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Abstract

Although the theoretical performance of many learning automata has
been considered, the practical operation of these autcmata has
received far less attention. This work starts with the construction
of two action Tsetlin and Krylov automata. The performance of these
automata has been wmeasurad in stationary and non-statiocnary
environments. The operation of a hierarchical automaton controlling
the memory size of a Tsetlin automaton is also investigated.

Two new automata are proposed with the aim of avoiding the
operational disadvantages of the Tsetlin autowmaton. These automata
have been tested wusing a computer simulation and in addition
theoretical performance results have been calculated and compared with
results for Tsetlin, Krylov and Lri automata.

A model of a non—autonomous environment is simulated and its
operation analysed theoretically. A more accurate model is analysed
and its operation with a Lri automaton examined and compared to
theoretical predictions. The requirements for learning automata to
operate successfully in non-autonomous environments is considered and
it 1is shown that the Lrp and Lri automata do not converge to the
optimum for a nom-—autonomous envirounment. '

Three automata are proposed which are designed to operate in-
non-autonomous environments and their performances are cowmpared to
those of the Lrp and Lri automata.

The operation of autcmata in a hierarchical 1 s
cooperative and competitive games is cousidered. 1In these situations
the performance of the new automata is compared to that o
Lri automata.

Finally, two applications of learming automata are investigated.
The first considers the Tsetlin allecation scheme, gives a
modification which increases the performance and makes a comparison
with a scheme using other learning automata. The second involves the
selection of a processor in a multiprocessor computer system and
compares a scheme wusing learuning automata with a fixed scheduling
discipline.
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Abstract

Although the theoretical performance of many learning automata has
been considered, the practical operation of these automata has
received far less attention. This work starts with the construction
of two action Tsetlin and Krylov automata. The performance of these
automata has been measured in stationary and non-stationary
environments. The operation of a hierarchical automaton controlling
the memory size of a Tsetlin automaton is also investigated.

Two new automata are proposed with the aim of avoiding the
operational disadvantages of the Tsetlin automaton. These automata
have been tested wusing a computer simulation and in addition
theoretical performance results have been calculated and compared with
results for Tsetlin, Krylov and Lri automata.

A model of a mnon-autonomous environment is simulated and its
operation analysed theoretically. A more accurate model is analysed
and its operation with a Lri automaton examined and compared to
theoretical predictions. The requirements for learning automata to
operate successfully in non-autonomous environments is considered and
it is shown that the Lrp and Lri automata do not converge to the
optimum for a non-autonomous environment.

Three automata are proposed which are designed to operate in
non-autonomous environments and their performances are compared to
those of the Lrp and Lri automata.

The operation of automata in a hierarchical learning system and in
cooperative and competitive games is considered. In these situations
the performance of the new automata is compared to that of the Lrp and
Lri automata.

Finally, two applications of learning automata are investigated.
The first considers the Tsetlin allocation scheme, gives a
modification which increases the performance and wmakes a comparison
with a scheme using other learning automata. The second involves the
selection of a processor in a multiprocessor computer system and
compares a scheme wusing learning automata with a fixed scheduling
discipline.
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Abbreviations and Symbols

ADDIE

fecefese.
f.s.d
G

J

BID

PRBS

adaptive digital element

first parameter of Lrp automaton

action of learning automaton

average penalty

second parameter of Lrp automaton

penalty probability associated with action i
computational units

expected value

a small quantity

algorithm of learning automaton

first come first served

fixed scheduling discipline

output function of learning automaton
parameter of Lrp automaton

learning automaton states or matrix element sﬁbscripts

a positive constant which specifies ¢  in Kumar’s
non-autonomous environment !

mean first passage time from state i to j
average penalty

memory size of Tsetlin automaton

probability of counting up in a random walk
action probability vector of learning automaton
state vector of learning automaton

parameter in linear or non-linear ncn-autonomous
environment

proportional intergral differential

pseudo-random binary sequence



Ps

Pt(x)

state probability vector of learning automaton
transition matrix of learning automaton

probability of counting down in a random walk
number of actions available to a learning automaton
number of states in a random walk

step size of probabilistic Tsetlin automaton

parameter in linear or non-linear non-autonomous
environment

input to automaton from environment
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER 1 REVIEW OF LEARNING AUTOMATA

Introduction

The aim of constructing a machine able to control a variety of
processes with 1little or no prior knowledge of the process being
required is an attractive proposition. The wuse of learning is a
method of achieving these aims and has lead to the study of learning
automatas.

The aim of a learning automaton is to select an optimal action from
a set of possible actions. An action, as selected by a learning
automaton, can consist of a single action or a number of actions which
are performed on an environment. The environment responds to the
action or actions with an output from a set of possible outputs which
is probabilistically related to the action of the automaton. The
automaton in turn learns by using the output of the environment to
change 1its internal state prior to selecting another action. The
configuration of automaton and environment is shown in Figure 1.1.

The study of learning automata involves determining the
characteristics of learning automata and the environments with which
they will be used. This enables automata to be selected to suit
different types of environment and allows the performance of automata
to be evaluated, compared and hopefully improved. This chapter deals
in general with the different types of automaton and environment while
the other chapters deal with particular automata and particular

environments and types of environment.



The Environment

The process, system or medium in which the learning automaton
operates is termed the environment. The environment is defined by the
triple (o¢,C,X) where o<represents the input set to the environment in
the form of an action and X represents the output set. The
environment is assumed to be stochastic so that 1in response to an
input ocs s it 1is possible to generate any of the elements of the
output set according to c; » an element of C, the penalty probability
set.

There are three different schemes for the output of the
environment, termed the P, Q and S models. 1In the S model, the output
of the environment can have a continuous range of values in the
interval [0,1]. In the Q0 model, the output can have one of a finite
number of values in the interval (0,1]. However it 1is the P model
which is most widely wused with learning automata and which will be
used in the chapters that follow. In this model there are only two
output values, mnamely O representing a reward and 1 representing a
penalty. At time t=n c; is defined as

ci (n) = Probability( x(n)=1 | 04n)=<3a ) Cleld)
Thus c; represents the probability of a penalty being output in
response to input o& while the probability of a reward is l—ci . The
P model has the advantage of simplicity when environments or learning
automata are being investigated either through theoretical analysis or

practical observation.



The Learning Automaton

Although a learning automaton requires 1little a priori knowledge
about an environment, some information is required. An automaton must
know the number of allowable actions for the environment or a number
greater than the number of allowable actions. This is so that the
actions of the automaton can be matched to the actions of the
environment, with any extra automaton actions being made dummies with
a penalty probability of unity. The automaton must know the form of
the environment output in terms of P, QO or S models. Finally, the
operation of the environment and automaton must be synchronised so
that action and feedback follow each other in the correct order. Both
the automaton and the environment are assumed to operate in discrete
time with the input to the environment «(n) being followed by output
x(n) to the automaton which after its internal operations produces
o<(n+l). Apart from the above information, a learning automaton should
be able to converge towards selecting the optimal action of the
environment by working from an initial condition where each action is
regarded as being equally favourable. The information the automaton
uses to select 1its actions is the favorable (reward) or unfavorable
(penalty) responses made by the environment to its past actions.

A learning automaton can be described by the quintuple (¥,x,9,F,G)
and falls within the classification known as the Mealy model [1,2].
The input set X has the allowable inputs to the automaton as its
elements. For an automaton operating with a P model environment, the
set will have two elements X, =0 and x2 =1l. The set o< is the output
set of the automaton which has as its elements the actions the
automaton can take. The set ¢ is the set of states of the automaton.

The operation of the automaton is defined by its algorithm F which



relates the state of the automaton to its next state
F(P(n),x(n)) = P(a+l) (1.2)

F can be a deterministic or a stochastic function and defines a set of
transition matrices, one for each element of X allowing equation (1.2)
to be written as

Pt(x) B(n) = P(n+l) (1.3)
If the transition matrices have only O or 1 as their elements the
automaton 1is called deterministic while if any of the elements are
probabilities the automaton is called stochastic. If the elements of
the transition matrices are constants the automaton is described as
having a fixed structure but if any of the elements is a variable the
automaton has a variable structure. G is the output function of the
automaton which relates the state of the automaton to the output,

G(P(n)) ->cc (n) (1.4)
G may be deterministic or stochastic.

There are two more quantities which are often wused in describing
automata, mnamely Ps(n) and Pa(n). Ps(n) is the state probability
vector and its elements are defined as

probability(f(n) = Qi ) = Ps; (n) (1.5)
the probability that the automaton occupies state ¢i at time n.
Pa(n) is the action probability vector and its elements are defined as
probability(ec(n) =cc, ) = pa, (n) (1.6)
the probability that the action of the automaton will be action @<,

at time n.



Types of Learning Automata

A large number of learning automata have been proposed and
investigated [3,4,5]. Table 1.1 gives a 1list of those commonly
mentioned in the literature on the subject as well as automata which
are of particular interest 1in later chapters. This list has been
divided into four types containing automata which have similarities in
the way they operate.

The automata included in Type 1 are all wvariable structure
automata. These automata are best described by their algorithm and
best observed via the action probability vector Pa. The naming of
these automata is based on the algorithm so that if the algorithm is a
linear equation the automaton has an L as the start of its name. If
the algorithm is non-linear the first letter is an N while H denotes a
hybrid algorithm. The subscripts which follow indicate whether the
automaton changes state in respomse to a reward (r), a penalty (p) or
remains inactive (i), while (w) indicates a weighted response.

Although the Type 1 automata are a more recent development than the
Type 2 automata, recent investigations have dealt far more with Type 1
automata than Type 2. In particular the Lrp [6] and Lri [7,8] have
been the most common automata for study. As these two automata are
used in later chapters the Lrp and Lri automata will be described
here.

The operation of the Lrp automaton is described in terms of its
algorithm as

p (n+1) =C><paj (n) (1.7

aj ;4 i
pa; (n+l) = 1-Z . ., pa, (n+]) (1.8)

in response to a reward after action o<, while
i

pa:,L (n+1) =/3pai (n) (1.9)



paj 41 (n+1) = paj (n) + (1-3)/(r=1) pa, (n) (1.10)
in response to a penalty after actionoci , where o<and [ are in the
interval (0,1).

From equations (1.7)=(1.10) it can be seen that o controls the
operation of the automaton in response to a reward while 3 controls
the operation in response to a penalty. Often <and 0§ are combined to
give a third parameter § defined as

§ = (1-2¢)/(1-8) (1.11)
By making =1 the action probability wvector does not change in
response to a penalty and the Lrp becomes the Lri automaton. Thus the
Lri automaton is just a special case of the Lrp automaton with 4 =1 but
the performance of the Lri automaton is sufficiently different from
that of the Lrp automaton for the Lri automaton to be refered to as a
distinct automaton.

While the performance of the rest of the automata in Type 1 has
been studied [9,10,11,12,13,14], none have had the consistent
performance of the Lrp and Lri automata for all penalty probabilities.

The automata included in Type 2 are all fixed structure automata
with a deterministic or stochastic algorithm and a deterministic
output function. Because of their deterministic output function each
state 1is associated with only one output and these automata can be
classed as Moore models [1,2,20]. These aufomata are best described
by a graph showing the state transitions in response to a penalty and
reward. Figure 2.1 shows the graph of the Tsetlin automaton as an
example. The capacity for changing the performance of these automata
is limited as the algorithm is fixed, only the number of states in the

automaton is variable.



The first of the Type 2 automata to be studied was the Tsetlin [15]
while the automata of Krylov [16], Krinskii [17] and Ponomarev [18]
followed the lead given by Tsetlin by devising automata similar to
Tsetlin’s but with modifications designed to improve performance. All
these automata have a series of states corresponding to a single
action Jjoined to other series of states corresponding to different
actions. The difference between the automata 1is in the way they
attempt to ensure the automaton stays in states corresponding to the
optimal action. The @ model is a modification by Tsetlin to his own
multi-action automaton where instead of the action of the automaton
changing in a deterministic manner it changes stochastically. These
automata have been studied by Langholz [20,21,22] and the G2n,2 has
been studied by Narendra et al [19] but nothing further will be said
here as the Tsetlin and Krylov automata are studied in Chapter 2.

Although the Type 3 automata are based on the Tsetlin automaton
they have a wvariable structure and so are similar to Type 1, however
the Type 1 automata have a stochastic output function while the Type 3
automata have a deterministic output. The Type 3 automata are
investigated in Chapter 3.

Although the automata included in Type 4 have a variable structure
with either deterministic or stochastic output functions [23] they are
not grouped with the Type 1 automata because of their different
approach to learning. The Type 4 automata use the output of the
environment to estimate the elements of the set C. The automata then
generally select the action corresponding to the lowest estimate which
should be the optimal action of the environment. These automata have
not been as widely studied as Types 1 and 2 though some work has been

done by Coutts [24,25].



Type 5 automata are fixed structure automata with deterministic
algorithms and stochastic output functions. They are similar to Type
2 automata, consisting of a series of states but cannot be classed as
Type 2 because of their stochastic output functions which give them
some of the advantages of Type 1 automata. These automata are dealt

with in more detail in Chapter 5.

Synthesis of Learning Automata

Using digital techniques, learning automata can be readily and
economically developed to run at high speed and automata have been
built using this method, for example the Tsetlin and Krylov automata
in Chapter 2. However some automata are too complex to be easily
synthesised this way and in experimentation, where comparisons have to
be made between different automata, more flexibility is required.
Microprocessors have been used to provide this without a proliferation
of hardware and a great speed penalty [26]. Where speed is not
important and the greatest flexibility is required a mainframe
computer has been used to simulate the learning automata as in Chapter
6.

Three functions that are required in the study of learning automata
are the generation of random numbers, the generation of a random bit
with a particular probability and the estimation of a probability from
a random sequence. The methods used to obtain these functions can be
implemented using any of the synthesis techniques mentioned above.

Random numbers can be obtained wusing independent segments of a
pseudo-random binary sequence (PRBS) as a binary number. Such numbers
will be uniformly distributed in the range O->£J-l where N 1is the
number of bits on the binary number. A PRBS can be obtained from a

shift register operating with feedback [27,28]. A register when



fitted with the appropriate feedback comnections will progress through
every possible register state except for the all =zeros state in a
pseudo-random manner before reentering its initial state. The output
from a single bit of the register will be a PRBS with probability 0.5.
To obtain a random bit e.g. to cbtain a penalty or reward with a
particular penalty probability, a random number in the range (0,1) is
compared to the probability. If the random number is less than the
probability the output is a penalty, otherwise it is a reward. Figure
1.2 shows a digital version of this which was used in Chapter 2 to
produce a sequence of bits to represent a penalty probability.

In order to estimate the wvalue of a probability an Adaptive Digital
Element (ADDIE) is wused [29,30] as shown in Figure 1.3. When
operating in the steady state the ADDIE counter contains an estimate
of the input probability. If the value in the counter is too low the
feedback from the comparator is such that the counter counts up more
often than it counts down while, if the wvalue in the counter is too
high the inverse is true. In reaction to a sudden change in the
input, an ADDIE has a first order response with an error decaying
exponentially with time. For a fast response, an ADDIE should have a
small counter size but for the estimate of the input to have low
variance, the counter size should be large. In practice, a compromise

must be reached between these two conflicting criteria.

Stationary Environments and Measures of Performance for Learning

Automata

Stationary environments have penalty probabilities Ci which are
constant and do not vary with time. One measure of performance is the
average penalty M output by the environment. An automaton is said to

be expedient if



. d s B (1.12)

M< 1/r * Z:i
that is, if the automaton operates so that it receives an average
penalty lower than that which could be obtained by randomly selecting
actions. An automaton is said to be absolutely expedient if

EM(n+l) | Ps(n)) < M(n) (1.13)
that is, the average penalty can be expected to decrease as the
automaton operates. If

1 —s> ¢ %4 (1.14)

M(n) < 1/r zzi _
absolute expediency implies expediency and in stationary environments
absolute expediency implies € optimality [4]. An automaton is said to
be optimal if

Lim 55 el M -> ¢y (min) (1.15)
and € optimal if

Lim S e M -> cy (min) + € (1.16)

When operating in a stationary environment an automaton which was
optimal would select the action corresponding to c, (min) with
probability 1 and so receive the lowest possible average penalty. An
automaton described as having gone optimal is selecting an action with
probability 1. In a stationary environment an automaton which is

optimal or as near optimal as possible will receive the lowest average

penalty and have the best performance.

Non-stationary Environments and Measures of Performance for Learning

Automata

Non-stationary environments are defined as enviromments in which
the characteristics of the penalty probabilities change with time. A
switched environment is one in which one or more penalty probabilities
ghange instantaneously from one wvalue to another. There are

deterministically switched environments in which the changes will

10



occur at regular time intervals and Markov switched environments in
which, at regular time intervals, there 1s a probability that the
penalty probabilities will change.

Unlike the stationary environment an optimal, or mnear optimal
automaton operating in a non-stationary environment will in most cases
not achieve the lowest average penalty. To be able to adapt to
changes 1in the environment, an automaton must detect these changes by
selecting non-optimal actions. A near optimal automaton will wusually
take a long time to adapt to changes in the environment and during
this time the automaton will not be selecting the action corresponding
to the lowest penalty probability. Thus a measure of performance
introduced for wuse in non-stationary environments 1is the mean
adjustment or switching time [31]. This is defined for an automaton
selecting between two actions as the average number of epochs after a
sudden change 1in the penalty probabilities from ¢y < sy to & > ¢y

until the action probability pa changes from being less than pa to

it 2

being greater than pa, -

Non-Autonomous Environments and Measures of Performance for Learning

Automata

The environments described so far have been autonomous in that the
penalty probabilities associated with an action were unaffected by the
operation of an automaton. However in many practical situations the
environment would be affected by the actions taken by the automaton.
An example would be a telephone system where the available lines would
depend on the routing of previous calls. Such environments are

described as non-autonomous.

11



In autonomous environments, a single action corresponds to the
minimum penalty probability and so the performance of an automaton can
be judged from how nearly optimal the automaton is. In a
non-autonomous environment, because the penalty probabilities wvary as
the action probabilities change, no single action probability «can be
described as best, and the task of the automaton changes from finding
the best action to finding the best distribution of actions. In
non-autonomous environments the degree of optimality 1is not an
effective measure of performance and the average penalty received by
the automaton is used.

A non-stationary non-autonomous environment is not one in which the
penalty probabilities change but one in which the relationship between
the penalty probabilities and the action probabilities change. In
non-autonomous environments the mean switching time of an automaton is
less important than in an autonomous environment. Poor mean switching
times in a non-stationary autonomous environment are caused by an
automaton selecting a single action and not detecting changes in the
second. However in a non-autonomous environment, where the best
policy is to select both actions in a particular ratio, changes are

quickly detected.

12
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THEORY AND APPLICATICNS OF LEARNING AUTOMATA

CHAPTER 2 TSETLIN AND KRYLOV AUTOMATA

Tsetlin Automaton=-Operation

In 19€1 Tsetlin described a fixed structure learning automaton with
deterministic algorithm and output function [15]. The Tsetlin
automaton has been considered theoretically [32,33] and by simulation
[19,30] but a Tsetlin automaton has not been built and its practical
operation considered. The operation of the automaton is best
explained with the aid of Figure 2.1. This shows a two action
automaton with 2N states and a memory size of N. States 1 to N

correspond to omne action while states N+1 to 2N correspond to the

other. When the automaton receives a penalty it moves towards states
N and N+1 while, in response to a reward, the automaton moves towards
end state 1 or 2N. Thus the automaton performs a random walk
determined by the penalty probabilities of the environment with

reflecting barriers beyond states 1 and 2N [34].

Tsetlin Automaton—-Hardware Synthesis

In order to investigate the operation of the Tsetlin automaton the
automaton was built using digital electronics. A block diagram of the
circuitry used is shown in Figure 2.2 with more detailed circuit
diagrams of the combinational logic used shown in Figures 2.3 and 2.4.

The heart of the automaton was a 12 bit binary counter allowing up
to 4096 states or memory sizes up to 2048 with two actions. The most
significant bit of the counter was taken as the action of the
automaton and was connected directly to the enyironment. In response
the environment output a penalty or reward according to the
appropriate penalty probabilitye. The output of the environment and
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the action of the automaton were fed into combinational 1logic to
convert them into an wup/down control signal for the counter. The
up/down control was in turn fed into more combinational logic with the
state of the automaton and signals representing the memory size to
provide a disable signal to prevent the counter exceeding the required
memory size.

An environment was constructed using the method shown in Figure 1.3
using shift registers of length 23 and 31 bits generating maximal
length sequences. The two penalty probabilities were then fed to the
circuitry shown in Figure 2.5 which was used to produce a switched
environment if required and to select the action probability
corresponding to the automaton action. To monitor the operation of
the automaton, the state of the 12 bit binary counter was converted to

an analogue signal and displayed on an oscilloscope.

Tsetlin Automaton-Experimental Results

The performance of a Tsetlin automaton with a memory size of 2048
was investigated in both stationary and switched environments. Figure
2.6 shows learning curves for the automaton with action 2 the output
and c, changed from O to 7/16 in steps of 1/16. The results show
what is basically a linear movement from the central states of the
automaton to the end state. For low penalty probabilities the
movement to the end state is faster giving a shorter learning time.

Figure 2.7 shows the operation of the automaton in a
deterministically switched environment with the central trace

indicating the switching instants when c was changed to the previous

1

value of ¢ and ¢

9 2 . Figure

changed to the previous value of ¢y
2.7(a) shows the automaton operating with cy s of 15/16 and 1/16. It

can be seen that the automaton operates well and starts to move
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towards states associated with the other action as soon as the
environment switches. Figure 2.7(b) shows the same as Figure 2.7(a)
initially but then the c; s are changed to 15/16 and 3/4. The
performance of the automaton changes, it remains near its central
states N and N+1 and frequently changes its output between action 1
and action 2. Figure 2.7(c) also shows the same as Figure 2.7(a)
initially but the c, “s are then changed to 3/16 and 1/16. In this
case the operation of the automaton also changes. The automaton
operates poorly as its action remains the same regardless of the
changes in the environment.

The results shown in Figure 2.7 demonstrate that the operation of
the Tsetlin automaton will fall into one of three modes depending on
the environment. If the c; ‘s are about the value of 0.5, ome action
will tend to make the automaton move towards states associated with
the other action, while the other action will tend to make the
automaton move towards the corresponding end state. Thus one action
is stable while the other is unstable and the automaton works well.
If the c; s are both greater than 0.5, both actions will tend to make
the automaton move towards states associated with the other action.
Thus both states are unstable, the automaton moves between states N
and N+1 frequently and works poorly. If the cy s are both less than
0.5, both actions will tend to make the automaton move towards the end
state associated with that action. Thus both actions are stable, with
the automaton only moving from one action to another due to variance
in the penalty probability causing it to be temporarily greater than
0.5 over a long enough time to allow the automaton to move from one
action to the other. If the largest penalty pfobability is not close

to 0.5, or if the memory size is large, the automaton can output the
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wrong action for long periods of time and the automaton works poorly.

Tsetlin Automaton—Action Probabilitv Results

Though the Tsetlin automaton is a deterministic automaton with a
deterministic output function, over a long period of time a two action
Tsetlin automaton will output both actions. If these are recorded the
overall probability of selecting the optimal action can be calculated.
It was found that slight differences were present between the measured
and expected results which became apparent as the difference between
the penalty probabilities was reduced or the penalty probabilities
approached low values. It was found that the positioning of the
connections from the individual bits of the PRBS shift registers
affected the penalty probabilities. Rather than build a new random
number generator the best positioning of the connections was selected

and used for the later results.

Tsetlin Automaton-Mean Switching Time Results

Measurement were made of the mean switching time of the Tsetlin in
switched environments with penalty probabilities equally spaced about
0.5. For the Tsetlin and Krylov automata the mean switching time can
be defined as the average number of epochs, after a sudden reversal of
the penalty probabilities till the first output of the correct action,
assuming the automaton had rightly output the previously correct
action immediately prior to the switch in the environment. Figures
2.8(a)-(g) show the mean switching time results for various penalty
probabilities plotted against memory size with the corresponding
theoretical results. In general the results are in good agreement but
it can be seen that as the difference between the c; s 1is reduced the

measured results differ more from the theoretical results. This is
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due to the deficiencies in the generation of the penalty

probabilities.

Krylov Automaton-Operation

The Krylov automaton [l6] was proposed as an automaton which became
more nearly optimal as its memory size increased in any environment
instead of only in environments with one or both ci ‘s less than or
equal to 0.5 as for the Tsetlin automaton. The Krylov automaton is
very similar to the Tsetlin automaton in that it has a series of
states 1 to 2N, with states 1 to N being associated with one action
and states N+1 to 2N being associated with the other. It is in the
movement between states that the Krylov and Tsetlin automata differ.
As Figure 2.9 shows, in response to a reward the Krylov automaton acts
as the Tsetlin and moves deterministically towards an end state but,
in response to a penalty, the automaton acts stochastically and moves
either towards states N and N+l or towards the end states with
probability 0.5.

The operation of the Krylov automaton can be related to that of the
Tsetlin automaton. If an automaton performs an action such that it
receives a penalty with probability cl then

penalty probability = c

1
reward probability = l—c1
If a reward response is taken as a movement towards states 1 or 2N and
if a penalty response is taken as a movement towards states N and N+1
then for the Krylov automaton

penalty response probability = ¢, /2

reward response probability = (l-c )+(c1 /2) = 1—cl /2

1

and for the Tsetlin automaton

penalty response probability = c1

2



reward response probability = l—cl

and a similar argument applies to sy

Equating response probabilities it is seen that a Krylov automaton
receiving penalty probabilities in the range [0,1] is equivalent to a
Tsetlin automaton receiving penalty probabilities in the range
[0,0.5]. However previous results showed that the Tsetlin automaton
did not operate well with penalty probabilities which were both Iless

than 0.5, and so it was expected that the Krylov automaton would not

work well.

Krvlov Automaton-Hardware Synthesis

Because of the similarity between the Krylov and Tsetlin automata
the «circuitry used in constructing the two automata was identical
except for combinational logic block 1, as shown in Figure 2.2.

This circuitry, which is shown in Figure 2.10, instead of
deterministically converting a penalty response from the environment
into an up/down signal for the counter, as in the Tsetlin automaton,
sampled a stochastic sequence of probability 0.5 and used this as the

control signal for the counter.

Krylov Automaton-Experimental Results

The performance of the Krylov automaton was investigated whilst
operating in both stationary and switched environmentse. Figure
2.11(a) shows a Krylov automaton of memory size 2045, initially with
output action 1, operating in a switched environment with penalty
probabilities of 0 and 15/16. As predicted the result is similar to a
Tsetlin automaton working with both s s less than 0.5 with the

automaton action remaining unchanged even though the environment

switches. This inability to change is a function of memory size. The
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automaton has two stable actions, with the action corresponding to the
lower s being more stable than the other and with stability
increasing as the memory size 1increases. Variance 1in the penalty
probabilities causes movement between the actions and the time spent
in an action depends on its stability. Thus while both actions are
stable, for small memory sizes, variance should cause movement between
the actions with the automaton spending more time in the most stable
action. This can be seen in Figure 2.11(b) which shows a Krylov

automaton, with memory size of 8, and operating with ¢y = 7/8 and ¢, =

5/8 moving from states corresponding to c to states corresponding to

2
cy s remaining in those states for a time and then moving back.
Figure 2.11(c) shows a Krylov automaton, with memory size of 8,
operating in a switched environment with c; ‘s of 3/4 and 5/8. Since

when the switching trace is high the automaton trace should be low it

can be seen that the automaton works poorly.

Tsetlin and Krylov Automata-Theoretical Action Probability Results

In order to calculate how optimal a Tsetlin or Krylov automaton 1is
the steady state probabilities of the states of the automaton are
required.

For a Tsetlin automaton if the environment is such that sy = 1-Cl s
and 1if the automaton is not at an end state, when the input is actiom
1 the probability of the automaton counting up is ¢y and the

probability of counting down is 1-clt A R

probability of counting up is l—c2 =50y and the probability of
counting down is c, = l-c1 . Thus for all states 2 to 2N-1 the
probability of counting up is ¢y and the probability of counting down
is 1l-c, . For a random walk with reflecting boundaries [34] at 1l and

1

a and with a probability of going up of p and of going down of q the
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probability of being in state k after a long time is
o k~1
(1-p/q) / (1=(p/q) ° ) * (p/q) (2.1)

where ro is the number of states in the random walk.
Thus for the Tsetlin automaton the steady state probability of state k
is

1 1 °N,. 1 a0

(--(c1 /(l--cl )))/(1-(cl /( -y )) ) (c1 /( -, )) (2.2)
where k = 1 => 2N

If ¢

2 does not equal l-c then the calculation of the steady

1

state probabilities is more difficult. The method used to calculate
the steady state probabilities is given in Appendix 1 and was used to
calculate the results given in Chapter 3.

Figures 3.3(a)-(d) give the theoretical degree of optimality for
the Tsetlin and Krylov automata against memory size for wvarious
environments with penalty probabilities about 0.5. Results for the
Lrp automaton have been included as this automaton was used as a
reference. The results show that the Tsetlin and Krylov automata
become nearly optimal as the memory size approaches 10. The Krylov
automaton is also more optimal than the Tsetlin for  the same memory
size.

Figures 3.5(a)=(f) show results for the Tsetlin automaton in
environments where the penalty probabilities are not constrained about
0.5. For penalty probabilities both greater than 0.5 the optimality
of the automaton levels out and does not increase to one as the memory
size is increased. When one of the penalty probabilities falls below
0.5 this measure of performance begins to approach 1 as the memory
size in increased. As the penalty probabilities are decreased further

the optimality for a particular memory size increases.
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Tsetlin and Krylov Automata-Theoretical Mean Switching Time Results

The method used to calculate the mean switching time of the Tsetlin
automaton used for Figure 2.8 and the results in Chapter 3 is given in
Appendix 2.

In a switched environment there is a probability that the automaton
will mnot be selecting the action corresponding to the lowest penalty
probability when the environment switches. When this occurs the
switching time of the automaton is zero. In taking results for the
graphs shown in Figure 2.8, switching times of zero were ignored. In
order to have the calculated mean switching times correspond to the

results the steady state probability vector was modified so that

z% =1—>n P8y = b

i.e. the automaton action is always correct immediately prior to the
switch in the environment. This definition gives slightly longer mean
switching times compared to the definition given in Chapter 1.

Figures 3.4(a)=-(d) give mean switching time results for Krylov and
Tsetlin automata in a variety of environments corresponding to those
in Figures 3.3(a)=(d). Again the Lrp automaton has been included as a
reference. It should be noted that the définition of mean switching
time for the Lrp automaton is that given in Chapter 1 and differs
slightly from that used for the Tsetlin and Krylov automata. Even for
widely spaced penalty probabilities the Krylov automaton has very long
switching times. As the difference between the penalty probabilities
is reduced the performance of the Krylov automaton worsens
dramatically. In Figures 3.6(a)=(f) which correspond to the
environments of Figure 3.5 the results for the Krylov automaton have

been omitted so the results for the Tsetlin automaton can be examined.

For penalty probabilities above 0.5 where the optimality of the
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Tsetlin automaton is relatively poor the mean switching times are low.
For penalty probabilities below 0.5 where the optimality is high the
mean switching times are high, so much so that results for the Tsetlin
have been excluded from Figures 3.6(e)-(f).

The theoretical results for the Tsetlin and Krylov automata
confirmed the conclusions drawn from the experimental work with the
automata. The Krylov automaton has a near optimal performance in all
environments but has switching times so large that its wuse is
impractical. The Tsetlin automaton has relatively poor optimality in
environments with high penalty probabilities compared to its
performance with low penalty probabilities. However with low penalty
probabilities the switching times of the Tsetlin automaton are high
and it is only with penalty probabilities about 0.5 that the Tsetlin

has a high degree of optimality and low mean switching times.

Tsetlin Automaton-Average Penalty

In his paper [15] Tsetlin considers the operation of his automaton
in a Markov switched environment and derives an eﬁuation for finding
the average penalty as

M=l/2-(a-l)2 12 *

cosh(ny)-1
2Nd/ (1=2d)*((a+1)**2)*cosh (Ny)+((a-1)**2)*coth(y/2)*sinh (Ny) (2:3)

where
cosh(y)=((1+a)**2)/2a * (l1-d)/(1-2d) -1
a=p/(l-p), ¢; =P, ¢, = l-p
d = probability of environment switching
N = memory size
Figure 2.12 shows results from this equation which show there is a

memory size which corresponds to a minimum average penalty and that
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this memory size decreases as the switching rate increases. Figure
2.13 shows that as the penalty probabilities move toward 0.5 the best
memory size increases while the minimum of the curve becomes less

distincte.

Tsetlin Automaton—Average Penalty Results

Measurements were made of the average penalty received by the
Tsetlin automaton 1in both deterministically and Markov switched
environments. In order to produce a Markov switched environment the
switching circuitry shown in Figure 2.5 was used, connected to a
Markov switching clock. The switching clock was arranged to switch
every time a penalty was present on a signal representing the
switching probabilitye.

Measurements were then taken of the measured average penalty of a
Tsetlin automaton operating in a Markov switched environment with
penalty probabilities of 1/4 and 3/4 and varying the memory size and
switching rate. Figure 2.l14 shows the measured results compared with
theoretical results. The measured average penalties show there is a
memory size which corresponds to a minimum average penalty but
disagree in some cases with the theoretical results on the wvalue of
the memory size. The differences between measured and theoretical
results increase as the switching rate increases until the measured
results indicate that at very fast switching rates the automaton is
receiving an average penalty greater than the mean of the two penalty
probabilities. These differences are due to the deficiencies in the
generation of the penalty probabilities but also indicate how
sensitive the Tsetlin automaton is to the nature of the penalty
probabilities, a factor which should be borne iﬁ mind if the automaton

is used in real environments.
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Figure 2.15 shows measurements of the average penalty but obtained
with the automaton operating in a deterministically switched
environment. Comparison with Figure 2.14 shows that the curves are
steeper with the best memory size being more clearly defined. This is
to be expected since a Markov switching rate is a mixture of a range

of deterministic switching rates.

Optimal Memory Size Automaton-Criteria

Having shown that for a given switching rate there is an optimal
memory size it was decided to build circuitry to automatically control
the memory size in order to minimise the average penalty received by
the Tsetlin automaton. This would create a hierarchical structure
with a secondary automaton adjusting a parameter of the primary,
Tsetlin automaton. Whilst the Tsetlin automaton would be operating in
a switched environment, the secondary automaton would, if the
switching rate remained constant, operate in a stationary environment.
The secondary automaton would be working with penalty probabilities
like those of Figure 2.l4. These have a single global minimum with no
local minima so stochastic hill-climbing methods could be used as an
alternative to stochastic automata methods [4]. Since the curves of
Figure 2.14 are relatively flat the automaton would have to be slow in
order to distinguish between penalty probabilities which were near the
same value. However, because the curves were flat an action which was
non-optimal, but mnear the optimal value for memory size could be
tolerated since the difference in average penalty between the two
would be small. A non-optimal automaton was also favoured so that it
could adjust the memory size to changing switching rates. At first
sight it seemed that a multi-action automaton with an action

corresponding to each particular memory size would be needed. This
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would have required a large structure but it was realised that in the
simple environment with no local minima a two action, deterministic,

gradient following automaton could be used.

Optimal Memory Size Automaton-Operation

The automaton designed to control the memory size of the Tsetlin
automaton was like those of type 4 in Table 1.1 in that it estimated
the penalty probabilities, and selected an action on the basis of
those estimates. It consisted of two counters, a comparator, a memory
size counter and some control circuitry as shown in Figure 2.16. In
operation the automaton measures the penalty probability, in this case
the average penalty received by the Tsetlin automaton, at a memory
size and the penalty probability at the next highest memory size. The
automaton then compares the two measurements and, on the basis of
which is the smaller, either increments or decrements the memory size
counter by one and repeats the operation. In this way the automaton
moves down the gradient of the average penalty curves towards the
optimal memory size. The automaton can never output the optimal
memory size with probability greater than 0.5 since comparisons will
always be made with the memory sizes above and below the optimal
value. Thus the automaton will respond to changes in the environment
due to changes in the switching rate relatively quickly while the
increased penalty probability caused by selecting the memory sizes
about the optimal size is not great. The size of the measuring
counters 1is a compromise between the smoothing effect required to
obtain the average penalty received by the Tsetlin automaton over a
number of switches in the environment, speed of operation and
construction considerations. A value of 12 bits giving a counter size

of 4096 was selected. The automaton was also limited to operate with
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memory sizes in the range 1 to 16.

Optimal Memory Size Automaton-Results

For the optimal memory size automaton, measurements were made of
the steady state probability of each memory size in both Markov and
deterministically switched environments for penalty probabilities of
1/4 and 3/4. Figures 2.17(a)-(f) and 2.18(a)-(d) show these results
with the optimal memory size shown as a solid line. It can be seen
that the memory size favoured by the automaton changes with the
switching rate though the most frequent memory size does not always
correspond to the optimal size, there being a tendency to favour a
higher memory size. This is because the gradients of the average
penalty curves are steeper below the optimal memory size than above
it. If the automaton is below the optimal memory size it will be
forced back towards the optimal action relatively quickly whilst, if
it is above the optimal memory size, the average penalty does not rise
so steeply so the automaton will be forced back towards the optimal
action more slowly.

Figure 2.17(b) shows a consequence of limiting the memory size to
16 which results in an increased probability of the higher memory
sizes. If the range of memory sizes was larger, memory sizes above 16
would occasionally be selected but, because there is a limit of 16,
the distribution of memory sizes is distorted, resulting in increased
probability of states just below the limit.

Figures 2.18(a)=-(d) show the results for deterministic switching.
These are much more compressed because of the steeper gradients of the
average penalty curvess Figures 2.19 (a)=-(b) show more results
obtained in a deterministically switched environment, this time for

the speed of operation of the automaton starting initially at a memory
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size of one. The results give the average number of measurements made
before getting to the optimal memory size. The automaton is
relatively slow but this is due to it having to try each memory size
twice, e.g. 1in moving to memory size 6 the automaton would have to

make at least 2 measurements at memory sizes 2,3,4 and 5.

Conclusions

Most learning automata have a high trade off between degree of
optimality and mean switching time so that reducing the mean switching
time also significantly reduces the optimality. The Tsetlin seems to
provide good mean switching times and a high degree of optimality but
with a severe limitation on the environment, the ci s having to be
about 0.5. When operating in a switched environment with penalty
probabilities about 0.5 the Tsetlin automaton does not have to sample
the wrong state in order to determine whether the environment has
switched or not. Because the penalty probabilities are about 0.5 when
the switch occurs, a ci which was less than 0.5 is now greater than
0.5 and the automaton moves towards states associated with the other
action no matter the degree of optimality and so a good steady state
performance does not imply a poor transient response as in most
automatae.

The Krylov automaton has been shown to operate for all penalty
probabilities 1like the Tsetlin automaton with penalty probabilities
less than 0.5. It works poorly in a switched environment, relying on

a small memory size and variance in the penalty probabilities to cause

movement between the actiomnse.
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The optimal memory size automaton was designed for a specific task
and was made as simple as possible. The limitations of its design
became apparent in operation as regards speed and degree of optimality
but nevertheless it was found satisfactory in controlling the memory
size of the Tsetlin automaton.

These investigations highlighted the desirable and undesirable
characteristics if the Tsetlin automaton. The difference in operation
of the Tsetlin and Krylov is small but the effect on performance 1is
large. Having noticed these changes and their effect it was thought
that an automaton could be developed that would retain the good

qualities of the Tsetlin automaton but avoiding some of its

disadvantages.
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER 2 MODIFIED TSETLIN AUTOMATA

Modified Tsetlin Automata-Operation

In operation the Tsetlin automaton has stable or unstable actions
depending on whether the appropriate penalty probabilities are below
or above 0.5. By using a stochastic response to a penalty the Krylov
automaton always has stable actions regardless of the penalty
probabilities. It has been shown that the Tsetlin automaton works
well 1if omne action 1is stable and the other unstable while it works
poorly if both actions are either stable or unstable. There was scope
for improvement by designing an automaton which could operate well for
penalty probabilities about any value, rather than the wvalue of 0.5 as
for the Tsetlin automaton. This was achieved by using a stochastic
response to penalties and rewards.

The modified Tsetlin automata, types 1 and 2, take two penalty
probabilities of greater than 0.5 but about a value e and, by using
a stochastic response to a penalty, will produce one penalty response
probability which is less than 0.5 and one which is greater than 0.5.
Further, by using a stochastic response to a reward, two penalty
probabilities both less than 0.5 but about a value e will produce
one penalty response probability which is greater than (0.5 and one
which is less than 0.5. This is illustrated in Figure 3.1.

The operations of the new automata are shown in Figure 3.2. For
the automaton shown in Figure 2.2(a) and penalty probabilities abcut a
cn value greater than 0.5 as shown in Figure 3.1(a), to obtain
penalty response probabilities c‘l and ¢’ spaced about 0.5

2
¢t =0.5 (3.1)



Using a stochastic response to a penalty with probability Wp of
moving towards states N and N+l and assuming a deterministic response
to a reward then
¢t =c¢ * W (3s2)
Substituting equation (3.2) into equation (3.1) gives
W = 1/(2c )
P m
W is to be a stochastic variable and so has a maximum value of 1
thus
W =1/(2c ) if 1/(2c ) <or =1
P m m
= 1 4if 1/(2cm )y > 1 (3s3)
For cy less than or equal to 0.5 Wp = 1.
For penalty probabilities about a cy value less than 0.5, as shown

in Figure 3.1(c), to obtain penalty response probabilities c‘l and

A

e spaced about 0.5

2
3 = ° q.
¢ o 0.5 (3.4)
Using a stochastic response to a reward with probability Wr of moving
towards the end state associated with the action output by the
automaton and assuming a deterministic response to a penalty, an
assumption justified by equation (3.3), then
N 2 = e
¢, = cy + (1 Wr Y1 c ) (3.5)
substituting equation (3.5) into equation (3.4)
Wr = l/2(l-cm )L l/2(l—cm ) <or =1
= 1 if 1/2(1-cm ) > 1 (3.6)

For c, 8reater than 0.5, Wr = 1, so justifying the assumption made in

forming equation (3.2).
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For the automaton shown in Figure 3.2(b) in addition to penalty and
reward responses there 1s an 1inaction response. If an inaction
response _is counted as half a penalty response, for penalty
probabilities about a <y value greater than 0.5, as shown in Figure
3.1(a), to obtain penalty response probabilities c‘l and c‘2 spaced

about 0.5

e’ = 0.5 (3.7)
m

Using a stochastic response to a penalty with probability Wp of
moving towards states N and N+l and (l—Wp ) of remaining in the same

state, and assuming a deterministic response to a reward then

¢ T Cn Wp + 1/2 ch (l—Wp ) (3.8)

Substituting equation (3.8) into equation (3.7)
Wp = (l-c )/cm if (l-e_ )/cm <or =1
=1 if (l—cm )/cm > 1 (3.9)
For ch less than or equal to 0.5 wp =1.
For penalty probabilities about a cn value less than 0.5, as shown
in Figure 3.2(c), to obtain penalty response probabilities c' and

1

c‘2 spaced about 0.5

c’ = 0.5 (3.10)
m
Using a stochastic response to a reward with probability Wr of moving
towards the end state associated with the action output by the
automaton and (l—Wr ) of remaining in the same state, and assuming a
deterministic response to a penalty, an assumption justified by
equation (3.9) then
¢, T Cy + 1/2 (l-cm )(1-wr ) (3.11)
Substituting equation (3.11) into equation (3.10)
Wr = e /(l-cm Y A£ cy /(l--cm ) kot =1

=] if . /(1-—cm NE=SE | (3.12)
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For ¢ greater thanm 0.5, Wr =] so justifying the assumption made in
n &

forming equation (3.8).

Using equations (3.3) and (3.6) or (3.9) and (3.12) the automata
should be able to operate with c; “s about any value and retain the
qualities of the Tsetlin automaton when operating with Ci s about
0.5. It was thought that the type 2 automaton with the inaction

response would have less variance and so could be more optimal than

the type 1 automaton for the same memory size.

Modified Tsetlin Automata-Steady State Probability and Mean Switching

Time

The steady state probabilities of the states of the automata and
the mean switching times may be calculated for the modified Tsetlin
using the same methods as used for the Tsetlin automaton by simply
substituting the appropriate Markov transition matrix as given in
Appendix 3.

The state probability and mean switching time results were
calculated by computer and the corresponding results for the Tsetlin,
Krylov and Lrp automata were also calculated for the purpose of
comparison. Figures 3.3(a)-(d) show the sum of the steady state
probabilities for states corresponding to the optimal action, for
various penalty probabilities about 0.5. The corresponding measure
for the Lrp automaton is the action probability of the optimal action
and these two measures have collectively been described as the
optimality of the automaton. It can be seen that the results for the
Tsetlin and modified Tsetlin automata are identical. Figures
3.4(a)-(d) show corresponding results for the mean switching times of
the automata. Like the Tsetlin and Krylov automata this is defined

for the modified Tsetlin automata as the average time from the switch
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in the environment till the first output of the new correct action

assuming the automaton was selecting the correct action before the
switch.

Figures 3.5(a)-(g) and 3.6(a)-(g) show results for penalty
probabilities that are not limited to be about the wvalue of 0.5 so
showing the performance of the modified Tsetlin automata with e
values other than 0.5. It can be seen from Figures 3.5(a)-(g) that
for penalty probabilities greater than 0.5 the probability of the
modified Tsetlin automaton selecting the correct action is far higher
than the corresponding Tsetlin automaton. For penalty probabilities
both less than 0.5 Figures 3.6(a)=-(g) show that the modified Tsetlin
automata have mean switching times which are reasonably constant
compared to those of the Tsetlin. The differences betwen the two
modified Tsetlin automata become apparent in Figures 3.5 and 3.6. For
similar memory sizes the type 2 automaton is more nearly optimal while
the type 1 automaton has a shorter mean switching time. However over
the complete range of penalty probabilities the results show that the
modified Tsetlin automata maintain near optimal behavior and have
short mean switching times indicating that they will operate well in
non-stationary environments.

Having seen that the modified Tsetlin automata can operate without
restrictions on the penalty probabilities they can be compared with
the Lrp automaton. The values of &K and 4 chosen for the automaton
represent values which in practice would give a very high performance.
The results for the optimality of the modified Tsetlin automata are
better than the corresponding results for the Lrp. However the mean
switching time results are poorer. In practice the memory sizes for

the Lrp automaton are rather small and more states would be used in

68



order to gain a degree of optimality comparable to the modified
Tsetlin results. This would in turn increase the mean switching time

results to a level nearer the wvalues for the modified Tsetlin

automata.

Modified Tsetlin Automata-Simulation

Because of the relatively complicated calculation involved 1in
finding wp and Wr required for the operation of the modified Tsetlin
automata it was decided to carry out investigations using a simulation
on a computer rather than build a hardware synthesis. A set of
stochastic simulation programs was already 1in existence and so
additions were made to these to include the modified Tsetlin automata
and also the Tsetlin and Krylov automata.

The first program that was modified created, from a graphical
schematic diagram input by the user, a data file which was used by a
second program to simulate the system. An example of a schematic
diagram produced by this program is shown in Figure 3.7 which shows
the Tsetlin, Krylov and both modified Tsetlin automata in a typical
test circuit, connected to two probability generators which provide
the penalty probabilities. The simulation facilities were limited to
two action automata but the memory size of the automata was variable
as was the initial state.

To operate the modified Tsetlin automata a value 1is required for
c in order to calculate Wp and Wr . This was done by using two

m

ADDIEs to estimate the penalty probabilities, c and c input to

1 2.7

the automata and cm was taken as the arithmetic mean of these. When
the automata had as their output, action 1, the penalty probability

was input to the ADDIE estimating c while for action 2 the penalty

1

probability was input to the ADDIE estimating c, This method of
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obtaining c¢_  was included in the second program to be modified which
m
carried out the stochastic simulation and allowed the inspection and

modification of circuit element parameters.

Modified Tsetlin Automata-Simulation Results

The results obtained from the stochastic simulation program were in
graphical form showing automaton state against iterations with states
1 to N, corresponding to action 1, below the axis and states N+1 to
2N, corresponding to action 2, above the axis. At the end of each
simulation it was possible to examine and modify circuit element
parameters and in this way, by changing the penalty probabilities,
switches in the environment could be simulated.

Figures 3.8, 3.9 and 3.10 show the operation of the type 1 modified
Tsetlin automaton in a range of environments. In each case the memory
size is 10 and the ADDIEs have 5 bits while ¢ and c, are initially
0.4 and 0.1, 0.65 and 0.35 and 0.9 and 0.6 with the environment being
switched between the (a) and (b) figures. Figures 3.11, 3.12 and 3.13
show corresponding results for the type 2 modified Tsetlin automaton.
It can be seen that the automata learn in all environments, though the
learning times are longer if the penalty probabilities are high. It
can also be seen that the automata respond quickly to a switch in the
envircnment, the switching time being smaller than the learning time.
Figure 3.11 and to a lesser extent Figures 3.12 and 3.13 show the
lower variance of the type 2 automaton as compared with the type 1
automaton.

When the automata first operate, the ADDIEs are in their initial
state and hold 4 estimates of =zero giving a cm value of zero.
Because of this, both actions of the automaton are unstable and the

automaton moves frequently between the two actions so providing an
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input for both ADDIEs. As the ci estimates rise the actions of the
automata become less unstable until the value of ch becomes larger
than the lower c. - At this point the automata have one action that
is unstable and one that is just stable. The automaton will spend
most time in states associated with the stable action allowing the
corresponding ADDIE to rise to its steady state value. Any movement
into states associated with the wrong action will tend to make the
corresponding ADDIE rise towards its steady state value, increasing
the value of Cm and making the correct action more stable. The
results show that the initial learning time is longer than the
switching time. This is because, within the automaton, the response
time of the ADDIEs is longer than that of the counter. When a switch
in the environment occurs the action that was stable becomes unstable
and the automaton moves to change its action. The ADDIE also receives
a new penalty probability and begins to move towards a new steady
state value, however, before it has time to change significantly the
automaton moves from the unstable to the new stable action.

Figure 3.14 shows the response of the automata to a change 1in the
environment from 0.4 and 0.1 to 0.6 and 0.9. It can be seen that the
automata respond with a learning type behaviour, moving frequently
between states N and N+1, before moving to the correct action. When
the environment changes, both actions are made unstable. Time 1is
required for the ADDIEs to respond and produce a . value high enough
to result in one stable and one unstable action.

Figure 3.15 shows the response of the two automata to a change in
the environment from 0.9 and 0.6 to 0.1 and 0.4. In this situation
the automata continue to output the same action because of their near

optimal behavior. When the environment switches, both actions become
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more stable because of the high wvalue of cm in relation to the new

o X S The automata continue to output the same action and the

i

corresponding ADDIE falls to a new steady state value but this is not
gufficient to give a c value low enough to make the action unstable.
In this case the solution, as for other learning automata, is to make
the automaton less optimal. This causes the automaton to enter states
which correspond to the now smaller penalty probability allowing the
ADDIE to fall. This decreases cm and makes both actions less stable
until there is again a stable and an unstable action.

In Figures 3.16(a) and (b) the effect of making the automata Iless
optimal can be seen. Conditions in Figure 3.16 are the same as those
in Figure 3.15 except that the memory size has been decreased. It can
be seen that the automata respond better to the change in the
environment though of course the steady state performance has been
reduced.

Though the use of ADDIEs with a small number of bits may seem
desirable, in that it decreases the learning time of the automaton, it
introduces an undesirable effect. Figure 3.12(b) 1is an example of
this and shows a significant delay between the switch and a change in
the action of the automaton. This can occur with either of the
modified Tsetlin automata and has two causes. The first is the wvalue
of . which is too large causing the actions of the automata to be
too stable so 1increasing the mean switching time. The large = is
due to inaccurate penalty probability estimates at the time of the
switch in the environment. This can be caused either by variance in
the ADDIEs or as a result of a short ADDIE response time. When the
environment switches the ADDIE associated with the action the

automaton is taking receives a higher penalty probability and starts
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to move towards this higher value. If the memory size is large,
relative to the ADDIE size, before the automaton has time to change
the action it 1s taking the ADDIE will have moved significantly
upwards. This raises the value of cm , making both actions more
stable and increasing the mean switching time. The solution to both
these causes, the high variance and the short response time, is to

increase the number of bits in the ADDIEs sufficiently to reduce the

variance and increase the response time.

Conclusions

It has been shown that the two modified Tsetlin automata do operate
well for all penalty probabilities. The automata retain the short
mean switching times and near optimal behaviour like that of the
Tsetlin automaton but without the limitations on the values of the
penalty probabilities. The most striking feature is the ability in
many environments to change actions in response to a switch without
having to sample the non-optimal action. The operational difficulties
of the automata have also been discovered in the form of the
relationship between the ADDIE and counter response times and the
environments in which the switching times are longer. This latter
problem is one shared by all automata operating in non-stationary

autonomous environments.
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Figure 3.7 Example of schematic diagram produced
by first simulation program
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER 4 NON-AUTONOMOUS ENVIRONMENTS

Linear Non-Autonomous Environments

For many of the applications of learning automata the environments
are non-autonomous and have penalty probabilities which vary as the
action probabilities. The first person to realise this and propose a
model for non-autonomous environments was Narendra who analysed the
operation of the Lri automaton in a two action  non-autonomous

environment [35] where the penalty probabilities were given by

¢y (n+l) = <y (n) + 81 (n) (4.1)

¢, (m+l) =c, (a) - P, () (4.2)
if action <:r:(n)=<:t:1 and

¢, (+l) =¢, (n) -, (n) (4.3)

Cy (n+l) = oy (n) + 8, (n) (4.4)

if action cc (n) = <,
where Bi and ¢i are positive constants and the penalty probabilities
are constrained within the range (0,1).

Narendra’s analysis for the Lri automaton showed that the action
probability pa, of the automaton could reach steady state in one of

three ways,

pa, (m) =0 (4.5)
pay (n) =1 (4.6)
1n ~ g pa, (n) = (8, +8,.)
Zi = 0 -—>n-1 i (61 +%2 +, +¢2 ) (4.7)

Equations (4.5) and (4.6) correspond to the automaton going optimal and
selecting a single action with probability l. In this case the penalty
probabilities diverge till they reach the limits of 0 and 1. Equation

(4.7) corresponds to the automaton converging with action probabilities
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other than O and 1. The automaton selects both actions in a particular
ratio. In this case the penalty probabilities converge to a value of 0

or 1 depgnding on whether e * 62 - ¢1 * @2 is negative or positive.

1
For any automaton operating in the linear non-autonomous environment,

if the probability of action oci is pai , the steady state wvalue of the

penalty probability c will be zero if

1
= 4,
(1-pa; )¢, >pa; e, (4.8)
and will be one if
pa; e ; > (l-pai )¢i (4.9)

thus c; will converge to zero if

pa, <&, /ey +4,) (4.10)
and will converge to one if

pa, >4, /(e *+ 9, ) (4.11)
In general in a two action environment the penalty probabilities will
not change from converging to zero to converging to one at the same
probability. This is illustrated in Figure 4.1 which shows the steady
state penalty probabilities ¢y and <, for a linear non-autonomous
environment plotted against the probability of action l. It can be seen
that there is a band of action probabilities which produces penalty
probabilities which are equal and so a band of action probabilities
which will produce the wminimum average penalty rather than a unique
optimal action probability.

A different non-autonomous environment has been proposed by FKumar
[36] where the penalty probability is a function of the action
probabilities. Chrystall [37] has used this and defined the action
probabilities more positively as

Ci (n) = ki pa:,L (n) (4.12)

and has done simulations using this model. It is an improvement on
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Marendra’s model in that there is a unique action probability and the
penalty probabilities have steady state values other than 0 or 1.
However the model requires the use of the action probabilities of the
automaton which in practice would not be available to the environmente.
This also limits the model to wuse with automata where the action
probabilities are easily available. Automata with deterministic output
functions do not have action probabilities as part of their operation
and could not be- used with this model. Also by heing directly connected
to the action probabilities the model does not have the same variance

and time lags which were a realistic feature of Narendra’s scheme.

Linear Non-Autonomous Environment-Simulation Results

Narendra’s linear non-autonomous environment scheme was added to the
stochastic simulation program described in Chapter 3 1in order to
investigate the operation of this environment, confirm the band
structure and determine the operation of various automata in it.

Figure 4.2 shows a typical result showing a Lri automaton operating
in an enviromment with € = 0.0l 4>l = 0.03 ®, = 0.003 and
@2 = 0.009. This produces an environment with a band structure in
which the steady state penalty probabilities will change at action
probabilities of 0.25 and 0.75 as indicated in Figure 4.2(a). Initially
the penélty probabilities have a wvalue of 0.5 and the action
probabilities are outside the band which will produce converging c; ‘s
At first the penalty probabilities diverge but as the automaton responds
and changes its action probability pa, to below the value of 0.75 both
penalty probabilities converge to the value of 0. When the penalty
probabilities have converged the automaton receives the same penalty

probability whatever action it takes so its action probability becomes

free to vary randomly. Only when this random wandering takes the action
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probability above the wvalue of 0.75 and the penalty probabilities start
to diverge does the automaton receive feedback to keep the action
probability in the range (0.25,0.75).

The simulation results confirmed the band theory for the linear
non—-autonomous environment and showed that the environment was not a
very typical representation of a non-autonomous environment. Nor was it
very useful for examining the operation of automata since it has bands

where the automaton receives no useful feedback.

The Non-Linear Non-Autonomous Environment

In order to produce a non-autonomous environment in which the penalty
probabilities converge to a value other than C or 1 a non-autonomous

environment was proposed where the penalty probabilities were given by

c, (n+l) =c, (n) +o. (l=c. (n)) (4.13)

i i i i

if action «x(n) = o<, and
i
= - A'

s (n+1) s (n) ¢i c; (n) (4.14)
otherwise
where o, and ¢i are positive constants. In a physical sense the

factor e 5 (l—ci (n)) can be related to the decreased availability as
its use increas?s while ¢i ci (n) corresponds to the 1increasing
availability of a resource as 1its use decreases. When the penalty
probabilities have reached their steady state values
E(amount of increase in c; ) = E(amount of decrease in ci ) (4.15)
With the environment as defined by equations (4.13) and (4.14) equation
(4.15) can be expressed as
pa., © . (l—ci Y= (l—pai ) ¢i c (4.16)
so
pas . = (0 les DO E o e, SG e ) (4.17)

or
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C, = (61 pai )/<¢1 —¢i pa.

5 ; Si pa, ) (4.18)

Figure 4.3 shows how the penalty probabilities vary with action
probability in this non-linear non-autonomous environment.
The average penalty received by an automaton is
(4.19)
Using pa, = 1‘Pal
and substituting equation (4.18) into -equation (4.19) the average

penalty in a non-linear non-autonomous environment is

2
M= 61 Pal /(Ql = ml Pal + 61 Pal )

2
+ (8 =28 pa + 8 pa,_)
52 21 s % (4.20)

(@, pay *8, -8, P2
This expression for the average penalty can be differentiated with

respect to pa to produce a quartic equation. When this is equated to

1

zero and the roots found, the real result in the interval (0,1) gives
the action probability pa, which corresponds to minimum average

penalty.

Steady State Conditions of the Lrp and Lri Automata

To appreciate the operation of a Lri automaton in a non-linear
non-autonomous environment consider Figure 4.3 with the action
probability set initially to 0.5. Will the actiom probability tend to
increase or decrease? The probabilities of selecting either action are
equal as is the change in action probabilities due to the reinforcement
algorithm. Thus the only difference between the actions is their
penalty probability and the action probability will change to favour the
action corresponding to the most rewards, in this case actionc, . The

1

action probability ofo::1 will tend to 1increase till the automaton
reaches steady state.

This occurs when
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pa, (l—cl )(pa2 —Cb:pa2 ) = pa, (l—c2 )(pa1 - (<pa (4.21)

1 )
which reduces to

Cc = C

1 (4.22)

2

Thus the Lri automaton moves to make the penalty probabilities from both
actions equal.
Substituting equation (4.18) into equation (4.22)
B, pay /(B -P; pa; +8; pa; ) =
= 4,
¢2 pa, /(Sb2 ¢2 Pa, +82 pa, ) (4.23)

Using pa = l—pa1 gives the steady state action probability of the Lri

2

automaton in the non-linear non-autonomous environment as

pa; = (=f_ 8, +/- 8, _8, f 8,

®; 6, B 8,) - G2

Only one of the solutions for pa is in the range (0,1).

1
To find the steady state value of Ci use
pa; = 1—pa2 (4.25)

Substituting equation (4.17) gives
Bioey /(B 8y oy oy )
= 1-( ¢2 c, (8, -8, ¢, +¢2 ¢y ) )
gives the steady state penalty probabilities of the

Substituting c. =c

1 2

Lri automaton in a non-linear non-autonomous environment as

cp ey =8 B, /-y 55 b,_8, )
2

5.8

8 b (4287

which is also the steady state average penalty received by the Lri
automaton.

For the Lrp automaton the «calculations are more complex. Steady
state occurs when

increase in pa due to action 1 being rewarded

1

+ increase in pa due to action 2 being penalised

1

=decrease in pa 1 due to action 2 being rewarded
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+ decrease in pa due to action 1 being penalised

1
=> pa, (I—Cl ) (pa Z-G:pa2 )+pa2 (c2 )(paz - Bpa2 )
if « is set equal to B equation (4.27) reduces to
pa; =c, /(c1 te,) (4.28)
equation (4.28) can be expressed as

since pa, =l-pa

1 2

pa; ¢; =pa, c, (4.29)
That is the Lrp automaton Withcx==ﬂmoves so that it receives the same
penalty rate from each action.

Using the equations (4.22) and (4.29) the steady state conditions of
the Lrp automaton with a =3 and the Lri automaton in the non-linear
non-autonomous environment can be calculated and as an example this has
been done for the environment shown in Figure 4.3. The steady state
conditions of the automata are a long way from the optimum action
probability showing that the automata in satisfying their own steady

state conditions do not converge to the optimum action probability.

Non-Linear Non-Autonomous Environment-Simulation Results

Like the linear non-autonomous environment the non-linear
non-autonomous environment was added to a learning automaton simulation
program in order éo investigate the operation of the environment and
confirm the equations derived above.

Figures 4.4, 4.5 and 4.6 show typical results of a Lri automaton
operating in various non-linear non-autonomous environments. In all
three examples it can be seen that the steady state values of action and
penalty probabilities are near the values given by equations (4.24) and
(4.26). The action and penalty probabilities do not converge to the
values given by equations (4.24) and (4.26) since as the penalty

probabilities converge to become equal the automaton receives a similar
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response from the environment whichever action it choses and so its
action probability is free to vary randomly. This in turn causes the
penalty probabilities to diverge a little before the automaton detects
this and causes the penalty probabilities to converge again.

Simulations were done using the Tsetlin, Krylov, modified Tsetlin and
modified estimating automata in the non-linear non-autonomous
environment but the performance of these automata was poor. All these
automata have deterministic output functions and so when they are in
steady state a single action is output. In a non-autonomous environment
the best performance 1is gained by selecting all actions with a
particular ratio. Automata with deterministic output functions can
never achieve this and reach a steady state condition. The automata
tested attempted to switch between actions but caused the penalty
probabilities to oscillate and never achieved the smooth performance
achieved by the Lri and Lrp automata with stochastic output functions.

Another factor which was found to be important from the results of
simulations was the convergence rate of the automaton relative to the
rate of change of the penalty probabilities. If the convergence rate of
the automaton 1is fast compared to the rate of change of the penalty
probabilities an oscillation can occur. This is illustrated in Figures
4.7 and 4.8 with the action and penalty probabilities initially set to
simulate a disturbance from the steady state. If the automaton reaches
the steady state action probability before the penalty probabilities
reach their steady state there will be a difference between the penalty
probabilities which will cause the automaton to overshoot the steady
state. This will in turn cause the penalty probabilities to overshoot.
In most cases the resulting oscillation dies out but in some cases as in

Figure 4.7, where the action of the automaton has gone optimal, the
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oscillations <can grow. Such oscillations can be prevented by avoiding
the use of an automaton which has a convergence rate which is fast
relative to the rate of change of the penalty probabilities while the
output of one action continuously can be prevented by the wuse of an

automaton which is merely expedient rather than optimal.

Conclusions

Theoretical consideration of the Lrp and Lri automata has resulted in
simple formula describing the steady state behaviour of these automata.
Theoretical investigations into various non-autonomous environments have
resulted in greater understanding of their operation and formula for the
optimal action probabilities. It has also been shown that the Lri and
Lrp do not converge to these optimal action probabilities. Results from

simulation has shown that only automata with stochastic output functions

are suitable for wuse 1in non-autonomous environments and a number of

other practical considerations have been highlighted.
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER 5 PROBABILISTIC TSETLIN AUTOMATA

Introduction

The Tsetlin automaton was of interest for wuse 1in autonomous
environments because of its simple structure and good performance
under certain conditions. In non-autonomous environments the
performance of the Tsetlin was found less satisfactory because of its
deterministic output function. Three automata based on the Tsetlin
structure, deterministic in operation but with stochastic output
‘functions were proposed. These were investigated in the hope that
they would be suitable for use in non-autonomous environments. The
automata were named Tri, Tip and Trp using the naming convention wused

for the Lrp automata with T representing a Tsetlin type automaton.

The Tri Automaton

The Tri automaton has a series of N-1 states. In any state n the

probability of choosing action o is
pa; = (N-n)/N (5.1)
and the probability of choosing action x, is
pa, = l—pal = n/N (5.2)

if, in response to an action, the automaton receives a reward from the
environment it will move to the adjacent state which will select that
action more often. Otherwise it will remain in the same state as
shown in Figure 5.1.

The probability of moving from state n to state n-1 is given by

‘ probability of action 1 * probability of a reward

= (N-n)/N * (l-cl ) (5.3)

The probability of moving from state n to state n+l is given by
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probability of action 2 * probability of a reward

=n/N * (l-c, ) (5.4)

2
The probability of remaining in the same state is given by

probability of action 1 * probability of a penalty

+ probability of action 2 * probability of a penalty

+ (n/N) c (5+5)

= (N=n)/n * ¢ )

1
From the above equations the Markov transition matrix can be found and

is given in Appendix 3.

The Tip Automaton

The Tip automaton has a series of N-1 states 1like the Tri
automatone. If, in response to an action, the automaton receives a
penalty it will move to the adjacent state which will select that
action less often. Otherwise it will remain in the same state as
shown in Figure 5.2.

The probability of moving from state n to state n+l is given by

probability of action 1 * probability of a penalty

= (N-n)/N * ¢ (5.6)

1

The probability of moving from state n to state n-1 is given by
probability of action 2 * probability of a penalty
= (n/N)c2 (5.7)
The probability of remaining in the same state is given by
probability of action 1 * probability of a reward
+ probability of action 2 * probability of a reward
) + (n/N) (1l=-c

=((N-n)/N) (1-c ) (5.8)

1 2

From the above equations the Markov transition matrix can be found and

is given in Appendix 3.



The Trp Automaton

The Trp automaton has a series of N-1 states like the Tri and Tip
automata. If in response to an action the automaton receives a reward
it will move to the adjacent state which will select that action more
often. Otherwise in response to an action the automaton will receive
a penalty and will move to the adjacent state which will select that
action less often as shown in Figure 5.3.

The probability of moving from state n to state nt+l is given by

probability of action 1 * probability of a penalty
+ probability of action 2 * probability of a reward

=((N—n)/N)cl + (n/N)(l=c, ) (5.9)

2

The probability of moving from state n to state n-1 is given by
probability of action 1 * probability of a reward
+ probability of action 2 * probability of a penalty
=((W-n) /M) (1-c, ) + (a/M)c, (5.10)
From the above equations the Markov transition matrix can be found and

is given in Appendix 3.

The Lrp Automaton

In this and previous chapters the Lrp automaton has been used as a
reference. Theoretical results for the Tsetlin, Krylov, modified
Tsetlin and probabilistic Tsetlin automata are compared to
corresponding results for the Lrp automaton.

Using the normal description of the Lrp automaton as a variable
structure automaton, with a variable transition matrix operating on
the action probability vector Pa, the Lrp automaton cannot be analysed
like the Tsetlin, Krylov and probabilistic Tsetlin automata have been,
as this requires a fixed structure to be able to construct a Markov

transition matrix. However by 1imposing a set of states on the Lrp
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automaton and limiting the action probabilities from a continuous
range to a discrete range corresponding to the states, a fixed
structure is produced and a Markov transiticn matrix can be found.
Unlike the Tsetlin automata, movement is not only to adjacent states
but can be to any state in the automaton. The probability of movement
to states corresponding to the result of the updating algorithm given
in equations 1.7-1.10 is high while the probability of movement to
states far from the wupdating algorithm result is low. In the
specification of the probabilistic Tsetlin automata, absorbing end
states were excluded since they were unwanted. To be able to compare
like with like the absorbing states were excluded from the analysis of
the Lrp automaton. Thus the Lri automaton as presented here could not
go optimal as the Lri automaton normally would. This gives the Lri
automaton a better performance than the Lrp and it is the Lri that is
used for comparison later in the chapter.

The Lrp automaton can be considered as a set of N-=1 states. In
state n the probability of choosing action 1 is

pa;, = (-n)/n (5.11)
and the probability of choosing action 2 is
pa, = l—pal n n/N (5+12)
The response to an action is applied to an algorithm which determines
the new action probabilities. The new action probability for action
«<, is from equations (1.7)=(1.10)
pa,; (n+l) = pa, (n)(l-cl )(1-0:*Paz (n))
+-pa1 (n)c1 (ﬁ*pal (n))
+ pa, (n)(l-cz ) (e *pay (n))
+ pa, (n)c2 (l—ﬁ*pa2 (n)) (5413)

The automaton can move to any other state or remain in the same state
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depending on the new action probability. The probability of moving to

state n is [29]

(n N-n -1

-1 ( )
(pl 1[0(1-pl) - 1{@=-2)!/((n=1)! (N=1-n))] (5.14)

The element pij, an element in the Markov transition matrix 1is given
by the probability of moving from state i to j.

pij=[((N=1)/N) (l=c, ) (l-c<(i/n))+((N-1)/N) c A (N-1i) /N

1 1

(j-1)
F(L/N) (L=c ) ) (N=1) M)+ Me, (1=AGEMN))] :

A ((N-1)/N)

1
(N=j-1)
+(i/N)(1—c2 You(N=-1i) /N + (i/N)c9 (1=-4(1i/N))] :

*[1-(((N=-1)/N) (l—cl ) (1=o¢ (1/N))+((N-1)/N) ¢

*(N-2) 1/ [(N=1)1 (N=F=1}1] (5.15)

Tri,Tip,Trp and Lrp Automata-Theoretical Results

The theoretical degree of optimality and mean switching times of
the Tri, Tip, Trp and Lrp automata were calculated for wvarious
autonomous environments and the results are shown in Figures 5.4-5.7.
The environments used are the same as used in Figures 3.3-3.6.
Figures 5.4 show that the Tri and Trp automata have the most optimal
performance while the Tip automaton has poor optimality which does not
improve as the memory size is increased. However Figures 5.5 reveal
that the Tri automaton has large mean switching times compared to the
other automata and because of this the Tri automaton has been omitted
from Figures 5.6 and 5.7. Figures 5.5 have a constant difference
between the penalty probabilities and again show that the performance
of the Tip automaton is limited. At high penalty probabilities the
performance of the Trp automaton is like that of the Tip automaton but
as the penalty probabilities are reduced the performance improves.
Figures 5.7 showing mean switching time results again shows the
similarity between the Trp and Tip automata at high penalty

probabilities while at low penalty probabilities the Trp automaton has
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relatively high switching times 1like the Tri automaton. As stated
earlier the memory sizes used here for the Lrp automaton are smaller
than used in practice giving the effect of lower degrees of optimality
than would normally be found and lower switching times.

The autoﬁaton used as the reference is a Lri automaton with <<=0.6.
This automaton was chosen after obtaining results for the Lrp
automaton like those shown in Figures 5.8-5.10. These results show
the probabilities of the individual states of the automaton in
addition to the overall action probabilities and mean switching times
as shown in Figures 5.4=5.7. Also included in Figure 5.10 is the
average penalty received by the automaton which is used as a measure
of performance. These results are for automata with 19 states, a
value which was smaller than desired but which was close to the limit
imposed by speed and accuracy. Figures 5.8-5.10 (a)=-(b) show
distributions for Lrp automata with constant § but varying ©< and /7
while Figures 5.8-5.10 (c)=(d) have o< constant but wvarying A and 5.
The distributions confirm that increasing & makes the automaton more
optimal. What can also be seen 1is that increasing 8 makes the
distribution spread. Comparing Figures 5.8-10 (a)=-(b) it can be seen
that even with ¥ constant, lowering o< and /7 can make the automaton
more optimal and make the distribution narrower. The automaton which
performs best is the Lri with &=0.6. This performance could be
improved by lowering o<which woﬁld also decrease the learning time of
the automaton however it has been found in practice that automata
which learn too quickly do not perform well. The value of «=0.6 was
taken as a compromise between good theoretical results and practical

considerations.
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Figures 5.11 and 5.12 compare, for a range of penalty
probabilities, the state probability distributions of the Tri, Tip and
Trp automata with the best Lrp automaton selected from Figures 5.8-10.
These results reveal in more detail the operation of the automata. To
accurately determine the performance of the automata the average
penalties received by the automata were calculated and included in the
figures. In Figure 5.11(a) the Trp automaton performs best but in
Figures 5.11(b)-(d) it 1is the Tri automaton which has the best
performance. The probability distributions show that as the penalty
probabilities increase the operation of the Trp automaton becomes more
like that of the Tip automaton. Throughout this series of results the

Trp automaton performs better than the Lrp.

Tri-Operation

The Tri automaton when at the centre of its range will select both
actions equally and move to select the action %hich gives most
rewards. Howéver, at either eﬁd of its range the automaton will
select one action far more often than the other. Because the
automaton changes state only in response to a reward it will tend to
move 1in response to rewards from the action it is selecting most
often. Thus the automaton tends to move to the extremes of its range.
Over most of dits range it will tend to move toward selecting the
action corresponding to the smaller penalty probability but over part
of its range it will tend to move toward selecting the action
corresponding to the larger penalty probability. The division between

these two stable ranges occurs when

number of rewards from action 1 number of rewards from action 2

=> pa, (l—cl ) (1-pa )(1—c2 )

1

=> pa; = (1—c2 )/(2—(:l - . ) (5.16)

2
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Tip-Operation

At the centre of its range, the Tip automaton will select both
actions equally and will move away from the action which gives the
most penalties. It will continue to move wuntil the number of
penalties tending to make it move 1in opposite directions becomes
equal. The automaton has two unstable regions with a steady state
between the two when

number of penalties from action 1

= number of penalties from action 2 (5.17)
=> pa1 cl = (l—pa1 )c2
=> pa; =c, /(cl +e, ) (5.18)

Trp-Operation

The Trp automaton can be considered as a combination of the Tri and
Tip automatas. Thus when the penalty probabilities are small the
automaton will receive few penalties and the automaton will show
behaviour 1like the Tri automaton. When the penalty probabilities are
high there will be few rewards and the automaton will behave like the
Tip automaton. The automaton will tend not to change state when

penalties from action 1 + rewards from action 2
= penalties from action 2 + rewards from action 1

=> pa; c; + (l—pal ) (l=c_ )

1 2

(1-pa; e, +pa; (l1-¢ )
=5 pa, = (1-2c2 )/(2—2c1 --2c2 ) (5.19)
When this equation has a wvalue outwith the range (0,1) there 1is

nowhere, other than at one of the end states, where the automaton will

reach steady state.
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The operation of the Trp automaton is illustrated well 1in Figures
5.12(a)=(d)- In Figure 5.12(a) with small penalty probabilities the
distribution of the Trp automaton 1is similar to that of the Tri
automaton. In Figure 5.12(b) with large penalty probabilities the
distribution of the Trp automaton 1is similar to that of the Tip
automaton. Figures 5.12(c)=(d) show the Trp with penalty
probabilities equal and about the value of a half. When the penalty
probabilities are about the value of a half equation (5.18) does not
have a solution in the range (0,1) and the Trp automaton exhibits its
best performance being 1like neither the Tri nor the Tip. Figure
5.12(d) illustrates this by showing the distribution with penalty

probabilities of 0.51 and 0.49.

Non-Autonomous Environments-Results

In addition to their performance in autonomous environments the
performance of the probabilistic Tsetlin automata in non-autonomous
environments is also of interest. Figures 5.13-5.15 give the state
probability distributions, the average penalty received by the
automaton, which is the equivalent of the degree of optimality but for
non-autonomous environments, and mean switching times, of the

®
probabilistic Tsetlin automata in a range of non-autonomous
environments with the Lrp automaton included as a reference. The
non-autonomous environments used in these figures were chosen to
provide a range of optimal action probabilities and penalty
probabilities.

In Figures 5.13(a)-(f) it is the Tip automaton which has the lowest
average penalty while the Lrp and Trp automata having lesser but on

the whole similar performances while the Tri automaton has a poor

performance. These results are reinforced by Figures 5.14(a)-(f). In
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some of these figures the results for the Tri automaton have been
omitted because the large mean switching. times were unsuitable for
inclusion in Figures 5.15(a)-(f). The form of Figures 5.15 requires
some explanation. The mean switching time is defined by equation A2.l
where the state the automaton is switching to is the new optimal
action probability after the environment has switched. Because the
number of states in the automaton limits the number of possible action
probabilities at each memory size the new optimal state was defined as
the state corresponding to the action probability closest to the
optimal action probability. Since the optimal action probability lies
between two states, as the memory size changes the optimal state will
change from corresponding to an action probability lower than the
optimal action probability to higher and back. This accounts for the
stepped appearance of some of the Figures 5.15. These results show
that though the Lrp automaton has the best overall mean switching time
results the performance of the Trp and Tip automata is still good by
comparison and when combined with the average penalty results the Tip
automaton could be expected to give the best performance in a

non-autonomous environment.

Conclusions

The characteristics of the probabilistic Tsetlin automata 1in
autonomous environments have parallels with the Tsetlin and Krylov
automata. The Trp automaton operates at its best when the penalty
probabilities are about the value of a half like the Tsetlin. The Tri
automaton is stable in both actions like the Krylov automaton. Though
the average penalty results for the Tri automaton are good, because
the automaton 1is stable in both actions the response to a

non-stationary environment is slow so the Trp automaton is prefered.
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The probabilistic Tsetlin automata were proposed as automata which
could operate well in non-autonomous environments because of their
stochastic output functions. This has been shown to be true and when
compared to the Lrp automaton it is the Tip automaton which has shown

the best performance.
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER 6 MULTI-ACTION AUTOMATA AND AUTOMATA GAMES

Introduction

The learning automata considered 1in earlier chapters were two
action automata. In practice an environment was unlikely to have only
two actions, multi-action automata were required. The formula for the
Lrp automaton, equations (1.7)-(1.10) 1is for an automaton of r
actions. Tsetlin also gives a multi-action scheme for his automaton
[157. When the practical implementation of multi-action automata
is considered, for example a 100 action automaton, problems arise if
the hardware involved is linearly related to the number of actionse.
In a software version the processing time increases with the number of
actionse. The hierarchical learning scheme was proposed and
investigated by Neville [38,39] as a means of wusing two action
automata to provide multi-action capability without a great increase
in the hardware or processing required. It was investigated to
determine the effectiveness of the system using the modified Tsetlin

automata compared to the Lrp automaton.

The Hierarchical Learning System

The hierarchical learning system uses many decisions of a two
action automaton to achieve a single decision between many actions.
With the possible pathways through a decision network as shown in
Figure 6.1, a two action automaton will select omne of 2" actions by

taking n decisions.
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In operation a single two-action automaton is wused to make a
decision at each node on the path through the decision network. The
data necessary for a decision at every node is stored in a memory and
supplied to the automaton as required. Once an action has been taken
and a response obtained from the environment the path taken through
the decision structure is retraced and the decision data for each node
encountered is updated by the automaton.

The hierarchical learning scheme was simulated wusing a computer.
The automata included in the simulation were the two action Lrp, as
defined by equations (l1.7)-(l1.10) and the modified Tsetlin automata as

described in Chapter 3.

The Hierarchical Learning System-Results

The results show the average number of times a particular action
was selected by the automaton over 100 runs of the simulation. Each
graph shows the situation after the automaton has selected I actiomns.
Also included with each graph is the average penalty received by the
automaton and the probability of selecting the optimal action wup to
that time. The initial conditions at the start of each simulation
were such that each path through the decision network was of equal
probability. The values of o«cand P chosen for the Lrp automaton and
the ADDIE and memory sizes chosen for the type 1 modified Tsetlin
automaton represented the best from a variety of values tested which
corresponded with consistent behaviour.

Figures 6.2(a)—=(c) show the operation of a type 1l modified Tsetlin
automaton with memory size of 10 and ADDIE bit size 6 in a 16 state
environment. The penalty probabilities of the environment were chosen
at random with the result that action 14 corresponded to the minimum

penalty probability. Figure 6.2(a) shows that after the first 100
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iterations the automaton is already selecting the optimal action most
often but that during this period the automaton has been selecting the
other actions to a considerable extent. Figure 6.2(b) shows that by
500 iterations action 14 has been selected more often than the other
actions put together. Figure 6.2(c) shows that in the long term the
total average penalty received by the automaton continues to decrease
and over 10,000 iterations the probability of selecting the optimal
action is approximately 0.88.

Figures 6.3(a)=(c) show results for an Lrp automaton with o = 0.96
and 3= 0.99 operating under the same conditions as Figure 6.2. Over
the first 100 iterations the performance of the Lrp automaton is
better than that of the modified Tsetlin automaton. Over 1000
iterations Figures 6.3(b) and 6.2(b) show that the average penalties
received by the two automata are approximately equal after 750
iterations while the probabilities of selecting the optimal action are
equal after 1000 iteratiomns. In the long term the performance of the
Lrp automaton reached steady state at wvalues which were poorer than
the corresponding values for the modified Tsetlin automaton.

Figures 6.4 and 6.5 show results for the automata in a different
environment. In this case the penalty probabilities were chosen in
order to make it difficult for the automaton to select the optimal
action. Action 13 was selected as the optimal action while the
actions closest to it in the decision network, actions 14, 15 and 16
were given high penalty probabilities.

The aim of this was to discourage the use of the decision network
paths leading to actions 14, 15 and 16 during the initial learning
period. Since the path leading to action 13 was for most of its

length common to the paths leading to actions 14, 15 and 16, giving
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these actions high penalty probabilities would have the effect of
discouraging the selection of action 13. For similar reasons the
second most optimal action, action 4 was surrounded by actions with
relatively low penalty probabilities in order to encourage the
automaton to select action 4 rather than the optimal action.

The results show that neither automaton converges to the wrong
action in the difficult environment though wusing automata with
different parameters it was found that convergence to the non-optimal

action 4 was more likely in the difficult environment.

The Hierarchical Learning System-Conclusions

The results show that though the Lrp automaton has a shorter
learning time 1in a hierarchical learning system the type 1 modified
Tsetlin automaton has a better steady state performance. Attempts to
improve the steady state response of the Lrp automaton by adjusting
the values of o« and P resulted in occasional convergences to
non-optimum actions. It was felt that the hierarchical learning
system may have accentuated this tendency. The modified Tsetlin
automaton was less prone to this as it selected the actions more

evenly during the learning period.

Automata Games-Introduction

A game exists between two automata when each automaton can affect
the penalty probability received by the other automaton. There are
two types of automaton game, cooperative games, where the automata
receive the same penalty probability and so can cooperate to receive
the lowest average penalty, and zero sum or competitive games, where
if one automaton receives a reward the other receives a penalty.

Automata games are of interest as a way of comparing and testing
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differing types of automata to determine the desirable qualities for
automata. In the practical wuse of learning automata where many
automata operate on different parts of a single environment, games
existe. The use of automata in telephone traffic routing
[45,46,47,48,49] as well as the system investigated in Chapter 8 are
examples of practical situations where games occur. In such cases the
understanding of simple games could be an advantage.

Cooperative and competitive games between the Lrp automaton and
some of the Type 2 automata, including the Tsetlin automaton, have
been investigated [40]. Since the probabilistic Tsetlin automata have
advantages over the Tsetlin automaton these automata were tested

against the Lrp automaton in games.

Cooperative Games

A simulation program was written to provide games between the Lrp,
Lri, Trp, Tip and Tri automata. The program provided for up to three
players in the game, though in practice only two were used, and for up
to ten actions available to each player. The penalty probabilities
were input to the program in the form of a matrix. The action of the
first player specified a row of the penalty matrix while the action of
the second player specified a column of the matrix. The combination
of these defined an element of the penalty matrix from which the
feedback for the learning automata could be obtained. Facilities were
provided to allow the automata to receive the same feedback giving a
cooperative game or to receive the opposite feedback giving a

competitive game.
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The first results were obtained for cooperative games with a
variety of matrices and for different combinations of automata with
varying parameters. The operation of the automata was as expected
‘from previous work and in most cases the automata converged towards
selecting the smallest penalty element most frequently. However when
operating with an environment like

0.4 0.5 0.6

0.3 0.9 0.2

0.1 0.05 0.8
convergence was not always to the element corresponding to the minimum
penalty. In most cases the automata converged to the third row and
first column, element 3,1 most frequently. Convergence to the correct
element depended on the operation of player 1 which controlled which
row of the penalty matrix was selected. If the player 1 automaton had
a low degree of optimality there was a significant probability that
rows 1 and 2 would be selected so it was an advantage to player 2 to
select column 1 rather than select column 2 and also be forced to
receive the high penalty probabilities associated with rows 1 and 2 in
that column. If the player 1 automaton had a high degree of
optimality convergence would be to row three. In this case player 2
was free to select column 2. However while player 1l was converging,
player 2 was forced to select column 1 and if the rates of convergence
of the players were similar or 1if player 2 converged faster than
player 1 , player 2 would not be able to change actions after player 1
had converged. The automata only converge to select the optimal
probability element if both the automata have a high degree of

optimality and player 2 has a rate of convergence slower than player

l.
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Competitive Games

A variety of experiments were also carried out with competitive
games . In this situation the players are operating with different
penalty probability matrices. For example player 1 operates with the
matrix shown below on the left while player 2 operates with the matrix

shown on the right.

0.7 0.6 0.4 0.3 0.4 0.6
0.6 0.5 0.1 0.4 0.5 0.9
0.5 0.45 0.3 0.5 0.55 0.7

In the experiments, if player 1 selected the rows and player 2
selected the columns there was overall convergence to the penalty
element corresponding to a minimum of a column in the player 1 matrix
and the minimum of a row in the player 2 matrix. Considering the

player 2 matrix only, the overall convergence was to the penalty

element which was the minimum of a row and the maximum of a column.

For the matrix above this corresponds to element 3,1.

In the matrix given below there are no elements which satisfy the

conditions given above for convergence.
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0.4 0.5 0.6 0.6 0.5 0.4
0.3 0.9 0.2 0.7 0.1 0.8
0.1 0.05 0.8 0.9 0.95 0.2
Experiments with this matrix have shown that the automata select
penalty elements 2,2 3,2 3,3 2,3 cyclically. The automata are
constantly changing their most frequent action and never converge.
Figure 6.6 shows the action probabilities of two Lri automata in a
competitive game using this matrix plotted against time. It was felt
that a penalty matrix in which their were no penalty elements which
satisified the convergence criteria given above would be the best in
which to test automata against each other.
The results given in Table 6.1 were taken for automata games using

the penalty probability matrix given below.

0.1 --0+3 0.7 0.9 0.7 0.3
0.1 0.7 0.3 0.9 0.3 0.7
0.5 0.9 0.9 0.5 0.1 0.1

Player 1 selecting the rows sees high penalty probability elements in
row 3 and lower penalty elements in rows 1 and 2. Player 2 selecting
the columns sees high penalty probability elements in columm 1 and
lower penalty elements in columns 2 and 3. The automata will select
penalty elements 1,2 2,2 2,3 1,3 but there should not be convergence
to any of these elements as the convergence conditions are not
satisified. TFor automata of equal performance the average penalty
received by each automaton should be 0.5. The results presented in
Table 6.1 are the average of two simulation runs, each automaton
having the player 1 and player 2 position with the same random number

sequence being used in both runms.



The first results taken were for automata of the same type. For
fast Lri automata with relatively low cc parameters it was difficult to
get results as the automata went optimal but results were obtained for
more slowly acting automata. Table 6.1(a) shows that the faster Lri
automata with the smaller oc parameter have the better performance.
Obviously 1f a Lri automaton is made too fast it will go optimal and
the slower automaton will have the better performance. Results
(b),(c) and (d) are for Lrp automata. Results (b) with 8 =1 are
inconclusive with the faster automata not showing a particular
advantage. Results (c) with constant 8 are again inconclusive. The
results (d) compare automata with varying 8 and show that the higher
the degree of optimality the better the performance.

Results (e) for Trp automata show inconclusive results till large
step sizes are used when the smaller step sizes have the better
performance. In these cases the advantage in a small step size 1is
lower variance and this factor becomes of greater importance than
speed with large step sizes. Results (f) for the Tip automata are
similar to the Trp with speed being an advantage for small step sizes
but with low variance becoming more important at large step sizes.
For the Tri automaton it was difficult to get results. The Tri
automaton has a high tendency to go optimal and once a player has gone
optimal the opponent is free to select the best penalty element. The
results for the Tri automata measured which automaton went optimal
last. Results (g) are runs in which the automata did not go optimal
but this happened only for large step sizes and in any case the

results are inconclusive.
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Next the probabilistic Tsetlin automata were tested against the Lrp
and Lri automata. The results in Table 6.1 (h) show the performance
of various Trp automata against an Lrp automaton with 8 =1. In all
cases the Trp has the better performance. Increasing 8 in results (i)
increases the performance of the Lrp automata. In results (j) and (k)
against Lri automata, the Lri automata have the better performance.
For the Tip automaton results (1) shows that it has a poorer
performance than the Lrp with 8=1. For results (m) and (n) it was
again difficult to get results in ﬁhich the Tri automaton did not
become optimal but for the results given the performance was worse
than that of the Lrp and Lri automata.

Finally the probabilistic Tsetlin automata were tested against each
other. Results (o) shows the Trp superior to the Tip while (p) shows

it generally superior to the Tri.

Automata Games-Conclusions

The Lrp, Lri and probabilistic Tsetlin automata have been
investigated operating in a variety of games situatioms. For
cooperative games the operation of the automata was as expected and in
general convergence was to the minimum penalty element. A case where
convergence was not to the minimum penalty element was identified and
the conditions causing it found. Conditions for convergence in
competitive games have been established as well as the possibility of
convergence to either of two penalty elements or to none of the
penalty elements. Using a matrix where there should be no convergence
the Lrp, Lri and probabilistic Tsetlin automata have been tested
against each other with the Lri automaton showing the best

performance.
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Players

LrivLri

LrpvLrp

TrpvTrp

TipvTip

TrivTri

LrpvTrp

Parameters

player 1
0.999 1
0.9995 1
0.99 0.99
0.995 0.995
0.999 0.999
0.9995 0.9995
0.999 0.9998
0.995 0.999
0.99 0.998
0.98 0.996
0.995 0.999
0.995 1.0

0.0005
0.001
0.002
0.005
0.01
0.02
0.05
0.001
0.002
0.005
0.01
0.02
0.05
0.075
0.1
0.99 0.99
0.99 0.99
0.99 0.99
0.99 0.99
0.99 0.99

Average
penalty 1

0.50265
0.504
(a)

0.4995
0.50005
0.5004

0.50085
(b)

0.50105
0.4996
0.49995
045

(e)

0.4754
0.47825
(d)

0.4991
0.50055

0.49975
0.4961
0.501
0.4956
0.4698
(e)

0.50025
0.5003
0.50085

0.49925
0.47565

0.45584
(£)

0.48525
0.50285
(g)

0.52305
0.53645
0.5532
0.56335
0.5668
(h)

Table 6.1

Parameters
player 2

0.995
0.999

0.95

0.99
0.995

0.999

0.95
0.99
0.995

0.999

0.9996
0.998
0.996
0.992

0.995
0.999

0.001
0.002
0.005
0.01
0.02
0.05
0.1

0.002
0.005
0.01
0.02
0.05
0.1

0.15

0.05
0.01
0.005
0.002
0.001

Results of competitive automata games

in 2 runs of 100000 iteratiomns
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Average
penalty 2

0.49735
0.496

0.50055
0.49995
0.4996

0.49915

0.49895
0.5004
0.50005
0.5

0.5246
0.52175

0.5009
0.49945
0.50015
0.5039
0.499
0.5044
0.5302

0.47695
0.46355
0.4468
0.43665
0.4332



LrivTrp

LrpvTip

LrpvTri

LrivTri

TrpvTip

TrpvTri

0.995
0.995

0.995

0.995
0.995
0.995
0.995

0.999
0.99

0.99
0.99
0.99
0.99
0.99
0.99
0.99

0.99
0.995

0.995

0.9975
0.999
0.9995

=
o
QOO0 O

0.99
0.99
0.99
0.99
0.99
0.99
0.99

0.001
0.01
0.1

0.1
0.01
0.01

0.5233

0.5021

0.4924
(1)

0.48055
0.48795
0.4923
0.4936
(3)

0.4975
0.49455
(k)

0.48115
0.4816
0.48175
0.4819
0.48135
0.47825
0.4515

%)

0.49825
0.4627
(m)

0.4466
(n)

0.42935

0.44935

0.48025
(o)

0..5025

0.4649

0.3342
(p)

Table 6.1

o OO

0.01

0.005
0.002
0.001

0.001
0.001

0.001
0.002
0.005
0.01
0.02
0.05
0.1
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Results of competitive automata games
in two runs of 100000 iterations
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0.4767
0.4959
0.5076

0.51945
0.51205
0.5077
0.5064

0.5025
0.50545

0.51885
0.5184
0.51825
0.5181
0.51865
0.52175
0.5485

0.50175
0.5373

0.5534

0.57065
0.55065
0.51975

0.4975
0.5351
0.6658



THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER 7 THE TSETLIN ALLOCATION SCHEME

Introduction

Tsetlin [41] has considered the operation of a queueing system and
the effect of different priority systems. Tsetlin examined the case
of subscribers requiring the use of a telephone channel. By wusing a
system which gave priority to subscribers who wmade short calls,
Tsetlin aimed to reduce the mean queue length and reduce the mean
waiting time for the system. The system used learning automata to
assign priorities to subscribers and was of interest as a practical
application of learning automata. It required no a priori knowledge
of the characteristics of the subscribers and was adaptive. The
system was investigated using a computer simulation and was compared
to a simulation of a first come, first served (f.c.f.s.) system which

was used as a reference.

The Tsetlin Channel Allocation Scheme

The explanation of the Tsetlin allocation scheme which follows 1is
presented in conjunction with Figure 7.1.

Subscribers in a system are the source of requests for the use of a
channel. Before a subscriber is allowed the use of a channel the
subscriber must have an automaton. As the subscribers make their
requests they can either have an automaton assigned to them, in which
case they are described as dominant or reserve subscribers, depending
on the type of automaton they have, or have no automaton. There are
two automata for every channel in the system and these are called the
dominant and reserve automata. Each dominant automaton contains the
identification of the subscriber it is assigned to, a queue for the
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subscriber to wait in and the credit of the subscriber. FEach reserve
automaton is similar but without the queue for the subscriber.

A subscriber requiring a channel enters the system. If the
subscriber is dominant on a channel, the subscriber is put onto that
channel if it is free or is put 1into the queue in the dominant
automaton until the channel becomes free. A subscriber who is not
dominant is put onto the main queue if there are no free channels. If
there are channels free, these are searched to see if the subscriber
has a reserve automaton on any of them. If the subscriber has reserve
automata on free channels, the subscriber wuses the channel which
corresponds to the automaton with the highest credit. If the
subscriber has no reserve automata, the subscriber is assigned a
reserve automaton on the free channel which has the least credit in
its reserve automaton.

When a channel becomes free a dominant subscriber waiting in the
dominant subscriber queue has first priority. If the dominant
subscriber is not waiting the second priority goes to the reserve
subscriber who may be waiting in the main queue. If the reserve
subscriber is not waiting a subscriber is taken from the main queue on
a first come first served basis, the subscriber is allocated the
reserve automaton on that channel and the credit is set to zero.

When any subscriber starts to wuse a channel the automaton
associated with the subscriber on that channel is given a constant
amount of credit. When a subscriber ends the use of a channel the
credit is reduced by an amount dependant on the length of time the
channel has been used. In the results this is expressed as a credit
gain/loss per second the channel is used less/longer than a threshold

value. A subscribers credit is limited by the automaton to a maximum



amount and cannot fall below zero.

A dominant subscriber can have only one dominant automaton and no
reserve automata but a reserve subscriber can have more than one
reserve automatomne. A reserve subscriber <can become a dominant
subscriber by being allocated a channel on which the subscriber has a
reserve automaton. The reserve and dominant automata compete and the
automaton with the largest credit becomes the dominant automaton and

the subscriber becomes the dominant subscriber.

The Tsetlin Channel Allocation Scheme-Results

The allocation scheme described above was used in a computer
simulation [43] with the facility for up to five channels and thirty
subscribers. A number of results were taken over a range of
subscriber and automata parameters. The time between the end of a
call and the start of the next call and the duration of call for the
subscribers were exponentially distributed. The results given below
were taken over a long simulation time so that the results would be
well averaged. Where results are compared directly the same random
seed was used for the simulations so that the simulations were
operating with the same inputs.

Table 7.1 gives results for individual subscribers for simulations
over 200,000 time intervals or approximately 450,000 calls in systems
with 5 subscribers using 2 channels. In simulation (a) the mean time
between calls for all subscribers was made equal so that the effect of
call length could be observed. Subscribers with short call lengths
have the highest probability of being dominant and have low
probabilities of being reserve automata while the reverse is true of
subscribers with long call lengths. In simulation (b) all the

subscribers have the same mean length of call so they would each tend
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to gain the same amount of credit from their calls. The mean time
between calls differs so that the subscribers have differing frequency
of calls. The results show that subscribers who make calls frequently
have a greater probability of being dominant. To become dominant a
subscriber must first build up credit in a reserve automaton and then
return to the reserve automaton on which the subscriber has credit. A
subscriber making calls frequently will have more reserve automata,
will be more likely to return to an automaton before it is assigned to
another subscriber and so will build up credit. A subscriber making
calls frequently is more likely to be assigned to new reserve automata
and so destroy the credit of other subscribers.

Table 7.2 gives results for simulations over 10,000 time intervals
corresponding to approximately 160,000 calls from 15 subscribers using
2 channels. The subscriber parameters in this simulation have a
constant ratio between the mean call length and the mean time between
calls. The subscribers with the shortest call lengths become dominant
whilst amongst the other subscribers those with the shortest call
lengths and greatest frequency are most likely to have reserve
automata. The most important result in Tables 7.1 and 7.2 can be seen
when the mean waiting times are compared to those for the f.c.f.s
scheme. This shows that subscribers which are dominant have mean
waiting times longer than the reference while it is the performance of
the reserve automata which increases.

Table 7.3 gives overall results for 7 simulatioms. For a system
performing well the number of events in the simulation will be high,
the mean number in the system will be low and the mean waiting time
will be low. For identical inputs the most efficient system will have

more channels free but in this case because the number of «calls and

224



their distribution amongst the subscribers wvaries it is difficult to
equate this with system efficiency. The seven sets of results have
differing loads moving from the most heavily loaded (a) to the least
loaded (g). These results show that it is in the most heavily loaded
systems that the Tsetlin allocation scheme gives an improved
performance. As the loading on the system falls so does the
performance of the Tsetlin scheme with respect to the reference until
the load becomes about 907 of the total capacity when the performance
of the f.c.f.s. scheme becomes best.

The aim of the Tsetlin allocation system was to reduce the mean
waiting time of a system by introducing a system of priorities which
would favor subscribers with short mean call lengths. The Tsetlin
allocation scheme has been shown to do this only in heavily loaded
systems. In the other —cases the performance of subscribers with
priority 1is decreased. This 1is because dominant subscribers are
limited to use the channel on which they are dominant. If a reserve
subscriber 1is using the channel the dominant subscriber must wait. A
subscriber without a dominant automaton is not constrained to wuse a
particular channel and is free to wuse channels as they become
available. It is only in highly loaded systems that a dominant
subscriber with priority on a particular channel is at an advantage
over the other subscribers with no priority but free to wuse any

channel.

The Modified Tsetlin Allocation Scheme

The Tsetlin allocation scheme has a poor performance because
dominant subscribers are limited to a particular channel. The
modified Tsetlin scheme allows dominant subscribers to use any channel

with priority over reserve and other subscribers. When more than one
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dominant subscriber requires a channel the one with the greatest
credit takes priority. When a reserve subscriber competes for a
dominant automaton the competition is with the dominant subscriber
with the least credit. A dominant subscriber may be using a channel
when the competition occurs but completes the call as normal. The

number of dominant subscribers allowed is equal to the number of

channels in the system.

The Modified Tsetlin Allocation Scheme=Results

Table 7.4 gives results for the Tsetlin scheme, the f.c.f.s.
scheme and the modified Tsetlin scheme for six different simulations
producing lightly and highly loaded systems. In all cases the
modified Tsetlin scheme allows a greater number of calls to be made,
has fewer calls waiting in the system and has the lowest mean waiting
time. The subscribers with the lowest call length become dominant as
in the Tsetlin scheme but unlike the Tsetlin scheme the performance of
dominant subscribers improves whatever the loading of the system. In
the modified Tsetlin scheme the number of short calls from the
dominant subscribers increases while the number of long calls is
reduced. The increase in the number of short calls increases the
number of events in the simulation. Because a subscriber is now more
likely to be held up by a short call than a long call, the overall
waiting time is reduced. In addition, the replacement of a long call
by a number of short ones of equivalent length makes the system more
easy to run efficiently. However in some cases the f.c.f.s scheme has
fewer free channels indicating that this scheme is. allowing more of
the channel capacity to be used by having more calls from subscribers

who produce long calls.
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Further Improvements to Tsetlin’s Allocation Scheme

The priority system of the modified Tsetlin allocation scheme
divides the subscribers into three classes, the dominant subscribers,
the reserve subscribers and the others. Dominant subscribers have top
priority on all channels and the dominant subscribers are themselves
graded, giving greater priority to subscribers with most credit.
Reserve subscribers have priority over subscribers with no automaton
but only on the channel which corresponds to their reserve automaton
otherwise they are treated 1like subscribers with no automaton.
Further improvements in performance could be gained by extending the
priority system. The reserve subscribers could be given priority on
all channels and graded like the dominant subscribers. A further step
would be to extend the priority scheme to all subscribers by grading
them all. This would involve giving all subscribers an automaton
which would measure the subscribers credit. The distinction between
reserve and dominant automata would be removed and the priority would
simply depend on the credit in the subscribers automaton.

Tsetlin’s credit scheme 1is not a very effective mwmethod for
determining the priority of subscribers on the basis of call length.
Subscribers with mean call lengths greater than the threshold wvalue
will tend to lose credit while the rest will tend to gain credit.
Subscribers who tend to lose credit will all tend to have credits of
zero while subscribers who gain credit will all tend to have maximum
credit. Thus the Tsetlin scheme tends to split the subscribers into
two groups and is not suitable for giving each subscriber an
individual priority. The Tsetlin scheme also requires the use of a
threshold wvalue, the value of which affects the operation of the

scheme and so it is not a true a priori system. It would be more
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effective to measure the call lengths of subscribers and base a
priority system on this using the methods of the modified estimating
automaton [24,25]. However there are automata better than the
modified estimating which could be used in an allocation scheme.

In this way it was decided that the next step in the allocation
scheme would not be based on Tsetlin’s scheme. It would give
individual priorities for each subscriber provided by a learning
automaton based on the call lengths of the individual subscribers. Of
the automata which had been investigated the Lrp, Trp and Tip had the

best performance and so these were included in the new scheme.

Automaton Allocation Scheme-Operation

The automaton allocation scheme was simulated in the same way as
the Tsetlin allocation scheme. If when a subscriber enters the system
there is a channel free the automaton is not involved and the channel
is allocated to the subscriber. If there are no channels free the
subscriber waits in a queue. If when a channel becomes free there are
two or more subscribers waiting in the main queue the automaton
selects a subscriber from the queue who will be allocated the channel.
The action probabilities of the automaton represent priorities for the
subscribers. Though the sum of the action probabilities is unity, the
automaton cannot be allowed to select from the full range of its
actions since not all subscribers will be waiting in the queue. Thus
only the action probabilities of the subscribers waiting in the queue
are taken and modified to sum to one so that the automaton will only

select one of the subscribers waiting in the queue.
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When a call ends the length of the call is fed back to the
automaton. A penalty/reward signal was required by the automaton with
long call lengths corresponding to a high penalty probability. The
equation

1/ N
c., = 1-1/((scale*call length) ) (7.1)

i

was used to convert call lengths into probabilities. The scale factor
was chosen so that few calls would be shorter than l/scale and if this
did occur the penalty probability was set to O. The rooct factor N was
included to separate long call times. Figure 7.2 shows the
characteristics of equation (7.1) in converting call lengths into
penalty probabilities using the values used in the simulation compared
to the characteristics with N=1. The root factor has the effect of

producing a less steeply rising characteristic as well as moving the

penalty probabilities nearer to the centre of their range.

Automaton Allocation Scheme-Results

Simulations were made using the automaton allocation scheme with
the same subscriber and channel parameters as used previously for the
modified Tsetlin scheme.

During the simulations the Tip automaton was found to be performing
poorly. Table 7.5 (c) gives results for a simulation using the Tip
automaton. Comparing results with similar results using Lrp automata
as given in Table 7.5 (a) and (b) the Tip automaton has fewer events
and longer waiting times. However the results for the action
probabilities was of most interest as these 1indicated that the
automaton was trying to select the subscriber with the longest mean
call length most often rather than the subscriber with the shortest

call length.
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The analysis of the Tip automaton in a two action environment

showed that the automaton will reach steady state when

penalties from action 1 = penalties from action 2 (5.17)

The action probabilities for the Tip automaton in Table 7.6 (c) can be
explained as an attempt by the automaton to satisfy this condition for
all subscribers. Since the mean time between calls was different for
each subscriber the arrival rates were different. However since the
penalty probabilities were fixed by the mean call length the only way
the automaton could satisfy the condition was by trying to change the
frequency of calls from the different subscribers. The action of the
automaton was to slow calls from subscribers who made calls frequently
and attempt to increase the frequency of calls from subscribers who
make calls infrequently. It did this by having a high action
probability for subscriber 5 who had a long mean time between calls
but also a long mean call length. This gave subscriber 5 a good
performance but this resulted in a reduced overall performance and
poorer performances for the other subscribers.

The Lrp with a«=f3 and the Tip automata satisfy the same steady
state conditions and so the action probability results for the Lrp
automaton could be expected to show the same effect as for the Tip
automaton. Though the action probabilities in Table 7.5 (b) are
higher for infrequent subscribers than the corresponding results for
the Lri automaton the difference is far less than the Tip results.
The results in Table 7.5 (b) and (d) do not satisfy the condition

(5.17) indicating that the Lrp automaton is not operating as expected.



A conventional analysis of the Lri automaton shows that the
automaton operates to equalise the penalty probabilities of the
environment. If this is not possible, as in an autonomous
environment, the automaton selects the action corresponding to minimum
average penalty probability with a high probability. As shown in
Table 7.5 (a) the Lri does not equalise the penalty probabilities or
select the action corresponding to the minimum penalty probability
with a high probability.

The anomalies discribed above were the result of a common cause.
Normal analysis assumes that every time an automaton selects an action
the selection is made between every action and that the feedback 1is
applied to every action probability. In the channel allocation scheme
the selection was made between only the subscribers waiting in the
queue and if only one subscriber was waiting the automaton was not
involved. However the updating was appled to every action every time
a call ended. Because of this the normal analysis does not apply and
the automata will not operate as expected.

Once the cause of the unusual results had been determined further
results were taken with the exclusion of the Tip automaton. Table 7.6
gives results for the Lrp and Trp automata corresponding to the
simulations in Table 7.4. In results (a) and (b) the modified Tsetlin
scheme produces a better performance by having a distinct priority for
subscribers 1 and 2 compared to the less defined priority of the
automata schemes. In (¢) the Trp automaton produces the best
performance by giving more priority to subscriber 1 than the Lrp. 1In
results (d),(e) and (f) the number of subscribers is increased to 15
and the range of mean time between calls and mean call lengths is much

greater. In all these results the Lrp automaton has the best

231



performance. The performance of the Trp automaton 1s good for
subscriber 1 but is degraded because the automaton gives a relatively
high priority to subscribers 12-15 who make calls infrequently but
have long call lengths. Because these subscribers are selected by the
automaton relatively frequently the performance of the other
subscribers falls as does the overall performance.

In Chapter 5 the operation of the Trp automaton was described as a
mixture of Tri and Tip automata. However the Tip when operating in
this simulation tended to <choose the subscriber with the lowest
frequency of calls. Since the Trp is a mixture of the Tri and Tip
automata the behaviour of the Trp in the results above can be

explained as the character of the Tip automaton showing through.

Conclusions

Investigation into the Tsetlin allocation scheme has shown that in
most cases the system does not operate as intended and give priority
to subscribers with short call lengths. Instead, except at wvery high
loadings, the performance of dominant subscribers who should have
priority is reduced.

Having discovered the shortcomings of the Tsetlin scheme the
modified Tsetlin scheme was developed to operate as Tsetlin intended
his scheme to operate. This modification was sucessful and provided a
better performance for all loadings.

As a further development each subscriber in the system was given an
individual priority wusing learning automata. When the results were
not as expected this was found to be due to the unusual selection and
updating procedures required in the system. This resulted in a
distortion to the automata algorithms so changing the characteristics

of the automata. Despite this the Lrp and Trp automata were able to
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produce good performances. These simulations highlighted an aspect of

the use of automata which had not been considered before.
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Subscriber Mean

(0%}

length

of call

(seconds)
0.1
0.2
O.3

0.4

0.5

0.3

0.3

0.3

0.3

0.3

Tsetlin’s allocation scheme simulation results
with results for a f.c.f.s. scheme in brackets

Mean time
between

calls

(seconds)

2.0

2.0

2.0

2.0

2.0

1.0

1.5

2.0

2'5

3.0

(a)

(b)

Table

Percentage Percentage
time as
reserve
subscriber subscriber

time as
dominant

99.98

99.23

0.72

0.05

0.0

59.90

47.94

35.99

31.51

24.66

7.1

0.0

0.53
66.31
66.34

66.82

36.36
40.98
43.81
40.57

38.28

5 subscribers, 2 channels, credit=30/s
threshold value=0.3s, maximum credit=91
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Mean

waiting

time
0.0971
(0.0211)

0.0941
(0.0179)

0.0135
(0.0141)

0.0097
(0.0109)

0.0082
(0.0089)
0.0351
(0.0138)

0.0366
(0.0171)

0.0344
(0.0197)

0.0350
(0.0213)

0.0342
(0.0223)



Subscriber Mean Mean time Percentage Percentage Mean
length between time as time as waiting
of call calls dominant reserve time
(seconds) (seconds) subscriber subscriber

1 0.01 0.1 99.93 0.02 0.0637
(0.0369)

2 0.02 0.2 99.51 0.18 0.0942
(0.0514)

3 0.05 0.5 0.10 27.39 0.0694
(0.0727)

4 0.06 0.6 0.13 24.68 0.0736
(0.0754)

5 0.07 0.7 0.07 22.23 0.0763
(0.0787)

6 0.09 0.9 0.02 18.90 0.0784
(0.0831)

7 0.1 1.0 0.04 17.81 0.0817
(0.0862)

8 0.15 1.5 0.06 14.83 0.0833
(0.0882)

9 0.2 2.0 0.00 13.22 0.0898
(0.0976)

10 0.3 3.0 0.01 11.78 0.0952
(0.0958)

11 0.4 4.0 0.00 11.04 0.0896
(0.0965)

12 0.6 6.0 0.00 10.06 0.1006
(0.0875)

13 0.8 8.0 0.00 9.90 0.0846
(0.0907)

14 1.0 10.0 0.06 9.33 0.0889
(0.0847)

15 2.0 20.0 0.07 8.63 0.0814
(0.0736)

Table 7.2

Tsetlin’s allocation scheme simulation results
with results for a f.c.f.s. scheme in brackets
15 subscribers, 2 channels, credit=400/s
threshold value=0.03s, maximum credit=61
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Number of

subscribers

15

15

15

15

15

15

15

Tsetlin’s allocation scheme simulation results
with results for a f.c.f.s. scheme in brackets

Number of
channels

Number of Mean
events number in
system
677393 11.6189
(606617) (11.9706)
(a)
630252 8.6998
(609376) (8.9062)
(b)
611733 7.6587
(602417) (7.7707)
(c)
591912 6.7098
(587132) (6.7770)
(d)
569826 5.8811
(568326) (5.9053)
(e)
544797 5.1866
(546990) (5.1496)
(£)
519514 4,5989
(5238322) (4.5117)
(g)
Table 7.3

Mean
waiting
time
(seconds)

1.4189
(1.6426)

1.0655
(1.1360)

0.9326
(0.9657)

0.8112
(0.8291)

0.7074
(0.7133)

0.6240
(0.6148)

0.5545
(0.5330)

Mean
number of
free
channels

0.0003
(0.0002)

0.0212
(0.0214)

0.0512
(0.0520)

0.0966
(0.0957)

0.1539
(0.1527)

0.2163
(0.2167)

0.2850
(0.2837)

(a) credit=100/s, threshold value=0.006s, maximum credit=61
(b)-(g) credit=400/s, threshold value=0.003s, maximum credit=61
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Number of Number of Number of Mean Mean Mean
subscribers channels events number in waiting number of
system time free
(seconds) channels

5 316840 4.2080 1.4175 0.0390
350071 4.,1253 1.2254 0.0211
396468 4.0101 1.0243 0.0221

(a)
5 241392 2.5845 0.8586 0.4526
271739 2..2826 0.5093 0.4103
274985 2.2496 0.4797 0.4107

(b)
5 426831 0.7274 0.0461 1.3712
433043 0.6655 0.0149 1.3670
433102 0.6649 0.0146 1.3671

(c)
15 884245 12.7990 2.4402 0.0000
762986 13.1004 2.9075 0.0000
1020868 12.4581 2.0465 0.0000

(d)
15 519514 4.5989 0.5545 0.2850
523832 4.,5117 0+.5330 0.2837
533851 4,3138 0.4860 0.2843

(e)
15 167657 2.5190 0.0763 0.7613
182862 2.3459 0.0590 0.7332
188759 2.3013 0.0545 0.7276

(f)

Table 7.4

Comparason of results for
Tsetlin’s allocation scheme
f.c.fes. scheme
modified Tsetlin scheme
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Automaton Automaton Number Mean Mean Mean
parameters of number in  waiting number of

events system time free
(seconds) channels

(a) Lrp 0.9 1.0 378772 4.0553 1.0960 0.0217
(b) Lrp 0.95 0.95 365111 4.0873 1.1542 0.0214
(¢) Tip 0.0005 332915 4.1687 12304 0.0203
(d) Lrp 0.95 0.95 558211 3.1565 0.4708 0.1603
Mean call Subscriber Subscriber Subscriber Subscriber Subscriber
length 1 2 3 4 5
(seconds)
(a,b,c,d) 0.2 0e5 0.6 2.0 5.0
Mean time
between
calls
(seconds)
(a,b,c) 05 0.5 0.5 0.5 0.5
(d) 0.2 0.5 0.6 2.0 0.5
Action
probability
(a) 0.3700 0.2453 0.2260 0.1120 0.0467
(b) 0.3159 C.2269 0.2150 0.1428 0.0994
(c) 0.0059 0.0046 0.0042 0.0048 0.9805
(d) 0.3913 0.2204 0.1979 0.1079 0.0825
Penalty
probability
(a) 0.4339 0.5435 0.5638 0.6777 0.7422
(b) 0.4343 0.5461 0.5618 0.6751 0.7418
(c) 0.4376 0.5459 0.5674 0.6783 0.7391
(d) 0.4356 0.5459 0.5654 0.6761 0.7391
Number of
penalties
(a) 47725 49448 49399 39890 23211
(b) 44449 47377 46966 40674 23856
(c) 36978 42207 42853 41412 25430
(d) 107524 72480 72480 29506 14052
ci*pi
(a) 0.1605 01333 0.1274 0.0759 0.0347
(b) 01372 0.1239 0.1208 0.0964 0.0737
(c) 0.0026 0.0025 0.0024 0.0033 0.7224
(d) 0.1704 0.1203 0.1119 0.0729 0.0609

Table 7.5
Automaton allocation scheme simulation results
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Number of Number of Number of

subscribers

15

15

L5

channels

Mean
events number in
system

350071 4.1253

396468 4.0101

378722 4.0553

389099 4.0266

(a)

271739 2.2826

274985 2.2496

272324 2.2725

274546 2.2503

(b)

433043 0.6655

433102 0.6649

432732 0.6629

433174 0.6635

(c)

762986 13.1004
1020868 12.4581
1281417 11.8092
1016796 12.4687

(d)

523832 4.,5117

533851 4.3138

539747 4.1892

535934 4.2614

(e)

182862 2.3459

188759 2.3013

188963 2.2779

188369 2.3226

(£)
Table 7.6

f.cefes. scheme
modified Tsetlin scheme
Lrp « =0.9 B=1
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Trp step size=0.0005

Mean

waiting

time

(seconds)

1.2254
1.0243
1.0960
1.0520

0.5093
0.4797
0.5026

0.4819

0.0149
0.0146

0.0147
0.0146

2.9075
2.0465
1.5288
2.0568

0.5330

0.4860
0.4583

0.4745

0.0590
0.0545
0.0527
0.0551

Automaton allocation scheme results for

Mean

number of

free
channels

0.0211
0.0221
0.0217
0.0219

0.4103
0.4107
0.4128

0.4121

1.367

1.3671
1.3691
1.3686

0.0000
0.0000
0.0000
0.0000

0.2837

0.2843
0.2876

0.2847

0.7332
0.7276
0.7189
0.7189



THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER 8 JOB ALLOCATION IN A MULTIPROCESSOR SYSTEM

Introduction

In a single processor computer system, users of the system are
sources of jobs which require the use of the processor. Since the
processor can only carry out the tasks associated with one job at a
time, Jjobs must be queued if more than one job is in the system.
There are a variety of queueing systems used to determine which job is
allowed the use of the processor e.g. round-robin, where each job in
turn is allocated a set amount of processing time, batch, where each
job is allocated the processor until the job is completed and priority
schemes where the processor is allocated according to a priority
system based on the amount of processing time a job has already
received [42]. Some queueing systems favour short jobs and ensure
that they have short waiting times while others are more favourable to
jobs with long processing times. In either case the amount of
processor time available is limited and only the distribution of the
processing capacity amongst the Jjobs can be changed. A single
processor system is similar to the system examined in Chapter 7 in
that it has a limited capacity resource being allocated in a variety
of possible ways amongst a number of users.

In a computer system with multiple processors there is more
flexibility din that the jobs can be allocated to different processors
with the aim of obtaining the best service. In a system where the
speed of each processor is known as well as the queue length, at each
processor a fixed scheduling discipline can be used to calculate the

processor with the least waiting time. However if the parameters of
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the system are not known, the fixed scheduling discipline cannot be
used and if the parameters change with time the performance of the
fixed scheduling discipline can be surpassed. Colon-Osorio [44]
investigated the operation of the fixed scheduling discipline in a
multiprocessor system by simulation and compared the performance with
an adaptive scheme wusing Lrp automata. A similar investigation was

carried out but with the addition of the Trp, Tip and Tri automata.

Multiprocessor System Simulation

The multiprocessor system simulation, illustrated in Figure 8.1,
had provision for up to 5 processors with individual processing rates
and up to 30 sources of jobs with individual exponentially-distributed
processing requirement and time between job arrivals. The allocation
scheme could either be the fixed scheduling discipline or an automaton
scheme. The automaton scheme used an automaton at each source to
allocate the jobs to the processors. The automaton at any source
could be any of the types Lrp, Trp, Tip or Tri. This simulation
provided a system which had not been investigated before. The
environment was non-autonomous but the number of automata operating in
the environment was equal to the number of job sources and the
automata were operating in a games situation in that the actions of
one automaton could affect the other automata via the penalty
probabilities of the processors. The penalty probabilities were
determined using the method used by Colon-Osorio i.e. a penalty was
received if the processor chosen by the automaton was busy otherwise a

reward was received.
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Multiprocessor System Simulation-Identification of Environment

The 1initial measurements obtained from the multiprocessor
simulation showed how the penalty probabilities wvaried with respect to
the action probabilities. This was done by running the simulation
with a wvariety of fixed action probabilities. Results were obtained
for a system with a single source of jobs and two processors with the
system loaded to 0.357 of capacity and are shown in Figure 8.2. The
second set of results were obtained for a larger system with 5 sources
and 2 processors with the system loaded to 0.7 of capacity. These
results are given in Figure 8.3 and with Figure 8.2 confirm that the
system represents a non-autonomous environment with the penalty
probabilities linearly related to the action probabilities. Also
included 1in these figures are the average penalty and mean turnaround
time results. It should be noted that these measures of performance
do not have their minima at the same action probability and so an
automaton achieving the minimum average penalty would not minimise the
mean turnaround time which is the measure of performance for the

system.

Multiprocessor System Simulation—Automaton Steady State Conditions

Included in Figures 8.2 and 8.3 are the results of a number of
simulations using a variety of automata. The results indicate the
average action probability during the simulation. Figure 8.2 gives
results for a single processor operating over 50000 iterations and
includes the average penalty received by the automaton. It can be
seen that the Lrp automaton with 8=1 and the Tip automaton converge
close to the point where ¢, pa; = c, pa, as expected from equation
(4.29) and (5.17). Also as expected from equation (4.22) two Lri

automata converge to the action probability where c; = ¢ and a Lrp
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automaton with cc # B converges between the Lri and Lrp automata. The
most unusual results are three for Lri automata withoc=0.9 which have
action probabilities 1less than O0.1. Because o« 1is so low these
automata have large step sizes and so converge quickly. What has
happened 1is that the automata have gone optimal and converged to
selecting a single action before the system reached steady state.

Table 8.1 gives results for a variety of automata operating in the
environment shown in Figure 8.3. In Table 8.1 there were 5 job
sources so the results are the average over five automata. Again the
Lrp automaton with 8 =1 and the Tip automata converge near the same
action probability, the difference in the mean turnaround times being
due to the different learning times for the automata, as shown by the
result for the slowest automata, the Tip with the step size of 0.001l.
The Lri automata achieve a better performance in terms of mean
turnaround time since the point where ;= 9 is closer to the
optimum action probability for the system.

None of the results for these automata achieve a mean turnaround
time as low as that achieved by the fixed scheduling discipline. Even
the minimum mean turnaround time given in Figure 8.3 1is far larger
than the fixed scheduling discipline result. This is because the
scheduling discipline is a deterministic rule while the automata
implement a stochastic rule. Because of variance, an automaton may
allocate a series of jobs to a single processor while a second
processor may be free. The fixed scheduling discipline with its up to
date information of the queue lengths would easily avoid this. Thus
provided the fixed scheduling discipline has accurate information
about the system its performance can never be matched by an automaton

scheme.
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Multiprocessor System Simulation-Switched Environments

Colon=-Osorio saw the use of an automaton system being an advantage
in situations where the parameters of the system changed so that the
performance of the fixed scheduling discipline was decreased allowing
an adaptive system scope to provide a better performance.

Table 8.2 gives results of simulations using system parameters used
by Colon-Osorio where the processor speeds are switched though the
systems loading remains constant at 0.7. This degrades the
performance of the fixed scheduling discipline while the automata
schemes should be able to adapt to achieve the same steady state
performance before and after the switch.

Table 8.2 shows that the performance of the Lrp automata with 8 =1
is poor. Throughout the simulation the processor queues are growing
longer resulting in long turnaround times. The Lri automata have a
good performance before the switch but a poor performance after. This
is because the automata are slow to switch and because any automata
which have gone optimal will be wunable to switch. A  better
performance is produced by the Lrp automata in the third simulation
result as these cannot go optimal and the result after the switch is
only poorer because of the delay in the automata responding to the
switch in the environment.

The results for the Trp automaton show that the automata produce a
reasonable performance prior to the switch but afterwards the
performance is poor with the processor queues growing longer. This
illustrates an aspect of the operation of the Trp automaton. When the
simulation is started the system is empty and the penalty
probabilities are low. With low penalty probabilities the operation

of the Trp automaton is like that of the Tri automaton and this
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automaton produces good results as Table 8.2 shows. When the
environment switches the penalty probabilities rise and the automata
have to adapt. However the operation of the Trp automaton with high
penalty probabilities is like that of the Tip automaton and the
results show that this automaton produces a poor performance. The Trp
automaton is unable to regain its previous performance after the
switch because of the high penalty probabilities, but cannot reduce
the penalty probabilities because of its poor performance.

The results produced by the Tri automaton were the best that were
obtained, particularly the first result. This had a lower mean
turnaround time after the switch than before and producing the lowest
result of all the automata schemes. The second result is less good
even though the final action probabilities of both runs are the same.
The difference is 1in the speed of response to the switch with the
second result being slower and allowing large queues to develop before
responding to the switch in the environment.

Table 8.3 gives results of simulations in the same environment as
Table 8.1 but with a switch after 2000 iterations. The switch in the
environment is much less drastic than in Table 8.2 and the loading on
the system 1is 0.7. Again the Tip automaton produces the poorest
results and again the Tri automata produce the best results but marred
by a slow response to the switch. Chapter 5 suggested that the Tri
automaton would have a poor performance in a non-autonomous
environment because the automaton tends to converge to select a single
action almost exclusively. In the simulations above, a number of
automata are used together so that each can converge to a single
action and still as a whole produce an action probability between O

and 1. In fact the more automata working together the better, as the
¥
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combined action probability produced by the automata will be closer to
the optimal action probability. When responding to a switch in the
environment the Tri automata are reluctant to change their action.
However when a queue builds wup at a processor and the penalty
probability rises to 1 this forces a number of the automata selecting
that action to change their action which changes the overall action
probability to nearer the new optimal action probability.

In operation the fixed scheduling discipline calculates the
expected turnaround time of a job allocated to each processor in the
system knowing the processor speeds and the processor queue lengths
and allocates the job to the processor with the shortest turnaround
time. In a heavily loaded system the effect of the fixed scheduling
discipline will be to establish processor queues, the length of which
is proportional to the processor speed. When the environment
switches, the fixed scheduling discipline is working with inaccurate
data and will establish the longest queue for the slowest processor.
However this does not have as large an effect on the performance as
might be expected as the fixed scheduling discipline will stop filling
the long queue 1in favour of the short queue which will be processed
quickly by the fast processor. The fixed scheduling discipline also
responds well if a processor fails completely since any jobs allocated
to that processor will enter the queue and not be processed. The
queue will only grow to an extent where the fixed scheduling
discipline allocates all the jobs to the other processors. Since the
fixed scheduling discipline still has accurate information about the
other processors in the system the performance will still be optimal.
Thus the fixed scheduling discipline provides a reasonable performance

even when it has inaccurate information on the processor speeds.
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Microprocessor System Simulation-Interaction of Automata

So far the results presented have been for simulations in which the
automata were of the same type and with the same parameters. In
Tables 8.4 and 8.5 the automata are of the same type but with
different parameters. The environment wused was that of Figure 8.3
with 5 automata and 2 processors. In Table 8.4 runs (a)-(d), the
number of optimal Lri automata is increased from O to 3. The results
show that the Lri automata converge to selecting the fastest processor
so gaining the shorter mean turnaround time. As more Lri automata are
introduced the remaining Lrp automata are forced more and more into
selecting the slower processor.

Runs (e) and (f) are for the Trp automaton, while Table 8.5 has
results for the Tri and Tip automata. In these cases changing the
automaton has no effect on the theoretical steady state conditions of
the automata, instead the speed of convergence and variance are
changed, small step sizes producing slow automata with low variance.
In Table 8.4 (e) and (f) results for Trp automata show that changing
the speeds of the automata results in a poorer performance. This 1is
because the overall action probability is reduced by the slow automata
and though the fast automata compensate it in not sufficient. For the
Tip automata, as shown in Table 8.5(a)-(b), a variety of processor
speeds increases performance. Overall, the action probability and
penalty probability changed 1little but the mean turnaround time is
affected. A variety of automata speeds can have two benefits. The
first dis a decrease in variance as the slow processors have reduced
variance and the second is an increase in speed. Any tendency toward
increased variance due to the fast automata is reduced as the response

to the effects of the variance on the system is speeded up. Also any
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tendency toward a decreased response time due to the slow automata is
reduced provided the fast automata can compensate wuntil the slow
automata reach steady state.

Table 8.5(c)=(f) gives results for the Tri automata with a range of
parameters. Tri automata are expected to go optimal but in (c) with
the parameters all equal, the automata all have the same convergence
rate. They all converge to select processor 1l but because of their
similar speeds prevent each other from going optimal. In results
(d)-(e) the fastest automata converge to selecting processor 1 almost
exclusively. This forces the slowest automaton to select processor 2.
Since this is the only automaton selecting processor 2 the penalty
probability received is low even though the mean turnaround time is
highe. The overall performance is good since the mean turnaround time
provided by processor 1 is low as only 4 automata are selecting it and
because the variance of the system is reduced because the automata are
nearly optimal. Result (f) has even more widely spaced parameters and
in this «case two automata converge to select processor 2 most
frequently. Once all the automata have converged the fastest automata
switches to select processor 2 because of its low penalty probability.
However this has a detrimental effect on the overall performance.

Finally a closer look was taken at the steady state conditions of
automata which have been analysed theoretically, i.e. the Lrp, Lri
and Tip automata. The environment used had two automata and two
processors, using the same processing speeds as in Figure 8.3 but with
the mean time between jobs changed to keep the systems load at 0.7 of

capacity. The results are given in Table 8.6.
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The results given in (a) and (b) are for an Lri automaton operating
with a Lrp automaton with 8=1. The Lri automaton will try to equalise
the penalty probabilities while the Lrp will try to eqﬁalise the
penalty rates according to equation (4.29). If the Lri automaton is
successful in making S ) then from equation (4.29) the action
probabilities for the Lrp automaton must be 0.5. This is what was
observed in the simulations, the two automata combining to produce an
action probability of approximately 0.7. The difference between the
two results is the initial action probabilities of the automata. A
similar performance (f), 1is produced by a Lri and Tip automaton
operating together. This 1is as expected since the Lrp and Tip
automata have the same steady state conditiomns.

Table 8.6 (c) is for a Lrp automaton operating with a fixed
probabilistic rule. By satisfying its own steady state condition, the
automaton produces a poor overall performance. Poor results are also
shown in (d) and (g) which give results produced by two Lrp and two
Tip automata operating together.

The fifth result shows two Lri automata operating together.
Overall the result is the same as the other results with only a single
Lri automaton. The addition of a second Lri instead of a Lrp
automaton has no overall effect though the individual action

probabilities of the automata are changed.

Conclusions

The investigations into allocation methods din a multiprocessor
system has shown that the fixed scheduling discipline can provide a
good performance even when it has inaccurate information. It has been
shown that the steady state conditions of the Lri, Lrp and Tip

automata do not necessarily correspond to ‘the action probabilities
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which would give the best system performance. The Trp automaton has a
reasonable performance but the Tri automaton has been of most
interest. Individually these autowmata have a poor performance in
non-autonomous environments but when a number have been used together
they have been shown capable of steady state results better than any

of the other automata schemes.

252



source

I |
®e
v

AUTOMATON

processor }—

(O———{ AuTomATON |
° ®
®
®
®
: -
(O——{ auTomaron | ¢

Figure 8.1 Allocation of jobs in a multi-processor system



Characteristics of multiprocessor system

0-2s
Teu.

mean time between jobs
mean processing requirement

1 source of jobs {

penalty probability or mean turnaround time

2 processors of speeds bcu/s and 8cu/s
Results taken over 50000 iterations
or
Cq
pry
) CZ
o\
@ j;l—_":'g‘
or penalty
|
!
<|
s
; Ct A
i
S'L CZPZ
!
E Z %tun turnaround time
gy 8
sk .
2 I ! Il ! L 1 l
3.9 9.1 0.2 4.3 d.4 35 0.6 37 dJ.8 0-3
agction prabability P,
A4
lgpe. = 0.95 P=0.95 ap=03585
LRp ¢ =0.95 p=0.995a.p =0.3665
LR1X =098 | ap = 0.3594
Lrrx =095 ap =0.3706
TRp s.5.=0.01 ap =0.-3724
fixed scheduling discipine ap.=0.1709
LRio¢ =0.9 ap = 0.576
LRIOC =0.9 ap = 0.5947

Automaton results show, automaton, automaton parameters, and average penalty

receijved.

Figure 8.2



penalty probability

Characteristics of multiprocessor system

1.0

95

04
=5

0
‘+3

42

S+

turnaround time

2.0

mean

4.0

3.5

30

2.5

1-0

0.5

mean time between jobs = 1s

L mean processing requirement = 0-5c. u.

5 sources of jobs

2 processors of speeds 2-5cu’s and 1.-0714cu/s

Results taken over 40000 |terations

average
penaity /

4/.

C2P; /

mean turnaround time

[ i ! ! L 1 N

.55 3.60 0.6% 0.70 0.7% 0.80 Q.85 0.90 2.55

action probability P,

TP

Tp

Tip

Tip

LrP

TR

RP

RP

:J | |5 o
-

L —

—|— |
%ﬂm—‘m

¥ fixed schedule discipline

Figure 8-3

¥



Automaton Automaton Overall Mean Percentage Percentage

parameters action turnaround time time
probability time processorl processor?2
processor 1 (seconds) busy busy
FSD - 0.7774 0.5993 0.7631 0.5018
Lrp 0.95 0.95 0.6036 1.3700 0.5866 0.9138
Lrp 0.95 0.99 0.6492 1.0034 0.6308 0.8107
Lri 0.95 1.0 0.6930 0.8699 0.6726 0.7132
Lri 0.98 1.0 0.6906 0.9205 0.6672 Oie 7257
Trp 0.03 0.6518 1.0717 0.6298 0.8109
Trp 0.01 0.6482 1.0274 0.6312 0.8098
Trp 0.005 0.6482 1.0595 0.6299 0.8130
Trp 0.001 0.6166 1.4054 0.6005 0.8815
Tip 0.03 0.6008 1.5225 0.5822 0.9214
Tip 0.01 0.5982 1.5518 0.5815 0.9236
Tip 0.005 0.5958 1.6306 0.5785 0.9307
Tip 0.001 0.5702 4.1737 0.5553 0.9848
Txi 0.1 0.6826 1.1658 0.6642 0.7320
Tri 0.05 0.7572 0.8998 0.7403 0.5537
Trdi 0.01 0.6652 1.7218 0.6470 0.7725
Tri 0.005 0.7428 0.9884 0.7219 0.5975
Trd 0.001 0.6178 1.5195 0.6038 0.8736
Table 8.1

Multiprocessor allocation scheme simulation results
5 job sources, mean time between jobs 1.0s
mean processing requirement 0O.5cu
2 processors of speed 2.5cu/s and 1.07l4cu/s
5000 iterations
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Automaton Automaton Overall Mean Percentage Percentage

parameters action turnaround time time
probability time processorl processor?2
processors (seconds) busy busy
1 and 2
FSD - .7285 .2485 0.8880 0.8258 0.5868
«1333 4250 3.7351 0.4949 0.4839
Lrp 0.95 0.95 .4775 .3235 19.0883 0.5585 0.7267
2014 .3276 58.2761 0.4949 0.3595
Lrp 0.98 0.98 .4707 .3265 20.0600 0.5580 0.7090
.1994 .3274 64.2834 0.4949 0.3578
Lrp 0.95 0.995 .5370 .3408 1.8085 0.6548 0.7095
1138 .3284 2.0431 0.8464 0.7217
Lri 0.95 1.0 «5553 .3357 1.6011 0.6870 0.6875
.0052 .3884 8.0939 0.2348 0.7920
Trp 0.01 +5320 .3217 3.4224 0.6261 0.7062
.1402 .3178 11.0677 0.9822 0.7072
Trp 0.005 .5273 .3205 3.5206 0.6224 0.7076
.1380 .3274 19.5042 1.0000 0.7173
Tip 0.03 <445 03225 30.0657 0.5221 0.7076
.2312 .3228 82.9226 1.0000 0.7270
Tip 0.01 4465 3195 31.5873 0.5169 0.7243
«2316 .3246 87.7283 1.0000 0.7187
Tri .05 .5515 .3100 1.7526 0.6935 0.6735
.0518 .3130 1.4018 0.3605 0.6985
Tri 0.01 «5480 .4110 2.1457 0.7187 0.7754
.0194 .3118 20.0978 0.5332 0.6870
Table 8.2

Multiprocessor allocation scheme simulation results
3 job sources, mean time between jobs 0.5s, 0.75s, 1.0s.
mean processing requirement 2.0cu, l.5cu, 1l.0cu.

3 processors of speed 6cu/s, 3cu/s, lcu/s.
switching to lcu/s, 3cu/s and 6cu/s after 4000 iterations
first result taken over iterations 0-4000
second result taken over iterations 5C00-10000
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Automaton Automaton Overall Mean Percentage Percentage

parameters action turnaround time time
probability time processorl processor?
processor 1 (seconds) busy busy
FSD 0.793 0.5274 0.7744 0.5001
0.770 0.6643 0.7829 0.5539
0.471 0.9586 0.9327 0.5062
0.411 1.0541 0.9606 0.5879
0.401 1.1071 0.9672 0.5633
Lrp 0.95 0.99 0.668 1.0252 0.6345 0.8256
0.649 1.0918 0.6578 0.8398
0.349 1.2386 0.7470 0.5880
0.344 1.3442 0.8167 0.6502
0.352 1.1507 0.7816 0.6483
Trp 0.01 0.651 1.0994 0.6259 0.8456
0.639 1.0533 0.6584 0.8382
0.373 1.4174 0.7861 0.5730
0.346 1.4109 0.8261 0.6438
0.339 1.0387 0.7580 0.6574
Tip 0.01 0.590 1.7851 0.5791 0.9449
0.606 1.6716 0.6180 0.9427
0.425 1.7915 0.8794 0.5328
0.397 1.9348 0.9495 0.5875
0.394 1.9422 0.8983 0.6016
Tri 0.02 0.747 0.9256 0.7281 0.6079
0.678 1.1209 0.6821 0.7829
0.510 13.9919 1.0000 0.4126
0.181 4.4858 0.5927 0.8174
0.223 1.0428 0.4668 0.7786
Table 8.3

Multiprocessor allocation scheme simulation results
5 job sources, mean time between jobs 1.0s
mean processing requirement 0.5cu
2 processors of speed 2.5cu/s and 1.07l4cu/s
5 sucessive runs of 1000 iterations
with the environment switched after 2000 iteratioms
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Automaton Run Run Run Run
parameters (a) (b) (c) (d)
Lrp Lrp Lrp Lrp
1 +95 .995 .95 .995 .95 .995 .95 1.0
2 .95 .95 .95 .95 <95 .95 .95 .95
3 .95 .9995 .95 1.0 .95 1.0 .95 1.0
4 .9 .99 .9 .99 .9 .99 .9 .99
5 .98 .9998 .98 ,9998 .98 1.0 .98 1.0
Mean
turnaround
time
1 0.9087 0.9461 0.9101 0.7844
2 0.9121 0.9199 0.8759 0.8841
3 0.6696 0.6163 0.6083 0.6451
4 1.0226 1.0457 1.0204 1.0110
) 0.7900 0.8139 0.7384 0.8160
overall 0.8608 0.8685 0.8307 0.8281
Average
penalty
received
1 0.6606 0.6606 0.6667 0.6687
2 0.6905 0.6847 0.6868 0.6828
3 0.6660 0.6580 0.6540 0.6660
4 0.6957 0.7160 067120 0.6937
5 0.6728 0.6870 0.6748 0.6890
overall 0.6772 0.6812 0.6788 0.6800
Action
probability
processor 1
1 0.6029 0.5567 0.5550 0.7649
2 0.5405 0.5386 0.5348 0.5195
3 0.9320 0.9977 0.9977 0.9990
4 0.4876 0.5037 0.4790 0.4460
5 0.8150 0.7907 0.8217 0.7669
overall 0.6716 0.6740. 0.6776 0.6976
Table 8.4

Multiprocessor allocation scheme simulation results

5 job sources, mean time between jobs
mean processing requirement 0.5cu

Run
(e)
Trp

0.005
0.005
0.005
0.005
0.005

0.9386
0.8966
0.8566
0.9584
1.0048
0.9305

0.6747
0.6692
0.6740
0.6815
0.7012
0.6800

0.6447
0.7010
0.6597
0.6393
0.6595
0.6588

1.0s

2 processors of speed 2.5cu/s and 1.071lé4cu/s

final 2500 of 5000 iterations
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(£)
Trp

0.03
0.01
0.005
0.002
0.001

0.9420
0.9497
C.9264
1.0420
1.1080
0.9930

0.6847
0.6867
0.6920
0.6998
0.7134
0.6952

0.6702
0.6958
0.6709
0.6265
0.5817
0.6492



Automaton Run Run Run Run Run

parameters (a) (b) (c) (d) (e)
Tip Tip Tri Tri Tri
1 0.01 0.05 0.02 0.04 0.04
2 0.01 0.02 0.02 0.02 0.04
3 0.01 0.01 0.02 0.02 0.02
4 0.01 0.005 0.02 0.02 0.01
5 0.01 0.002 0.02 0.01 0.01
Mean
turnaround
time
1 2.0077 1.8455 1.1382 0.8555 0.8575
2 1.8977 1.7415 1.0775 0.8472 0.8513
3 1.8124 1.7253 1.0006 0.8621 0.8647
4 1.9404 1.8220 1.0979 0.8444 0.8473
5 1.9828 1.8774 1.1480 0.9225 0.9202
overall 1.9283 1.8021 1.0925 0.8662 0.8681
Average
penalty
received
1 0.7201 0.7201 0.6978 0.7711 0.7711
2 0.7177 0.7204 0.6942 0.7623 0.7583
3 0.7127 0.7113 0.6839 0.7629 0.7636
4 0.7143 0.7088 0.6857 0.7517 0.7558
5 0.7313 0.7306 0.7076 0.4990 0.4983
overall 0.7192 0.7183 0.6939 0.7101 07101
Action
probability
processor 1
1 0.6077 0.6084 0.6405 0.9769 0.9769
2 0.6053 0.5988 0.6644 0.9779 0.9720
3 0.6048 0.6049 0.7000 0.9785 0.9785
4 0.6195 0.6202 0.6562 0.9791 0.9893
5 0.5926 0.5957 0.6600 0.0101 0.0102
overall 0.6069 0.6077 0.6612 0.7843 0.7851
Table 8.5

Multiprocessor allocation scheme simulation results
5 job sources, mean time between jobs 1.0s
mean processing requirement 0.5cu
2 processors of speed 2.5cu/s and 1.07l4cu/s
final 7500 of 10000 iteratioms

257

Run

(£)

o .
O O OO
O~ N

OO OO O
e o

1.3126
0.6536
0.6652
0.6670
142222
0.9051

0.7050
0.6771
0.6839
0.6937
0.6941
0.6888

0.2230
0.9774
0.9794
0.9899
0.3382
0.6945



Automaton
parameters

Lrp
Lri

Lrp
Lri

Lrp

Lrp
Lrp

Ll
ILrd

Tip
Lri

Tip
Tip

0.98 1.0

Overall Automaton
action action
probability probabilities
processor 1
0.6981 0.5024 0.4976
0.8930 0.1071
(a)
0.6930 0.5080 0.4920
0.8782 0.1218
(b)
0.5739 0.6345 0.3655
0.5 0.5
(c)
0.6056 0.5889 0.4011
0.6030 0.3970
(d)
0.6968 0.6188 0.3812
0.7721 0.2279
(e)
0.6955 0.5003 0.4997
0.8919 0.1081
(£)
0.6046 0.5963 0.4037
0.6000 0.4000
(g)
Table 8.6

Mean

time

1.0824

1.0965

6.9390

2.3982

1.1302

1.1096

2.2618

cl & c2 for Lri
turnaround ¢ pay

for Lrp
0.3449
0.6886

0.3480
0.6900

0.3577

0.3601

0.6894

0.3431

0.6857

0.3578

Multiprocessor allocation scheme simulation results
2 job sources, mean time between jobs 0.625s
mean processing requirement 0O.5cu
2 processors of speed 2.5cu/s and 1.071l4cu/s
10000 iterations
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0.3471
0.6912

0.3473
0.6928

0.3559

0.3559

0.6946

0.3520

0.7064

0.3589



THEORY AND APPLICATIONS OF LEARNING AUTOMATA

CHAPTER 9 CONCLUSIONS AND FURTHER WORK

The work described in Chapter 2 is believed to be the first
investigation of the Tsetlin and Krylov automata synthesised using
digital electronics. These investigations quickly revealed practical
weaknesses in these automata which have not been highlighted by
theoretical analysis. The Tsetlin automaton is optimal as the memory
size increases towards infinity provided one of the penalty
probabilities is less than 0.5. However this work shows that for
satisfactory performance the penalty probabilities should be about 0.5.
For this reason Tsetlin automata with more than two actions are not
considered practical. The Krylov automaton is designed to provide a
better performance than the Tsetlin automaton by being optimal for all
penalty probabilities as the memory size increases towards infinity. 1In
contrast it has been found that the performance of the Krylov automaton
has been unsatisfactory in all environments.

Also described in Chapter 2 is what is believed to be the first wuse
of hierarchical automata. A second automaton has been used to monitor
the performance of the first and controls its parameters to enable it to
achieve the best performance in a non-stationary environment. The
importance of this is 1increased when, in later chapters on
non-autonomous environments, it is shown that in general automata do not
converge to the optimum for the environment but to a steady state

condition determined by their parameters.
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The work in Chapter 2 has highlighted the deficiencies in the
automata described as Type 2 in Table l.l. These have a fixed structure
and a deterministic output which means that the automata cannot provide
good performance for the whole range of penalty probabilities. The
automata proposed in Chapter 3 have a variable structure and the results
have shown that adopting a wvariable structure can achieve good
performances over the range of penalty probabilities.

Chapter 4 shows the disadvantages of a deterministic output function
by considering non-autonomous environments, where a mixture of actions
produces the best performance. To be able to investigate non-autonomous
environments a model is required. The model proposed in Chapter 4 is
more realistic than others in that it uses the information that would be
available to an actual environment and also provides a model on which it
is easy to carry out theoretical analysis. Simulations of automata with
deterministic output functions has shown their wunsuitability in
non-autonomous environments. Simulations of automata with stochastic
output functions operating in Narendra’s non-autonomous environment has
led to a theoretical analysis showing the unsuitability of this model.
Theoretical analysis of the steady state conditions of the Lri and Lrp
automata has been given and though these results have been presented
elsewhere the method used here to achieve the results is different.
These results show that the Lrp and Lri automata operate to satisfy
their own steady state conditions and not the conditions for minimum

average penaltye.
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Based on the conclusions of Chapter 4, three automata are proposed in
Chapter 5 which have stochastic output functions. The operation of
these automata has been analysed and their performance calculated and
compared to the Lri automaton. The graphs presented in this and
previous chapters giving the optimality, average penalty and mean
switching times in a wvariety of stationary, non-stationary and
non-autonomous environments is an attempt to give wuseful dinformation
about the performance of the automata and so enabling them to be
compared directly. The analysis of the Lrp automaton required to
produce these graphs is believed to be the first of its kind. Of the
automata proposed in this chapter, the Trp and Tip have performances
comparable to the Lri automaton.

Chapter 6 considers multi-action automata using the hierarchical
learning system and automaton games. Though the use of the hierarchal
learning system is not new the modified Tsetlin automata have mnot been
used in this system before. Comparisons with the Lrp automaton have
proved valuable and certain advantages of the modified Tsetlin automata
highlighted. Attempts to cause the hierarchical learning system to
converge to the dincorrect actions were unsuccessful proving the
practicality of the system.

The operation of various automata in games situations has been
observed and was as expected from previous work. In cooperative games
the convergence of the automata to the optimum penalty probability
element has been tested and the best conditions for convergence
established. In competitive games the operation of the automata has

been observed and the conditions for their convergence Or
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non-convergence understood. Based on this, a penalty probability matrix
has been devised to test the performance of the automata. From these
tests the Lri automaton has provided the best performance but the Trp
automaton also gave good results, 1in many cases better than Lrp
automata.

In Chapter 7 the operation of the Tsetlin allocation scheme was
investigated and it was found that it did not perform as expected. The
reasons for this were identified and a modification to the system
provided an improvement in performance by making the operation of the
system closer to what was originally intended. Also tested was a more
conventional learning automata scheme. Although this also provided an
improvement in performance a more important practical comsideration was
discovered. In the system the automaton could not select between all
its actions but for simplicity the feedback was applied to all actions.
The result of this was that the automata algorithms were distorted so
that the automata did not operate as expected. The effect on different
automata was variable with the operation of some automata changing
dramatically. This is obviously an effect that will occur in a variety
of practical applications and should be remembered when future systems
are being designed.

In Chapter 8 a scheduling discipline for a multiprocessor system with
up to date 1information about the system is compared to an automaton
system with no information about the system. The comparison is somewhat
unfair as the superior performance of the fixed scheduling discipline
shows. It is only when the system is disrupted a great deal that the

adaptability of the automaton scheme becomes beneficial. A point worth
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noting from these investigations is the performance of the Tri automata.
When operating alone they have a poor performance but when many are used
together their combined performance has been shown to be good.

The work presented here investigates the performance of a variety of
automata and how they operate in various environments. It is felt that
enough is known about the performance and characteristics of learning
automata to allow their wuse in practical situations. However the
selection of a suitable application for the use of learning automata is
important. Learning automata learn by selecting the wrong actions and
cope with non-stationary environments by continuing to select the wrong
actions occasionally after they have learned. Because of this, learning
automata cannot be used where the wrong actions would cause damage or
have dangerous consequences. They are more suitable in non-autonomous
environments where there are no wrong actions and the ratio of actions
is important. Learning automata are best wused in situations where
feedback is available frequently and the feedback should be determined
by the actions of the automaton as directly as possible. It is also
important to be sure there are gains to be made by wusing learning
automata. For example the wuse of learning automata within a single
processor computer system cannot provide more processing time for the
users, it can only distribute it between the users in different ways.

One example which illustrates all these points is the adaptive
cancelling of sound [50] where a waveform is adaptively generated to
cancel the noise of a diesel exhaust. In this example the performance
is easily specified, an output from the environment is always available

for feedback and an incorrect action by the automaton does not have
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serious consequences.

One application of learning automata that is receiving considerable
attention 1is the adaptive routing of <calls 1in a telephone network
[45,46,47,48,49]. To provide a link between the source of a call and
its destination a number of links are made between exchanges. For a
particular source and destination there are a variety of paths the call
can take. The use of learning automata to route calls between exchanges
has a twofold advantage. First the learning scheme can achieve near
optimal performance and so match the performance of a conventional
routing algorithm but in addition the learning scheme is also adaptive
and so can maintain performance in a non-stationary situation. Secondly
a learning scheme can cope with overloads in particular parts of the
system by using unused capacity in other parts of the system, something
a conventional routing algorithm cannot do. Although the operation of
individual automata in such a system can be predicted much less is known
about the overall performance and it is here that present work is being
concentrated.

A similar application is the use of learning automata in a packet
switched communication network. In this case a complete link from
source to destination is not made, instead the message is split into
standardised packets and sent from exchange to exchange. A packet
switched communication network provides an even more complex system than
the telephone network with a greater rate of feedback for the learning
automata but also with more quickly changing characteristics. Once
again the performance of individual learning automata in a decentralised

system can be forecast from previous work but questions are still
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unanswered regarding the global performance and how  global
characteristics can be used to control local automata.

Finally recent work [53] has drawn interest towards the wuse of a
hierarchical automaton to control a PID three term controller. This
combination provides a control unit with widely understood and trusted
operating characteristics. However the use of a learning automaton to
control the parameters of the controller provides a learning capability

and an ability to adapt to changing environmental characteristics.
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA

APPENDIX 1 CALCULATION OF STEADY STATE ACTION PROBABILITIES

The operation of an automaton can be described in terms of the
state vector and the Markov transition matrix Pt [51,52] as
@(n+1) = Pt * P(n) (Al.1)
Given an initial condition ¢(O), ¢(n) can be calculated as
p(n) = 2" % $(0) (Al.2)
As n=->o ¢(n) approaches the steady state probability wvector. This
method of calculating the steady state probability vector is
impractical because of the large number of matrix computations
involved.
Equation (Al.l) describes a set of N simultaneous equations. By
replacing the first equation by
+ B, .. (A1.3)
the set of equations can be solved to give the steady state
probabilities. Once the state probabilities are found and the
relationship between the states of the automaton and the actions is

known the action probabilities can be calculated.
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA

APPENDIX 2 CALCULATION OF MEAN SWITCHING TIMES

For an automaton with 2n states operating in a switched environment
initially favoring action 1 but changing to favor action 2 in response

to a switch the mean switching time is given by [31]

t= ¢l By a4+ 1 T ¢2 m2 n+ 1 Feee ¢n "n n+1 (a2.1)
where ﬁi = probability of state i
m = mean first passage time from state i to state j

i3
To find the mean first passage time from state i to state j consider
the situation after one time epoch [52]. The automaton will have

moved from state i to some other state k, which may be the final state

j with probability pt 5 thus

k
m i =1+3 k= 5 Pty o My i (A2.2)
since when k=j m k i =0
where pt ik is an entry in the Markov transition matrix for the

automaton after the switch in the environment. By considering
equation (A2.2) for all values of i a set of simultaneous equations
can be formed which when solvedgive passage times from

the states i to state j. Using equation (A2.1) the mean switching

time of the automaton can be found.
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THEORY AND APPLICATIONS OF LEARNING AUTOMATA

APPENDIX 3 MARKOV TRANSITION MATRICES OF AUTOMATA

where

and

and

and

2N

]

Tsetlin Automaton

2 3 4 o N=1 N N+1 N+2.2N-3 2N-2 2N-1

c2 0
0 ¢,
0 0

penalty probability associated with action 1
penalty probability associated with action 2

memory size of automaton

number of states in automaton
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2N=-2

2N-1

2N

Krylov Automaton

1 2 3 4 o N-1 N N+1 N+2.2N-3 2N-2 2N-1 2N

l—cl /2 <y /2 0 0

l—c1 /2 0 cy /2 0

0 1-c1 /2 0 c. /2

1

l—cl /2 0 ¢ 1/2 0

0 c, /2 0 l-c2 /2

¢, /2 0 1-02 /2 0

0 ¢, /2 0 l—c2 /2

0 0 c2 /2 l-c2 /2
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1 2 3eie
1 (1—cl )Wr +cl (l-Wp ) (l—cl )(l—Wr )+cl Wp 0
2 (1—c1 )Wr +cl (1-Wp ) 0 (l—c1 )(l—Wr )+cl Wp
3 0 (l—cl )Wr +cl (l-Wp ) 0
N (l-c1 )Wr +c1 (l—wp ) 0 (l-cl )(l—Wr )+cl Wp
N+1 0 (1--c2 )(l-wr )+c2 Wop 0 (l-c2 )Wr +C2 (l—wp
2N=2 0 (l-—c1 )(l—Wr )+c1 Wp 0
2N-1 (1-c2 )(l-Wr )+c2 Wp 0 (l--c2 )Wr +e, (l-Wp
2N 0 (l—c2 )(1—Wr )+c2 Wp (l-c2 )Wr +c2 (l-Wp
o0 @ 2N"‘2 ZN- l 2N

where Wp = l/(2cm ) (3.3)

and Wr = l/2(l~-cm ) (3.6)

and c, = (cl +c2 )i/2

Type 1 Modified Tsetlin Automaton
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Type 2 Modified Tsetlin Automaton

]- 2 . 3...
1 (l-cl )+cl (l—Wp ) ¢y Wp 0
2 (l—cl )Wr (l—cl )(l—wr )+cl (l—wp ) <y Wp
3 0 (l-cl )Wr (l—cl )(l—wr )+cl (1—wp )
N (l-cl )Wr (l-—cl )(1—Wr )+c1 (l=wp) ¢y Wp 0
N+1 0 c2 Wp (1—c2 )(l—Wr )+c2 (l—Wp ) (l—c2 )Wr
=2 (l-cy ) (1-W_ )+c, (1=, ) (1-c, )W, 0
2N-1 ¢y Wp (l—c2 )(l-Wr )+c2 (l-Wp ) (1-c2 )Wr
2N 0 C2 WP (1—C2 )+C2 (l—wp )
0o 2N=2 2N-1 2N
where Wp = (l—cm )/cm (3.9)
and Wr =g /(l-cm ) (3+12)

1]

and ch (c1 +c2 Vi/s2
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Tri Automaton

1 2 C P
1 N-1l+4+c (l1-c, ) 0
N 2 N e
2 (N—Z)(l—cl_) (N-—Z)cl +2c, (N—Z)(l-cl )
N N N -
N-1 2(l-c1__) 2_cl +(N—2)c2 (N-2)(1-c2_)
N N N
N 0 (l-—cl ) N--1+cl
N N
...N—Z N-l N

number of states in automaton

where N
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Tip Automaton

I 2 3.
(N—l)(l-—cl )+1 (N—l)cl 0
N N
2e (N=2) (1=c. )+2(1l=c, ) (N=2)c
NZ Nl 2= N 1

(N=2)c 2(l=c. )+(N=2)(l=c, ) 2c
N 2 1 N 2= N 1
0 (N=-1)c (N=1) (I=c, )+1
N 2 N C
oo oN=2 N-1 N
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Trp Automaton

1 2 o
(N=1) (1=c, )+c (N=1)c, +1-c 0
5 1 2 S 1 2
(N-Z)(l-c1 )+2c2 0 (N—2)cl +2(1-c2_)
N N
2(1-—cl )+(N—2)c2 0 2cl +(N--2)(1-c2 )
N TN -
0 (1=c, )+(N=1)c c, +(N=1)(l-c, )
lN A | N 2
..-N—Z N-l N
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The application of digital stochastic computing techniqgues
to the hardware synthesis of Tsetlin and Krylov automata is
considered. Experimental results and measurements are presented
for the performance of the Tsetlin automaton in non-stationary
random environments. Contrary to previous work the Krylov
automaton is shown to possess serious disadvantages in
non-stationary eanvironments. The results of simulations for
two new automata based on those of Tsetlin and Krylov are given.
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Introduction

71
Tsetlin in a pioneering paper‘*)

described a fixed
structure learning automaton with a linear tactic, operating
in a random environment.

Recently the suggestion has been made that the automaton
described by Tsetlin is more suitable than other automata

(2)

for use in non-stationary environments Elsewhere the

(3)

Krylov automaton has been proposed as an automaton which
was asymptotically optimal for any environment, rather than
being asymptotically optimal only for environments with one

penalty probability cy less than half and the other cy greater

-than half as for the Tsetlin automaton.

The operation of an automaton is governed by an algorithm
F which, in a fixed structure automaton, relates the state of
the automaton ¢(n) to ¢(n + 1) and can be either deterministic
or stochastic. In a variable structure automaton, F relates
p(n), the state probability vector, to p(n + 1) while it is
p(n) which relates ¢(n) to ¢(n + 1). o(n) is related to the
action of the automaton a(n) by an output function G, which also
can be either deterministic or stochastic. The Tsetlin
automaton considered later is a fixed structure deterministic
automaton while the Krylov automaton is a fixed structure
stochastic automaton. Both have a deterministic output
function. The discussion will be confined to automata
classified as P model and with action sets limited to two
elements.

For learning automata operating in non-stationary
environments a measure of performance 1s the mean adjustment
or switching time<2), defined as the average number oI epochs,
after a sudden change of the penalty probabilities frcm
cy < c2 to ¢y > o) till Py changes from being less than =P
to being greater than or equal to Py- For linear learning
automata the mean switching time is the average number of
epochs, after a sudden reversal of the penalty probabilities,
until action 2 is reached, assuming the automaton was correctly
providing an action 1 input immediately prior to the switch in

the penalty probabilities.

The Tsetlin Automaton

Theory of Operation

The operation of the Tsetlin automaton can be seen with

/

reference /
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of n, and has one action corresponding

reference to Figure 1 which shows a two action automaton
with a memory size
S

to internal states 1 to n and the other corresponding to
internal states n + 1 to 2n. When the automaton takes action
1 the environment outputs a stochastic sequence of value c,,

1
while action 2 corresponds to a stochastic sequence of value

¢ When the automaton receives a penalty the automaton

o-
moves towards states n and o + 1 while, in response to a reward,
the automaton moves towards end state 1 or 2n. Thus, with
output action 1 the automaton performs a simple random walk
between its internal states, with a reflecting barrier beyond
state 1 and with output action 2 the automaton performs a

simple random walk between its internal states, with a
reflecting barrier beyond state 2n. If an action has associated
with it a ci, the value of which is greater than half, the
automaton will tend to move towards states associated with the
alternative action while, if the value of ci is less than half,
the automaton will tend to move towards the end state associated
with the action it is already taking.

The operation of the Tsetlin automaton will fall into one
of three modes depending on the enviromnment. II the ci‘s are
about a half, one action will tend to make the automaton move
towards states associated with the other action, while the
other action will tend to make the automaton move towards the
corresponding end state. Thus one action is stable while the
other is unstable and the automaton works well. If the ci’s are
both greater than a half, both actions will tend to make the
automaton move towards states associated with the other action.
Thus both actions are unstable, the automaton moves between
states n and n + 1 frequently and works poorly. If the ci’s
are both less than a half, both actions will tend to make the
autcomatcon move towards the end state associated with that action.
Thus both actions are stable, with the automaton only moving
from one action to another due to variance in the penalty
probability causing it to be temporarily greater than a half
over a long enough time to allow the automaton to move from
one action to the other. If the largest penalty probability
is not close to a half, or if the memory size is large, the
automaton can output the wrong action for long periods of time

and the automaton works poorly.
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Hardware Design

A Tsetlin automaton, the block diagram of which 1 nown

wn
n

in Figure 2 was implemented using digital stochastic

(4)(5)(8)

techniques The heart of the automaton 1is a 1l2-bit
binary counter allowing up to 4096 states or memory sizes up

to 2048. The most significant bit of the counter is taken

as the action of the automaton and is input to the environment
which outputs the appropriate penalty probability. The output
of the environment and the action of the automatcon are fed into
combinational logic to convert these into an up/down control
signal for the counter. The up/down signal is in turn fed
into more combinational logic along with the state of the
automaton and signals representing the memory size to provide

a disable signal to prevent the counter exceeding the required

memory size.

Experimental Results

The performance of a 2048 state memory Tsetlin automaton
was 1lnvestigated with a2 switched environment. Figure 3 shows
the operation of the automaton with the central trace in each

case indicating the switching instants for a reversal of penalty

probabilities c . Figure 3(a) shows the satisfactory operation
of the auuomaton with cl 's of %% and T% i' Figure33(b)

shows the efLTCts of change of ci’s to T% and T i.e. both
greater than 5 - It is evident that the automaton fails to
operate. Finally Figure 3(c) illustrates the characteristics
with cl 's of 12 and T% ; In this case since the ci's are
both less than 3 the automaton again operates poorly and locks
onto one action. These results are entirely consistent with

the theoretical predictioms.

Figure 4 shows experimental and theoretical results for
mean switching times. The theoretical results given agree
basically with previous predictions(z), but a compensation
factor has been included to prevent the possibility of switching

times less than one epoch which were not included in the

experimental results. As mav be seen irom Figure 4 good
correlation is obtained between theoretical and experimental
results.

The Xrvlov Automaton

Theory of Operation

The /
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Hardware Design

A Tsetlin automaton, the block diagram of which is shown
in Ficure 2 was implemented using digital stochastic
tecbniques(4)(5)<6). The heart of the automaton is a 12-bit
binary counter allowing up to 4096 states or memory sizes up
to 2048. The most significant bit of the counter is taken
as the action of the automaton and is input to the environment
which outputs the appropriate penalty probability. The output
of the environment and the action of the automaton are fed into
combinational logic to convert these into an up/down control
signal for the counter. The up/down signal is in turn fed
into more combinational logic along with the state of the
automaton and signals representing the memory size to provide
a disable signal to prevent the counter exceeding the required

memory size.

Experimental Results
The performance of a 2048 state memory Tsetlin automaton

was investigated with a switched environment. Figure 3 shows
the operation of the automaton with the central trace in each

case indicating the switching instants for a reversal of penalty

probabilities ci. Figure S(a)l§hows th? satisfactory operation
of the automaton with ci's of Tz and 5 i' FigureBB(b)

shows the efficts of change of ci’s to T% and I i.e.both
greater than 5 - It is evident that the automaton fails to
operate. Finally Figure 3(c) illustrates the characteristics

: 3 1
wit z ! — o
th o s of T3 and G
the automaton again operates poorly and locks

In this case since the ci’s are
both less than 5
onto one action. These results are entirely consistsnt with
the theoretical predictiomns.

Figure 4 shows experimental and theoretical results for
mean switching times. The theoretical results given agree
basically with previous predictions(2>, but a compensation
factor has been included to prevent the possibility of switching
times less than one epoch which were not included in the
experimental results. As may be seen from Figure 4 good
correlation is obtained between theoretical and experimental

results.

The Krvlov Automaton

Theory of Operation

The /
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The Krylev automaton is very similar to the Tsetlin
automaton in that it has a series of states 1 to 2n, with states
1 to n being associated with one action and states o + 1 to 2n
being associated with the other. It is in the movement between
the states that the Krylov and Tsetlin automata differ as shown
in Figure 5. In response to a reward the Krylov automaton
acts as the Tsetlin and moves deterministically towards an end
state but, in response to a penalty, the automaton acts in a
stochastic manner and either moves towards states n and n + 1 or
towards the end states with probability %

The action of the Krylov automaton can be.related to that

of the Tsetlin automaton. If an automaton performs an action
such that it receives a penalty with probability c, then

]
Q

penalty probability
reward probability = 1 - cy

If a reward response is taken as a movement towards states 1
or 2n and if a penalty response is taken as a movement towards

states n and n + 1 then for the Krylov automaton

t

penalty respomnse probability = ¢,
1 -'c

-~

I

reward response probability 1

and a similar argument applies to Cqy-
Equating response probabilities we see that a Krylov
automaton receiving penalty probabilities in the range 0 , 1 is

equivalent to a Tsetlin automaton receiving penalty probabilities
in the range 0 , % . However, it has been shown above that
the Tsetlin automaton does not function correctly with pemalty
% and so it was expected that
the Krylov automaton would not work well over the complete

probabilities both less than

range of ci's.

Hardware Design

A Krylov automaton was designed using digital stochastic
computing technigques and its schematic diagram is shown
in Figure 2. The circuit is identical to that used in the
Tsetlin automaton except that instead of deterministically
converting a penalty response from the environment into an
up/down control signal for the counter, a stochastic sequence

of probability % is sampled and used as the control signal.
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Experimental Results

Figure 6(a) shows a Krylov automaton with memory size
of 2045, initially with output action 1, operating in a
: : . . 1D »
switched environment with cz's of O and i As predicted the

result is similar to a Tsetlin automaton working with both c.'s

[

less than a half with the automaton locked into the output of
one action. This locking is in fact a function of the memory
size. The automaton has two stable states, with the state
corresponding to the lower c. being more stable than the other
with stability increasing as—the memory sSize increases. Variance
in the penalty probabilities causes movement between the states
and the time spent in a state depends on its stability. Thus
while both states are stable, for small memory sizes, variance
should cause movement between the states with the automaton
spending more time in the most stable state. This can be seen
in Figure 6(b) which shows a Kfylov automaton with memory size

. 7 9 . ;
of 8 with ¢, of = and ¢, of <= moving from states corresponding

1 8 2 8

f
to c2 to states corresponding to Cqy remaining in those states

for a time then moving back. Finally Figure 6(c) shows a Krylov

automaton with memory size of 8 working in a switched eavironment
. 3
with ci's of . and

high the automaton trace should be low it can be seen that it

Since when the switching trace is

oo|

works poorly.

The Modified Tsetlin Automata, Types 1 and 2

Though the results of testing the Krylov automata were
disappointing the Krylov automaton proved to be the basis of two
new learning automata. The aim in designing these was to retain
the good gualities of the Tsetlin automaton but also to produce
automata which would operate well for ci’s about any value
rather than the value of half which the Tsetlin automaton is
limited to. The Kryvlov automaton took penalty probabilities
which were greater than a half and produced penalty response
probabilities which were less than a half. The modified
Tsetlin autcomata take two penalty probabilities of greater
than a half but about a value o and, by using a stochastic
response to a penalty, produce one penalty response probability
which is less than a half and one which is greater than a half.
Further, by using a stochastic response to a reward, two penalty

probabilities /
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probabilities both less than a half but about a value Ch will
produce one penalty response probability which is greater than
a half and one which is less than a half. This is illustrated
in Figure 7. Thus provided cm is known any pair of penalty
probabilities can be transformed to be about a half producing

a Tsetlin type response.

Theory of Operation

The modified Tsetlin automata are similar to the Tsetlin
automaton in that they have a series of states 1 to 2n with
states 1 to n being associated with one action and states n + 1
to 2n being associated with the other. However, the movement
between the states is more complex and is shown in Figure 8.

For the modified Tsetlin automaton, type 1 shown in
Figure 8(a), and penalty probabilities about a n value greater
than a half, as shown in Figure 7(a), to obtain penalty response

probabilities ci and cé spaced about a half

Using a stochastic response to a penalty with probability WD
of moving towards states n and n + 1 and assuming a deterministic

response to a reward then

% - Bn x Wp i e B e B e g B W s e e e (2)

Substituting equation (2) into equation (1)

1
w e
jo) Zcm

Wp is to be a stochastic variable and so has a maximum value

of 1 thus

1 . 1
it = — —_—
ND T if 5 & < e e~ e 89
] m m
1
= T s
3! if 3 o >euvd

For penalty probabilities about a cy value less than a half as
L
shown in Figure 7(c), to obtain penalty response probabilities

ci and cé spaced about a half

o ) D e e R e e i h e (4)

m
Using a stochastic response to a reward with probability W_

of i



of moving towards the end state associated with the action
output by the automaton and assuming a deterministic response

to a penalty, an assumption justified by equaticn (3) then

~
ol

Cm = cm + (1 - Wr)(l - Cm) ....................

.

substituting equation (35) into equation (4)

ke = : L
V. 2 (1 - c_) =

For cm greater than a half . Wr = 1, so justifying the
assumption made in forming equation(2)

For the modified Tsetlin automaton, type 2, shown in
Figure 8(b) in addition to penalty and reward responses we
have an inaction response. If an inaction response is counted
as half a penalty response, for penalty probabilities about a
S value greater than a half as shown in Figure 7(a) to obtain

penalty response probabilities ci and cé spaced about a half

ci e O T - e D L L N R E  ow s oann 7))

Using a stochastic response to a penalty with probability of Wp
of moving towards states n and (an + 1) and (1 - WD) 0of remaining
in the same state, and assuming 2 deterministic response to a

reward then

g .
o= W + = - W ) e S E e e
g e 5 3 %n (1 Np) (8)
Substitutingequation(8) into equation (7)
1 -c
W= -~ °p if B L s s (90
P c °m
m
1 -c
= 1 if Z > 1
c
m

For penalty probabilities about . value less than a half, as
shown in Figure 7(c), to obtain penalty probabilities c, and

Cy spaced about a half

Using a stochastic response with prcbabilicty Wr oI moving
towards the end state associated with the action output by the
automaton and assuming a deterministic response to a penalty,

an /

/



an assumption justified by equation (9), then
o= s &
¢ c 5

5 - (1 - Cm)(l - Wr> ................. (11)

Substituting equation (11) into equation (10)

For crn greater than a half Wr 1, so justifying the assumption
made in forming equation (8).
' Equations (3), (6), (9) and (12) require a value for Cy
This is taken as the mean of estimated values for cq and Cq
obtained from two adaptive digital circuit elements (ADDIES)<6)
which respond to the reward/penalty signals obtained from the
environment, these signals being fed to the ADDIE estimating
Sy when action 1 is output and to the ADDIE estimating cy when
action 2 is output. It was predicted that the type 2
automaton with the inaction response would have less variance
than the type 2 automaton and would be more nearly optimal

for the same memory size.

Software Simulation

The modified Tsetlin automata, types 1 and 2 were
simulated on a computer rather than the hardware synthesis used
for the Tsetlin and Krylov automata because of the relative
complexity of the automata structures. For the purpose of
comparison the Tsetlin and Krylov automata were also simulated.

Figure 9 shows results from a simulation of a modified
Tsetlin automaton, type 1, with memory size of 10, ADDIE
counter size of 32 and operating in an environment with penalty
probabilities of 0.6 and 0.9. It can be seen in Figure 9(a)
that the automaton initially moves between actions 1 and 2
frequently but later moves to states associated with the action
corresponding to the lower penalty probability. Initially, with
the estimates of the ci’s in the ADDIES being zero, both actions
are unstable but as the estimates of the penalty probabilities
rise the actions become less unstable until in the steady-state
the action corresponding to ci(min) is stable and the other
unstable. The learning time is limited by the speed of

response |/



response of the ADDIES. Between Figures 9(a) and 9(b) the
environment has been switched and it can be seen that the
automaton reacts quickly to the change. It can be seen that
the switching time in Figure 9(b) 1is shorter than the learning
time in Figure 9(a). This is because the switching time 1is
governed by the memory size which is small, rather than the
counter size of the ADDIES which is larger.

Figure 10 shows results from a simulation of a modified
Tsetlin automaton, type 2, with the same parameters as the
type 1 considered above but operating with penalty probabilities
of 0.1 and 0.4, again with the environment switching between
Figures 10(a) and 10(b). The automaton operates satisfactorily
and the lower variance of the type 2 automaton can be seen.

Figure 11 shows results of simulations of Tsetlin and
Krylov automata. Figure 11(a) shows the Tsetlin automaton
operating with penalty probabilities of 0.6 and 0.9 and moving
frequently between states n and n + 1, both actions being
unstable, while Figure 11(b) shows the Krylov automaton
remaining in the incorrect state after a switch in the environment
to: 0,635 and 0.35.

Figure 12 illustrates a problem that can occur with
either of the modified Tsetlin automata. Figure 12(a) shows
a type 2 modified Tsetlin automaton operating in an environment
with penalty probabilities of 0.35 and 0.65. In Figure 12(b)
these have been switched but it is a relatively long time before
the automaton changes its output action. This is due to two
causes. The first is variance in the ADDIES. At the time
of the switch the ADDIES held estimates of the penalty
probabilities which were higher than normal. This resulted in
2 higher than normal value for n causing the stability of the
actions of the automaton to be increased leading to a longer
switching time. The second cause is the speed of response of
the ADDIES being too fast in comparison with the speed of the
speed of the counter. In this example the memory size was 10
and the ADDIE counter size 32. After the switch the automaton
has as an input the higher ci. If the ADDIES are small their
response time is fast and the penalty probability estimate in
the ADDIE has increased significantly before the automaton
counter has had time to output the action corresponding to Ci(min)'
Because of this, the value of ch increases causing the stability
of both actions to increase and result in longer switching

times. /
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times. In order to maintain short switching times the
ADDIES used in the modified Tsetlin automata snould not be
too small so that they have low variance and response times
longer than the automata's counters.

=< -

Conclusions

In the course of investigating the Tsetlin automaton in
a deterministically switched environment, comparisons have
been made with other automata structures. Optimal 2utcmata
are a severe disadvantage when operating in a2 non-stationary
environment because an automaton which is nearly optimal takes
the correct action with a probability very nearly unity. Thus
if the ci's change so that the previously correct action becomes
the wrong action, the automaton will continue to output the
previously correct action and will not cause the environment
to output the ci corresponding to the current correct action
and so the change in the ci’s can go unnoticed by the automaton
for a long time. Decreasing the optimality will cause the
wrong action to be output more often and so any change in the
ci's will be noticed by the automaton soocner. There is a
trade-off between optimality and mean switching time.

The Tsetlin automaton provides good mean switching times
and a near optimal performance but with a severe limitation
on the environment, the ci's having to be about a half, but it
is the restrictions on the ci's that gives the good optimality
and learning times. When operating in a switched environment
the Tsetlin automaton does not have to sample the wrong state
in order to determine whether the environment has switched or
not. Because the ci’s are about a half when the switch occurs,
a ci which was less than a half is now greater than a halfi and
the automaton moves towards states associated with the other
action no matter the degree of optimality and so high optimality
is not a great penalty. The Tsetlin automaton seems to have
only a small trade-off between optimality and mean switching
time but has a severe trade-off between coptimality, mean
switching time and limitiations on the range of ci's that.can
be used.

The Krylov automaton was believed to be asymptotically
optimal in arbitrary random environments. Experimental evidence
clearly shows that the automaton possesses an unsatisfactory

performance Vi
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performance in noan-stationary random environments.

The modified Tsetlin automata types 1 and 2 have been
shown to be capable of good learning characteristics with no
restrictions on the penalty probabilities that can be used
whilst retaining the short mean switching times and near
optimal performance that characterises the Tsetlin automaton.
It is hoped these automata will be of use in non-autonomous
environments where their ability to reject actions that
correspond to penalty probabilities above any value of n and

their short switching times should prove valuable.
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