Figure 2.8, switching times of zero were ignored. In

order to have the calculated mean switching times correspond to the

results the steady state probability vector was modified so that

^1 . 1 _ > n '■"l ■ 1
i.e. the automaton action is always correct immediately prior to the

switch in the environment. This definition gives slightly longer mean

switching times compared to the definition given in Chapter 1.

Figures 3.4(a)-(d) give mean switching time results for Krylov and

Tsetlin automata in a variety of environments corresponding to those

in Figures 3.3(a)-(d). Again the Lrp automaton has been included as a

reference. It should be noted that the definition of mean switching

time for the Lrp automaton is that given in Chapter 1 and differs

slightly from that used for the Tsetlin and Krylov automata. Even for

widely spaced penalty probabilities the Krylov automaton has very long

switching times. As the difference between the penalty probabilities

is reduced the performance of the Krylov automaton worsens

dramatically. In Figures 3.6(a)-(f) which correspond to the

environments of Figure 3.5 the results for the Krylov automaton have

been omitted so the results for the Tsetlin automaton can be examined.

For penalty probabilities above 0.5 where the optimality of the

25

Tsetlin automaton is relatively poor the mean switching times are low.

For penalty probabilities below 0.5 where the optimality is high the

mean switching times are high, so much so that results for the Tsetlin

have been excluded from Figures 3.6(e)-(f).

The theoretical results for the Tsetlin and Krylov automata

confirmed the conclusions drawn from the experimental work with the

automata. The Krylov automaton has a near optimal performance in all

environments but has switching times so large that its use is

impractical. The Tsetlin automaton has relatively poor optimality in

environments with high penalty probabilities compared to its

performance with low penalty probabilities. However with low penalty

probabilities the switching times of the Tsetlin automaton are high

and it is only with penalty probabilities about 0.5 that the Tsetlin

has a high degree of optimality and low mean switching times.

Tsetlin Automaton-Average Penalty

In his paper [15] Tsetlin considers the operation of his automaton

in a Markov switched environment and derives an equation for finding

the average penalty as
2M=l/2-(a-l) /2 *

cosh(ny)-l
2Nd/(l-2d)*((a+l)**2)*cosh(Ny)+((a-l)**2)*coth(y/2)*sinh(Ny) (2.3)

where

cosh(y)=((l+a)**2)/2a * (l-d)/(l-2d) -1

a=p/(l-p), c^ = p, c^ = 1-p

d = probability of environment switching

N = memory size

Figure 2.12 shows results from this equation which show there is a

memory size which corresponds to a minimum average penalty and that

26

this memory size decreases as the switching rate increases. Figure

2.13 shows that as the penalty probabilities move toward 0.5 the best

memory size increases while the minimum of the curve becomes less

distinct.

Tsetlin Automaton-Average Penalty Results

Measurements were made of the average penalty received by the

Tsetlin automaton in both deterministically and Markov switched

environments. In order to produce a Markov switched environment the

switching circuitry shown in Figure 2.5 was used, connected to a

Markov switching clock. The switching clock was arranged to switch

every time a penalty was present on a signal representing the

switching probability.

Measurements were then taken of the measured average penalty of a

Tsetlin automaton operating in a Markov switched environment with

penalty probabilities of 1/4 and 3/4 and varying the memory size and

switching rate. Figure 2.14 shows the measured results compared with

theoretical results. The measured average penalties show there is a

memory size which corresponds to a minimum average penalty but

disagree in some cases with the theoretical results on the value of

the memory size. The differences between measured and theoretical

results increase as the switching rate increases until the measured

results indicate that at very fast switching rates the automaton is

receiving an average penalty greater than the mean of the two penalty

probabilities. These differences are due to the deficiencies in the

generation of the penalty probabilities but also indicate how

sensitive the Tsetlin automaton is to the nature of the penalty

probabilities, a factor which should be borne in mind if the automaton

is used in real environments.

27

Figure 2.15 shows measurements of the average penalty but obtained

with the automaton operating in a deterministically switched

environment. Comparison with Figure 2.14 shows that the curves are

steeper with the best memory size being more clearly defined. This is

to be expected since a Markov switching rate is a mixture of a range

of deterministic switching rates.

Optimal Memory Size Automaton-Criteria

Having shown that for a given switching rate there is an optimal

memory size it was decided to build circuitry to automatically control

the memory size in order to minimise the average penalty received by

the Tsetlin automaton. This would create a hierarchical structure

with a secondary automaton adjusting a parameter of the primary,

Tsetlin automaton. Whilst the Tsetlin automaton would be operating in

a switched environment, the secondary automaton would, if the

switching rate remained constant, operate in a stationary environment.

The secondary automaton would be working with penalty probabilities

like those of Figure 2.14. These have a single global minimum with no

local minima so stochastic hill-climbing methods could be used as an

alternative to stochastic automata methods [4]. Since the curves of

Figure 2.14 are relatively flat the automaton would have to be slow in

order to distinguish between penalty probabilities which were near the

same value. However, because the curves were flat an action which was

non-optimal, but near the optimal value for memory size could be

tolerated since the difference in average penalty between the two

would be small. A non-optimal automaton was also favoured so that it

could adjust the memory size to changing switching rates. At first

sight it seemed that a multi-action automaton with an action

corresponding to each particular memory size would be needed. This

28

would have required a large structure but it was realised that in the

simple environment with no local minima a two action, deterministic,

gradient following automaton could be used.

Optimal Memory Size Automaton-Operation

The automaton designed to control the memory size of the Tsetlin

automaton was like those of type 4 in Table 1.1 in that it estimated

the penalty probabilities, and selected an action on the basis of

those estimates. It consisted of two counters, a comparator, a memory

size counter and some control circuitry as shown in Figure 2.16. In

operation the automaton measures the penalty probability, in this case

the average penalty received by the Tsetlin automaton, at a memory

size and the penalty probability at the next highest memory size. The

automaton then compares the two measurements and, on the basis of

which is the smaller, either increments or decrements the memory size

counter by one and repeats the operation. In this way the automaton

moves down the gradient of the average penalty curves towards the

optimal memory size. The automaton can never output the optimal

memory size with probability greater than 0.5 since comparisons will

always be made with the mem.ory sizes above and below the optimal

value. Thus the automaton will respond to changes in the environment

due to changes in the switching rate relatively quickly while the

increased penalty probability caused by selecting the memory sizes

about the optimal size is not great. The size of the measuring

counters is a compromise between the smoothing effect required to

obtain the average penalty received by the Tsetlin automaton over a

number of switches in the environment, speed of operation and

construction considerations. A value of 12 bits giving a counter size

of 4096 was selected. The automaton was also limited to operate with

29

memory sizes in the range 1 to 16.

Optimal Memory Size Automaton-Results

For the optimal m.emory size automaton, measurements were made of

the steady state probability of each memory size in both Markov and

deterministically switched environments for penalty probabilities of

1/4 and 3/4. Figures 2.17(a)-(f) and 2.18(a)-(d) show these results

with the optimal memory size shown as a solid line. It can be seen

that the memory size favoured by the automaton changes with the

switching rate though the most frequent memory size does not always

correspond to the optimal size, there being a tendency to favour a

higher memory size. This is because the gradients of the average

penalty curves are steeper below the optimal memory size than above

it. If the automaton is below the optimal memory size it will be

forced back towards the optimal action relatively quickly whilst, if

it is above the optimal memory size, the average penalty does not rise

so steeply so the automaton will be forced back towards the optimal

action more slowly.

Figure 2.17(b) shows a consequence of limiting the memory size to

16 which results in an increased probability of the higher memory

sizes. If the range of memory sizes was larger, memory sizes above 16

would occasionally be selected but, because there is a limit of 16,

the distribution of memory sizes is distorted, resulting in increased

probability of states just below the limit.

Figures 2.18(a)-(d) show the results for deterministic switching.

These are much more compressed because of the steeper gradients of the

average penalty curves. Figures 2.19 (a)-(b) show more results

obtained in a deterministically switched environment, this time for

the speed of operation of the automaton starting initially at a memory

30

size of one. The results give the average number of measurements made

before getting to the optim.al memory size. The automaton is

relatively slow but this is due to it having to try each memory size

twice, e.g. in moving to memory size 6 the automaton would have to

make at least 2 measurem.ents at memory sizes 2,3,4 and 5.

Conclusions

Most learning automata have a high trade off between degree of

optimality and mean switching time so that reducing the m.ean switching

time also significantly reduces the optimality. The Tsetlin seems to

provide good mean switching times and a high degree of optimality but

with a severe limitation on the environment, the c_ 's having to be

about 0.5. When operating in a switched environment with penalty

probabilities about 0.5 the Tsetlin automaton does not have to sample

the wrong state in order to determine whether the environment has

switched or not. Because the penalty probabilities are about 0.5 when

the switch occurs, a c. which was less than 0.5 is now greater than

0.5 and the automaton m.oves towards states associated with the other

action no matter the degree of optimality and so a good steady state

performance does not imply a poor transient response as in most

automata.

The Krylov automaton has been shown to operate for all penalty

probabilities like the Tsetlin automaton with penalty probabilities

less than 0.5. It works poorly in a switched environment, relying on

a small memory size and variance in the penalty probabilities to cause

movement between the actions.

31

The optimal memory size automaton was designed for a specific task

and was made as simple as possible. The limitations of its design

became apparent in operation as regards speed and degree of optimality

but nevertheless it was found satisfactory in controlling the memory

size of the Tsetlin automaton.

These investigations highlighted the desirable and undesirable

characteristics if the Tsetlin automaton. The difference in operation

of the Tsetlin and Krylov is small but the effect on performance is

large. Having noticed these changes and their effect it was thought

that an automaton could be developed that would retain the good

qualities of the Tsetlin automaton but avoiding some of its

disadvantages.

32

0 ^ • • • • v J S >
pena Ity

(n+j)— ►(n+2)— ► • • •
end
siate

reward end
state

Figure 2-1 St-afe diagram of Tsefiin aufomafon

Figure 2-2 SchemaFic diagram of Tsetiin
aufomafon

MOST
S IG N IF IC A N T
B IT '

(action j

REW ARD/
PENALTY

O

O

o
u p / d o w n

Figure 2-3 Circuit diagram of TseHin automaton-1

O
S
E

Figure 2-4 Circuit diagram of Tsetlin automaton - 2

Figure 2-5 Environmenf swifching

F i g u r e 2-6

(a)

(b)

(c)

Figure 2-7

Operation of Tsetlin Automaton in

Deterministically Switched Environment

Figure 2-8

F i g u r e 2 - 8 (e)

F i g u r e

2-8
(g)

P(l/2)-

C !a :> • •

penal ty
P(1/2)

O D
end
state

• •><-
^ - 0 — 0

p(i)-

(n+i)— • • •

reward end
state

F i gu re 2-9 Sfafe diagram of Krylov aufomalon

most significant bit (a c t ioni

rewar^d/penalty

//r .. N.

3 _ >

O

[>
up/down

p (1/2}

Figure 2-10 Circuit diagram of Krylov automaton

cu

to
er_o
"öE
ZD
a

16

er_g
öE
C!

(Q)

U- automata clock rate =1 MHz

«»»»♦
t»«
H

*• »
i»

I
»)»

*ib

* 1**̂ * M »•Í*I«
wV'i''

.'I / '
• /» il> •*< (/•« W »

(b)

2jĵ ^L automata clock rate=10kHz

(c)

ic ^ — automata clock rate^lOkHz

Figure 2-11 Operation of Krylov aufomafon
in switched environment

T I

IQC
-3
03

Nj
Ñj

<
m
—>o

IQ
fD

■Q
03Q

O

C/)̂
03

Q
C
5"
3
Q
5"T

average
OüQ 0-50

penal ty

0-60 0-70 0-80 0-90_L__ 100
__\

oroII

o
o

a ve ra g e number of c lo ck pu lsea between sw itch e s

a

o , co J

Figure 2-13 Average penal fy of TseKin
aufomafon

a v e r a g e p e n a l t y

IQcr
—)
CD
to

><
fD
“5QlO
fD

XJ
fD=3P_

—>
fDcn
—t- 00

><
Q

T)Q(/)C
cx

<1)Cac;

N
ft)

ave rage num ber of c lock
pu lse s betw een sw itches K>cn N>C7) 00 CD

c0»1»$

co
ou.C»

'o

3

m e m o r y s i z e

Figure 2-15 Average penalty for determinate switching

Figure 2-16 Schematic diagram of opHmoi memory size automaton

number of occurrences

a

S

a

i i
!
i
1

i M arkov Switching ra te = 32 automaicm
\. clock pulsas between switches J

A
1
1
1
1
I i

1
1
1
1
1
1
1

1 i
1
1

L

i i 1
1
1
1
1
1
1
1
1
1

f
1

- 1

1
1
1
1

- - - - - - - - - - L - - - - - - - - - -

1
1
1
1

- - - - - - - - - i - - - - - - - - -

Figure 2-17 (c)

Figure 2-17 (d)

a

s

j

{
^ M a r k o v sw itching rate = 1 2 8 ^

11__________1__________

o

_________c. _̂________

i

1

)

o

c)

i
i

c >
1t

o

c

1

o
^ c)

° 1)

o

()

c

— Q -------

)

■■ I ' ' '* -------, ---- J'

a

a

F igure 2-17 (e)

a

o
c a
Cfu .3UuO p

I -

------------- -̂-----------
I
i

________ ■_ ___ _

^ M arkov switching ra te» 2 5 ^

i
I

I
1

!

C

r \

i

*

o

1

c)

!

o
C

o

r\7

c5
cj)!
j

o

o

— —

a
£
c a

a

1 2 3 4 5 6 7 3 9 10 11 12 13 U 15 16

m e m o r y s i z e

F i g u r e 2-17 (f)

a

(50 Automaton cbck pulses]
between switches J

J 1

i

i i 1

i

—

t

i i

j

________ i 1________

toQjUcQ)
3UUc

Qj-Q
3C

S

4 5 6

mi ? mo r y s i z e

10

Figure 2-18 (a) DistTibulion of memory sizes in opFimal memory size
automaton

c»U
c

uo

-

i
L

i

■
i 100 Automaton dock pulses between ^
V switches in the environment)

\\

1:'::
i;
1'

:

i
j

------------- 1
1

ij !

i
1
11

; 1
1

1
i

i
11

I
1

1
i
!

_________i
1 4

1
1
1

1 j

!
1

!
i
j

i
j

_ 1 _

i

J3
E

m e m o r y s i i e

F igu re 2-18 (b)

m (? m o r y s i z q

F i g u r e 2 1 8 (c)

c»occ»

uo

i
I

!
f1

i--------------- :

1

i
I
j 1 400 A u to m a to n c lo c k pulse*

V sw itc h e s in the e n v iro n m
between\

? n t)

I :

i 1

1 î j

j

I

!
I

i
i
1

i

i I

. 1
1

[

t 1

1
1i.

I I

I)
j

i

! I
; : I

__________ _̂_________ i__________!__________

i

!
I I
! I

i ! I
I

I

_ J _

!
1
1
1

I ' '' II i !

__________ »_____ __ 1__________ t__________

1

I I I
! ! !

!
1
1
1
1

i

i 1 1 ̂ 1 ^
k I . . L

4
1 :

1 ^
1

__________L

Ea
c

s

4 5

nn e m 0 r y

6

s i 2 ?

10

Fig u re 2-18 (d)

0»
N

><*L .o
E

e
rvi

§
*0.o

*55

£ 00

J3
W1“c
oo

0»-Q
6
3
c

i 1

j
!

;
■

1 i
! :

: !

k ;
1
1
}

---------------- 1

1
1

1
i 1
I 1
; 1
i 1
i !

1
1
j
i
!
1
i
1
1
1

¥
1 1

j

(
1
J
1
1

1
t
1

1 j
1

I ; 1 j
_________ I________ L

1
1 1

3 4 5 6

o p t i m a l m e m o r y s i z e

Figure 2-19(a)Speed of operation of optimal memory size automaton

50 1 00 200 300 400

n u m b e r of A u to m ato n c lo c k s between sw itch e s in environm ent

F i gu r e 2-19(b)

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHA.PTER 3 MODIFIED TSETLIN AUTOMATA

Modified Tsetlin Automata-Operation

In operation the Tsetlin automaton has stable or unstable actions

depending on whether the appropriate penalty probabilities are below

or above 0.5. By using a stochastic response to a penalty the Krylov

automaton always has stable actions regardless of the penalty

probabilities. It has been shown that the Tsetlin automaton works

well if one action is stable and the other unstable while it works

poorly if both actions are either stable or unstable. There was scope

for improvement by designing an automaton which could operate well for

penalty probabilities about any value, rather than the value of 0.5 as

for the Tsetlin automaton. This was achieved by using a stochastic

response to penalties and rewards.

The modified Tsetlin automata, types 1 and 2, take two penalty

probabilities of greater than 0.5 but about a value c^ and, by using

a stochastic response to a penalty, will produce one penalty response

probability which is less than 0.5 and one which is greater than 0.5.

Further, by using a stochastic response to a reward, two penalty

probabilities both less than 0.5 but about a value c will producem
one penalty response probability which is greater than 0.5 and one

which is less than 0.5. This is illustrated in Figure 3.1.

The operations of the new automata are shown in Figure 3.2. For

the automaton shown in Figure 3.2(a) and penalty probabilities about a

c_ value greater than 0.5 as shown in Figure 3.1(a), to obtainm
penalty response probabilities c' and c' spaced about 0.5

1

c' =0.5 m (3.1)

64

Using a stochastic response to a penalty with probability W of

moving towards states N and N+1 and assuming a deterministic response

to a reward then

c' = c * W (3.2)m m p
Substituting equation (3.2) into equation (3.1) gives

W = l/(2c)p m
W is to be a stochastic variable and so has a maximum value of 1
P
thus

W = l/(2c) if l/(2c) < or = 1p m m
= 1 if l/(2c^) > 1 m

For c less than or equal to 0.5 W =1. m p

(3.3)

For penalty probabilities about a c value less than 0.5, as shownm
in Figure 3.1(c), to obtain penalty response probabilities c'^ and

c ' 2 spaced about 0.5

c' = 0.5 m (3.4)

c' = c^ + (1-W^)(l-c)m m r m

Using a stochastic response to a reward with probability of moving

towards the end state associated with the action output by the

automaton and assuming a deterministic response to a penalty, an

assumption justified by equation (3.3), then

(3.5)

substituting equation (3.5) into equation (3.4)

= l/2(l-c^) if l/2(l-c^) < or = 1

= 1 if l/2(l-c^) > 1 (3.6)

greater than 0.5, = 1, so justifying the assumption made in

forming equation (3.2).

65

For the automaton shown in Figure 3.2(b) in addition to penalty and

reward responses there is an inaction response. If an inaction

response is counted as half a penalty response, for penalty

probabilities about a c^ value greater than 0.5, as shown in Figure

3.1(a), to obtain penalty response probabilities c'ĵ and c ' 2 spaced

about 0.5

c' = 0.5 (3.7)m
Using a stochastic response to a penalty with probability of

moving towards states N and N+1 and (l~Wp) of remaining in the same

state, and assuming a deterministic response to a reward then

c' = c W + 1/2 c (1-W) (3.8)m m p m p
Substituting equation (3.8) into equation (3.7)

W = (1-c)/c if (1-c)/c < or = 1p m m m ' m
=1 if (1-c)/c > 1m m

For c less than or equal to 0.5 W =1. m ̂ p

(3.9)

For penalty probabilities about a c value less than 0.5, as shownm
in Figure 3.2(c), to obtain penalty response probabilities c'^ and

c ' 2 spaced about 0.5

c' = 0.5 m (3.10)

Using a stochastic response to a reward with probability of moving

towards the end state associated with the action output by the

automaton and (1-W^) of remaining in the same state, and assuming a

deterministic response to a penalty, an assumption justified by

equation (3.9) then

c' = c + 1/2 (1-c)(1-W^) (3.11)m m m r
Substituting equation (3.11) into equation (3.10)

W = c /(1-c) if c /(1-c) < or = 1r m m m m
=1 if c /(1-c) > 1 (3.12)m m

66

For c greater than 0.5, W =1 so justifying the assumption made in

forming equation (3.8).

Using equations (3.3) and (3.6) or (3.9) and (3.12) the automata

should be able to operate with 's about any value and retain the

qualities of the Tsetlin automaton when operating with ' s about

0.5. It was thought that the type 2 automaton with the inaction

response would have less variance and so could be more optimal than

the type 1 automaton for the sam.e m.emory size.

Modified Tsetlin Automata-Steady State Probability and Mean Switching

Time

The steady state probabilities of the states of the automata and

the mean switching times may be calculated for the modified Tsetlin

using the same methods as used for the Tsetlin automaton by simply

substituting the appropriate Markov transition matrix as given in

Appendix 3.

The state probability and mean switching time results were

calculated by computer and the corresponding results for the Tsetlin,

Krylov and Lrp automata were also calculated for the purpose of

comparison. Figures 3.3(a)-(d) show the sum. of the steady state

probabilities for states corresponding to the optimal action, for

various penalty probabilities about 0.5. The corresponding measure

for the Lrp automaton is the action probability of the optimal action

and these two measures have collectively been described as the

optimality of the autom.aton. It can be seen that the results for the

Tsetlin and modified Tsetlin automata are identical. Figures

3.4(a)-(d) show corresponding results for the mean switching times of

the automata. Like the Tsetlin and Krylov automata this is defined

for the modified Tsetlin automata as the average time from the switch

67

in the environment till the first output of the new correct action

assuming the automaton was selecting the correct action before the

switch•

Figures 3.5(a)-(g) and 3.6(a)-(g) show results for penalty

probabilities that are not limited to be about the value of 0.5 so

showing the performance of the modified Tsetlin automata with c^

values other than 0.5. It can be seen from Figures 3.5(a)-(g) that

for penalty probabilities greater than 0.5 the probability of the

modified Tsetlin automaton selecting the correct action is far higher

than the corresponding Tsetlin automaton. For penalty probabilities

both less than 0.5 Figures 3.6(a)-(g) show that the modified Tsetlin

automata have mean switching times which are reasonably constant

compared to those of the Tsetlin. The differences betwen the two

modified Tsetlin automata become apparent in Figures 3.5 and 3.6. For

similar memory sizes the type 2 automaton is more nearly optimal while

the type 1 autom.aton has a shorter mean switching time. However over

the complete range of penalty probabilities the results show that the

modified Tsetlin automata maintain near optimal behavior and have

short mean switching times indicating that they will operate well in

non-stationary environments.

Having seen that the modified Tsetlin automata can operate without

restrictions on the penalty probabilities they can be compared with

the Lrp automaton. The values of oC and S chosen for the automaton

represent values which in practice would give a very high perf orm.ance.

The results for the optimality of the modified Tsetlin autom.ata are

better than the corresponding results for the Lrp. However the mean

switching time results are poorer. In practice the memory sizes for

the Lrp automaton are rather small and more states would be used in

68

order to gain a degree of optimality comparable to the modified

Tsetlin results. This would in turn increase the mean switching time

results to a level nearer the values for the modified Tsetlin

automata•

Modified Tsetlin Automata-Simulation

Because of the relatively complicated calculation involved in

finding W and W required for the operation of the modified Tsetlin
P t

automata it was decided to carry out investigations using a simulation

on a computer rather than build a hardware synthesis. A set of

stochastic simulation programs was already in existence and so

additions were made to these to include the modified Tsetlin automata

and also the Tsetlin and Krylov automata.

The first program that was modified created, from, a graphical

schematic diagram input by the user, a data file which was used by a

second program to simulate the system. An example of a schematic

diagram produced by this program is shown in Figure 3.7 which shows

the Tsetlin, Krylov and both m.odified Tsetlin automata in a typical

test circuit, connected to two probability generators which provide

the penalty probabilities. The simulation facilities were limited to

two action automata but the memory size of the automata was variable

as was the initial state.

To operate the modified Tsetlin automata a value is required for

c in order to calculate W and W . This was done by using two m p r
ADDIEs to estim.ate the penalty probabilities, c^ and , input to

the automata and c was taken as the arithmetic mean of these. Whenm
the automata had as their output, action 1, the penalty probability

was input to the ADDIE estimating c^ while for action 2 the penalty

probability was input to the ADDIE estimating c^ • This m.ethod of

69

obtaining was included in the second program to be modified which

carried out the stochastic simulation and allowed the inspection and

modification of circuit element parameters.

Modified Tsetlin Automata-Simulation Results

The results obtained from the stochastic simulation program were in

graphical form showing automaton state against iterations with states

1 to N, corresponding to action 1, below the axis and states N+1 to

2N, corresponding to action 2, above the axis. At the end of each

simulation it was possible to examine and modify circuit element

parameters and in this way, by changing the penalty probabilities,

switches in the environment could be simulated.

Figures 3.8, 3.9 and 3.10 show the operation of the type 1 modified

Tsetlin automaton in a range of environments. In each case the memory

size is 10 and the ADDIEs have 5 bits while c^ and c^ are initially

0.4 and 0.1, 0.65 and 0.35 and 0.9 and 0.6 with the environment being

switched between the (a) and (b) figures. Figures 3.11, 3.12 and 3.13

show corresponding results for the type 2 modified Tsetlin automaton.

It can be seen that the automata learn in all environm.ents, though the

learning times are longer if the penalty probabilities are high. It

can also be seen that the automata respond quickly to a switch in the

environment, the switching time being smaller than the learning time.

Figure 3.11 and to a lesser extent Figures 3.12 and 3.13 show the

lower variance of the type 2 automaton as compared with the type 1

automaton.

I'Jhen the automata first operate, the ADDIEs are in their initial

state and hold c estimates of zero giving a c value of zero.
1 m

Because of this, both actions of the automaton are unstable and the

automaton moves frequently between the two actions so providing an

70

input for both ADDIEs. As the estimates rise the actions of the

automata become less unstable until the value of c^ becomes larger

than the lower c^ • At this point the automata have one action that

is unstable and one that is just stable. The automaton will spend

most time in states associated with the stable action allowing the

corresponding AJDDIE to rise to its steady state value. Any movement

into states associated with the wrong action will tend to make the

corresponding ADDIE rise towards its steady state value, increasing

the value of c and making the correct action more stable. The m
results show that the initial learning time is longer than the

switching time. This is because, within the automaton, the response

time of the ADDIEs is longer than that of the counter. When a switch

in the environment occurs the action that was stable becomes unstable

and the automaton moves to change its action. The ADDIE also receives

a new penalty probability and begins to move towards a new steady

state value, however, before it has time to change significantly the

automaton moves from the unstable to the new stable action.

Figure 3.14 shows the response of the autom.ata to a change in the

environment from 0.4 and 0.1 to 0.6 and 0.9. It can be seen that the

automata respond with a learning type behaviour, moving frequently

between states N and N+1, before moving to the correct action. When

the environment changes, both actions are made unstable. Time is

required for the ADDIEs to respond and produce a c value high enoughm
to result in one stable and one unstable action.

Figure 3.15 shows the response of the two automata to a change in

the environment from 0.9 and 0.6 to 0.1 and 0.4. In this situation

the automata continue to output the same action because of their near

optimal behavior. When the environment switches, both actions become

71

's. The automata continue to output the same action and the
i

corresponding ADDIE falls to a new steady state value but this is not

sufficient to give a c^ value low enough to make the action unstable.

In this case the solution, as for other learning automata, is to make

the automaton less optimal. This causes the automaton to enter states

which correspond to the now smaller penalty probability allowing the

ADDIE to fall. This decreases c^ and makes both actions less stable

until there is again a stable and an unstable action.

In Figures 3.16(a) and (b) the effect of making the automata less

optimal can be seen. Conditions in Figure 3.16 are the same as those

in Figure 3.15 except that the memory size has been decreased. It can

be seen that the automata respond better to the change in the

environment though of course the steady state performance has been

reduced.

Though the use of ADDIEs with a small num.ber of bits m.ay seem

desirable, in that it decreases the learning time of the automaton, it

introduces an undesirable effect. Figure 3.12(b) is an example of

this and shows a significant delay between the switch and a change in

the action of the automaton. This can occur with either of the

modified Tsetlin automata and has two causes. The first is the value

of c which is too large causing the actions of the automata to be m
too stable so increasing the mean switching time. The large c^ is

due to inaccurate penalty probability estimates at the time of the

switch in the environm.ent. This can be caused either by variance in

the ADDIEs or as a result of a short ADDIE response time. When the

environment switches the AJ3DIE associated with the action the

automaton is taking receives a higher penalty probability and starts

more stable because of the high value of in relation to the new

72

to move towards this higher value. If the memory size is large,

relative to the ADDIE size, before the automaton has time to change

the action it is taking the ADDIE will have moved significantly

upwards. This raises the value of c^ , making both actions more

stable and increasing the mean switching time. The solution to both

these causes, the high variance and the short response time, is to

increase the number of bits in the ADDIEs sufficiently to reduce the

variance and increase the response time.

Conclusions

It has been shown that the two modified Tsetlin automata do operate

well for all penalty probabilities. The automata retain the short

mean switching times and near optimal behaviour like that of the

Tsetlin automaton but without the limitations on the values of the

penalty probabilities. The most striking feature is the ability in

many environments to change actions in response to a switch without

having to sam.ple the non-optimal action. The operational difficulties

of the automata have also been discovered in the form of the

relationship between the ADDIE and counter response times and the

environments in which the switching times are longer. This latter

problem is one shared by all automata operating in non-stationary

autonom.ous environments.

73

p
penalty

1

-Cl ^
penalty

-Q2 response

1

0-5 =t> 0 5
■ c r

-C2'

a

p
penalty

1 -

0-5
-C l

-C2

P
penalty
response

/

=V> 0-5

■ c r

-C 2 '

p
penal ty

■ 1

0-5

0

P
penalty
response

1 n

-C l
=0 05

■C2

- c r

■C2'

Figure 3-1 The effect of the modified Tsetlin automafa on
penalty probabilities

1 (’

Figure 3-2 State diagrams of

2n] I

P (W ^)

p / V

2n

• • • 2n

p (%) p(1)

■ ■

modified Tseflin automata

TSETLIN

Figure 3-3 (a) Theorefical steady sfate acfion probabilities

tsetlin
KRYLOV

‘i g u r e 3 ■ 3 t b)

KRYLOV
TSETLIN

KRYLOV
oo-

F i g u r e 3 - 3 (d)

Figure 3-4 (a) Theorehcal mean swifching Mmes
A L P H A "0 .6 0 0

B E T A = 1.000

8o

ALPHA , 0.600
B E T A . 1.000

F i g u r e 3 - 4 (b)

a

B E T A 1. 000

F i g u r e 3 - 4 (c)

KRYLOV

0 -0 0 2 00 A-00 5.00

memory s i z e
8 0 0

TSETLIN
MOD 1

10.00̂ OD 2
LRP

ALPHA-0.600
BETA = 1.000

F i g u r e 3 - 4 (d)

Fi gu re 3-5 (a) Theorefical sfeody sìa ÌQ acHon probabilifies

MOD 2

MOD 1

TSETLIN

LRP
ALPHA - 0.600
B E T A - 1-000

Fi g ure 3 • 5 (b)

m e m o r y s i z e

Fi gure 3 - 5 (c)

MOD 2
MOD 1

TSETLIN

LRP
A LP H A 0.600
B E T A 1-000

me mo r y s i z e

F i g u r e 3 - 5 (d)

TSETLIN

0.600
1.000

F i g u r e 3 - 5 (e

tsetlin

1.000

T SET LI N

oo
oo
o -CT)

F i g u r e 3 - 6 (a) Theorehcd mean S/ îtching times

F i g u r e 3 - 6 (b)

oo
oo

oo

ooó ■ co

MOD 2

MOD 1

LRP
ALPHA 0.600
B E T A 1.000

TSETLiN

me mory s i z e

F i g u r e 3- 6 (c)

MOD 2

MOD 1

TSETLiN

LRP
ALPHA 0.600
BETA 1.000

memory s i ze

F i g u r e 3 - 6 (d)

oo
ooo"03

oo

me mo r y size

F i g u r e 3 6 (e)

1.000

F i g u r e 3 - 6 (f)

oo

F i g u r e 3 6 (g)

Figure 3-7 Example of schematic diagram produced
by first simulation program

oil

s Qo „

900 1000

l a }

o oD

Figure 3-8 Simulafion of t"ype1 modified Tsetlin outamalon

<\i
co 6

I)

co o
^ "

o

a c t i o n 1
Cj =0-35

a c t i o n 2
C2 = 0 -65

act ion 1
C-j =0-65

act ion 2
C2 = 0 3 5

O U T P U T V A L U E
-2 0 20 60 100 100 — 60 — 20 20 60 ^

- ■ ------- '------- -— -----

OUTPUT VALUE

la
cz
—3
fD

ÜÜ
VO

action 1
C l = 0 - 6

O U T P U T

act ion 2

C 2 = 0 - 9

V A L U E

a c t ion 1 |j act ion 2

= 0-9 C2 = 0-6
O U T P U T V A L U E

O U T P U T

act i on /
C 1 = O -35

V A L U E

a c t i o n 2
C 2 = 0 -65

O U T P U T

acti on 7 1,
C l r 0 - 6 5

a c t i o n 2

0 2 = 0 - 3 5

V A L U E

a c t i o n 1

C1 = 0 - 6

a c t i o n 2

C 2 = 0 - 9

a c t i o n 7
C l = 0 - 9

a c t i o n 2

C2 = 0 - 6
OUTPUT VALUE OUTPUT VALUE

a c t i o n 1
C'j = 0 - 6

a c t ion 2
C2 = 0-9

ac t i on 1
C-j = 0-6

act ion 2
C2 = 0-9

QII

K~.
a.h-
::d
o

lo-
I

100 200 300 ¿00 500 600
CLOCK PULSES

(b)

700 800 9CO 1000

a c t i o n 1
C1 = 0-1

a c t i o n 2

C 2 = 0-L

a c t i o n 1
C l =0 -1

ac t i o n 2
C2 = D C

O U T P U T VALUE OUT PUT VALUE

THEORY AND APPLICATIONS OT LEARNING AUTOMATA

CHAPTER 4 NON-AUTONOMOUS ENVIRONMENTS

Linear Non-Autonomous Environments

For many of the applications of learning automata the environments

are non-autonomous and have penalty probabilities which vary as the

action probabilities. The first person to realise this and propose a

model for non-autonomous environments was Narendra who analysed the

operation of the Lri automaton in a two action non-autonomous

environment [35] where the penalty probabilities were given by

(4.1)

C2 (n+1) = c^ (n) - 0 2 (4.2)

if action at(n) = 0Cĵ and

Cĵ (n+1) = Cĵ (n) - 0 ̂ (n)

c^ (n+1) = c^ (n) + 0 ̂ (n)

C2 (n+1) = C2 (n) + 0 2 (n)

(4.3)

(4.4)

if action oc(n) =oc.

where 0 ̂ and 0 ̂ are positive constants and the penalty probabilities

are constrained within the range (0 ,1).

Narendra's analysis for the Lri automaton shqwed that the action

probability pa^ of the automaton could reach steady state in one of

three ways,

pa. (n) - 0
1

(4.5)

pa^ (n) = 1 (4.6)

^ 0 > n 1 i (0 ^ + 0 2 + 0 ̂ + 0 2) (4.7)

Equations (4.5) and (4.6) correspond to the automaton going optimal and

selecting a single action with probability 1. In this case the penalty

probabilities diverge till they reach the limits of 0 and 1. Equation

(4.7) corresponds to the automaton converging with action probabilities

108

other than 0 and 1. The automaton selects both actions in a particular

ratio. In this case the penalty probabilities converge to a value of 0

or 1 depending on whether 6 ̂ * ® 2 ~ 1 * ^ 2 negative or positive.

For any automaton operating in the linear non-autonomous environment,

if the probability of action cx ̂ is pa^ , the steady state value of the

penalty probability c^ will be zero if

(1-pa^)(|)̂ > pa^ e ̂

and will be one if

PSi e i > (1 -pa^)(j)̂

(4.8)

(4.9)

thus c^ will converge to zero if

(4.10)

(4.11)

pa^ < /(e. +)

and will converge to one if

pa. > 4,̂ /(e. + 4>.)

In general in a two action environment the penalty probabilities will

not change from converging to zero to converging to one at the same

probability. This is illustrated in Figure 4.1 which shows the steady

state penalty probabilities ĉ ̂and c^ for a linear non-autonomous

environment plotted against the probability of action 1. It can be seen

that there is a band of action probabilities which produces penalty

probabilities which are equal and so a band of action probabilities

which will produce the minimum average penalty rather than a unique

optimal action probability.

A different non-autonomous environment has been proposed by Kumar

[36] where the penalty probability is a function of the action

probabilities. Chrystall [37] has used this and defined the action

probabilities more positively as

c, (n) = k. pa. (n) (4.12)
1 1 1

and has done simulations using this model. It is an improvement on

109

Narendra's model in that there is a unique action probability and the

penalty probabilities have steady state values other than 0 or 1.

However the model requires the use of the action probabilities of the

automaton which in practice would not be available to the environment.

This also limits the model to use with automata where the action

probabilities are easily available. Automata with deterministic output

functions do not have action probabilities as part of their operation

and could not be- used with this m.odel. Also by being directly connected

to the action probabilities the model does not have the same variance

and time lags which were a realistic feature of Narendra's scheme.

Linear Non-Autonomous Environment-Simulation Results

Narendra's linear non-autonomous environment scheme was added to the

stochastic simulation program described in Chapter 3 in order to

investigate the operation of this environment, confirm the band

structure and determine the operation of various autom.ata in it.

Figure 4.2 shows a typical result showing a Lri automaton operating

in an environment with =0.01 = 0.03 ~ 0.003 and

4*2 = 0.009. This produces an environment with a band structure in

which the steady state penalty probabilities will change at action

probabilities of 0.25 and 0.75 as indicated in Figure 4.2(a). Initially

the penalty probabilities have a value of 0.5 and the action

probabilities are outside the band which will produce converging c^ 's.

At first the penalty probabilities diverge but as the automaton responds

and changes its action probability pâ ̂ to below the value of 0.75 both

penalty probabilities converge to the value of 0. When the penalty

probabilities have converged the automaton receives the same penalty

probability whatever action it takes so its action probability becomes

free to vary randomly. Only when this random wandering takes the action

no

probability above the value of 0.75 and the penalty probabilities start

to diverge does the automaton receive feedback to keep the action

probability in the range (0.25,0.75).

The simulation results confirm.ed the band theory for the linear

non-autonomous environment and showed that the environment was not a

very typical representation of a non-autonomous environment. Nor was it

very useful for examining the operation of automata since it has bands

where the autom.aton receives no useful feedback.

The Non-Linear Non-Autonomous Environment

In order to produce a non-autonomous environment in which the penalty

probabilities converge to a value other than 0 or 1 a non-autonomous

environment was proposed where the penalty probabilities were given by

c. (n+1) = c. (n) +e. (1-c. (n)) (4.13)
1 1 1 1

if action oc(n) = oc and
1

c^ (n+1) = c^ (n) (n) (4.14)

otherwise

where and are positive constants. In a physical sense the

factor (1 -c^ (n)) can be related to the decreased availability as

its use increases while <j) ̂ c^ (n) corresponds to the increasing

availability of a resource as its use decreases. VThen the penalty

probabilities have reached their steady state values

E(amount of increase in c.) = E(amount of decrease in c.) (4.15)
1 1

With the environment as defined by equations (4.13) and (4.14) equation

(4.15) can be expressed as

(4.16)pa. 0 . (1-c.) = (1 -pa.) <b . c.
1 1 1 l * ^ ! !

so

or

pa. = (<i). c.)/(©. -®. c. + . c.) (4.17)1 1 1 1 1 1 1 1

111

~ ̂ (4.18)

Figure 4.3 shows how the penalty probabilities vary with action

probability in this non-linear non-autonomous environment.

The average penalty received by an automaton is

M = pa^ c^ + pa^ (4.19)

Using pa2 =

and substituting equation (4.18) into equation (4.19) the average

penalty in a non-linear non-autonomous environment is
2M = 9̂ pa^ /(0^ - pa^ + 9̂ ̂ pa^)

2+ (6o -29q_pa. + 9o_ESiü
(02 pa^ +92 "02 P^i ̂ (4.20)

This expression for the average penalty can be differentiated with

respect to pa^ to produce a quartic equation. When this is equated to

zero and the roots found, the real result in the interval (0 ,1) gives

the action probability pa^ which corresponds to minimum average

penalty.

Steady State Conditions of the Lrp and Lri Automata

To appreciate the operation of a Lri automaton in a non-linear

non-autonomous environment consider Figure 4.3 with the action

probability set 'initially to 0.5. Will the action probability tend to

increase or decrease? The probabilities of selecting either action are

equal as is the change in action probabilities due to the reinforcement

algorithm. Thus the only difference between the actions is their

penalty probability and the action probability will change to favour the

action corresponding to the most rewards, in this case action oĉ . The

action probability of cĉ will tend to increase till the automaton

reaches steady state.

This occurs when

112

pa^ (1 -c^) (p a ^ -O c p a ^) = pa2 (l-c^)(pa^ “ OCpa^) (4.21)

which reduces to

c^ = (4.22)

Thus the Lri automaton moves to make the penalty probabilities from both

actions equal.

Substituting equation (4.18) into equation (4.22)

îl / (îi +8 ̂ pa^) =

pa / (0 - 0 pa +e pa) (4.23)

Using pa^ = 1-pa^ gives the steady state action probability of the Lri

automaton in the non-linear non-autonomous environment as

P^i = y ~ Q1—Í 2— -̂1— -̂2
(e^ 02 -01 02) (4.24)

Only one of the solutions for pa^ is in the range (0,1).

To find the steady state value of c. use

pa^ = l-pa^ (4.25)

Substituting equation (4.17) gives

0 ̂ /(8 ̂ -0 j c^ +0 ̂ c^)

= l-(0 2 C2 (0 2 - 0 2 ^2 " ^ ^ 2 ' ^2 ̂ ^

Substituting c^ =C2 gives the steady state penalty probabilities of the

Lri automaton in a non-linear non-autonomous environment as

=c^ = (_9̂ __8 2 +/-0 _̂_ 9 __0 ^__^ 2 __)
■ 0 1 0 20 1 0 2 (4.26)

which is also the steady state average penalty received by the Lri

automaton.

For the Lrp automaton the calculations are more complex. Steady

state occurs when

increase in pâ ̂ due to action 1 being rewarded

+ increase in pa^ due to action 2 being penalised

=decrease in pa 1 due to action 2 being rewarded

113

+ decrease in due to action 1 being penalised

=> pa^ (1-c^) (pa 2 -ocpa2) + V ^2 *-̂ 2 ̂̂ ^^2 “ ̂ P^2 ^

= pa^ (l-c^)(pa^ -ocpa^)+pa^ (ĉ) (pa^ - Pp̂ ĵ)
if oc is set equal to j3 equation (4.27) reduces to

(4.28)

(4.27)

pa^ = C2 /(c^ C 2)

since pa^ =l-pa2 equation (4.28) can be expressed as

pa^ Cĵ = pa^ c^ (4.29)

That is the Lrp automaton with oc = |3moves so that it receives the sam.e

penalty rate from each action.

Using the equations (4.22) and (4.29) the steady state conditions of

the Lrp automaton with at = P and the Lri automaton in the non-linear

non-autonomous environment can be calculated and as an example this has

been done for the environm.ent shown in Figure 4.3. The steady state

conditions of the automata are a long way from the optimum action

probability showing that the automata in satisfying their own steady

state conditions do not converge to the optimum action probability.

Non-Linear Non-Autonomous Environment-Simulâtion Results

Like the linear non-autonomous environment the non-linear

non-autonomous environm.ent was added to a learning automaton simulation

program in order to investigate the operation of the environment and

confirm the equations derived above.

Figures 4.4, 4.5 and 4.6 show typical results of a Lri automaton

operating in various non-linear non-autonomous environm.ents. In all

three examples it can be seen that the steady state values of action and

penalty probabilities are near the values given by equations (4.24) and

(4.26). The action and penalty probabilities do not converge to the

values given by equations (4.24) and (4.26) since as the penalty

probabilities converge to become equal the automaton receives a similar

114

response from the environment whichever action it choses and so its

action probability is free to vary randomly. This in turn causes the

penalty probabilities to diverge a little before the automaton detects

this and causes the penalty probabilities to converge again.

Simulations were done using the Tsetlin, Krylov, modified Tsetlin and

modified estimating automata in the non-linear non-autonomous

environment but the performance of these automata was poor. All these

automata have deterministic output functions and so when they are in

steady state a single action is output. In a non-autonomous environment

the best performance is gained by selecting all actions with a

particular ratio. Automata with deterministic output functions can

never achieve this and reach a steady state condition. The automata

tested attempted to switch between actions but caused the penalty

probabilities to oscillate and never achieved the smooth performance

achieved by the Lri and Lrp automata with stochastic output functions.

Another factor which was found to be important from the results of

simulations was the convergence rate of the automaton relative to the

rate of change of the penalty probabilities. If the convergence rate of

the automaton is fast compared to the rate of change of the penalty

probabilities an oscillation can occur. This is illustrated in Figures

4.7 and 4.8 with the action and penalty probabilities initially set to

simulate a disturbance from the steady state. If the automaton reaches

the steady state action probability before the penalty probabilities

reach their steady state there will be a difference between the penalty

probabilities which will cause the automaton to overshoot the steady

state. This will in turn cause the penalty probabilities to overshoot.

In most cases the resulting oscillation dies out but in some cases as in

Figure 4.7, where the action of the automaton has gone optimal, the

115

oscillations can grow. Such oscillations can be prevented by avoiding

the use of an automaton which has a convergence rate which is fast

relative to the rate of change of the penalty probabilities while the

output of one action continuously can be prevented by the use of an

automaton which is merely expedient rather than optimal.

Conclusions

Theoretical consideration of the Lrp and Lri automata has resulted in

simple formula describing the steady state behaviour of these automata.

Theoretical investigations into various non-autonomous environments have
resulted in greater understanding of their operation and formula for the

optimal action probabilities. It has also been shown that the Lri and

Lrp do not converge to these optimal action probabilities. Results from

simulation has shown that only automata with stochastic output functions

are suitable for use in non-autonomous environments and a number of

other practical considerations have been highlighted.

116

probab ility at action 1

P = 1 - Pp ' M
®i h -tve

probability of action 7
P = 1 - P

e 02

Figure 4-1 Band sfrucfure of Narendras
non-Qufonomous environmeni'

j3 = 1

oc z 0 98 0, - 0 01

i), = 0 0 3

©2 =0003

0 2 = 0 009

c^(0) = 0-3

c 2(01 = 0 9

Figure 4-2 (a) SimulaHon of Lrjautomaton in Narendra's
non-autonomous enviranmenf

oc = o -98

ß = 7

0, = 0-07

= 0 0 3

02 = 000^

02 = 0-000

c/o; = 0-3

C2/'0; - 0-9

F i g u r e K l (b)

Figure 4-3 Example of aufomafa ina non-autonomous
environment

0 = 0-5 4), = 0-025 02=0-1 <1)2=0-002

o ¿ = 0 98

f i -- 1

6y = 0 01

í), = 004

02 =: 0 02

02 = o 003

c^(0) =0-125

C2Í0) = 0 5

Figure 4 4 (a) SimulaHcn of iRiaufomaton n non-linear non-au tono mous environmenf

oe r 0-98 0, = 0 0 1 02 = 0 02 (0) = 0 125

^ = 1 (i, = 00^, <t>2 = 0 003 c^ iO) = 0 5

I T E R A T I O N S

F i g u r e 4 4 (b)

oc = 0-98

ß -- ^

0, = OOU

Í) , = 0 01

02 = 0 0 2

0 2 = 0003

c , = 0-125

C2= 0-875

ITERATIONS

F i g u r e 4-5 (a)

oc = 0-98

P - ^

9^ = 001*

= 001

02 = 0 0 2

<t>2 = 0 003

C l =0 125

c^ = 0-875

ITERATIONS

F i g u r e 4 - 5 (b)

ce = 0 - 9 8 0, = O -04 02 = 0 003 c^ iO Ì = 0-2

Fi g u r e 4 6 (a)

oc = 0-98

^ = /

e, = 004

0 , = 0 0 7

Ô2 = 0003
02= 002

r/o; = 0-2

ĉ fo; = 0 8

FI gure 4 6 (b)

oc = 0 96

J6 = ^

01 = 0 00h

0, = 0 002

02 = 0 001

02 - 0 003

c^(0) = 0-25

c^(0) = 0-75

ITERATIONS

F i g u r e 4 7 (a)

oc = 0 9 = OOOi 0 0 0 1 c/o; - 0-25

^ = 1 = 0 0 0 2 02 = 0 003 C2(0} = 0 75

ITERATIONS

F i g u r e 4 7 (b)

CDO
Od
C L

O

<

oc = 0 - 9 8 0, ̂O OOA 02 = 0 001 c,(0) = 0-25

oo P = / 0, = 0 002 02 = 0 0 0 3 c p] = 0-75

o

o(D

o
0 4

OO

f^=0290

"O-OO 32 .00 6A 00 9 6 - 0 0 128 .00 160. Oo' 192- Oo' 22A.Oo'

ITERATIONS xio+'

Figure 4-8 (a)

I-------r
256 .0 0

I-------r
288 .00

— I---r
320. 00

— I---i----1 1
3 5 2 - 00 3 84.0

oc = 0-98

ß = 1 0, = 0 0 0 2 02 = 0 003 C2IO) = 0 7 5

0, = 0 00h 02 = 0 0 0 1 c^lO) = 0 2 5

F i gu r e 4 - 8 (b)

THEORY AND APPLICATIONS 0¥ LEARNING AUTOMATA

CHAPTER 2 PROBABILISTIC TSETLIN AUTOMATA

Introduction

The Tsetlin automaton was of interest for use in autonomous

environments because of its simple structure and good performance

under certain conditions. In non-autonomous environments the

performance of the Tsetlin was found less satisfactory because of its

deterministic output function. Three automata based on the Tsetlin

structure, deterministic in operation but with stochastic output

functions were proposed. These were investigated in the hope that

they would be suitable for use in non-autonomous environments. The

automata were named Tri, Tip and Trp using the naming convention used

for the Lrp automata with T representing a Tsetlin type automaton.

The Tri Automaton

The Tri au-tomaton has a series of N-1 states. In any state n the

probability of choosing action oĉ is

pâ ̂ = (N-n)/N

pa2 = 1-paĵ = n/N

(5.1)

and the probability of choosing action GC2 is

(5.2)

if, in response to an action, the automaton receives a reward from, the

environment it will move to the adjacent state which will select that

action more often. Otherwise it will remain in the same state as

shown in Figure 5.1.

The probability of moving from state n to state n-1 is given by

probability of action 1 * probability of a reward

(5.3)

The probability of moving from state n to state n+1 is given by

= (N-n)/N * (1-c^)

130

= n/N * (I-C2) C5.4)

The probability of remaining in the same state is given by

probability of action 1 * probability of a penalty

+ probability of action 2 * probability of a penalty

(5.5)

From, the above equations the Markov transition matrix can be found and

is given in Appendix 3.

probability of action 2 * probability of a reward

= (N-n)/n * + (n/N) c^

The Tip Automaton

The Tip automaton has a series of N-1 states like the Tri

automaton. If, in response to an action, the automaton receives a

penalty it will move to the adjacent state which will select that

action less often. Otherwise it will remain in the same state as

shown in Figure 5.2.

The probability of m.oving from state n to state n+1 is given by

probability of action 1 * probability of a penalty

= (N-n)/N * (5.6)

The probability of moving from state n to state n-1 is given by

probability of action 2 * probability of a penalty

= (n/N)c2 (5.7)

The probability of remaining in the same state is given by

probability of action 1 * probability of a reward

+ probability of action 2 * probability of a reward

(5.8)

From the above equations the Markov transition matrix can be found and

is given in Appendix 3.

= ((N-n)/N) (1-c^) + (n/N)(l-C2)

131

The Trp Automaton

The Trp automaton has a series of N-1 states like the Tri and Tip

automata. If in response to an action the automaton receives a reward

it will move to the adjacent state which will select that action more

often. Otherwise in response to an action the automaton will receive

a penalty and will move to the adjacent state which will select that

action less often as shown in Figure 5.3.

The probability of moving from state n to state n+1 is given by

probability of action 1 * probability of a penalty

+ probability of action 2 * probability of a rewarS

(5.9)

The probability of moving from state n to state n-1 is given by

probability of action 1 * probability of a reward

+ probability of action 2 * probability of a penalty

(5.10)

From the above equations the Markov transition matrix can be found and

is given in Appendix 3.

=((N-n)/N)c^ + (n/N)(l-C2)

= ((N-n)/lO (1-c^) + (n/N)c2

The Lrp Automaton

In this and previous chapters the Lrp automaton has been used as a

reference. Theoretical results for the Tsetlin, Krylov, m.odified

Tsetlin and probabilistic Tsetlin automata are compared to

corresponding results for the Lrp automaton.

Using the normal description of the Lrp automaton as a variable

structure automaton, with a variable transition matrix operating on

the action probability vector Pa, the Lrp automaton cannot be analysed

like the Tsetlin, Krylov and probabilistic Tsetlin automata have been,

as this requires a fixed structure to be able to construct a Markov

transition matrix. However by imposing a set of states on the Lrp

13;

automaton and limiting the action probabilities from a continuous

range to a discrete range corresponding to the states, a fixed

structure is produced and a Markov transition matrix can be found.

Unlike the Tsetlin automata, movement is not only to adjacent states

but can be to any state in the automaton. The probability of movement

to states corresponding to the result of the updating algorithm given

in equations 1.7-1.10 is high while the probability of movement to

states far from the updating algorithm result is low. In the

specification of the probabilistic Tsetlin automata, absorbing end

states were excluded since they were unwanted. To be able to compare

like with like the absorbing states were excluded from the analysis of

the Lrp automaton. Thus the Lri automaton as presented here could not

go optimal as the Lri automaton normally would. This gives the Lri

automaton a better performance than the Lrp and it is the Lri that is

used for comparison later in the chapter.

The Lrp automaton can be considered as a set of N-1 states. In

state n the probability of choosing action 1 is

pa^ = (N-n)/n (5.11)

and the probability of choosing action 2 is

pa2 = 1-paĵ = n/N (5.12)

The response to an action is applied to an algorithm which determines

the new action probabilities. The new action probability for action

oc^ is from equations (1.7)-(1.10)

pâ ̂ (n+1) = pa^ (n)(l-c^)(l-cc*pa2 (n))

+ pâ ̂ (n)c^ (p *pa^ (n))

+ pa2 (n)(l-C2) (cc *pa^ (n))

+ pa2 (n)c2 (l-p*pa2 (n)) (5.13)

The automaton can move to any other state or remain in the same state

133

state n is [29]
(n-1) (N - n - 1)

[pi][(l-pl)][(N-2)I/((n-l)!(N-l-n))j (5.14)

The element pij, an element in the Markov transition matrix is given

by the probability of moving from state i to j.

pij=[((N-i)/N) (1-c^) (l-oc(i/n)) + ((N-i)/N) /?(N-i)/N

+ (i/N)(l-C2)o<(CN-i)/N) + (i/N)c2 (l-/?(i/N))] ̂ ’

*[l-(((N-i)/N) (1-c^) (1-oc (i/N)) + ((N-i)/N) /?((N-i)/N)

depending on the new action probability. The probability of moving to

+ (i / N) (l - C 2)cx(N-i)/N + (i / N) c 2 (l - / ? (i / N))]
(N-J-1)

* (N - 2) ! / [(N - l) ! (N - j - l) !] (5.15)

Tri,Tlp,Trp and Lrp Automata-Theoretical Results

The theoretical degree of optim.ality and mean switching times of

the Tri, Tip, Trp and Lrp automata xjere calculated for various

autonomous environments and the results are shown in Figures 5.4-5.7.

The environments used are the same as used in Figures 3.3-3.6.

Figures 5.4 show that the Tri and Trp automata have the most optimal

performance while the Tip automaton has poor optimality which does not

improve as the memory size is increased. However Figures 5.5 reveal

that the Tri automaton has large mean switching times compared to the

other automata and because of this the Tri automaton has been omitted

from Figures 5.6 and 5.7. Figures 5.5 have a constant difference

between the penalty probabilities and again show that the performance

of the Tip automaton is limited. At high penalty probabilities the

performance of the Trp automaton is like that of the Tip automaton but

as the penalty probabilities are reduced the performance improves.

Figures 5.7 showing mean switching time results again shows the

similarity between the Trp and Tip automata at high penalty

probabilities while at low penalty probabilities the Trp automaton has

134

relatively high switching times like the Tri automaton. As stated

earlier the memory sizes used here for the Lrp automaton are smaller

than used in practice giving the effect of lower degrees of optimality

than would normally be found and lower switching times.

The automaton used as the reference is a Lri automaton with od=0.6.

This autom^aton was chosen after obtaining results for the Lrp

automaton like those shown in Figures 5.8-5.10. These results show

the probabilities of the individual states of the automaton in

addition to the overall action probabilities and mean switching times

as shown in Figures 5.4-5.7. Also included in Figure 5.10 is the

average penalty received by the automaton which is used as a measure

of performance. These results are for automata with 19 states, a

value which was smaller than desired but which was close to the limit

imposed by speed and accuracy. Figures 5.8-5.10 (a)-(b) show

distributions for Lrp automata with constant 6 but varying and /?

while Figures 5.8-5.10 (c)-(d) have oc constant but varying /9 and .

The distributions confirm that increasing 5 makes the automaton more

optimal. What can also be seen is that increasing ̂ makes the

distribution spread. Comparing Figures 5.8-10 (a)-(b) it can be seen

that even with b constant, lowering oc and /? can make the automaton

more optimal and make the distribution narrower. The automaton which

performs best is the Lri with ot=0.6. This performance could be

improved by lowering ocwhich would also decrease the learning time of

the automaton however it has been found in practice that automata

which learn too quickly do not perform well. The value of oc=0.6 was

taken as a com:promise between good theoretical results and practical

considerations .

135

Figures 5.11 and 5.12 compare, for a range of penalty

probabilities, the state probability distributions of the Tri, Tip and

Trp automata with the best Lrp automaton selected from Figures 5.8-10.

These results reveal in more detail the operation of the automata. To

accurately determine the performance of the automata the average

penalties received by the automata were calculated and included in the

figures. In Figure 5.11(a) the Trp automaton performs best but in

Figures 5.11(b)-(d) it is the Tri automaton which has the best

performance. The probability distributions show that as the penalty

probabilities increase the operation of the Trp automaton becomes more

like that of the Tip automaton. Throughout this series of results the

Trp automaton performs better than the Lrp.

Tri-Operation

The Tri automaton when at the centre of its range will select both

actions equally and move to select the action which gives most

rewards. However, at either end of its range the automaton will

select one action far m.ore often than the other. Because the

automaton changes state only in response to a reward it will tend to

move in response to rewards from the action it is selecting most

often. Thus the automaton tends to move to the extremes of its range.

Over m.ost of its range it will tend to m.ove toward selecting the

action corresponding to the smaller penalty probability but over part

of its range it will tend to move toward selecting the action

corresponding to the larger penalty probability. The division between

these two stable ranges occurs when

number of rewards from action 1 = number of rewards from action 2

=> pa^ (1-c^) = (1-pa^)(l-c^)1

=> pa^ = (l-c^)/(2-c^ -c^) (5.16)

136

Tip-Operatlon

At the centre of its range, the Tip automaton will select both

actions equally and will move away from the action which gives the

most penalties. It will continue to move until the number of

penalties tending to make it move in opposite directions becomes

equal. The automaton has two unstable regions with a steady state

between the two when

number of penalties from action 1

= number of penalties from action 2 (5.17)

=> pa^ c^ = (1-pa^)c^

=> pa^ = c^ /(c^ i-ĉ) (5.18)

Trp-Operation

The Trp automaton can be considered as a combination of the Tri and

Tip automata. Thus when the penalty probabilities are small the

automaton will receive few penalties and the automaton will show

behaviour like the Tri automaton. When the penalty probabilities are

high there will be few rewards and the automaton will behave like the

Tip automaton. The automaton will tend not to change state when

penalties from action 1 + rewards from action 2

= penalties from action 2 + rewards from action 1

=> pâ ̂ Cĵ + (1-pa^)(1 -C2)

= (1-pa^)C2 + pa^ (1-Cĵ)

=> pa^ = (l-lc^)/(2-2c^ -20^) (5.19)

When this equation has a value outwith the range (0,1) there is

nowhere, other than at one of the end states, where the automaton will

reach steady state.

137

The operation of the Trp automaton is illustrated well in Figures

5 .1 2 (a)-(d). In Figure 5.12(a) with small penalty probabilities the

distribution of the Trp automaton is similar to that of the Tri

automaton. In Figure 5.12(b) with large penalty probabilities the

distribution of the Trp automaton is similar to that of the Tip

automaton. Figures 5.12(c)-(d) show the Trp with penalty

probabilities equal and about the value of a half. When the penalty

probabilities are about the value of a half equation (5.18) does not

have a solution in the range (0,1) and the Trp automaton exhibits its

best performance being like neither the Tri nor the Tip. Figure

5.12(d) illustrates this by showing the distribution with penalty

probabilities of 0.51 and 0.49.

Non-Autonomous Environments-Results

In addition to their perform.ance in autonomous environments the

performance of the probabilistic Tsetlin automata in non-autonomous

environments is also of interest. Figures 5.13-5.15 give the state

probability distributions, the average penalty received by the

automaton, which is the equivalent of the degree of optimality but for

non-autonomous environments, and mean switching times., of the

probabilistic Tsetlin automata in a range of non-autonomous

environments with the Lrp automaton included as a reference. The

non-autonomous environments used in these figures were chosen to

provide a range of optimal action probabilities and penalty

probabilities.

In Figures 5.13(a)-(f) it is the Tip automaton which has the lowest

average penalty while the Lrp and Trp autom.ata having lesser but on

the whole similar performances while the Tri automaton has a poor

performance. These results are reinforced by Figures 5.14(a)-(f). In

138

some of these figures the results for the Tri automaton have been

omitted because the large mean switching- times were unsuitable for

inclusion in Figures 5.15(a)-(f). The form of Figures 5.15 requires

some explanation. The mean switching time is defined by equation A2.1

where the state the automaton is switching to is the new optimal

action probability after the environment has switched. Because the

number of states in the automaton limits the number of possible action

probabilities at each memory size the new optimal state was defined as

the state corresponding to the action probability closest to the

optimal action probability. Since the optimal action probability lies

between two states, as the memory size changes the optimal state will

change from corresponding to an action probability lower than the

optimal action probability to higher and back, this accounts for the

stepped appearance of some of the Figures 5.15. These results show

that though the Lrp automaton has the best overall mean switching time

results the performance of the Trp and Tip autom.ata is still good by

comparison and when combined with the average penalty results the Tip

automaton could be expected to give the best performance in a

non-autonomous environment.

Conclusions

The characteristics of the probabilistic Tsetlin automata in

autonomous environments have parallels with the Tsetlin and Krylov

automata. The Trp automaton operates at its best when the penalty

probabilities are about the value of a half like the Tsetlin. The Tri

automaton is stable in both actions like the Krylov automaton. Though

the average penalty results for the Tri automaton are good, because

the automaton is stable in both actions the response to a

non-stationary environment is slow so the Trp automaton is prefered.

139

The probabilistic Tsetlin automata were proposed as automata which

could operate well in non-autonomous environments because of their

stochastic output functions. This has been shown to be true and when

compared to the Lrp automaton it is the Tip automaton vzhich has shown

the best performance.

140

0

0
0

action <=ĉ g i v e s reward a c t ion g i v e s penalty act ion e<2 g iv e s reward action a<2 g i v e s penalty

F i g u r e 5 1 Sfal^e diagram of Trj automaton

N-1

0

T
o

0

action oc^ g iv e s reward action g ives penalty action g iv e s reward action oc^ g i v e s penalty

F i g u r e 5 2 Stahe d iagram of T^paufomafon

0
0 0

0

#

0 1
O

T
O

0

action oi-̂ g iv e s reward action oĉ g i v e s penalty action g iv e s reward action oĉ g ives penalty

F ig u r e 5 3 S^at■e d ia g ra m of Tpjp a u ^oma^on

Figure 5 - 4 (a) Theorefical sfeady sfafe acfion probobilifies

F i g u r e 5 4 (b)

Fi gu re 5-4 (c)

F i g u r e 5-4 (d)

oo

F i g u r e 5 - 5 (a] Theore ficai mean swif chin g fîmes

F i g u r e 5-5{b)

B E T A . 1-000

F igure 5-5 (c)

Fl g u r e 5 - 5 (d)

oo

F i gu r e 5-6 (a) Theorefical steady state action probabilities

oo

1.000

memory size

Fi gure 5• 6 (b)

8

F i g U re 5 6(c)

8

Figure 5-6 (d

ALPHA = 0.600
BETA-1-CXX

Figure 5-6 (e)

Fi gure 5-6 (f)

F i g u r e 5-6 (g)

oo

F i gu r e 5-7(a) Theoretical mean switching times

A L P H A = 0 .600
B E T A = 1.000

F i g u r e 5-7 (b

Fl gare 5•? (c)

oo

F i g u r e 5-7(d)

mean switching time

>

> > M •* O
o o> o o o o

oo

F i g u r e 5 - 7 [f)

F i g u r e 5-7 (g)

oo

Figure 5-8 Theorefical steady sfate acfion probabilifies

F i g u r e 5-9 Theoreiical mean swifching Fime

n

lO
d
—)
fD
LTI

a
(/I

crc
or)

LTi

R-roC/l

relative probability relative probability x relative probability relative probability x 10

t->i

g

Cr
&o|
''C

%

iCJ
IIo

Cr

Olb

Q
Olb

r AUTOMATON
R\

average penalty = 0-1125

T̂ p automaton

average penalty = 0-1122

Lj,p AUTOMATON

alpha =0-6

beta = 1

average penalty=0-1275

T AUTOMATON
IP

average penal ty = 0-1502

Figure 5-11 (q) Distribution of States

LO
O
CD

LD

relative prQbability
0 0025 005 0075 0 1

h i

a
LO

c r

5o

o&Q
Cr

0

§:

r

relative probability x id
0 0250 050 0750 1

Qo
o3
tl
3 SO' 8 Q &
n: o .

? "

1

o

in
?
lA

Q•C15“1
'S
<5

Ta
<5

Q
i l

i<~nCD

- T * Q Cr Q r -T3 <05 0) ■o POUi i Q
'> •
Q QC UD c:05 II 11O o

r) à i3 Q 35 : II8
k dO l

relative probability
02S0 0 50 0 750 1

relative piobability

Q<
'5

Q<Cl
X)<5DQ
S;

IIo
KjOC/>

"0
c:
i
32:

T)
X)mDQ

O

i
3

8

autom aton

average penalty = 0-510A

O —
^ I O

AUTOMATON
Kr*

average penalty^ 0-5A32

L r p a u t o m a t o n

alpha = 0-6

beta - 7

average penalty = 0-5725

r ,p AUTOMATON

average penalty = 0-5833

F i gure 5-11 (c) Distribution of States

Tp5j A U T O M A TO N

average penalty = 0-7102

r^p AUTOMATON

average pena lty : 0-7678

Lpp AUTOMATON

alpha = 0-6

beta : 1

average penalty: 0-7725

Tjp AUTOM ATON

average penalty: 0-7875

Fi gure 5-11 (d) Distribufion of States

r̂, AUTOMATON

AUTOMATONKP

L^p AUTOMATON

a lpha =0-5

b eta = 1

Tjp AUTOMATON

F i g u r e 5-12 (a) DisfribuHon of Sfafes

Tpjj AUTOMATON

T^p AUTOMATON

AUTOMATONK“

alpha = 0-6

beta = ?

r,p AUTOMATON

F i g u r e 5'12 (b) Disfribufion of States

r^j AUTOMATON

Tf,p AUTOMATON

Lpp AUTOMATON

a lpha = 0-5

beta = 1

T i p AUTOMATON

Figure 5 ’12 (c) Distribution of States

r ^ j AUTOMATON

average penalty=QA969

Tpjp AUTOMATON

average penalty^ 0A988

AUTOMATON

a lp ha= 0-6

b e ta = 1

average penalty=0A997

T AUTOMATON
!P

average penalty=QA998

Fi gure 5-12 (d) Disfribufion of Sfafes

AUTOM ATON

average penaltys 0-2666

Distribution of States
0 , - 0-001

(jj, = 0 - 0 5

9^ = 0-1

<j)̂ ̂ 0 - 0 2

Tp,p AUTOMATON

average penalty = 0-2385

Lpp AUTOMATON

a l p h a =0-6

b e t a s 1

average penaltys 0-2136

fjp AUTOMATON

average penaltys 0-173A

F i g u r e 5*13 (a

AUTOMATON

average penalty - 0-6635

5 S.-§-Q P
&0)

'a
? 9

Distribution of States

9̂ = 0 - 0 0 5

<t>, = 0 - 0 5

02 = 0 - 3

^ = 0-001

□=-'o.oco a75o "ala
action probability

1.00

7-pjp AUTOMATON

average penalty = 0-5133

Lpp AUTOMATON

alpha = 0-6

beta - T

average penalty = 0-^330

F i g u r e 5-13(b)

fjp AUTOMATON

average penalty = 0-IW9

Tp, AUTOMATON

average penalty = 0-1913

=
 ̂ -

0 001

0 -1

AUTOMATONR r

average penalty- 0-U>65

Lj,p AUTOMATON

alpha = 0-6

beta = 1

average penalty = 0-0329

Tjp AUTOMATON

average penalty = 0-01 ¿,3

F i g u re 5-13 (c

AUTOMATON

average penalty = 0-79A3

0 - 0 2 5

0 -02

AUTOMATONRP

average penal ty= 0-5019

AUTOMATON
RP

a l p h a s 0-6

b e t a = 1

average penalty = 05281

F i gu r e 5 -13(d)

r, p AUTOMATON

average penalty = 0-L375

O I
O I

O tai
¿ s AUTOMATON

average penalty- 07889

Distribution of States

= 0 - 0 7

 ̂ = 0 - 0 2

= 0 - 0 7

A = 0 - 0 3

AUTOMATON

average penalty^ 0-7712

Lpp AUTOMATON

a lpha - 0-6

beta = 1

average penalty = 0-7853

f j p AUTOMATON

average penalty- 0-7700

F i g u r e 5-13 (e)

s J

r„, AUTOMATONK1

average penalty = 0-9870

Distribution of Stetes

3, =

< p , =

?2 =

0 - 5

0 0 1

0-1 S

Tpp AUTOMATON

average penalty = 0-9853

Lpp AUTOMATON

alpha = 0-5

beta = 1

average penaltys- 0-9855

Figure 5-13 (f)

Tjp AUTOMATON

average penaltys 0-9853

8

Figure 5 -lAla)Theoretical average penalties

o
o

F i gure 5-14 (b)

ALPHA - 0-600
BETA - 1-000

F i g u r e 5 -14 (c)

ALPHA - 0-500
BETA - 1-000

F i g u r e 5 - 1 4 (d

I D D A L P H A - 0-600
L K r b e t a - 1-000

TRP
TIP

F i gure 5-14 (e)

ALPHA
BETA ^

0.600
1.000

Fi g u r e 5 - 1 4 (f)

F i gure 5 -15 (a) Theoretical mean switching times

o
o

F i g u r e 5 - 15 (b)

ALWA ̂
BETA

0.500
1.000

F i g u r e 5 1 5 (c)

oo

F i g u r e 5 -15 (d)

F i g u r e 5 - 15 (e)

oo.

F i g u r e 5 ■ 15 (f

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER ^ MULTI-ACTION AUTOMATA AITD AUTOMATA GAMES

Introduction

The learning automata considered in earlier chapters were two

action automata. In practice an environment was unlikely to have only

two actions, multi-action automata were required. The formula for the

Lrp automaton, equations (1.7)-(1.10) is for an automaton of r

actions. Tsetlin also gives a multi-action scheme for his automaton

[15]. When the practical implementation of multi-action automata

is considered, for example a 100 action automaton, problems arise if

the hardware Involved is linearly related to the number of actions.

In a software version the processing time increases with the number of

actions. The hierarchical learning scheme was proposed and

investigated by Neville [38,39] as a means of using two action

automata to provide multi-action capability without a great increase

in the hardware or processing required. It was investigated to

determine the effectiveness of the system using the modified Tsetlin

automata compared to the Lrp automaton.

The Hierarchical Learning System

The hierarchical learning system uses many decisions of a two

action automaton to achieve a single decision between many actions.

With the possible pathways through a decision network as shown in

Figure 6.1, a two action automaton will select one of 2^ actions by

taking n decisions.

195

In operation a single two-action automaton is used to make a

decision at each node on the path through the decision network. The

data necessary for a decision at every node is stored in a memory and

supplied to the automaton as required. Once an action has been taken

and a response obtained from the environment the path taken through

the decision structure is retraced and the decision data for each node

encountered is updated by the automaton.

The hierarchical learning scheme was simulated using a computer.

The automata included in the simulation were the two action Lrp, as

defined by equations (1.7)-(1.10) and the modified Tsetlin automata as

described in Chapter 3.

The Hierarchical Learning System-Results

The results show the average number of times a particular action

V7as selected by the automaton over 100 runs of the simulation. Each

graph shows the situation after the automaton has selected I actions.

Also included with each graph is the average penalty received by the

automaton and the probability of selecting the optimal action up to

that time. The Initial conditions at the start of each simulation

were such that each path through the decision network was of equal

probability. The values of ocand ft chosen for the Lrp automaton and

the ADDIE and memory sizes chosen for the type 1 modified Tsetlin

automaton represented the best from a variety of values tested which

corresponded with consistent behaviour.

Figures 6.2(a)-(c) show the operation of a type 1 modified Tsetlin

automaton with memory size of 10 and ADDIE bit size 6 in a 16 state

environment. The penalty probabilities of the environment were chosen

at random with the result that action 14 corresponded to the minimum

penalty probability. Figure 6.2(a) shows that after the first 100

196

iterations the automaton is already selecting the optimal action most

often but that during this period the automaton has been selecting the

other actions to a considerable extent. Figure 6.2(b) shows that by

500 iterations action 14 has been selected more often than the other

actions put together. Figure 6.2(c) shows that in the long term the

total average penalty received by the automaton continues to decrease

and over 10,000 iterations the probability of selecting the optimal

action is approximately 0.88.

Figures 6.3(a)-(c) show results for an Lrp automaton with cc = 0.96

and p = 0.99 operating under the same conditions as Figure 6.2. Over

the first 100 iterations the performance of the Lrp automaton is

better than that of the modified Tsetlin automaton. Over 1000

iterations Figures 6.3(b) and 6.2(b) show that the average penalties

received by the two automata are approximately equal after 750

iterations while the probabilities of selecting the optimal action are

equal after 1000 iterations. In the long term the performance of the

Lrp automaton reached steady state at values which were poorer than

the corresponding values for the modified Tsetlin automaton.

Figures 6.4 and 6.5 show results for the automata in a different

environment. In this case the penalty probabilities were chosen in

order to make it difficult for the automaton to select the optimal

action. Action 13 was selected as the optimal action while the

actions closest to it in the decision network, actions 14, 15 and 16

were given high penalty probabilities.

The aim of this was to discourage the use of the decision network

paths leading to actions 14, 15 and 16 during the initial learning

period. Since the path leading to action 13 was for most' of its

length common to the paths leading to actions 14, 15 and 16, giving

197

these actions high penalty probabilities would have the effect of

discouraging the selection of action 13. For similar reasons the

second most optimal action, action 4 was surrounded by actions V7ith

relatively low penalty probabilities in order to encourage the

automaton to select action 4 rather than the optimal action.

The results show that neither automaton converges to the wrong

action in the difficult environment though using automata with

different parameters it was found that convergence to the non-optimal

action 4 was more likely in the difficult environment.

The Hierarchical Learning System-Conclusions

The results show that though the Lrp automaton has a shorter

learning time in a hierarchical learning system the type 1 modified

Tsetlin automaton has a better steady state performance. Attempts to

improve the steady state response of the Lrp automaton by adjusting

the values of cc and p resulted in occasional convergences to

non-optimum actions. It was felt that the hierarchical learning

system may have accentuated this tendency. The modified Tsetlin

automaton was less prone to this as it selected the actions more

evenly during the learning period.

Automata Games-Introduction

A game exists between two automata when each automaton can affect

the penalty probability received by the other automaton. There are

two types of automaton game, cooperative games, where the automata

receive the same penalty probability and so can cooperate to receive

the lowest average penalty, and zero sum or competitive games, where

if one automaton receives a reward the other receives a penalty.

Automata games are of interest as a way of comparing and testing

198

differing types of automata to determine the desirable qualities for

automata. In the practical use of learning automata where many

automata operate on different parts of a single environment, gam.es

exist. The use of automata in telephone traffic routing

[45,46,47,48,49] as well as the system investigated in Chapter 8 are

examples of practical situations where games occur. In such cases the

understanding of simple games could be an advantage.

Cooperative and competitive games between the Lrp automaton and

some of the Type 2 automata, including the Tsetlin automaton, have

been investigated [40]. Since the probabilistic Tsetlin automata have

advantages over the Tsetlin automaton these automata were tested

against the Lrp automaton in games.

Cooperative Games

A simulation program was written to provide games between the Lrp,

Lri, Trp, Tip and Tri automata. The program provided for up to three

players in the game, though in practice only two were used, and for up

to ten actions available to each player. The penalty probabilities

were input to the program in the form of a matrix. The action of the

first player specified a row of the penalty m.atrix while the action of

the second player specified a column of the matrix. The com.bination

of these defined an element of the penalty matrix from which the

feedback for the learning automata could be obtained. Facilities were

provided to allow the automata to receive the same feedback giving a

cooperative game or to receive the opposite feedback giving a

competitive game.

199

The first results were obtained for cooperative games with a

variety of matrices and for different combinations of automata with

varying parameters. The operation of the automata was as expected

'from previous work and in most cases the automata converged towards

selecting the smallest penalty element most frequently. However when

operating with an environment like

0.4 0.5 0.6

0.3 0.9 0.2

0.1 0.05 0.8

convergence was not always to the element corresponding to the minimum

penalty. In most cases the automata converged to the third row and

first column, element 3,1 most frequently. Convergence to the correct

element depended on the operation of player 1 which controlled which

row of the penalty matrix was selected. If the player 1 automaton had

a low degree of optimality there was a significant probability that

rows 1 and 2 would be selected so it was an advantage to player 2 to

select column 1 rather than select column 2 and also be forced to

receive the high penalty probabilities associated with rows 1 and 2 in

that column. If the player 1 automaton had a high degree of

optimality convergence would be to row three. In this case player 2

was free to select column 2. However while player 1 was converging,

player 2 was forced to select column 1 and if the rates of convergence

of the players were similar or if player 2 converged faster than

player 1 , player 2 would not be able to change actions after player 1

had converged. The automata only converge to select the optimal

probability element if both the automata have a high degree of

optimality and player 2 has a rate of convergence slower than player

1.

200

Competitive Games

A variety of experiments were also carried out with competitive

games. In this situation the players are operating with different

penalty probability matrices. For example player 1 operates with the

matrix shown below on the left while player 2 operates with the matrix

shown on the right.

0.7 0.6 0.4 0.3 0.4 0.6

0.6 0.5 0.1 0.4 0.5 0.9

0.5 0.45 0.3 0.5 0.55 0.7

In the experiments, if player 1 selected the rows and player 2

selected the columns there was overall convergence to the penalty

element corresponding to a minimum of a column in the player 1 matrix

and the minimum of a row in the player 2 matrix. Considering the

player 2 matrix only, the overall convergence was to the penalty

element which was the minimum of a row and the maximum of a column.

For the matrix above this corresponds to elem.ent 3,1.

In the matrix given below there are no elements which satisfy the

conditions given above for convergence.

201

0.4 0.5 0.6 0.6 0.5 0.4

0.3 0.9 0.2 0.7 0.1 0.8

0.1 0.05 0.8 0.9 0.95 0.2

Experiments with this matrix have shown that the automata select

penalty elements 2,2 3,2 3,3 2,3 cyclically. The automata are

constantly changing their most frequent action and never converge.

Figure 6.6 shows the action probabilities of two Lri automata in a

competitive game using this matrix plotted against time. It was felt

that a penalty matrix in which their were no penalty elements which

satisified the convergence criteria given above would be the best in

which to test automata against each other.

The results given in Table 6.1 were taken for automata games using

the penalty probability matrix given below.

0.1 0.3 0.7 0.9 0.7 0.3

0.1 0.7 0.3 0.9 0.3 0.7

0.5 0.9 0.9 0.5 0.1 0.1

Player 1 selecting the rows sees high penalty probability elements in

row 3 and lower penalty elements in rows 1 and 2. Player 2 selecting

the columns sees high penalty probability elements in column 1 and

lower penalty elements in columns 2 and 3. The automata will select

penalty elements 1,2 2,2 2,3 1,3 but there should not be convergence

to any of these elements as the convergence conditions are not

satisified. For automata of equal performance the average penalty

received by each automaton should be 0.5. The results presented in

Table 6.1 are the average of two simulation runs, each automaton

having the player 1 and player 2 position with the same random number

sequence being used in both runs.

202

The first results taken were for automata of the same type. For

fast Lri automata with relatively low oc parameters it was difficult to

get results as the automata went optimal but results were obtained for

more slowly acting automata. Table 6.1(a) shows that the faster Lri

automata with the smaller cc parameter have the better performance.

Obviously if a Lri automaton is made too fast it will go optimal and

the slower automaton will have the better performance. Results

(b),(c) and (d) are for Lrp automata. Results (b) with B =1 are

inconclusive with the faster automata not showing a particular

advantage. Results (c) with constant B are again inconclusive. The

results (d) compare automata with varying B and show that the higher

the degree of optimality the better the performance.

Results (e) for Trp automata show inconclusive results till large

step sizes are used when the smaller step sizes have the better

performance. In these cases the advantage in a small step size is

lower variance and this factor becomes of greater importance than

speed with large step sizes. Results (f) for the Tip automata are

similar to the Trp with speed being an advantage for small step sizes

but with low variance becom.ing more important at large step sizes.

For the Tri automaton it was difficult to get results. The Tri

automaton has a high tendency to go optimal and once a player has gone

optimal the opponent is free to select the best penalty element. The

results for the Tri automata measured which automaton went optimal

last. Results (g) are runs in which the automata did not go optimal

but this happened only for large step sizes and in any case the

results are inconclusive.

203

Next the probabilistic Tsetlin automata were tested against the Lrp

and Lri automata. The results in Table 6.1 (h) show the performance

of various Trp automata against an Lrp automaton with 8 =1. In all

cases the Trp has the better performance. Increasing 8 in results (i)

increases the performance of the Lrp automata. In results (j) and (k)

against Lri automata, the Lri automata have the better performance.

For the Tip automaton results (1) shows that it has a poorer

performance than the Lrp with 8=1. For results (m) and (n) it was

again difficult to get results in which the Tri automaton did not

become optimal but for the results given the performance was worse

than that of the Lrp and Lri automata.

Finally the probabilistic Tsetlin automata were tested against each

other. Results (o) shows the Trp superior to the Tip while (p) shows

it generally superior to the Tri.

Automata Games-Conclusions

The Lrp, Lri and probabilistic Tsetlin automata have been

investigated operating in a variety of games situations. For

cooperative games the operation of the automata was as expected and in

general convergence was to the m.inimum penalty element. A case where

convergence was not to the minimum penalty element was identified and

the conditions causing it found. Conditions for convergence in

competitive games have been established as well as the possibility of

convergence to either of two penalty elem.ents or to none of the

penalty elements. Using a matrix where there should be no convergence

the Lrp, Lri and probabilistic Tsetlin automata have been tested

against each other with the Lri automaton showing the best

perf ormance.

204

o o o

o o o

o o o

o o o

o
o
o

o
o
o

oc

oC

oC 2 '’-!

oC 2

Figure 6-1 Decision network of hierarchical learning system

average penalty = 361*5

PlocyJ = 2198

average penalty = 3666

P lo^J = -2538

average penalty = -3589

P l ^ J = -2 689

>s

-QO
o.Q.

(h

O o-
'St
s

h r r m

average penalty = -3^,95

P lo^J = 2829

act ion
I = 50

action
1= 75

F igu re 6-2 (a) Type1 modified TseHin automafon in hierarchical learning ^slem

R^ Q^ <o
• tD T):dQ
Co

II

fM
OD

No

la
£=

■D
r

0
il
1T)

■ tocn T>
9.

Notoi
U)

fD
O
INJ
cr

tJ Q
JT ^
^ B
r 'S• t 3cn ®

QCo ~ lo ^

No
Co

Id d

' ^ 1
II T>t 3 O) T>
g I

II

No
VIOd

relative probability

l i
IT>
■G
§to Q =T
II

Oi
CDC3

relative probability

to
c—)m
O'
ro
n

relative probability

•TD

CD

Co

QIT)
o_

cn
to

:d

CDCD
to
to

Q

Ift)
t3T)C)Q_

II
toVItn

relative probability

t)

00
00

K>

0
<0

1
1Q_
'V

II

toDoto

average penalty = 2 787

Ploc^J =-¿,180

average penalty = 2732

= t,398

average penalty = -2685

¿>567

average penalty = - 2 6 4 8

P U J = ¿ , 7 1 7

X

■§

(h

Q)
c .

action
1 = 25

Figure 6 3 (a) Lpp automaton in hierarchical learning system

•t)

cn
o

Q
T)
IT>
"D
SQ
II

UJcn

relative probahility

V O
c
-5n>
o -

UJ
cr

relative probability

'X3
r

<-nN3
» -i
C D

QI
ft)

V:II
Nj
Co
05
CO

■D
i r

cn
Vo

Q •c
T5

S

t 3

S
CO o

II

»0
Co

i r ^
vS.. T)

o>
CD

T3IDOQ
II

N
Co

r
Q

I
II T>

Ó5 'D IDN3o> O

I|

ÑJ
to

UD
C

Tjr
OlNj

Q

I
t3T)

II

Kj
(-J

fD

C7̂
UU
n

•T3
r

O)NJ
to

I
I
tï
<X>

£.
II
NjK)
Co
CD

:2r
C7)K)\)CO

Q
T)
IT)
■GT)GQ

II

NiK)

-average penalty = -36^3

P locJ = 1 6 7 213

average penalty = -3558

Ploc^^l =-20i.2
average penalty- 3 C 5 5

P (o c J = -2215
"13

average penalty = 3368

P t o c J ^ -21.78

■Q O
O Pr

Q>

2;

Z tzJljJ3= .X l3z[L c=D
action

1=25

F igure 6-4 (q) Type1 modified TseUin auiomafon in hierorchicai learning syslem

relative probability

'0
r

c-j
Co
Cb

IT5

o_
II

'-a<olo

i

lO
c—5rt)

ti
T

Ol

D
<X>

I
Nj Q.

u
tV)
Nj

iT)
I

C/io>
' n]

13Q
“X

II

XI>o

tl
ir

Ol
CoC3Co

Q
IIQO
to
So_
'X

II

txC3
•«-A
Co

relative probability

ti
r

Q■c:T)
Q
05

'sitoO)Oi IDQ

II

001
Co

lac“D
IT)

O '

-P-
o

tl
r

o < T)
^ Q ^ IQ
II

CD T)

CD
CD

CDCO

3Q
II

is
Co
Co

Q
*D
SCQ0)
"D
SO
-»►X:
II

CoCJl

tl
r

Cb
cnCo'j

D<<1)
Q
'S<T>
"OT5DQ

II

Co
CD
CD

-average penalty= -2788

-Ploc^j] - -3836

average penalty = -27L6

Ploc^l = -399^,

average penalty = -2698
= -4 753

average penalty = -264 7
P/ociâ = -4333

:̂ S-
1

1«

2!

h d l
action

1 = 1 0 0

Figure 6-5 (a) Inpaufomaton in hierarchical learning system

relative probability

U
I
■ I
tD
gQd

•£̂ û
Kj
Cto

■TD
r

<-nNj
oo

ft)

fx>
tJ
sQ
'~-v-N:11
N<-o
Co

m
c
—3
(V

o
cn

°51
IQ <t>

II

cn
05
VO

■Q(l>3Q_
'K

II

Co

re loti ve prob abi I ity

-t)
ru
II

D
<C
Q(QID

■ "D
Cn <t)
cn g
C D Qo

ft
<-0o

relative probability

"t)
r

O)o

Q'CT)-1Q(Q05
■&
ft)sQ_
II

NJ
— X-S3

relative probability

'D

'—-
li

Q
ft

I
3
Q

CD C)
Co

II

K)
<o

lO
C
—)fD

O
U -l

O

tj
r

CDO
CoCJ1

QCrt>~i
*§
ft)

"DT)
Q
•x

II

N)N)O

Q ■C T)
- iS
C D * DO !P
No 9.

X
II

NoNo
CD
CD

player 1 player 2

J_____ ,_____ A____

pa pa^ pa3 pâ pa^ pa3

i l l I I I

Figure 6-6 Compefifive game between two
Lrj aufomafa

Players

LrivLri

LrpvLrp

TrpvTrp

TipvTip

TrivTri

LrpvTrp

Parameters Average Parameters Average
player 1 penalty 1 player 2 penalty 2

0.999 1 0.50265 0.995 1 0.49735
0.9995 1 0.504 0.999 1 0.496

(a)

0.99 0.99 0.4995 0.95 0.95 0.50055
0.995 0.995 0.50005 0.99 0.99 0.49995
0.999 0.999 0.5004 0.995 0.995 0.4996
0.9995 0.9995 0.50085 0.999 0.999 0.49915

(b)

0.999 0.9998 0.50105 0.998 0.9996 0.49895
0.995 0.999 0.4996 0.99 0.998 0.5004
0.99 0.998 0.49995 0.98 0.996 0.50005
0.98 0.996 0.5 0.96 0.992 0.5

(c)

0.995 0.999 0.4754 0.99 0.995 0.5246
0.995 1.0 0.47825 0.995 0.999 0.52175

(d)

0.0005 0.4991 0.001 0.5009
0.001 0.50055 0.002 0.49945
0.002 0.49975 0.005 0.50015
0.005 0.4961 0.01 0.5039
0.01 0.501 0.02 0.499
0.02 0.4956 0.05 0.5044
0.05 0.4698 0.1 0.5302

(e)

0.001 0.50025 0.002 0.49975
0.002 0.5003 0.005 0.4997
0.005 0.50085 0.01 0.49915
0.01 0.49925 0.02 0.50075
0.02 0.47565 0.05 0.52435
0.05 0.45584 0.1 0.54415

(f)

0.075 0.48525 0.15 0.51475
0.1 0.50285 0.2 0.49715

(g)

0.99 0.99 0.52305 0.05 0.47695
0.99 0.99 0.53645 0.01 0.46355
0.99 0.99 0.5532 0.005 0.4468
0.99 0.99 0.56335 0.002 0.43665
0.99 0.99 0.5668 0.001 0.4332

(h)

Table 6.1
Results of competitive automata games

in 2 runs of 100000 iterations

205

LrivTrp

LrpvTip

LrpvTri

LrivTri

TrpvTip

TrpvTri

0.995 0.9975 0.5233 0.01 0.4767
0.995 0.999 0.5021 0.01 0.4959
0.995 0.9995 0.4924

(i)
0.01 0.5076

0.995 1.0 0.48055 0.01 0.51945
0.995 1.0 0.48795 0.005 0.51205
0.995 1.0 0.4923 0.002 0.5077
0.995 1.0 0.4936

(j)
0.001 0.5064

0.999 1.0 0.4975 0.001 0.5025
0.99 1.0 0.49455

(k)
0.001 0.50545

0.99 0.99 0.48115 0.001 0.51885
0.99 0.99 0.4816 0.002 0.5184
0.99 0.99 0.48175 0.005 0.51825
0.99 0.99 0.4819 0.01 0.5181
0.99 0.99 0.48135 0.02 0.51865
0.99 0.99 0.47825 0.05 0.52175
0.99 0.99 0.4515

(1)
0.1 0.5485

0.99 0.99 0.49825 0.1 0.50175
0.995 0.999 0.4627

(m)
0.1 0.5373

0.995 1.0 0.4466
(n)

0.1 0.5534

0.001 0.42935 0.001 0.57065
0.01 0.44935 0.01 0.55065
0.1 0.48025

(o)
0.1 0.51975

0.1 0.5025 0.1 0.4975
0.01 0.4649 0.1 0.5351
0.01 0.3342

(p)

Table 6.1

0.05 0.6658

Results of competitive automata games
in two runs of 100000 iterations

206

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER 2 the TSETLIN ALLOCATION SCHEME

Introduction

Tsetlin [41] has considered the operation of a queueing system and

the effect of different priority systems. Tsetlin examined the case

of subscribers requiring the use of a telephone channel. By using a

system which gave priority to subscribers who made short calls,

Tsetlin aimed to reduce the mean queue length and reduce the mean

waiting time for the system. The system used learning automata to

assign priorities to subscribers and was of interest as a practical

application of learning automata. It required no a priori knowledge

of the characteristics of the subscribers and was adaptive. The

system was investigated using a computer simulation and was compared

to a simulation of a first come, first served (f.c.f.s.) system which

was used as a reference.

The Tsetlin Channel Allocation Scheme

The explanation of the Tsetlin allocation scheme which follows is

presented in conjunction with Figure 7.1.

Subscribers in a system are the source of requests for the use of a

channel. Before a subscriber is allowed the use of a channel the

subscriber must have an automaton. As the subscribers make their

requests they can either have an automaton assigned to them, in which

case they are described as dominant or reserve subscribers, depending

on the type of automaton they have, or have no automaton. There are

two automata for every channel in the system and these are called the

dominant and reserve automata. Each dominant automaton contains the

identification of the subscriber it is assigned to, a queue for the

221

subscriber to wait in and the credit of the subscriber. Each reserve

automaton is similar but without the queue for the subscriber.

A subscriber requiring a channel enters the system. If the

subscriber is dominant on a channel, the subscriber is put onto that

channel if it is free or is put into the queue in the dominant

automaton until the channel becomes free. A subscriber who is not

dominant is put onto the main queue if there are no free channels. If

there are channels free, these are searched to see if the subscriber

has a reserve automaton on any of them. If the subscriber has reserve

automata on free channels, the subscriber uses the channel which

corresponds to the automaton with the highest credit. If the

subscriber has no reserve automata, the subscriber is assigned a

reserve automaton on the free channel which has the least credit in

its reserve automaton.

i*7hen a channel becomes free a dominant subscriber waiting in the

dominant subscriber queue has first priority. If the dominant

subscriber is not waiting the second priority goes to the reserve

subscriber who may be waiting in the mn.in queue. If the reserve

subscriber is not waiting a subscriber is taken from the main queue on

a first come first served basis, the subscriber is allocated the

reserve automaton on that channel and the credit is set to zero.

I'Jhen any subscriber starts to use a channel the autom^aton

associated with the subscriber on that channel is given a constant

amount of credit. When a subscriber ends the use of a channel the

credit is reduced by an amount dependant on the length of time the

channel has been used. In the results this is expressed as a credit

gain/loss per second the channel is used less/longer than a threshold

value. A subscribers credit is limited by the automaton to a maximum

222

amount and cannot fall below zero.

A dominant subscriber can have only one dominant automaton and no

reserve automata but a reserve subscriber can have more than one

reserve automaton. A reserve subscriber can become a dominant

subscriber by being allocated a channel on which the subscriber has a

reserve automaton. The reserve and dominant automata compete and the

automaton with the largest credit becomes the dominant automaton and

the subscriber becomes the dominant subscriber.

The Tsetlin Channel Allocation Scheme-Results

The allocation scheme described above was used in a computer

simulation [43] with the facility for up to five channels and thirty

subscribers. A number of results were taken over a range of

subscriber and automata parameters. The time between the end of a

call and the start of the next call and the duration of call for the

subscribers were exponentially distributed. The results given below

were taken over a long simulation time so that the results would be

well averaged. I-Jhere results are compared directly the same random

seed was used for the simulations so that the simulations were

operating with the same inputs.

Table 7.1 gives results for individual subscribers for simulations

over 200,000 time intervals or approximately 450,000 calls in systems

with 5 subscribers using 2 channels. In simulation (a) the mean time

between calls for all subscribers was made equal so that the effect of

call length could be observed. Subscribers with short call lengths

have the highest probability of being dominant and have low

probabilities of being reserve automata while the reverse is true of

subscribers with long call lengths. In simulation (b) all the

subscribers have the same mean length of call so they would each tend

223

to gain the same amount of credit from their calls. The mean time

between calls differs so that the subscribers have differing frequency

of calls. The results show that subscribers who make calls frequently

have a greater probability of being dominant. To become dominant a

subscriber must first build up credit in a reserve automaton and then

return to the reserve automaton on which the subscriber has credit. A

subscriber making calls frequently will have more reserve automata,

will be more likely to return to an automaton before it is assigned to

another subscriber and so will build up credit. A subscriber making

calls frequently is more likely to be assigned to new reserve automata

and so destroy the credit of other subscribers.

Table 7.2 gives results for simulations over 10,000 time intervals

corresponding to approximately 160,000 calls from 15 subscribers using

2 channels. The subscriber parameters in this simulation have a

constant ratio between the mean call length and the mean time between

calls. The subscribers with the shortest call lengths become dominant

whilst amongst the other subscribers those with the shortest call

lengths and greatest frequency are most likely to have reserve

automata. The most important result in Tables 7.1 and 7.2 can be seen

when the mean waiting times are compared to those for the f.c.f.s

scheme. This shows that subscribers which are dominant have mean

waiting times longer than the reference while it is the performance of

the reserve automata which increases.

Table 7.3 gives overall results for 7 simulations. For a system

performing well the number of events in the simulation will be high,

the mean number in the system will be low and the mean waiting time

will be low. For identical Inputs the most efficient system will have

more channels free but in this case because the number of calls and

224

their distribution amongst the subscribers varies it is difficult to

equate this with system efficiency. The seven sets of results have

differing loads moving from the most heavily loaded (a) to the least

loaded (g). These results show that it is in the most heavily loaded

systems that the Tsetlin allocation scheme gives an improved

performance. As the loading on the system falls so does the

performance of the Tsetlin scheme with respect to the reference until

the load becomes about 90% of the total capacity when the performance

of the f.c.f.s. scheme becomes best.

The aim of the Tsetlin allocation system was to reduce the mean

waiting time of a system by introducing a system of priorities which

would favor subscribers with short mean call lengths. The Tsetlin

allocation scheme has been shown to do this only in heavily loaded

systems. In the other cases the performance of subscribers with

priority is decreased. This is because dominant subscribers are

limited to use the channel on which they are dominant. If a reserve

subscriber is using the channel the dominant subscriber must wait. A

subscriber without a dominant automaton is not constrained to use a

particular channel and is free to use channels as they become

available. It is only in highly loaded systems that a dominant

subscriber with priority on a particular channel is at an advantage

over the other subscribers with no priority but free to use any

channel.

The Modified Tsetlin Allocation Scheme

The Tsetlin allocation scheme has a poor performance because

dominant subscribers are limited to a particular channel. The

modified Tsetlin scheme allows dominant subscribers to use any channel

with priority over reserve and other subscribers. When more than one

225

dominant subscriber requires a channel the one with the greatest

credit takes priority. When a reserve subscriber competes for a

dominant automaton the competition is with the dominant subscriber

with the least credit. A dominant subscriber may be using a channel

when the competition occurs but completes the call as normal. The

number of dominant subscribers allowed is equal to the number of

channels in the system.

The Modified Tsetlin Allocation Scheme-Results

Table 7.4 gives results for the Tsetlin scheme, the f.c.f.s.

scheme and the modified Tsetlin scheme for six different simulations

producing lightly and highly loaded systems. In all cases the

modified Tsetlin scheme allows a greater number of calls to be made,

has fewer calls waiting in the system and has the lowest mean waiting

time. The subscribers with the lowest call length become dominant as

in the Tsetlin scheme but unlike the Tsetlin scheme the performance of

dominant subscribers improves whatever the loading of the system. In

the modified Tsetlin scheme the number of short calls from the

dominant subscribers increases while the number of long calls is

reduced. The increase in the number of short calls increases the

number of events in the simulation. Because a subscriber is now more

likely to be held up by a short call than a long call, the overall

waiting time is reduced. In addition, the replacement of a long call

by a number of short ones of equivalent length makes the system more

easy to run efficiently. However in some cases the f.c.f.s scheme has

fewer free channels indicating that this scheme is allowing more of

the channel capacity to be used by having more calls from subscribers

who produce long calls.

226

Further Improvements to Tsetlin^s Allocation Scheme

The priority system of the modified Tsetlin allocation scheme

divides the subscribers into three classes, the dominant subscribers,

the reserve subscribers and the others. Dominant subscribers have top

priority on all channels and the dominant subscribers are themselves

graded, giving greater priority to subscribers with most credit.

Reserve subscribers have priority over subscribers with no automaton

but only on the channel which corresponds to their reserve automaton

otherwise they are treated like subscribers with no automaton.

Further improvements in performance could be gained by extending the

priority system. The reserve subscribers could be given priority on

all channels and graded like the dominant subscribers. A further step

would be to extend the priority scheme to all subscribers by grading

them all. This would involve giving all subscribers an automaton

which would m.easure the subscribers credit. The distinction between

reserve and dominant automata would be removed and the priority would

simply depend on the credit in the subscribers automaton.

Tsetlin's credit scheme is not a very effective method for

determining the priority of subscribers on the basis of call length.

Subscribers with mean call lengths greater than the threshold value

will tend to lose credit while the rest will tend to gain credit.

Subscribers who tend to lose credit will all tend to have credits of

zero while subscribers who gain credit will all tend to have maxim.um

credit. Thus the Tsetlin scheme tends to split the subscribers into

two groups and is not suitable for giving each subscriber an

individual priority. The Tsetlin scheme also requires the use of a

threshold value, the value of which affects the operation of the

scheme and so it is not a true a priori system. It would be more

227

effective to measure the call lengths of subscribers and base a

priority system on this using the methods of the modified estimating

automaton [24,25]. However there are automata better than the

modified estimating which could be used in an allocation scheme.

In this way it was decided that the next step in the allocation

scheme would not be based on Tsetlin's scheme. It would give

individual priorities for each subscriber provided by a learning

automaton based on the call lengths of the individual subscribers. Of

the automata which had been investigated the Lrp, Trp and Tip had the

best performance and so these were included in the new scheme.

Automaton Allocation Scheme-Operation

The automaton allocation scheme was simulated in the same way as

the Tsetlin allocation scheme. If when a subscriber enters the system

there is a channel free the automaton is not involved and the channel

is allocated to the subscriber. If there are no channels free the

subscriber waits in a queue. If when a channel becomes free there are

two or more subscribers waiting in the main queue the automaton

selects a subscriber from the queue who will be allocated the channel.

The action probabilities of the automaton represent priorities for the

subscribers. Though the sum of the action probabilities is unity, the

automaton cannot be allowed to select from the full range of its

actions since not all subscribers will be waiting in the queue. Thus

only the action probabilities of the subscribers waiting in the queue

are taken and modified to sum to one so that the automaton will only

select one of the subscribers waiting in the queue.

228

When a call ends the length of the call is fed back to the

automaton. A penalty/reward signal was required by the automaton with

long call lengths corresponding to a high penalty probability. The

equation
1/N

= 1-1/((scale*call length)) (7.1)

was used to convert call lengths into probabilities. The scale factor

was chosen so that few calls would be shorter than 1/scale and if this

did occur the penalty probability was set to 0. The root factor N was

included to separate long call times. Figure 7.2 shows the

characteristics of equation (7.1) in converting call lengths into

penalty probabilities using the values used in the simulation compared

to the characteristics with N=l. The root factor has the effect of

producing a less steeply rising characteristic as well as moving the

penalty probabilities nearer to the centre of their range.

Autom-aton Allocation Scheme-Results

Simulations were made using the automaton allocation scheme with

the same subscriber and channel parameters as used previously for the

modified Tsetlin scheme.

During the simulations the Tip automaton was found to be performing

poorly. Table 7.5 (c) gives results for a simulation using the Tip

automaton. Comparing results with similar results using Lrp automata

as given in Table 7.5 (a) and (b) the Tip automaton has fewer events

and longer waiting times. However the results for the action

probabilities was of most interest as these indicated that the

automaton was trying to select the subscriber with the longest mean

call length m.ost often rather than the subscriber with the shortest

call length.

229

The analysis of the Tip automaton in a two action environment

showed that the automaton will reach steady state when

penalties from action 1 = penalties from action 2 (5.17)

The action probabilities for the Tip automaton in Table 7.6 (c) can be

explained as an attempt by the automaton to satisfy this condition for

all subscribers. Since the mean time between calls was different for

each subscriber the arrival rates were different. However since the

penalty probabilities were fixed by the mean call length the only way

the automaton could satisfy the condition was by trying to change the

frequency of calls from the different subscribers. The action of the

automaton was to slow calls from subscribers who made calls frequently

and attempt to increase the frequency of calls from subscribers who

make calls infrequently. It did this by having a high action

probability for subscriber 5 who had a long mean time between calls

but also a long mean call length. This gave subscriber 5 a good

performance but this resulted in a reduced overall performance and

poorer performances for the other subscribers.

The Lrp with cc = |3 and the Tip automata satisfy the same steady

state conditions and so the action probability results for the Lrp

automaton could be expected to show the same effect as for the Tip

automaton. Though the action probabilities in Table 7.5 (b) are

higher for infrequent subscribers than the corresponding results for

the Lri automaton the difference is far less than the Tip results.

The results in Table 7.5 (b) and (d) do not satisfy the condition

(5.17) indicating that the Lrp automaton is not operating as expected.

230

A conventional analysis of the Lri automaton shows that the

automaton operates to equalise the penalty probabilities of the

environment. If this is not possible, as in an autonomous

environment, the automaton selects the action corresponding to minimum

average penalty probability with a high probability. As shown in

Table 7.5 (a) the Lri does not equalise the penalty probabilities or

select the action corresponding to the minimum penalty probability

with a high probability.

The anomalies discribed above were the result of a common cause.

Normal analysis assumes that every time an automaton selects an action

the selection is made between every action and that the feedback is

applied to every action probability. In the diannel allocation scheme

the selection was made between only the subscribers waiting in the

queue and if only one subscriber was waiting the automaton was not

involved. However the updating was appled to every action every time

a call ended. Because of this the normal analysis does not apply and

the automata will not operate as expected.

Once the cause of the unusual results had been determined further

results were taken with the exclusion of the Tip automaton. Table 7.6

gives results for the Lrp and Trp automata corresponding to the

simulations in Table 7.4. In results (a) and (b) the modified Tsetlin

scheme produces a better performance by having a distinct priority for

subscribers 1 and 2 compared to the less defined priority of the

automata schemes. In (c) the Trp automaton produces the best

performance by giving more priority to subscriber 1 than the Lrp. In

results (d),(e) and (f) the number of subscribers is Increased to 15

and the range of mean time between calls and mean call lengths is much

greater. In all these results the Lrp automaton has the best

231

performance. The performance of the Trp automaton is good for

subscriber 1 but is degraded because the automaton gives a relatively

high priority to subscribers 12-15 who make calls infrequently but

have long call lengths. Because these subscribers are selected by the

automaton relatively frequently the performance of the other

subscribers falls as does the overall performance.

In Chapter 5 the operation of the Trp automaton was described as a

mixture of Tri and Tip automata. However the Tip when operating in

this simulation tended to choose the subscriber with the lowest

frequency of calls. Since the Trp is a mixture of the Tri and Tip

automata the behaviour of the Trp in the results above can be

explained as the character of the Tip automaton showing through.

Conclusions

Investigation into the Tsetlin allocation scheme has shown that in

most cases the system does not operate as intended and give priority

to subscribers with short call lengths. Instead, except at very high

loadings, the performance of dominant subscribers who should have

priority is reduced.

Having discovered the shortcomings of the Tsetlin scheme the

modified Tsetlin scheme was developed to operate as Tsetlin intended

his scheme to operate. This modification was sucessful and provided a

better performance for all loadings.

As a further development each subscriber in the system was given an

individual priority using learning automata. When the results were

not as expected this was found to be due to the unusual selection and

updating procedures required in the system. This resulted in a

distortion to the automata algorithms so changing the characteristics

of the automata. Despite this the Lrp and Trp automata were able to

232

-W*- produce good performances. These simulations highlighted an aspect of

the use of automata which had not been considered before.

r-'i

\ if ̂
i ‘it. » /,
, >-- ■-■;■ iS/' S 4*

ll'.' I
fl-

'k

■i:''

■ / ,
;i „Wki.-
-A- ■<■..:

'.-

't'-.’il;:.
- ' ■ # c ' : .

'fM’’
}S"

if??“ , • i> ’'
C k i

•:■' A q - î „.
k f '

' - " ' ' \ ’ '■ 'V" ‘

, - • -.' 11-►k'. V 5̂Vi'»ri'.'■•f-̂'f

subscribers

F i gure7-1 The Tsetlin allocaTion scheme

criber Mean
length

of call
(seconds)

Mean time
between
calls

(seconds)

Percentage
time as
dominant

subscriber

Percentage
time as
reserve
subscriber

Mean
waiting

time

1 0.1 2.0 99.98 0.0 0.0971
(0.0211)

2 0.2 2.0 99.23 0.53 0.0941
(0.0179)

3 0.3 2.0 0.72 66.31 0.0135
(0.0141)

4 0.4 2.0 0.05 66.34 0.0097
(0.0109)

5 0.5 2.0

(a)

0.0 66.82 0.0082
(0.0089)

1 0.3 1.0 59.90 36.36 0.0351
(0.0138)

2 0.3 1.5 47.94 40.98 0.0366
(0.0171)

3 0.3 2.0 35.99 43.81 0.0344
(0.0197)

4 0.3 2.5 31.51 40.57 0.0350
(0.0213)

5 0.3 3.0 24.66 38.28 0.0342
(0.0223)

(b)

Table 7.1
Tsetlin's allocation scheme simulation results
with results for a f.c.f.s. scheme in brackets

5 subscribers, 2 channels, credit=30/s
threshold value=0.3s, maximum credit=91

234

scriber Mean
length

of call
(seconds)

Mean time
between
calls

(seconds)

Percentage
time as
dominant

subscriber

Percentage
time as
reserve
subscriber

Mean
waiting

time

1 0.01 0.1 99.93 0.02 0.0637
(0.0369)

2 0.02 0.2 99.51 0.18 0.0942
(0.0514)

3 0.05 0.5 0.10 27.39 0.0694
(0.0727)

4 0.06 0.6 0.13 24.68 0.0736
(0.0754)

5 0.07 0.7 0.07 22.23 0.0763
(0.0787)

6 0.09 0.9 0.02 18.90 0.0784
(0.0831)

7 0.1 1.0 0.04 17.81 0.0817
(0.0862)

8 0.15 1.5 0.06 14.83 0.0833
(0.0882)

9 0.2 2.0 0.00 13.22 0.0898
(0.0976)

10 0.3 3.0 0.01 11.78 0.0952
(0.0958)

11 0.4 4.0 0.00 11.04 0.0896
(0.0965)

12 0.6 6.0 0.00 10.06 0.1006
(0.0875)

13 0.8 8.0 0.00 9.90 0.0846
(0.0907)

14 1.0 10.0 0.06 9.33 0.0889
(0.0847)

15 2.0 20.0 0.07 8.63 0.0814
(0.0736)

Table 7.2
Tsetlin's allocation scheme simulation results
with results for a f.c.f.s. scheme in brackets

15 subscribers, 2 channels, credit=400/s
threshold value=0.03s, maximum credit=61

235

Number of
subscribers

Number of
channels

Number of
events

Mean
number in

system

Mean
waiting

time
(seconds)

Mean
number of

free
channels

15 2 677393
(606617)

(a)

11.6189
(11.9706)

1.4189
(1.6426)

0.0003
(0.0002)

15 2 630252
(609376)

(b)

8.6998
(8.9062)

1.0655
(1.1360)

0.0212
(0.0214)

15 2 611733
(602417)

(c)

7.6587
(7.7707)

0.9326
(0.9657)

0.0512
(0.0520)

15 2 591912
(587132)

(d)

6.7098
(6.7770)

0.8112
(0.8291)

0.0966
(0.0957)

15 2 569826
(568326)

(e)

5.8811
(5.9053)

0.7074
(0.7133)

0.1539
(0.1527)

15 2 544797
(546990)

(f)

5.1866
(5.1496)

0.6240
(0.6148)

0.2163
(0.2167)

15 2 519514
(523832)

4.5989
(4.5117)

0.5545
(0.5330)

0.2850
(0.2837)

(g)

Table 7.3
Tsetlin's allocation scheme simulation results
with results for a f.c.f.s. scheme in brackets

(a) credit=100/s, threshold value=0.006s, maximum credit=61
(b)-(g) credit=400/s, threshold value=0.003s, maximum credit=61

236

Number of Number of
subscribers channels

15

15

15

umber of Mean Mean Mean
events number in

system
waiting

time
(seconds)

number of
free

channels

316840 4.2080 1.4175 0.0390
350071 4.1253 1.2254 0.0211
396468 4.0101 1.0243 0.0221

(a)
241392 2.5845 0.8586 0.4526
271739 2.2826 0.5093 0.4103
274985 2.2496 0.4797 0.4107

(b)
426831 0.7274 0.0461 1.3712
433043 0.6655 0.0149 1.3670
433102 0.6649 0.0146 1.3671

(c)
884245 12.7990 2.4402 0.0000
762986 13.1004 2.9075 0.0000
1020868 12.4581 2.0465 0.0000

(d)
519514 4.5989 0.5545 0.2850
523832 4.5117 0.5330 0.2837
533851 4.3138 0.4860 0.2843

(e)
167657 2.5190 0.0763 0.7613
182862 2.3459 0.0590 0.7332
188759 2.3013 0.0545 0.7276

(f)

Table 7.4
Comparason of results for

Tsetlin's allocation scheme
f.c.f.s. scheme

modified Tsetlin scheme

237

O

Figure 7-2 Penalty probability choraclerics for fhe aulomalon
allocation scheme

Automaton Automaton Number Mean Mean Mean
parameters of number in waiting number of

events system time
(seconds)

free
channels

(a) Lrp 0.9 1.0 378772 4.0553 1.0960 0.0217
(b) Lrp 0.95 0.95 365111 4.0873 1.1542 0.0214
(c) Tip 0.0005 332915 4.1687 1.3141 0.0203
(d) Lrp 0.95 0.95 558211 3.1565 0.4708 0.1603

Mean call Subscriber Subscriber Subscriber Subscriber Subscriber
length 1 2 3 4 5
(seconds)
(a,b,c,d) 0.2 0.5 0.6 2.0 5.0
Mean time
between
calls

(seconds)
(a,b,c) 0.5 0.5 0.5 0.5 0.5

(d) 0.2 0.5 0.6 2.0 0.5

Action
probability

(a) 0.3700 0.2453 0.2260 0.1120 0.0467
(b) 0.3159 0.2269 0.2150 0.1428 0.0994
(c) 0.0059 0.0046 0.0042 0.0048 0.9805
(d) 0.3913 0.2204 0.1979 0.1079 0.0825

Penalty
probability

(a) 0.4339 0.5435 0.5638 0.6777 0.7422
(b) 0.4343 0.5461 0.5618 0.6751 0.7418
(c) 0.4376 0.5459 0.5674 0.6783 0.7391
(d) 0.4356 0.5459 0.5654 0.6761 0.7391

Number of
penalties

(a) 47725 49448 49399 39890 23211
(b) 44449 47377 46966 40674 23856
(c) 36978 42207 42853 41412 25430
(d) 107524 72480 72480 29506 14052

ci*pi
(a) 0.1605 0.1333 0.1274 0.0759 0.0347
(b) 0.1372 0.1239 0.1208 0.0964 0.0737
(c) 0.0026 0.0025 0.0024 0.0033 0.7224
(d) 0.1704 0.1203 0.1119 0.0729 0.0609

Table 7.5
Automaton allocation scheme simulation results

238

Number of
subscribers

Number of
channels

15

15

15

Number of Mean Mean Mean
events number in

system
waiting

time
(seconds)

number of
free

channels

350071 4.1253 1.2254 0.0211
396468 4.0101 1.0243 0.0221
378722 4.0553 1.0960 0.0217
389099 4.0266 1.0520 0.0219

(a)
271739 2.2826 0.5093 0.4103
274985 2.2496 0.4797 0.4107
272324 2.2725 0.5026 0.4128
274546 2.2503 0.4819 0.4121

(b)
433043 0.6655 0.0149 1.367
433102 0.6649 0.0146 1.3671
432732 0.6629 0.0147 1.3691
433174 0.6635 0.0146 1.3686

(c)
762986 13.1004 2.9075 0.0000

1020868 12.4581 2.0465 0.0000
1281417 11.8092 1.5288 0.0000
1016796 12.4687 2.0568 0.0000

(d)
523832 4.5117 0.5330 0.2837
533851 4.3138 0.4860 0.2843
539747 4.1892 0.4583 0.2876
535934 4.2614 0.4745 0.2847

(e)
182862 2.3459 0.0590 0.7332
188759 2.3013 0.0545 0.7276
188963 2.2779 0.0527 0.7189
188369 2.3226 0.0551 0.7189

(f)

Table 7.6
Automaton allocation scheme results for

f.c.f.s. scheme
modified Tsetlin scheme

Lrp (X =0.9 j3 = l
Trp step size=0.0005

239

THEORY AND APPLICATIONS OT LEAJINING AUTOMATA

CHAPTER 8 ALLOCATION W A MULTIPROCESSOR SYSTEM

Introduction

In a single processor computer system, users of the system are

sources of jobs which require the use of the processor. Since the

processor can only carry out the tasks associated with one job at a

time, jobs must be queued if more than one job is in the system.

There are a variety of queueing systems used to determine which job is

allowed the use of the processor e.g. round-robin, xihere each job in

turn is allocated a set amount of processing time, batch, where each

job is allocated the processor until the job is completed and priority

schemes where the processor is allocated according to a priority

system based on the amount of processing time a job has already

received [42]. Some queueing systems favour short jobs and ensure

that they have short waiting times while others are more favourable to

jobs with long processing times. In either case the amount of

processor time available is limited and only the distribution of the

processing capacity amongst the jobs can be changed. A single

processor system is sim.ilar to the system examined in Chapter 7 in

that it has a limited capacity resource being allocated in a variety

of possible ways amongst a number of users.

In a computer system with multiple processors there is more

flexibility in that the jobs can be allocated to different processors

with the aim of obtaining the best service. In a system where the

speed of each processor is known as well as the queue length, at each

processor a fixed scheduling discipline can be used to calculate the

processor with the least waiting time. However if the param.eters of

242

the system are not known, the fixed scheduling discipline cannot be

used and if the parameters change with time the performance of the

fixed scheduling discipline can be surpassed. Colon-Osorio [44]

investigated the operation of the fixed scheduling discipline in a

multiprocessor system by simulation and compared the performance with

an adaptive scheme using Lrp automata. A similar investigation was

carried out but with the addition of the Trp, Tip and Tri automata.

Multiprocessor System Simulation

The multiprocessor system simulation, illustrated in Figure 8.1,

had provision for up to 5 processors with individual processing rates

and up to 30 sources of jobs with individual exponentially-distributed

processing requirement and time between job arrivals. The allocation

scheme could either be the fixed scheduling discipline or an automaton

scheme. The automaton scheme used an automaton at each source to

allocate the jobs to the processors. The automaton at any source

could be any of the types Lrp, Trp, Tip or Tri. This simulation

provided a system which had not been investigated before. The

environment was non-autonomous but the number of automata operating in

the environment was equal to the number of job sources and the

automata were operating in a games situation in that the actions of

one automaton could affect the other automata via the penalty

probabilities of the processors. The penalty probabilities were

determined using the method used by Colon-Osorio i.e. a penalty was

received if the processor chosen by the automaton was busy otherwise a

reward was received.

243

The initial measurements obtained from the multiprocessor

simulation showed how the penalty probabilities varied with respect to

the action probabilities. This was done by running the simulation

with a variety of fixed action probabilities. Results were obtained

for a system with a single source of jobs and two processors with the

system loaded to 0.357 of capacity and are shown in Figure 8.2. The

second set of results were obtained for a larger system with 5 sources

and 2 processors with the system loaded to 0.7 of capacity. These

results are given in Figure 8.3 and with Figure 8.2 confirm that the

system represents a non-autonomous environment with the penalty

probabilities linearly related to the action probabilities. Also

included in these figures are the average penalty and mean turnaround

time results. It should be noted that these measures of performance

do not have their minima at the same action probability and so an

automaton achieving the minimum average penalty would not minimise the

mean turnaround time which is the measure of performance for the

system.

Multiprocessor System Simulation-Automaton Steady State Conditions

Included in Figures 8.2 and 8.3 are the results of a number of

simulations using a variety of automata. The results indicate the

average action probability during the simulation. Figure 8.2 gives

results for a single processor operating over 50000 iterations and

includes the average penalty received by the automaton. It can be

seen that the Lrp automaton with B =1 and the Tip automaton converge

close to the point where c^ pa^ = C 2 pa2 as expected from equation

(4.29) and (5.17). Also as expected from equation (4.22) two Lri

automata converge to the action probability where c^ = C 2 and a Lrp

Multiprocessor System Simulation-Identification of Environment

244

automaton with oc ^ ^ converges between the Lri and Lrp automata. The

most unusual results are three for Lri automata withcc=0.9 which have

action probabilities less than 0.1. Because oc is so low these

automata have large step sizes and so converge quickly. What has

happened is that the automata have gone optimal and converged to

selecting a single action before the system reached steady state.

Table 8.1 gives results for a variety of automata operating in the

environment shown in Figure 8.3. In Table 8.1 there were 5 job

sources so the results are the average over five automata. Again the

Lrp automaton with 8 =1 and the Tip automata converge near the same

action probability, the difference in the mean turnaround times being

due to the different learning times for the automata, as shown by the

result for the slowest automata, the Tip with the step size of 0.001.

The Lri automata achieve a better performance in terms of mean

turnaround time since the point where c^ = C2 is closer to the

optimum action probability for the system.

None of the results for these automata achieve a mean turnaround

time as low as that achieved by the fixed scheduling discipline. Even

the minimum mean turnaround time given in Figure 8.3 is far larger

than the fixed scheduling discipline result. This is because the

scheduling discipline is a deterministic rule while the automata

implement a stochastic rule. Because of variance, an automaton may

allocate a series of jobs to a single processor while a second

processor may be free. The fixed scheduling discipline with its up to

date information of the queue lengths would easily avoid this. Thus

provided the fixed scheduling discipline has accurate information

about the system its performance can never be matched by an automaton

scheme.

245

Colon-Osorio saw the use of an automaton system being an advantage

in situations where the parameters of the system changed so that the

performance of the fixed scheduling discipline was decreased allowing

an adaptive system scope to provide a better performance.

Table 8.2 gives results of simulations using system parameters used

by Colon-Osorio where the processor speeds are switched though the

systems loading remains constant at 0.7. This degrades the

performance of the fixed scheduling discipline while the automata

schemes should be able to adapt to achieve the same steady state

performance before and after the switch.

Table 8.2 shows that the performance of the Lrp autom.ata with '6 =1

is poor. Throughout the simulation the processor queues are growing

longer resulting in long turnaround times. The Lri automata have a

good performance before the switch but a poor performance after. This

is because the automata are slow to switch and because any autom.ata

which have gone optimal will be unable to switch. A better

performance is produced by the Lrp automata in the third simulation

result as these cannot go optimal and the result after the switch is

only poorer because of the delay in the automata responding to the

switch in the environment.

The results for the Trp automaton show that the automata produce a

reasonable performance prior to the switch but afterwards the

performance is poor with the processor queues growing longer. This

illustrates an aspect of the operation of the Trp automaton. When the

simulation is started the system is empty and the penalty

probabilities are low. With low penalty probabilities the operation

of the Trp automaton is like that of the Tri automaton and this

Multiprocessor System Slmulation-Switched Environments

246

automaton produces good results as Table 8.2 shows. When the

environment switches the penalty probabilities rise and the automata

have to adapt. However the operation of the Trp automaton with high

penalty probabilities is like that of the Tip automaton and the

results show that this automaton produces a poor performance. The Trp

automaton is unable to regain its previous performance after the

switch because of the high penalty probabilities, but cannot reduce

the penalty probabilities because of its poor performance.

The results produced by the Tri automaton were the best that were

obtained, particularly the first result. This had a lower mean

turnaround time after the switch than before and producing the lowest

result of all the automata schemes. The second result is less good

even though the final action probabilities of both runs are the same.

The difference is in the speed of response to the switch with the

second result being slower and allowing large queues to develop before

responding to the switch in the environment.

Table 8.3 gives results of simulations in the same environment as

Table 8.1 but with a switch after 2000 iterations. The switch in the

environment is much less drastic than in Table 8.2 and the loading on

the system is 0.7. Again the Tip automaton produces the poorest

results and again the Tri automata produce the best results but marred

by a slow response to the switch. Chapter 5 suggested that the Tri

automaton would have a poor performance in a non-autonomous

environment because the automaton tends to converge to select a single

action almost exclusively. In the simulations above, a number of

automata are used together so that each can converge to a single

action and still as a whole produce an action probability between 0

and 1. In fact the more automata working together the better, as the
i

247

combined action probability produced by the automata will be closer to

the optimal action probability. When responding to a switch in the

environment the Tri automata are reluctant to change their action.

However when a queue builds up at a processor and the penalty

probability rises to 1 this forces a number of the automata selecting

that action to change their action which changes the overall action

probability to nearer the new optimal action probability.

In operation the fixed scheduling discipline calculates the

expected turnaround time of a job allocated to each processor in the

system knowing the processor speeds and the processor queue lengths

and allocates the job to the processor with the shortest turnaround

time. In a heavily loaded system the effect of the fixed scheduling

discipline will be to establish processor queues, the length of which

is proportional to the processor speed. When the environment

switches, the fixed scheduling discipline is working with inaccurate

data and will establish the longest queue for the slowest processor.

However this does not have as large an effect on the performance as

might be expected as the fixed scheduling discipline will stop filling

the long queue in favour of the short queue which will be processed

quickly by the fast processor. The fixed scheduling discipline also

responds well if a processor fails completely since any jobs allocated

to that processor will enter the queue and not be processed. The

queue will only grow to an extent where the fixed scheduling

discipline allocates all the jobs to the other processors. Since the

fixed scheduling discipline still has accurate information about the

other processors in the system the performance will still be optimal.

Thus the fixed scheduling discipline provides a reasonable performance

even when it has inaccurate information on the processor speeds.

248

So far the results presented have been for simulations in which the

automata were of the same type and with the same parameters. In

Tables 8.4 and 8.5 the automata are of the same type but with

different parameters. The environment used was that of Figure 8.3

with 5 automata and 2 processors. In Table 8.4 runs (a)-(d), the

number of optimal Lri automata is increased from 0 to 3. The results

show that the Lri automata converge to selecting the fastest processor

so gaining the shorter mean turnaround time. As more Lri automata are

introduced the remaining Lrp automata are forced more and more into

selecting the slower processor.

Runs (e) and (f) are for the Trp automaton, while Table 8.5 has

results for the Tri and Tip automata. In these cases changing the

automaton has no effect on the theoretical steady state conditions of

the automata, instead the speed of convergence and variance are

changed, small step sizes producing slow automata with low variance.

In Table 8.4 (e) and (f) results for Trp automata show that changing

the speeds of the automata results in a poorer performance. This is

because the overall action probability is reduced by the slow automata

and though the fast automata compensate it in not sufficient. For the

Tip automata, as shown in Table 8.5(a)-(b), a variety of processor

speeds increases performance. Overall, the action probability and

penalty probability changed little but the mean turnaround time is

affected. A variety of automata speeds can have two benefits. The

first is a decrease in variance as the slow processors have reduced

variance and the second is an increase in speed. Any tendency toward

increased variance due to the fast automata is reduced as the response

to the effects of the variance on the system is speeded up. Also any

Microprocessor System Simulation-Interaction of Automata

249

tendency toward a decreased response time due to the slow automata is

reduced provided the fast automata can compensate until the slow

automata reach steady state.

Table 8.5(c)-(f) gives results for the Tri automata with a range of

parameters. Tri automata are expected to go optimal but in (c) with

the parameters all equal, the automata all have the same convergence

rate. They all converge to select processor 1 but because of their

similar speeds prevent each other from going optimal. In results

(d)-(e) the fastest automata converge to selecting processor 1 almost

exclusively. This forces the slowest automaton to select processor 2.

Since this is the only automaton selecting processor 2 the penalty

probability received is low even though the mean turnaround time is

high. The overall performance is good since the mean turnaround time

provided by processor 1 is low as only 4 automata are selecting it and

because the variance of the system is reduced because the automata are

nearly optimal. Result (f) has even more widely spaced parameters and

in this case two automata converge to select processor 2 most

frequently. Once all the automata have converged the fastest automata

switches to select processor 2 because of its low penalty probability.

However this has a detrimental effect on the overall performance.

Finally a closer look was taken at the steady state conditions of

automata which have been analysed theoretically, i.e. the Lrp, Lri

and Tip automata. The environment used had two automata and two

processors, using the same processing speeds as in Figure 8.3 but with

the mean time between jobs changed to keep the systems load at 0.7 of

capacity. The results are given in Table 8.6.

250

The results given in (a) and (b) are for an Lri automaton operating

with a Lrp automaton withB=l. The Lri automaton will try to equalise

the penalty probabilities while the Lrp will try to equalise the

penalty rates according to equation (4.29). If the Lri automaton is

successful in making ĉ ̂ = C 2 then from equation (4.29) the action

probabilities for the Lrp automaton must be 0.5. This is what was

observed in the simulations, the two automata combining to produce an

action probability of approximately 0.7. The difference between the

two results is the initial action probabilities of the automata. A

similar performance (f), is produced by a Lri and Tip automaton

operating together. This is as expected since the Lrp and Tip

automata have the same steady state conditions.

Table 8.6 (c) is for a Lrp automaton operating with a fixed

probabilistic rule. By satisfying its own steady state condition, the

automaton produces a poor overall performance. Poor results are also

shown in (d) and (g) which give results produced by two Lrp and two

Tip automata operating together.

The fifth result shows two Lri automata operating together.

Overall the result is the same as the other results with only a single

Lri automaton. The addition of a second Lri instead of a Lrp

automaton has no overall effect though the individual action

probabilities of the automata are changed.

Conclusions

The investigations into allocation methods in a multiprocessor

system has shown that the fixed scheduling discipline can provide a

good performance even when it has inaccurate information. It has been

shown that the steady state conditions of the Lri, Lrp and Tip

automata do not necessarily correspond to the action probabilities

251

which would give the best system performance. The Trp automaton has a

reasonable performance but the Tri automaton has been of most

interest. Individually these automata have a poor performance in

non-autonomous environments but when a number have been used together

they have been shown capable of steady state results better than any

of the other automata schemes.

252

Figure 8-1 Allocation of jobs in a multi-processor system

Characteristics of multiprocessor system

1 source of jobs
mean time between Jobs = 0-2s
mean processing requirement = 1c.u.

2 processors of speeds 6c.u./s and 8c.u./s

Results taken over 50000 iterations

T|p s. s. = 0*01 ap. = 0 -3539

Lr p o C = 0 .9 5 ^ = 0 .9 5 a p . - 0.3585

LR p o C = 0. 95 ^ = 0 -9 9 5 a.p, = 0 .3565

Lr i «: = 0.98 1 ap. = 0 -3 5 9 4

Lr i <s<; =0.95 a.p = 0. 3 706

Tr p s .s . = 0.01 a p = 0 - 3 7 2 4

fixed scheduling discipline a p - 0 1 7 0 9

L p io i =o.g ap = 0 - 576

L r i ° c = 0.9 a p = 0-5947

Automaton results show, automaton, automaton parameters, and average penalty

received.

F i g u r e 8-2

Characteristics of rrul tiprocessor system

 ̂ .mean time between jobs = Is
5 sources of jobs < „ . n c ̂ mean processing requirement = 0-5c.u.

2 processors of speeds 2-5cu/s and 1-071bc.u./s

Results taken over LOOOO iterations

* f ixed scheduLe discipline

F i g u re 8-3

omaton Automaton Overall Mean Percentage Percentag
parameters1 action turnaround time time

probability- time processor1 processor
processor 1 (seconds) busy busy

FSD - 0.7774 0.5993 0.7631 0.5018

Lrp 0.95 0.95 0.6036 1.3700 0.5866 0.9138
Lrp 0.95 0.99 0.6492 1.0034 0.6308 0.8107
Lri 0.95 1.0 0.6930 0.8699 0.6726 0.7132
Lri 0.98 1.0 0.6906 0.9205 0.6672 0.7257

Trp 0.03 0.6518 1.0717 0.6298 0.8109
Trp 0.01 0.6482 1.0274 0.6312 0.8098
Trp 0.005 0.6482 1.0595 0.6299 0.8130
Trp 0.001 0.6166 1.4054 0.6005 0.8815

Tip 0.03 0.6008 1.5225 0.5822 0.9214
Tip 0.01 0.5982 1.5518 0.5815 0.9236
Tip 0.005 0.5958 1.6306 0.5785 0.9307
Tip 0.001 0.5702 4.1737 0.5553 0.9848

Tri 0.1 0.6826 1.1658 0.6642 0.7320
Tri 0.05 0.7572 0.8998 0.7403 0.5537
Tri 0.01 0.6652 1.7218 0.6470 0.7725
Tri 0.005 0.7428 0.9884 0.7219 0.5975
Tri 0.001 0.6178 1.5195 0.6038 0.8736

Table 8.1
Multiprocessor allocation scheme simulation results

5 job sources, mean time between jobs 1.0s
mean processing requirement 0.5cu

2 processors of speed 2.5cu/s and 1.0714cu/s
5000 iterations

253

omaton Automaton Overall Mean Percentage Percentag'
parameters action turnaround time time

probability time processor1 processor
processors (seconds) busy busy

1 and 2

FSD _ .7285 .2485 0.8880 0.8258 0.5868
.1333 .4250 3.7351 0.4949 0.4839

Lrp 0.95 0.95 .4775 .3235 19.0883 0.5585 0.7267
.2014 .3276 58.2761 0.4949 0.3595

Lrp 0.98 0.98 .4707 .3265 20.0600 0.5580 0.7090
.1994 .3274 64.2834 0.4949 0.3578

Lrp 0.95 0.995 .5370 .3408 1.8085 0.6548 0.7095
.1138 .3284 2.0431 0.8464 0.7217

Lri 0.95 1.0 .5553 .3357 1.6011 0.6870 0.6875
.0052 .3884 8.0939 0.2348 0.7920

Trp 0.01 .5320 .3217 3.4224 0.6261 0.7062
.1402 .3178 11.0677 0.9822 0.7072

Trp 0.005 .5273 .3205 3.5206 0.6224 0.7076
.1380 .3274 19.5042 1.0000 0.7173

Tip 0.03 .445 .3225 30.0657 0.5221 0.7076
.2312 .3228 82.9226 1.0000 0.7270

Tip 0.01 .4465 .3195 31.5873 0.5169 0.7243
.2316 .3246 87.7283 1.0000 0.7187

Tri 0.05 .5515 .3100 1.7526 0.6935 0.6735
.0518 .3130 1.4018 0.3605 0.6985

Tri 0.01 .5480 .4110 2.1457 0.7187 0.7754
.0194 .3118 20.0978 0.5332 0.6870

Table 8.2
Multiprocessor allocation scheme simulation results

3 job sources, mean time between jobs 0.5s, 0.75s, 1.0s.
mean processing requirement 2.0cu, 1.5cu, l.Ocu.

3 processors of speed 6cu/s, 3cu/s, Icu/s.
switching to Icu/s, 3cu/s and 6cu/s after 4000 iterations

first result taken over iterations 0-4000
second result taken over iterations 5000-10000

254

Automaton Automaton Overall Mean Percentage Percentage
param,eters action turnaround time time

probability time processor! processor!

FSD

Lrp 0.95 0.99

Trp O.OI

Tip 0.01

Tri 0.02

rocessor 1 (seconds) busy busy

0.793 0.5274 0.7744 0.5001
0.770 0.6643 0.7829 0.5539
0.471 0.9586 0.9327 0.5062
0.411 1.0541 0.9606 0.5879
0.401 1.1071 0.9672 0.5633

0.668 1.0252 0.6345 0.8256
0.649 1.0918 0.6578 0.8398
0.349 1.2386 0.7470 0.5880
0.344 1.3442 0.8167 0.6502
0.352 1.1507 0.7816 0.6483

0.651 1.0994 0.6259 0.8456
0.639 1.0533 0.6584 0.8382
0.373 1.4174 0.7861 0.5730
0.346 1.4109 0.8261 0.6438
0.339 1.0387 0.7580 0.6574

0.590 1.7851 0.5791 0.9449
0.606 1.6716 0.6180 0.9427
0.425 1.7915 0.8794 0.5328
0.397 1.9348 0.9495 0.5875
0.394 1.9422 0.8983 0.6016

0.747 0.9256 0.7281 0.6079
0.678 1.1209 0.6821 0.7829
0.510 13.9919 1.0000 0.4126
0.181 4.4858 0.5927 0.8174
0.223 1.0428 0.4668 0.7786

Table 8.3
Multiprocessor allocation scheme simulation results

5 Job sources, mean time between jobs 1.0s
mean processing requirement 0.5cu

2 processors of speed 2.5cu/s and 1.0714cu/s
5 sucessive runs of 1000 iterations

with the environment switched after 2000 iterations

255

Automaton Run Run Run Run Run Run
parameters (a) (b) (c) (d) (e) (f)

Lrp Lrp Lrp Lrp Trp Trp

1 .95 .995 .95 .995 .95 .995 .95 1.0 0.005 0.03
2 .95 .95 .95 .95 .95 .95 .95 .95 0.005 0.01
3 .95 .9995 .95 1.0 .95 1.0 .95 1.0 0.005 0.005
4 .9 .99 .9 .99 .9 .99 .9 .99 0.005 0.002
5 .98 .9998 .98 .9998 .98 1.0 .98 1.0 0.005 0.001

Mean
turnaround

time
1 0.9087 0.9461 0.9101 0.7844 0.9386 0.9420
2 0.9121 0.9199 0.8759 0.8841 0.8966 0.9497
3 0.6696 0.6163 0.6083 0.6451 0.8566 0.9264
4 1.0226 1.0457 1.0204 1.0110 0.9584 1.0420
5 0.7900 0.8139 0.7384 0.8160 1.0048 1.1080
rail 0.8608 0.8685 0.8307 0.8281 0.9305 0.9930

Average
penalty-
received

1 0.6606 0.6606 0.6667 0.6687 0.6747 0.6847
2 0.6905 0.6847 0.6868 0.6828 0.6692 0.6867
3 0.6660 0.6580 0.6540 0.6660 0.6740 0.6920
4 0.6957 0.7160 0.7120 0.6937 0.6815 0.6998
5 0.6728 0.6870 0.6748 0.6890 0.7012 0.7134

overall 0.6772 0.6812 0.6788 0.6800 0.6800 0.6952

Action
probability
processor 1

1 0.6029 0.5567 0.5550 0.7649 0.6447 0.6702
2 0.5405 0.5386 0.5348 0.5195 0.7010 0.6958
3 0.9320 0.9977 0.9977 0.9990 0.6597 0.6709
4 0.4876 0.5037 0.4790 0.4460 0.6393 0.6265
5 0.8150 0.7907 0.8217 0.7669 0.6595 0.5817
rail 0.6716 0.6740 0.6776 0.6976 0.6588 0.6492

Table 8.4
Multiprocessor allocation scheme simulation results

5 job sources, mean time bet-ween jobs 1.0s
mean processing requirement 0.5cu

2 processors of speed 2.5cu/s and 1.0714cu/s
final 2500 of 5000 iterations

256

A.utomaton Run Run Run P.un Run Run
parameters (a) (b) (c) (d) (e) (f)

Tip Tip Tri Tri Tri Tri

1 0.01 0.05 0.02 0.04 0.04 0.1
2 0.01 0.02 0.02 0.02 0.04 0.04
3 0.01 0.01 0.02 0.02 0.02 0.02
4 0.01 0.005 0.02 0.02 0.01 0.01
5 0.01 0.002 0.02 0.01 0.01 0.004

Mean
turnaround

time
1 2.0077 1.8455 1.1382 0.8555 0.8575 1.3126
2 1.8977 1.7415 1.0775 0.8472 0.8513 0.6536
3 1.8124 1.7253 1.0006 0.8621 0.8647 0.6652
4 1.9404 1.8220 1.0979 0.8444 0.8473 0.6670
5 1.9828 1.8774 1.1480 0.9225 0.9202 1.2222
rail 1.9283 1.8021 1.0925 0.8662 0.8681 0.9051

Average
penalty-
received

1 0.7201 0.7201 0.6978 0.7711 0.7711 0.7050
2 0.7177 0.7204 0.6942 0.7623 0.7583 0.6771
3 0.7127 0.7113 0.6839 0.7629 0.7636 0.6839
4 0.7143 0.7088 0.6857 0.7517 0.7558 0.6937
5 0.7313 0.7306 0.7076 0.4990 0.4983 0.6941
rail 0.7192 0.7183 0.6939 0.7101 07101 0.6888

Action
probability
processor 1

1 0.6077 0.6084 0.6405 0.9769 0.9769 0.2230
2 0.6053 0.5988 0.6644 0.9779 0.9720 0.9774
3 0.6048 0.6049 0.7000 0.9785 0.9785 0.9794
4 0.6195 0.6202 0.6562 0.9791 0.9893 0.9899
5 0.5926 0.5957 0.6600 0.0101 0.0102 0.3382

overall 0.6069 0.6077 0.6612 0.7843 0.7851 0.6945

Table 8.5
Multiprocessor allocation scheme simulation results

5 job sources, mean time between jobs 1.0s
mean processing requirement 0.5cu

2 processors of speed 2.5cu/s and 1.0714cu/s
final 7500 of 10000 iterations

257

Automaton Overall
parameters action

probability-
processor 1

Automaton Mean
action turnaround

probabilities time

cl & c2 for Lri
Cĵ pa^ & C2 pa

for Lrp & Tip

Lrp
Lri

0.98
0.98

0.98 0.6981
1.0

0.5024
0.8930

(a)

0.4976
0.1071

1.0824 0.3449
0.6886

0.3471
0.6912

Lrp
Lri

0.98
0.98

0.98 0.6930
1.0

0.5080
0.8782

(b)

0.4920
0.1218

1.0965 0.3480
0.6900

0.3473
0.6928

Lrp 0.98 0.98 0.5739 0.6345
0.5

(c)

0.3655
0.5

6.9390 0.3577 0.3559

Lrp
Lrp

0.98
0.98

0.98 0.6056
0.98

0.5989
0.6030

(d)

0.4011
0.3970

2.3982 0.3601 0.3559

Lri
Lri

0.98
0.98

1.0 0.6968
1.0

0.6188
0.7721

(e)

0.3812
0.2279

1.1302 0.6894 0.6946

Tip
Lri

0.01
0.98

0.6955
1.0

0.5003
0.8919

(f)

0.4997
0.1081

1.1096 0.3431
0.6857

0.3520
0.7064

Tip 0.01 0.6046 0.5963 0.4037 2.2618 0.3578 0.3589
Tip 0.01 0.6000 0.4000

(g)

Table 8.6
Multiprocessor allocation scheme simulation results

2 job sources, mean time between jobs 0.625s
mean processing requirement 0.5cu

2 processors of speed 2.5cu/s and 1.0714cu/s
10000 iterations

258

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER 2 CONCLUSIONS AND FURTHER WORK

The work described in Chapter 2 is believed to be the first

investigation of the Tsetlin and Krylov automata synthesised using

digital electronics. These investigations quickly revealed practical

weaknesses in these automata which have not been highlighted by

theoretical analysis. The Tsetlin automaton is optimal as the memory

size increases towards infinity provided one of the penalty

probabilities is less than 0.5. However this work shows that for

satisfactory performance the penalty probabilities should be about 0.5.

For this reason Tsetlin automata with more than two actions are not

considered practical. The Krylov automaton is designed to provide a

better performance than the Tsetlin automaton by being optimal for all

penalty probabilities as the memory size increases towards infinity. In

contrast it has been found that the performance of the Krylov automaton

has been unsatisfactory in all environments.

Also described in Chapter 2 is what is believed to be the first use

of hierarchical automata. A second automaton has been used to monitor

the performance of the first and controls its parameters to enable it to

achieve the best performance in a non-stationary environment. The

importance of this is increased when, in later chapters on

non-autonomous environments, it is shown that in general automata do not

converge to the optimum for the environment but to a steady state

condition determined by their parameters.

262

The work in Chapter 2 has highlighted the deficiencies in the

automata described as Type 2 in Table 1.1. These have a fixed structure

and a deterministic output which means that the automata cannot provide

good performance for the whole range of penalty probabilities. The

automata proposed in Chapter 3 have a variable structure and the results

have shown that adopting a variable structure can achievfe good

performances over the range of penalty probabilities.

Chapter 4 shows the disadvantages of a deterministic output function

by considering non-autonomous environments, where a mixture of actions

produces the best performance. To be able to investigate non-autonomous

environments a model is required. The model proposed in Chapter 4 is

more realistic than others in that it uses the information that would be

available to an actual environment and also provides a model on which it

is easy to carry out theoretical analysis. Simulations of automata with

deterministic output functions has shown their unsuitability in

non-autonomous environments. Simulations of automata with stochastic

output functions operating in Narendra's non-autonomous environment has

led to a theoretical analysis showing the unsuitability of this model.

Theoretical analysis of the steady state conditions of the Lri and Lrp

automata has been given and though these results have been presented

elsewhere the method used here to achieve the results is different.

These results show that the Lrp and Lri automata operate to satisfy

their own steady state conditions and not the conditions for minimum

average penalty.

263

Based on the conclusions of Chapter 4, three automata are proposed in

Chapter 5 which have stochastic output functions. The operation of

these automata has been analysed and their performance calculated and

compared to the Lri automaton. The graphs presented in this and

previous chapters giving the optimality, average penalty and mean

switching times in a variety of stationary, non-stationary and

non-autonomous environments is an attempt to give useful information

about the performance of the automata and so enabling them to be

compared directly. The analysis of the Lrp automaton required to

produce these graphs is believed to be the first of its kind. Of the

automata proposed in this chapter, the Trp and Tip have performances

comparable to the Lri automaton.

Chapter 6 considers multi-action automata using the hierarchical

learning system and automaton games. Though the use of the hierarchal

learning system is not new the modified Tsetlin automata have not been

used in this system before. Comparisons with the Lrp automaton have

proved valuable and certain advantages of the modified Tsetlin automata

highlighted. Attempts to cause the hierarchical learning system to

converge to the incorrect actions were unsuccessful proving the

practicality of the system.

The operation of various automata in games situations has been

observed and was as expected from previous work. In cooperative games

the convergence of the automata to the optimum penalty probability

element has been tested and the best conditions for convergence

established. In competitive games the operation of the automata has

been observed and the conditions for their convergence or

264

non-convergence understood. Based on this, a penalty probability matrix

has been devised to test the performance of the automata. From these

tests the Lri automaton has provided the best performance but the Trp

automaton also gave good results, in many cases better than Lrp

automata.

In Chapter 7 the operation of the Tsetlin allocation scheme was

investigated and it was found that it did not perform as expected. The

reasons for this were identified and a modification to the system

provided an improvement in performance by making the operation of the

system closer to what was originally intended. Also tested was a more

conventional learning automata scheme. Although this also provided an

improvement in performance a more important practical consideration was

discovered. In the system the automaton could not select between all

its actions but for simplicity the feedback was applied to all actions.

The result of this was that the automata algorithms were distorted so

that the automata did not operate as expected. The effect on different

automata was variable with the operation of some automata changing

dramatically. This is obviously an effect that will occur in a variety

of practical applications and should be remembered when future systems

are being designed.

In Chapter 8 a scheduling discipline for a multiprocessor system with

up to date information about the system is compared to an automaton

system with no information about the system. The comparison is somewhat

unfair as the superior performance of the fixed scheduling discipline

shows. It is only when the system is disrupted a great deal that the

adaptability of the automaton scheme becomes beneficial. A point worth

265

noting from these investigations is the performance of the Tri automata.

When operating alone they have a poor performance but when many are used

together their combined performance has been shown to be good.

The work presented here investigates the performance of a variety of

automata and how they operate in various environments. It is felt that

enough is known about the performance and characteristics of learning

automata to allow their use in practical situations. However the

selection of a suitable application for the use of learning automata is

important. Learning automata learn by selecting the wrong actions and

cope with non-stationary environments by continuing to select the wrong

actions occasionally after they have learned. Because of this, learning

automata cannot be used where the wrong actions would cause damage or

have dangerous consequences. They are more suitable in non-autonomous

environments where there are no wrong actions and the ratio of actions

is important. Learning automata are best used in situations where

feedback is available frequently and the feedback should be determined

by the actions of the automaton as directly as possible. It is also

important to be sure there are gains to be made by using learning

automata. For example the use of learning automata within a single

processor computer system cannot provide more processing time for the

users, it can only distribute it between the users in different ways.

One example which illustrates all these points is the adaptive

cancelling of sound [50] where a waveform is adaptively generated to

cancel the noise of a diesel exhaust. In this example the performance

is easily specified, an output from the environment is always available

for feedback and an incorrect action by the automaton does not have

266

serious consequences.

One application of learning automata that is receiving considerable

attention is the adaptive routing of calls in a telephone network

[45,46,47,48,49]. To provide a link between the source of a call and

its destination a number of links are made between exchanges. For a

particular source and destination there are a variety of paths the call

can take. The use of learning automata to route calls between exchanges

has a twofold advantage. First the learning scheme can achieve near

optimal performance and so match the performance of a conventional

routing algorithm but in addition the learning scheme is also adaptive

and so can maintain performance in a non-stationary situation. Secondly

a learning scheme can cope with overloads in particular parts of the

system by using unused capacity in other parts of the system, something

a conventional routing algorithm cannot do. Although the operation of

individual automata in such a system can be predicted much less is knovm

about the overall performance and it is here that present work is being

concentrated.

A similar application is the use of learning automata in a packet

sv/itched communication network. In this case a complete link from

source to destination is not made, instead the message is split into

standardised packets and sent from exchange to exchange. A packet

switched communication network provides an even more complex system than

the telephone network with a greater rate of feedback for the learning

automata but also with more quickly changing characteristics. Once

again the performance of individual learning automata in a decentralised

system can be forecast from previous work but questions are still

267

unanswered regarding the global performance and how global

characteristics can be used to control local automata.

Finally recent work [53] has drawn interest towards the use of a

hierarchical automaton to control a PID three term controller. This

combination provides a control unit with widely understood and trusted

operating characteristics. However the use of a learning automaton to

control the parameters of the controller provides a learning capability

and an ability to adapt to changing environmental characteristics.

268

APPENDIX CALCULATION _OF STEADY STATE ACTION PROBABILITIES

The operation of an automaton can be described in terms of the

state vector and the Markov transition matrix Pt [51,52] as

{¿(n+l) = Pt * 0(n) (Al.l)

Given an initial condition 0(0), 0(n) can be calculated as

0(n) = p” * 0(0) (A1.2)

As n->Qo 0(n) approaches the steady state probability vector. This

method of calculating the steady state probability vector is

impractical because of the large number of matrix computations

involved.

Equation (Al.l) describes a set of N simultaneous equations. By

replacing the first equation by

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

1 - 0j + !i. + • • • (A1.3)

the set of equations can be solved to give the steady state

probabilities. Once the state probabilities are found and the

relationship between the states of the automaton and the actions is

known the action probabilities can be calculated.

269

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

APPENDIX 2 CALCULATION OF MEAN SWITCHING TIMES

For an automaton with 2n states operating in a switched environment

initially favoring action 1 but changing to favor action 2 in response

to a switch the mean switching time is given by [31]

t = m, , , + m , +... m , (A2.1)i n + i ^2 2 ’̂ + ! n n n + 1
where (6̂ = probability of state i

m ̂ j = mean first passage time from state i to state j

To find the mean first passage time from state i to state j consider

the situation after one time epoch [52]. The automaton will have

moved from state i to some other state k, which may be the final state

j with probability Pt ̂ thus

” i j = ̂+ ̂ k = j P*=i k “k j ^^2.2)
since when k=i m , , = 0k J
where pt ̂ is an entry in the Markov transition matrix for the

automaton after the switch in the environment. By considering

equation (A2.2) for all values of i a set of simultaneous equations

can be formed which when soIved^/Ve passage times from

the states i to state j. Using equation (A2.1) the mean switching

time of the automaton can be found.

270

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

APPENDIX 3 MARKOV TRANSITION MATRICES OF AUTOMATA

Tsetlin Automaton

1 2 3 4 .

1 "l 0 0

2 0 c 0

3 0 1-Ci 0 c^

4 . N-1 N N+1 N+2.2N-3 2N-2 2N-1 2N

N

N+1

1 - c ,

0 1-c,

2N-2

2N-1

2N

where c

and c.

' 2

0
0

0 1-c

'2

0

1

2

0 1-c

c 1—c
2 2

and N

and 2N

= penalty probability associated with action 1

= penalty probability associated with action 2

= memory size of automaton

= number of states in automaton

271

Krylov Automaton

1 2 3 4 . N-

1 1-Ci / 2 / 2 0 0

2 1-Ci / 2 0 c
1

0

3 0 1-Ci / 2 0 n

N

N+1

1-c, /2 0 c 1 / 2 0

0 C2 /2 0 I-C2 /2

2N-2

2N-1

2N

n 0 I-C2 / 2 0

0 C 2 /2 0 I-C2 /2

0 0 / 2 I-C2 / 2

272

Type Modified Tsetlin Automaton

1 (1-c^)W +c, r 1
(1-Wp) (1 -c^)(1 --wr)+c^ WP

2 (1 -Ci)W +c, ' r 1
(1 -Wp) 0 (1 -Ci)(i-w.

3 0 (1 -c^)W^ (1 --“p) 0

W

N

N+1

(1-c.)W +c, (1-W)
1 r 1 p

(I-C2)(1-W^)+C2 ^ P

(1 -c^)(1 -W^)+c^ W

(I-C2)W^ +C2 (1-Wp)

2N-2 0 (1 -Ci)(1 -W^)+c^ Wp 0

2N-1 (I-C2)(1 -W^)+C2 WP 0 (I-C2)Wj. +C2 (1-WP
2N 0 (I-C2)(1-W^)+C2 Wp (I-C2)W^ +C2 (1-WP

...2N - 2 2N-1 2N

where WP = l/(2 c^) (3.3)

and Wr = l/2 (l-c^) (3.6)

and cm = (c^ +C2) / 2

273

Type 2_ Modlf led Tsetlin Automaton

3. . .

2

3

1 (1 -c^)+c^ (1 -Wp)

(1 -c^)W^

c, W 1 P
Cl W 1 P(1 -c^)(1 -W^)+c^ (1-Wp)

(1-c^)W^ (1-c^)(1-W^)+c^ (1-Wp)

N

N+1

(1 -c^)W^ (1 -c^)(1-W^)+c^ (1-wp) c, W 1 P
0 C2 Wp (I-C2)(1-W^)+C2 (1-Wp) (I-C2)Ŵ

2N - 2 (1 -~'~2 ̂)d"C2 (1-Wp) (1 -c2)W^ 0

2N-1 c„ W 2 P (I-C2)(1 -W^)+C2 (1--»p) (1--C2)W,

2N 0
- 2 ^ (I-C2)+C2 (1-WP

.. .2N - 2 2N - 1 2N

where ^P (3.9)

and W = c /(1-c) (3.12)r m m
and cm = (c^ +C 2) / 2

274

Tri Automaton

3 • • •

N-l+c,
N '

g - c o j
N

2 (^) d - c ,) (N-2)c^ +2c^ (N-2)(1-Ci)
N N N

N-1 2 (l-c^)
N

2 c ̂ +(N-2)c^
N

(N-2)(l-c^
N

N 0 (1 -c,)
N

N-l+c.
N ^

...N-2 N-1 N

where N = number of states in automaton

275

Tip Automaton

(N -l)d -c)+l
N

2 c
N

(N-l)c
N 1

(N-2)(l-c^)+2(l-c,) (N-2)c^
N N

N-1 (N-2)c, 2C1-C) + (N.
N " N

N 0 (N-l)c
N

. . .N-2 N-1

2 c.
N

(N-l)Cl-c,)+l
N

N

276

Trp Automaton

(N-l)d-c^)+c ̂ (N-l)c ̂+I-c^
N N

(N-2)(l-c ̂)+2c,
N

(N-2)c ̂+ 2 (1 - 0 3 ̂
N

N-1

N

) + (N - 2) C o 0 2c ̂ + (N - 2) (l - C o)
N N

0 (1-c^) + (N -l)c^ + (N - l) (l - c ,)
N

.. .N-2 N-1 N

277

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

REFERENCES

1. Booth T L
'Sequential Machines and Automata Theory'
John Wiley and Sons Inc., 1968

2. Aleksander I and Hanna K
'Automata Theory: An Engineering Approach'
Edward Arnold Computer Systems Engineering Series, 1976

3. Ribeiro S T
'Random-Pulse Macines'
IEEE Transactions on Electronic Computers, Vol. EC-16, no. 3, June
1967

4. Narendra K S and Thathachar M A L
'Learning Automata-A Survey'
IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-4, no.
4, July 1974, pp 323-334

5. Narendra K S and Lakshmivarahan S
'Learning Automata-A Critique'
Systems and Information Sciences Report no. 7703, Department of
Engineering and Applied Science, Yale University, New Haven,
Conneciticut, May 1977

6 . Varshavskii V I and Vorontsova I P
'On the Behavior of Stochastic Automata with a Variable Strucure'
Translated from Avtomatika i Telemekhanika, Vol. 24, no. 3, March
1963, pp 353-360

7. Shapiro I J and Narendra K S
'Use of Stochastic Automata for Parameter Self-Optimization with
Multimodal Performance Criteria'
IEEE Transactions on Systems Science and Cybernetics, Vol. SSC-5, no
4, October 1969

8 . Mason L G
'An Optimal Learning Algorithim for S-model Environments'
IEEE Transactions on Automatic Control, October 1973, pp 493-496

9. Viswanathan R and Narendra K S
'Expedient and Optimal Variable Structure Automata'
Dunham Laboratory Technical Report CT-31, Department of Engineering
and Applied Science, Yale University, April 1970

10. Viswanathan R and Narendra K S
'Simulation Studies of Stochastic Automata Models Part 1:
Reinforcement Schemes'
Becton Center Technical Report CT-45, Department of Engineering and
Applied Science, Yale University, December 1971

278

11. Viswanathan R and Narendra K S
'Comparison of Expedient and Optimal Reinforcement Schemes for
Learning Systems'
Journal of Cybernetics, Vol. 2, no. 1, 1972, pp 21-37

12. Neville R G, Nicol C R and Mars P
'Synthesis of Stochastic Learning Automata'
Electronics Letters, Vol. 14, no. 6 , 16th March 1978, pp 206-207

13. Neville R G, Nicol C R and Mars P
'Design of Stochastic Learning Automata using Adaptive Digital Logic
Elements'
Electronics Letters, Vol. 14, no. 11, 25th May 1978, pp 324

14. Neville R G, Nicol C R and Mars P
'Design of Nonlinear Stochastic Learning Automata'
Electronics Letters, Vol. 14, no. 13, 22nd June 1978, pp 396

15. Tsetlin M L
'On the Behaviour of Finite Automata in Random Media'
Translated from Avtomatika i Telemekhanika, Vol. 22, no. 10, October
1961, pp 1345-1354

16. Krylov V U
'On One Stochastic Automaton which is Asymptotocally Optimal in a
Random Medium'
Automation and Remote Control, 1963, Vol. 24, pp 1114-1116

17. Krinskii V I
'Asymptotically Optimal Automaton with Exponential Speed of
Convergence'
Biofizika, Vol. 9, no. 4, 1964, pp 484-487

18. Ponomarev V A
'A Design for an Automaton that is Asymptotically Optimal in a
Stationary Random Medium'
Biofizika, Vol. 9, no. 1, 1964, pp 104-110

19. Narendra et al
'Deterministic Automata'
Draft of Interim Report, Yale University, 1979

20. Langholtz G
'Behaviour of Automata in a Nonstationary Random Environment'
Electronics Letters, Vol. 7, no. 12, 17th June 1971, pp 348-349

21. Langholz G
'On a Class of Autom.ata Models of Learning Machines'
International Journal of Man-Machine Studies, no. 4, 1972, pp 119-127

22. Langholz G
'Interaction Between Stochastic Automata and Random Environments'
International Journal of Man-Machine Studies, Vol. 9, 1977, pp 223-231

279

23. Devroye L P
'A Class of Optimal Performance Directed Probabilistic Automata'
IEEE Transactions on Systems, Man, and Cybernetics, November 1976, pp
777-783

24. Coutts M J and Mars P
'Study of a Modified-Estimation Automaton in Stationary Environments'
Electronics Letters, 22nd June 1978, Vol. 14, no. 13, pp 404

25. Coutts M J and Mars P
'Theory and Applications of a Modified-Estimating Automaton'
Proceedings of the 1st International S3rmposium on Stochastic Computing
and its Applications, Toulouse, France, November 1978, paper 7.1, pp
303-320

26. Swan G
'Investigation and Design of an N State Learning Automaton'
BSc Thesis, Robert Gordon's Institute of Technology, June 1980

27. Golomb S W
'Shift Register Sequences'
Holden Day Inc. Series in Information Systems, 1967

28. Damashek M
'Shift Register with Feedback Generates White Noise'
Eletronics, 27th May 1976, pp 107-109

29. Miller A J, Brown A W and Mars P
'A Study of an Output Interface for a Digital Stochastic Computer'
International Journal of Electronics, Vol. 37, no. 5, 1974, pp
637-655

30. Miller A J and Mars P
'Optimal Estimation of Digital Stochastic Sequences'
International Journal of Systems Science, Vol. 8 , no. 6 , 1977, pp
683-696

31. Loui M C and Narendra K S
'Comparison of Learning Automata Operating in Nonstationaty
Environments'
Becton Center Technical Report CT-65, Department of Engineering and
Applied Science, Yale University, May 1975

32. Mendel J M and Fu K S
'Adaptive, Learning and Pattern Recognition Systems: Theory and
Applications'
Mathematics in Science and Engineering, Vol. 6 6 , Academic Press, 1970

33. Tsuji H, Mizumoto M, Toyada J and Tanaka K
'An Automaton in the Nonstationary Random Environment'
Information Sciences, no. 6 , 1973, pp 123-142

34. Cox D R and Miller H D
'The Theory of Stochastic Processes'
Methuen and Co., London, 1965

280

35. Narendra K S and Thathachar M A L
'On the Behaviour of a Learning Automaton in a Changing Environment
with Application to Telephone Traffic Routing'
Proceedings of the 1st International Sym.posium on Stochastic Computing
and Its Applications, Toulouse, France, November 1978, paper 7.1, pp
301-313 and
System and Information Science Report no. 7803, Yale University,
October 1978

36. Kumar P R and Narendra K S
'Learning Algorithm Model for Routing in Telephone Networks'
Systems and Information Science Report no. 7903, Yale University, May
1979

37. Chrystall M S
'Learning Automata Applied to Switched Circuit Networks'
Internal Report, Robert Gordon's Institute of Technology, February
1980

38. Neville R G, Nicol C R and Mars P
'Hardware Design for a 128-State Stochastic Learning Automaton using a
Hierarchical Structure'
Journal of Cybernetics and Information Science, Vol. 2, no. 1,
Spring 1979, pp 30-35

Stochastic Learning
39. Neville R G, Chrystall M S and Mars P

'Application of a Hierarchical Structure
Automaton'
Systems and Information Science Report no. 7906, Department of
Engineering and Applied Science, Yale University, September 1979

40. Narendra et al
'Two Player Tsetlin-Lri and Lri-Lri Games'
Draft Interim Report, Yale University, 1979

41. Tsetlin M L
'Automata Theory and Modeling of Biological Systems'
Volume 102 in Mathematics on Science and Engineering, Academic Press,
1973, pp 102-107

42. Madnick S E and Donavan J
'Operating Systems'
McGraw-Hill Computer Science Series, 1974

43. Pritsker A A B and Kiviat P J
'Simulation with Gasp II'
Prentice-Hall Inc., New Jersey, 1969

44. Colon-Osorio F C
'Scheduling in Multiple-Processor System.s with the Aid of Stochastic
Automata'
Ph.d. Dissertation, University of Massachusetts , 1977

281

45. Narendra K S, Mason L G and Tripathi S S
'Applications of Learning Automata to Telephone Traffic Routing
Problems'
Becton Center Technical Report CT-60, Department of Engineering and
Applied Science, Yale University, January 1974

46. Narendra K S and Wright E A
'Application of Learning Automata to Telephone Traffic Routing
Problems'
Becton Center Technical Report CT-69, Department of Engineering and
Applied Science, Yale University, May 1976

47. Narendra K S, Wright E A and Mason L G
'Application of Learning Automata to Telephone Traffic Routing and
Control'
IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-7, no.
11, November 1977, pp 785-792

48. Narendra K S and McKenna D M
'Simulation Study of Telephone Traffic Routing using Learning
Algorlthims: Part 1'
Systems and Information Science Report no. 7806, Yale University,
December 1978.

Routing using Learning
49. Narendra K S, Mars P and Chrystall M S

'Simulation Study of Telphone Traffic
Algorithims'
Systems and Information Sciences Report no. 7907, Department of
Engineering and Applied Science, Yale University, October 1979

50. Anon.
'Adaptive Sound Cancelling'
New Scientist, 18th February 1980, pp 657

51. Hiller F S and Liberman G J
'Introduction to Operations Research'
Holden-Day Inc., 1967

52. Kemeny J G and Snell J L
'Finite Markov Chains'
D Van Nostrand Company Inc., New Jersey, 1960

53. Neville R G
'Synthesis of Stochastic Learning Automata'
Ph.d. Thesis, Robert Gordon's Institute of Technology, October 1980

282

THEORY AND APPLICATIONS OF LEARNING AUTOMATA

BIBLIOGRAPHY

General

1. Feller W
'An Introduction to Probability Theory and its Applications: Vol. 1'
3rd Edition, John Wiley and Sons, 1968

2. Hartley
'Digital Simulation Methods'
lEE Monograph Series 15, Peter Peregrinus Ltd, 1975

3. Howard R A
'Dynamic Probabilistic Systems: Vol. 1 Markov Models'
John Wiley and Sons Inc., New York, 1971

4. Vincent C H
'Random Pulse Trains: Their Measurment and Statistical Properties'
lEE Monograph Series 13, Peter Peregrinus Ltd., 1973

Queues

5. Black J R and Even J C Jr.
'Computer Solution of Queueing Models'
Simulation, October 1973, pp 113-116

6 . Cox D R and Smith W L
'Queues'
Methuen and Co. Ltd., London, 1961

7. Gross D and Harris C M
'Fundamentals of Queueing Theory'
John Wiley and Sons, 1974

8 . Kleinrock L
'Queueing Systems: Vol. 1 Theory'
John Wiley and Sons, 1975

9. Kleinrock L
'Queueing Systems: Vol. 2 Computer Applications'
John Wiley, 1976

10. Lee A M
'Applied Queueing Theory'
Macmillan, London, 1966

11. Saaty T L
'Elements of Queueing Theory, with Applications'
McGraw-Hill, New York, 1961

12. White J A, Schmidt J W and Bennett G K
'Analysis of Queueing Systems'
Academic Press, 1975

283

Communication Networks

13. Franks R L and Riche1 R W
'Optimum Network Call-Carrying Capacity'
The Bell System Technical Journal, September 1973, pp 1195-1214

14. Franks R L and Rishel R W
'Overload Model of Telephone Network Operation'
Bell System Technical Journal, November 1973, pp 1589

15. Glorioso R M and Greneich G R
'A Training Algorithim for Systems Described by Stochastic Transition
Matrices'
IEEE Transactions on Systems, Man and Cybernetics, January 1971, pp
86-87

16. Hamsher D H
'Communication System Engineering Handbook'
McGraw-Hill, 1967

17. Kleinrock L K
'Communication Nets; Stochastic Message Flow and Delay'
McGraw-Hill Inc., 1964

18. Kleinrock L K
'On Communications and Networks'
IEEE Transactions on Computers, Vol. C-25, no. 12, December 1976

19. Macurdy W B and Ritchie A E
'The Network: Forging Nationwide Telphone Links'
Bell Laboratories Record, January 1975, pp 5-15

20. Prosser R T
'Routing Procedures in Communication Networks, part 1; Random
Procedures, part 2; Directory Procedures
IRE Transactions on Communications Systems, CS-10(4), December 1972,
pp 322-335

21. Rubin M and Haller C E
'Communication Switching Systems'
Reinhold (Chapman and Hall Ltd. London), 1966

Communications Networks with
22. Weber J H

'Some Traffic Characteristics of
Automatic Alternate Routing'
Bell System Technical Journal, March 1962, pp 769-796

Computer Systems

23. Badel M, Gilenbe E, Levoudier J and Potier D
'Adaptive Optimization of the Performance of a Virtual Memory
Computer'
Computer Architectures and Networks, North Holland Publishing Co.,
1974

284

24. Badel M, Gelenbe E, Leroudier J and Potier D
'Adaptive Optimization of a Time-Sharing System's Performance'
Proceedings of the IEEE, Vol. 53, no. 6 , June 1975, pp 958-965

25 . Bhandarkar D P
'Analysis of Memory Interference in Multiprocessors'
IEEE Transactions C-24, 1975, pp 897-908

26. Cardenas A F, Presser L and Marin M
'Computer Science'
Wiley-Interscience, 1972

27. Censier L M and Feautrier P
'Coherence Problems in Multi-Cache Systems'
IEEE Transactions on Computers, Vol. 27, no. 12, December 1978

28. Donavan J J
'Systems Programming'
McCraw-Hill Computer Science Series, 1972

29. Ferrari D
'Computer Systems Performance Evaluation'
Prentice-Hall Inc., New Jersey

30. Hellerman H and Conroy T F
'Computer System Performance'
McGraw-Hill Computer Science Series

31. Hide J
'Multi-Processing'
Microprocessors, Vol. 1, no. 6 , August 1977

32. Hunter T J
'Construction and Control of a Multi Access Simulator'
MSc thesis, Victoria University of Manchester, October 1968

33. Muntz R R
'Analytic Modeling of Interactive Systems'
Proceedings of the lEE, Vol. 63, no. 6 , June 1975, pp 946-953

34. Pin-Shan Chen P
'Queueing Network Model of Interactive Computing Systems'
Proceedings of the IEEE, Vol. 63, no. 6 , June 1975, pp954-957

35. Potier D, Gelenbe E and Lenfant J
'Adaptive Allocation of Central Processing Unit Quanta'
Journal of the Association for Computing Machinery, Vol. 23, no. 1,
January 1976, pp 97-102

36. Ramamoothy C V, Chandy K M and Gonzolez M J Jr
'Optimal Scheduling Strategies in a Multiprocessor System'
IEEE Transactions on Computers, Vol. C-21, no. 2, February 1972, pp
137-146

37. Ramamoorthy C V and Gonzalez M J Jr
'A Survey of Techniques for Recognizing Parallel Processable Streams
in Computer Programs'

285

Fall Joint Computer Conference

38. Rao G S, Stone H S and Hu T C
'Assignment of Tasks in a Distributed Processor System with Limited
Memory'
IEEE Transactions on Computers, Vol. C-28, no. 4, April 1979, pp
291-299

39 . Smith A J
'An Analytic and Experimental Study of Multiple Channel Controllers'
IEEE Transactions on Computers, Vol. C-27, no. 1, January 1979, pp
38-49

40. Smith J L
'An Analysis of Time-Sharing Computer Systems using Markov Models'
Proceedings Spring Joint Computer Conference, 1966

41. Stone H and Bokhari S H
'Control of Distributed Processes'
Computer, July 1978, pp 97-106

42. Stone H S
'Critical Load Factors in Two-Processor Distributed Systems'
IEEE Transactions on Software Engineering, Vol. SE-4, no. 3, May
1978

43. Stone H S
'Multiprocessor Scheduling with the Aid of Network Flow Algorithms'
IEEE Transactions of Software Engineering, Vol. SE-3, no. 1, January
1977, pp 85-93

44. Walker M J
'The Design of a Special Purpose Digital Machine'
MSc thesis, Victoria University of Manchester, October 1968

45. Wallace V L and Rosenberg R S
'Markovian Models and Numerical Analysis of Computer System Behavior'
Proceedings Spring Joint Computer Conference, 1966, pp 141-148

46. Wilkes M V
'Time-Sharing Computer Systems'
Macdonald/American Elsevier Computer Monographs, Second Edition, 1972

47. Willis P J
'Derivation and Comparison of Multiprocessor Contention Measures'
lEE Journal on Computers and Digital Techniques, Vol. 1, no. 3,
August 1978, pp 93-98

48. Wittle L
'Micronet'
Simulation, Vol. 31, no. 5, November 1978

286

P u b l i c a t i o n s

- 3 2 1 - jnf, 7-3

STOCHASTIC AUTOMATA IN NON-STATIONARY
ENVIRONMENTS

by

Neil J Mackie and Philip Mars

School of Electronic and Electrical Engineering
Robert Gordon's Institute of Technology
Schoolhill
ABERDEEN AB9 IFR, Scotland

Proceedings of the First International Symposium on
Stochastic Computing and its Applications
Toulouse, France, November 1978

The application of digital stochastic computing techniques
to the hardware synthesis of Tsetlin and Krylov automata is
considered. Experimental results and measurements are presented
for the performance of the Tsetlin automaton in non-stationary
random environments. Contrary to previous work the Krylov
automaton is shown to possess serious disadvantages in
non-stationary environments. The results of simulations for
two new automata based on those of Tsetlin and Krylov are given.

Introduction
1)Tsetlin in a pioneering paper" described a fixed

structure learning automaton with a linear tactic, operating
in a random environment.

Recently the suggestion has been made that the automaton
described by Tsetlin is more suitable than other automata

(2)for use in non-stationary environments . Elsewhere the
(3)Krylov automaton has been proposed as an automaton which

was asymptotically optimal for any environment, rather than
being asymptotically optimal only for environments with one
penalty probability c^ less than half and the other ĉ. greater
than half as for the Tsetlin automaton.

The operation of an automaton is governed by an algorithm
F which, in a fixed structure automaton, relates the state of
the automaton (i)(n) to b(n + 1) and can be either deterministic
or stochastic. In a variable structure automaton, F relates
p(n), the state probability vector, to p(n + 1) while it is
p(n) which relates 4>(Q) to + 1). ®(n) is related to the
action of the automaton a(n) by an output function G, which also
can be either deterministic or stochastic. The Tsetlin
automaton considered later is a fixed structure deterministic
automaton while the Krylov automaton is a fixed structure
stochastic automaton. Both have a deterministic output
function. The discussion will be confined to automata
classified as p model and with action sets limited to two
elements.

For learning automata operating in non-stationary
environments a measure of performance is the mean adjustment

(2)or switching time , defined as the average number of epochs,
after a sudden change of the penalty probabilities from
c^ < c^ to c^ > c^, till p^ changes from being less than p^
to being greater than or equal to p^. For linear learning
automata the mean switching time is the average number of
epochs, after a sudden reversal of the penalty probabilities,
until action 2 is reached, assuming the automaton was correctly
providing an action 1 input immediately prior to the switch in
the penalty probabilities.

2 The Tsetlin .Automaton
2.1 Theory of Operation

The operation of the Tsetlin automaton can be seen with
reference /

reference to Figure 1 which shows a two action automaton
with a memory size of n, and has one action corresponding
to internal states 1 to n and the other corresponding to
internal states n + 1 to 2n. When the automaton takes action
1 the environment outputs a stochastic sequence of value c^,
while action 2 corresponds to a stochastic sequence of value
c^. When the automaton receives a penalty the automaton
moves towards states n and n + 1 while, in response to a reward,
the automaton moves towards end stats 1 or 2n. Thus, with
output action 1 the automaton performs a simple random walk
between its internal states, with a reflecting barrier beyond
state 1 and with output action 2 the automaton performs a
simple random walk between its internal states, with a
reflecting barrier beyond state 2n. If an action has associated
with it a c^, the value of which is greater than half, the
automaton will tend to move towards states associated with the
alternative action while, if the value of c. is less than half,
the automaton will tend to move towards the end state associated
with the action it is already taking.

The operation of the Tsetlin automaton will fall into one
of three modes depending on the environment. If the 's are
about a half, one action will tend to make the automaton move
towards states associated with the other action, while the
other action will tend to make the automaton move towards the
corresponding end state. Thus one action is stable while the
other is unstable and the automaton works well. If the 's are
both greater than a half, both actions will tend to make the
automaton move towards states associated with the other action.
Thus both actions are unstable, the automaton moves between
states n and n + 1 frequently and works poorly. If the ĉ. 's
are both less than a half, both actions will tend to make the
automaton move towards the end state associated with that action.
Thus both actions are stable, with the automaton only moving
from one action to another due to variance in the penalty
probability causing it to be temporarily greater than a half
over a long enough time to allow the automaton to move from
one action to the other. If the largest penalty probability
is not close to a half, or if the memory size is large, the
automaton can output the wrong action for long periods of ti.me
and the automaton w'orks poorly.

2.2

2.2 Hardware Design
A Tsetlin automaton, the block diagram of which is shown

in Figure 2 was implemented using digital stochastic
techniques ̂ ̂̂ ̂ ̂ ̂ ̂ \ The heart of the automaton is a 12-bit
binary counter allowing up to 4096 states or memory sizes up
to 2048. The most significant bit of the counter is taken
as the action of the automaton and is input to the environment
which outputs the appropriate penalty probability. The output
of the environment and the action of the automaton are fed into
combinational logic to convert these into an up/down control
signal for the counter. The up/down signal is in turn fed
into more combinational logic along with the -state of the
automaton and signals representing the memory size to provide
a disable signal to prevent the counter exceeding the required
memory size.

2.3 Experimental Results
The performance of a 2048 state memory Tsetlin automaton

was investigated with a switched environment. Figure 3 shows
the operation of the automaton with the central trace in each
case indicating the switching instants for a reversal of penalty
probabilities c^. Figure 3(a) shows the satisfactory operation
of the automaton with c. 's of and . Figure 3(b)1 Xd Xo ^- 2
shows the effects of change of c. 's to t-— and -r, i.e. both ̂ X X D ^
greater than — . It is evident that the automaxon fails to
operate. Finally Figure 3(c) illustrates the characteristics

3 1with c. 's of -TTr and —rr . In this case since the c. 's are
1 16 ̂ 16 1

both less than the automaton again operates poorly and locks
onto one action. These results are entirely consistent with
the theoretical predictions.

Figure 4 shows e.xperimental and theoretical results for
mean switching times. The theoretical results given agree

(2)basically with previous predictions , but a compensation
factor has been included to prevent the possibility of switching
times less than one epoch which were not included in the
experimental results. -As may be seen from Figure 4 good
correlation is obtained between theoretical and experimental
results.

3 The Krylov .Automaton
3.1 Theory of Operation

The /

2.2 Hardware Design
A Tsetlin automaton, the block diagram of which is shown

in Figure 2 was implemented using digital stochastic
techniques ̂ ̂ ̂ ̂ ̂ ̂ ̂ ° \ The heart of che automaton is a 12-bit:
binary counter allowing up to 4096 states or memory sizes up
to 2048. The most significant bit of the counter is taken
as the action of the automaton and is input to the environment
which outputs the appropriate penalty probability. The output
of the environment and the action of the automaton are fed into
combinational logic to convert these into an up/down control
signal for the counter. The up/down signal is in turn fed
into more combinational logic along with the -staxe of the
automaton and signals representing the memory size to provide
a disable signal to prevent the counter exceeding the required
memory size.

2.3 Experimental Results
The performance of a 2048 state memory Tsetlin automaton

was investigated with a switched environment. Figure 3 shows
the operation of the automaton with the central trace in each
case indicating the switching instants for a reversal of penalty
probabilities c. Figure 3(a) shows the satisfactory operation

15 and _1
16

to
Figure 3(b)

15 . 3 .and — , i.s Id 4 both
of the automaton with c.'s of rw

1 16
shows the effects of change of c. 's

1 ̂greater than — . It is evident that the automaton fails to
operate. Finally Figure 3(c) illustrates the characteristics

3 1with c. 's of -zrrr and —w . In this case since the c. 's are
1 16 ̂ 16 1

both less than the automaton again operates poorly and locks
onto one action. These results are entirely consistent with
the theoretical predictions.

Figure 4 shows e.xperimental and theoretical results for
mean switching times. The theoretical results given agree

(2)basically with previous predictions , but a compensation
factor has been included to prevent the possibility of switching
times less than one epoch which were not included in the
experimental results. .As may be seen from Figure 4 good
correlation is obtained between theoretical and experimental
results.

3 The Krylov .Automaton
3.1 Theorv of Oneration

The

3.2

The Krylov automaton is very similar to the Tsetlin
automaton in that it has a series of states 1 to 2 n, with states
1 to n being associated with one action and states n + 1 to 2 n
being associated with the other. It is in the movement between
the states that the Krylov and Tsetlin automata differ as shown
in Figure 5. In response to a reward the Krylov automaton
acts as the Tsetlin and moves deterministically towards an end
state but, in response to a penalty, the automaton acts in a
stochastic manner and either moves towards states a and n + 1 or
towards the end states with probability ^ .

The action of the Krylov automaton can be.related to that
of the Tsetlin automaton. If an automaton performs an action
such that it receives a penalty with probability c^ then

penalty probability = c^

reward probability = 1 - c^

If a reward response is taken as a movement towards states 1
or 2 n and if a penalty response is taken as a movement towards
states n and n + 1 then for the Krylov automaton

penalty response probability =
reward response probability = 1

and a similar argument applies to ■

Equating response probabilities we see that a Krylov
automaton receiving penalty probabilities in the range 0 , 1 is
equivalent to a Tsetlin automaton receiving penalty probabilities
in the range 0 , . However, it has been shown above that
the Tsetlin automaton does not function correctly with penalty
probabilities both less than and so it was expected that
the Krylov automaton would not work well over the complete
range of c^'s .

Hardware Design
A Krylov automaton was designed using digital stochastic

computing techniques and its schematic diagram is shown
in Figure 2. The circuit is identical to that used in the
Tsetlin automaton except that instead of deterministically
converting a penalty response from the environment into an
up/down control signal for the counter, a stochastic sequence
of probability is sampled and used as the control signal.

¿a

- 3 Z 5 -

3.3

z d -

3 . 3 Experimental Results
Figure 6 (a) shows a Krylov automaton with memory size

of 2045, initially with output action 1, operating in a
switched environment with c„'s of 0 and ^ . As nredicted the

2 lo
result is similar to a Tsetlin automaton working with both c.'s

1
less than a half with the automaton locked into the output of
one action. This locking is in fact a function of the memory
size. The automaton has two stable states, with the state
corresponding to the lower c_. being more stable than the other
with stability increasing as the memory size increases. Variance
in the penalty probabilities causes movement between the states
and the time spent in a state depends on its stability. Thus
while both states are stable, for small memory sizes, variance
should cause movement between the states with the automaton
spending more time in the most stable state. This can be seen
in Figure 6 (b) which shows a Krylov automaton with memory size
of 8 with c., of and c„ of moving from states corresuonding
to c^ to states corresponding to c^, remaining in those states
for a time then moving back. Finally Figure 6 (c) shows a Krylov
automaton with memory size of 8 working in a switched environment
with c.'s of X • Since when the switching trace is
high the automaton trace should be low it can be seen that it
works poorly.

The Modified Tsetlin Automata, Types 1 and 2
Though the results of testing the Krylov automata were

disappointing the Krylov automaton proved to be the basis of two
new learning automata. The aim in designing these was to retain
the good qualities of the Tsetlin automaton but also to produce
automata which would operate well for c.'s about any value
rather than the value of half which the Tsetlin automaton is
limited to. The Krylov automaton took penalty probabilities
which were greater than a half and produced penalty response
probabilities which were less than a half. The modified
Tsetlin automata take two penalty probabilities of greater
than a half but about a value c and, by using a stochasticrn
response to a penalty, produce one penalty response probability
which is less than a half and one which is greater than a half.
Further, by using a stochastic response to a reward, two penalty
probabilities /

- J ^ /

orobabilities both less than a half but about a value c willm
produce one penalty response probability which is greater than
a half and one which is less than a half. This is illustrated
in Figure 7. Thus provided c^ is known any pair of penalty
probabilities can be transformed to be about a half producing
a Tsetlin type response.

4.1 Theory of Operation
The modified Tsetlin automata are similar to the Tsetlin

automaton in that they have a series of states 1 to 2 n with
states 1 to n being associated with one action and states n + 1

to 2n being associated with the other. However, the movement
between the states is more complex and is shown in Figure 8 .

For the modified Tsetlin automaton, type 1 shown in
Figure 8 (a), and penalty probabilities about a c value greaterm
than a half, as shown in Figure 7(a), to obtain penalty response
probabilities c^ and c^ spaced about a half

m = 0.5 (1)

Using a stochastic response to a penalty with probability
of moving towards states n and n + 1 and assuming a deterministic
response to a reward then

m = c ̂ W m p (2)

Substituting equation (2) into equation (1)
1W

2 cm

W is to be a stochastic variable and so has a maximum value
of 1 thus

W
2 cm

if __1
2 cm

(3)

If
2 cm

For penalty orobabilities about a c value less than a half as * m
shown in Figure 7(c), to obtain penalty response probabilities
c^ and c^ spaced about a half

m = 0.5 (4)
Using a stochastic response to a reward with probability
of /

i 2 3
of moving towards the end stats associated with the action
output by the automaton and assuming a deterministic response
to a penalty, an assumption justified by equation (3) then

= c (1 - W) (1 - c^) r mm m
substituting equation (5) into equation (4)

(5)

W
2 2

(6)

if
2 (1 - c)m

For c greater than a half m W = 1 r so justifying the
assumption made in forming equation{2 ^

For the modified Tsetlin automaton, type 2, shown in
Figure 8 (b) in addition to penalty and reward responses we
have an inaction response. If an inaction response is counted
as half a penalty response, for penalty probabilities about a
c value greater than a half as shown in Figure 7(a) to obtain m
penalty response probabilities cĵ and c^ spaced about a half

m = 0.5 (7)

Using a stochastic response to a penalty with probability of W
of moving towards states n and (n + 1) and (1 -) of remaining
in the same state, and assuming a deterministic response to a
reward then

m = c Wm
1
2 ^m (1 - W^) (8)

Substitutingequation(8) into equation (7)
1 - c

W 1 - cm

= 1

.m

if
1 - cm

m

m
m

(9)

For penalty probabilities about c^ value less than a half, as
shown in Figure 7(c), to obtain penalty/ probabilities c^ and
C2 spaced about a half

c ' m = 0.5 (1 0)

Using a stochastic response with probability of moving
towards the end state associated with the action output by the
automaton and assuming a deterministic response to a penalty,
an /

- 3 2 3 -

an assumption justified by equation (9; ;hen

m = c + m 1 (1 - c^)(l - W^)
2 tn r

Substituting equation (11) into equation (10)

m
1 - c if

m
m

1 - cm

(11)

(1 2)

= 1 if in
1 - cm

For c greater than a half W = 1, so justifying the assumption
made in forming equation (8).

Equations (3), (6), <9) and (12) require a value for c
This is taken as the mean of estimated values for and

m
/ 0 \

obtained from two adaptive digital circuit elements (ADDIES)^
which respond to the reward/penalty signals obtained from the
environment, these signals being fed to the ADDIE estimating
c^ when action 1 is output and to the ADDIE estimating c^ when
action 2 is output. It was predicted that; the type 2
automaton with the inaction response would have less variance
than the type 2 automaton and would be more nearly optimal
for the same memory size.

4.2 Software Simulation
The modified Tsetlin automata, types 1 and 2 were

simulated on a computer rather than the hardware synthesis used
for the Tsetlin and Krylov automata because of the relative
complexity of the automata structures. For the purpose of
comparison the Tsetlin and Krylov automata were also simulated.

Figure 9 shows results from a simulation of a modified
Tsetlin automaton, type 1, with memory size of 10, ADDIE
counter size of 32 and operating in an environment with penalty
probabilities of 0.6 and 0.9. It can be seen in Figure 9(a)
that the automaton initially moves between actions 1 and 2

frequently but later moves to states associated with the action
corresponding to the lower penalty probability. Initially, with
the estimates of the 's 1^ "tbe ADDIES being zero, both actions
are unstable but as the estimates of the penalty probabilities
rise the actions become less unstable until in the steady-state
the action corresponding to c.. . . is stable and the other® i(min)
unstable. The learning time is limited by the speed of
response /

- 3 3 0 -

response of the ADDIES. Between Figures 9(a) and 9(b) the
environment has been switched and it can be seen that the
automaton reacts quickly to the change. It can be seen that
the switching time in Figure 9(b) is shorter than the learning
time in Figure 9(a). This is because the switching time is
governed by the memory size which is small, rather than the
counter size of the ADDIES which is larger.

Figure 10 shows results from a simulation of a modified
Tsetlin automaton, type 2, with the same parameters as the
type 1 considered above but operating with penalty probabilities
of 0 . 1 and 0.4, again with the environment switching between
Figures 10(a) and 10(b). The automaton operates satisfactorily
and the lower variance, of the type 2 automaton can be seen.

Figure 11 shows results of simulations of Tsetlin and
Krylov automata. Figure 11(a) shows the Tsetlin automaton
operating with penalty probabilities of 0.6 and 0.9 and moving
frequently between states n and n + 1 , both actions being
unstable, while Figure 11(b) shows the Krylov automaton
remaining in the incorrect state after a switch in the environment
to 0.65 and' 0.35.

Figure 12 illustrates a problem that can occur with
either of the modified Tsetlin automata. Figure 12(a) shows
a type 2 modified Tsetlin automaton operating in an environment
with penalty probabilities of 0.35 and 0.65. In Figure 12(b)
these have been switched but it is a relatively long time before
the automaton changes its output action. This is due to two
causes. The first is variance in the .ADDIES. .At the time
of the switch the ADDIES held estimates of the penalty
probabilities which were higher than normal. This resulted in
a higher than normal value for c^ causing the stability of the
actions of the automaton to be increased leading to a longer
switching time. The second cause is the speed of response of
the .ADDIES being too fast in comparison with the speed of the
speed of the counter. In this example the me.mory size was 10
and the ADDIE counter size 32. After the switch the automaton
has as an input the higher c^. If the .ADDIES are small their
response time is fast and the penalty probability estimate in
the .ADDIE has increased significantly before the automaton
counter has had time to output the action corresponding to c., .. ̂ 1 (min)
Because of this, the value of c increases causing the stabilitvm
of both actions to increase and result in longer switching
t imes . /

times. In order to maintain short switching times the
ADDIES used in the modified Tsetlin automata should not be
too small so that they have low variance and response times
longer than the automata's counters.

Conclusions
In the course of investigating the Tsetlin automaton in

a deterministically switched environment, comparisons have
been made with other automata structures. Optimal automata
are a severe disadvantage when operating in a non-stationar3/
environment because an automaton which is nearly optimal takes
the correct action with a probability very nearly unity. Thus
if the c^'s change so that the previously correct action becomes
the wrong action, the automaton will continue to output the
previously correct action and will not cause the environment
to output the c^ corresponding to the current correct action
and so the change in the c.'s can go unnoticed by the automaton
for a long time. Decreasing the optimality will cause the
wrong action to be output more often and so any change in the
c.'s will be noticed by the automaton sooner. There is a

1
trade-off between optimality and mean switching time.

The Tsetlin automaton provides good mean switching times
and a near optimal performance but with a severe limitation
on the environment, the having to be about a half, but it
is the restrictions on the c.'s that gives the good optimality
and learning times. When operating in a switched environment
the Tsetlin automaton does not have to sample the wrong state
in order to determine whether the environment has switched or
not. Because the c.'s are about a half when the switch occurs,

1
a c. which was less than a half is now greater than a half and

1

the automaton moves towards states associated with the other
action no matter the degree of optimalit:/ and so high optimality
is not a great penalty. The Tsetlin automaton seems to have
only a small trade-off between optimality and mean switching
time but has a severe trade-off between optimality, mean
switching time and limitiations on the range of c^'s that can
be used.

The Krylov automaton was believed to be asymptotically
optimal in arbitrary random environments. Experimental evidence
clearly shows that the automaton possesses an unsatisfactory-
performance /

performance in non-stationary random environments.
The modified Tsetlin automata types 1 and 2 have been

shown to be capable of good learning characteristics with no
restrictions on the penalty probabilities that can be used
whilst retaining the short mean switching times and near
optimal performance that characterises the Tsetlin automaton.
It is hoped these automata will be of use in non-autonomous
environments where their ability to reject actions that
correspond to penalty probabilities above any value of c^ and
their short switching times should prove valuable.

Acknowledgement ; The authors wish to gratefully acknowledge
the support of a U K Science Research Council grant.

References
TSETLIN M L,
'On the Behaviour of Finite Automaton in Random Medium'
Automaton and Remote Control, 1961, 22, pp 1345 - 1354
LOUI, M C and NARENDRA, K S
'Comparison of Learning Automata Operating in Nonstationary
Environments'
Becton Centre, Yale University, 1975, Report CT-65
KRYLOV, V U ,
'On One Stochastic Automaton which is Asymptotically
Optimal in a Random Medium'
Automation and Remote Control, 1963, 24, pp 1114 - 1116
GAINES, B R,
'Stochastic Computing'
AFIPS SJCC, 1967, 30, pp 149 - 156
MILLER, A J and .MARS, P,
'Theory and Design of a Digital Stochastic Computer
Random Number Generator'
Trans IMACS, 1977, 19, pp 198 - 216
MILLER, A J and .MAP.S, P
'On Optimal Estimation of Digital Stochastic Sequences'
Int J Syst Sci, 1977, 8 , pp 683 - 696

P (l / 2) -

a n : : > • •
penally ' ** ^

P (l / 2)

COO)
CJ

O D
end
stale

• .0 _ ©

P (l) ~

n +f̂ — */iH'2V̂ -* • • •

reward

- € D
end
slate

Figure 1 Operation of Tsetlin Automaton

(jj4̂

Figure 2 Schematic Diagram ot Tsetlin Automaton witii
Modification for Krylov Automaton sliown dotted

- 3 3 5 -

(a

(b)

(c

Figure 3 Examples of Operatioa of Tsetlin
Automaton in Switched Environments

H-34p:
•i0)

(DPP
COíH-ciOtrH-p
JQ

H
Bm
U)

oH)
►Bw(D
rt
H-
P

P<tO3 P
11o
P

mean switching time
to CJ ^ O '

(number oí clock pulses)
00 (£> O -* to oi -li.

tx)
ÍÚ
O'i

CEC>
P (l / 2) -

penalty

• 4»

P (i / 2)

V,

U)
ix)

P (D -

Q T) _ , ,^ _ 0 _ 0 0 -^ 0 - . . . — 0 3

end
slate reward end

slate

Figure 5 Operation of Krylov Automaton

- 3 3 3

QJ

£
c_o
a
E
-e!3
C3

16
a
£</)

ae_g
rja

0)
Is
1/3

a
G
o
-5a

16

(a)

(b)

(c)

Figure 6 Examples of Operation of Krylov
Automaton in Switched Environments

1

p
penalty

0 5

-Cl

-C2

1
P

penalty
respofse

={> 0 5
- c r

-C2‘

1
p

penalty

0 5

1 n
P

penalty
response

-Cl

-C2

={> 0 5
-C l '

-C2‘

I

P
penalty

05

0

-C l

I -

P
penalty
respaise

- 0 0 5

-C2

- c r

COCJ
CD

-C2'

Q

Figure 7 Effect of Modified Tsetlin Automata in Converting Penalty
Probabilities into Penalty Response Probabilities______ _

0 3 : :

C Q : :

C 0 " • • •

: b j

• * ^ 12/1

(jj
o

n ^ •
r e w a r d

l b)

p i l)

• • • 2n

Figiu-e 8 Operation of Modified Tsetlln Automata
(a) Type 1______________(b) Type 2_______

- 34 1 -

action 1
C l -- a - 6

a ct ion 2

C 2 = 0 -9

O U T P U T V A L U E

a c t io n 1

C l = 0 -9

a c t i o n 2

C 2 = 0 - 6

O U T P U T V A L U E

-%uxe 9 Example of Operation of Type 1 Modified
Automaton in Switched Environment

Tsetlin

342

a c t i o n 7
C l : 0 -1

O U T P U T

a c t i on 2
C 2 r 0- L

V A L U E

a c t i o n 7
C1 = 0- L

O U T P U T

a c t i o n 2

0 2 = 0-1

V A L U E

Figure 10 Example of Operation of Type 2 'lodified
Tsetlin Automaton in Switched Environment

- 3 4 3 -

a c t i o n 1
C l r 0 - 3 5

a c t i o n 2
C 2 = 0 - 5 5

a c t i o n 1
C l = a - 9

a c t i o n 2
C 2 = 0 - 5

too
O U T P U T V A L U E

•50 - 20 20 so too too -so
O U T P U T v a l u e

-20 20 so too

Figure 11 Examples of Operation o:
Krvlov Automata

?setlin and

- 344 -

act i an J
C 1 - 0 - 3 5

act ion 2
C 2 = 0 - 6 5

action 1
C l = 0 - 6 5

act ion 2
C 2 = 0 - 3 5

100 -SO
O U T P U T

-20
V A L U £

20 SO lOO 100 -60
O U T P U T

-20
V A L U E
20 so 100

___ I

13» i
C -1 o :

o - O '
I

Figure 12 Example of Operation of Type 2 Modified
Tsetlin Automaton showing Delayed Switchin:

	coversheet_template_THESIS
	MACKIE 1980 Theory and application of learning

