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ABSTRACT

THEORY AND DESIGN OF A HARDWARE STOCHASTIC SlilULATOR 

by

DANIEL P MANN

The work described in this thesis is concerned with the design of 
special purpose digital circuitry to achieve high speed simulation of 
system reliability.

Initially an investigation into alternative simulation methods is 
undertaken. Analytical and Monte-Carlo techniques are described and the 
advantages and disadvantages of each method are discussed. The 
operating principle of the new Simulator developed is placed in context 
with current simulator design.

Systems which contain reliable components, arranged in redundant 
configurations, possess high reliability. A reliability assessment for 
such systems requires fast simulation. Considerable parallel hardware 
operation is employed to produce simulation speeds faster than 
lOOyears/second, independent of the number of system components. A 
novel technique is also used to gain further speed via asynchronous time 
scaling.

Modelling of complex strategies of repair and preventative 
maintenance are catered for. Systems can be modelled where facilities 
for repair are limited and system components compete, according to some 
priority policy, for available repair men. The use of these additional 
modelling features is achieved without reducing simulation speed.

Components which make up the system under investigation are modelled 
by general purpose hardware modules. Each component module is equipped 
for considerable modelling detail, providing a simulator that can model 
systems with wide ranging characteristics. The operation of component 
modules is determined by a micro-programmable control unit.

The interconnection of components to form a system is dealt with by 
logical network techniques. Although logical networks are employed, 
observation of system behaviour is not solely by monitoring network 
events.

Important to the operation of the Simulator is the generation of 
random event signals of prescribed distribution. Considerable care has 
been taken in the design of the event signal generators, and their 
operation is both mathematically and statistically investigated to 
verify their performance.

Finely the simulator is applied to a range of reliability simulation 
problems. The systems initially considered are analytically analysed to 
confirm the Simulator's operation. Later, system.s containing complex 
repair schemes are modelled, and the economic or reliability performance 
of the system is optimised.



Review of Reliability f'odeling

1.0 Introduction

Many systems which use a large number of components of equipment 

require high reliability from the overall system. During the 

development of these com.plex systems, decisions have to be made on 

possible maintenance policies and the organisation of components which 

make up the system. The inclusion of redundancy and complex strategies 

of repair or replacement, m.ake the task of ensuring a low probability of 

system failure difficult.

Clearly there is a requirement for m.echanisms that aid the designer 

and system operator with these problems. Many such mechanisms are built 

around models which do not adequately represent the system under 

investigation, or result in expensive time-consum.ing studies. This 

Chapter reviews and contrasts known techniques and finally introduces a 

new approach to the problem.

1.1 Investigative Techniques

The two basic approaches to calculation of system, reliability use:

a) simulation

b) analytical techniques.

Whichever techniaue is employed, a mathematical description of the 

system must be developed. From this description, the two technicues 

follow separate paths to the solution of the system, reliability problem. 

Analytical methods involve the solution of equations describing the 

system. This leads to an exact solution. Simulation methods involve 

experiments on the m.athem.atica 1 model. The results obtained are 

statistically analysed to determine system reliability.



At first sight, the analytical technique seems most attractive as it 

yields an exact solution. Also it might be expected to do so in a 

shorter time, as to increase the accuracy of values produced from 

statistical sampling, many experimental runs are required to gain a 

large number of samples. However an analytical solution may be 

intractable unless considerable simplification of the mathematical model 

is carried out, leading to results of questionable accuracy. The 

distribution form of results produced by simulation may also contain 

information not normally obtainable by analytical methods.

The following sections of this Chapter describe and compare the two 

methods. It will be seen that different paths to a solution can have 

similarities as indicated in Figure 1.1a.

l. 1.1 Analytical Markov-Approach

A system under investigation can take on a number of distinct system

states. These states are connected by links corresponding to state

transition probabilities. A state transition diagram aids in the

development of such system models. Consider an example system of two

active items of equipment for which one must work if the system is to be

operational. Figure 1.1.1a gives the state transition diagram for the

system. The item.s of equipment are identical, having a failure rate

Only one repair man is available, constituting a single item repair rate

of ju. If single-step state transition probabilities are defined as

P. which is the probability of moving from state i to state j,
1 »J

then transition probabilities can be arranged in matrix form. This

m. atrix is known as the transition matrix P. The state of the system at 

time n is given by a state probability vector (P̂  ,?2 , • • • )*̂ =p^ , where 

p*̂  is the probability of being in state i at the time n. To determine
i
the probable state of the system, at time m, given an initial starting 

vector pO , the following equation must be solved



piTL pO_ p m

The iiarkov approach to system reliability calculation proceeds by 

developing a state transition matrix. Techniques for the manipulation 

of transition matrices have been developed to calculate system 

characteristics such as mean time in a particular state or tine-to-first 

state-encounter [1]. In reliability terms, these parameters correspond 

to mean down time and time to first system failure respectively. 

Computer programs have been constructed to generate state transition 

m.atrices and determine the solution [2,3].

A Markov process can be termed 'memoryless' as the state of the 

system at time m can be completely determined from, the state at tim.e 

m-1. No knowledge of the sequence of states leading to the state at rc-1 

is required. Another way of expressing this is that state transition 

probabilities are not time dependant. Limiting transition probabilities 

in this way allows times between repair and failure to be modelled only 

by exponential distributions. Here lies a disadvantage of Markov 

analysis. Either modelling distributions are limited to an exponential 

form, which m:ay not be justified, or a non-Markov approach m.ust be 

devised. Non-Harkov processes are particularly difficult to analyse and 

are often avoided by applying methods to convert them to an approximate 

Markov process solution [2].
Tractable solutions to m.odels employing non-exponential

distributions have been found possible by semi-Markov methods [4]. 

Semii-Markov processes contain an embedded Markov process in that state 

transitions occur according to a transition matrix P. Delay tim.es for 

transitions, say i to j, are given by  ̂ and are determined from 

the conditional probability distribution which may be

non-exponential.



A further disadvantage of Markov methods is the intractability of 

systems containing large numbers of components, whose reliability is 

effected by varied maintenance and management policies. Such systems 

require techniques to be applied to reduce the large number of possible 

system states [5]. The problems out lined here have led to other methods 

of obtaining an analytical solution, principally the use of logical 

networks. Arguments for and against the use of logical networks are 

interesting [6,7] and are outlined in the section dealing with network 

techniques in general.

1.1.2 Simulation Approach

The technique of system simulation is a procedure based on 

experimentation carried out on a representative model system.. It is an 

imprecise technique due to the stochastic nature of the model. That is, 

simulation does not provide exact solutions to system, reliability 

problems. Better results are obtained by increasing the number of 

experimental observations. The technique relies upon the generation of 

random, variables of known distributions to describe system properties. 

Bringing together these properties according to a mathematical model 

permits observations to be made about system, properties of unknown 

distribution. The generation of random system param.eters in this way is 

often referred to as Monte-Carlo Simulation.

The simulation approach to system reliability proceeds by developing 

a m.odel which contains only the im.portant features of the real system. 

This is not a sim.ple task and requires a careful analysis of the system 

to be carried out if the simulator is to provide valuable information. 

Unnecessary 'model detail is to be avoided as it may obscure any 

understanding of model behaviour. Further detail results in longer 

developm.ent times, longer run times and greater cost. These pitfalls 

can be avoided if the initial system study is carefully investigated.



There are two principle rrethods for simulation time scaling. The 

choice of method employed has considerable bearing on the Simulator's 

iiTipleinentation. The 'event-by-event' method relies on updating the 

model at the occurrence of events {8]. Each event is decided on the 

basis of the shortest-time-to-occurrence, from a queue of events. 

According to the event chosen, the model is updated and a new random 

time generated for the next occurrence of the event, which is then 

returned to the event queue. The process of event selection continues 

until a prescribed condition (e.g. total simulated time) is reached. 

This type of time scaling is referred to as asynchronous, as the quantum 

of time that the simulation is incremented by does not directly relate 

to real time, but depends on the value selected from the queue. 

Sim.ulators of this type appear to offer greater speed, as no time is 

wasted modelling system behaviour between events.

The second method of time scaling is knovm as 'epoch-by-epoch'. Its 

principle is to divide real time into regular intervals (epochs). At 

the start of each new interval, all aspect^ of the model are brought up 

to date. This corresponds to synchronous simulation as the modelling 

process proceeds at a constant rate relative to real time. Unlike the 

previous method the generation of random time intervals between events 

is not required, rather the probability of event occurrence. However 

the time between events still follows some appropriate probability 

distribution. The accuracy of the distribution of events generated, in 

modelling a prescribed distribution, is dependent on the epoch size. 

This leads to a compromise situation not encountered by the 

event-by-event method, in that increased epoch size yields a faster 

simulation but reduced modelling accuracy.



The implementation of a sim.ulator can be achieved using software or 

special purpose hardware. Software simulations involve the use of 

computers in conjunction with a program which models the system under 

consideration. Generally, special purpose simulation languages [9] are 

used to minimise modelling times and effort in software development. 

Such programs are often found to require substantial amounts of computer 

time for execution [10], unless considerable simplification of the model 

is permitted. With a view of improving simulation speed, programs can 

be constructed in machine language although in practice this is seldom 

done due to increased complexity. Software simulators written in 

special purpose languages or high-level compiler languages are 

invariably event-by-event because of the simulation speed problem.

An interesting technique applicable to event-by-event simulation and 

producing substantial speed gains is variance reduction [10]. The 

method allows a smaller number of statistical observations to be made by 

replacing the random time of duration for each random event occuring by 

the events expected duration. However the- technique is limiting in the 

range of model characteristics observable.

Hardware simulators involve the construction of special purpose 

circuitry. This offers the opportunity of considerably increased 

simulation speed at a much reduced cost. Parallel modelling operations 

offer the main contribution to increased speed, a technique not normally 

available to the software simulator. By far the most popular method of 

implementation is by software. The reasons for this are as follows :

1. Convenience of computers and lack of experience in electronic 

circuit design.

2. The availability of special purpose simulation languages.



3. Adaptability of software programs. It is unusual to encounter a 

hardx;are simulator of reconfigurable nature.

4. The ability to construct a much more user-orientated simulator.

Most simulation studies are for unique systems, although much v/ork 

has been directed to the more difficult problem of constructing a 

general purpose software simulator [11]. A general purpose Monte-Carlo 

hardware simulator is unknown.

1.2 Use of Logical Networks

Logical networks give a means of logically representing the 

interconnection of component aspects forming the systemi of interest. In 

reliability problems, the use of fault and success trees, which are 

subsets of logical networks-, is frequently encountered. Tree analysis 

requires logical statements which describe the conditions necessary to 

bring about some undesired system event. Consider the logical flow 

diagram Figure 1.2a depicting a 5 comiponent system. Flow diagramis or 

block diagrams are themselves logical networks which are useful at the 

system tree development stage, as they more closely resem.ble the 

functional system layout. The corresponding system success tree is 

given in Figure 1.2b. Components are restricted by a two state 

representation viz 'working' and 'failed'. In success tree notation, 

the occurrence of a component failure is known as a prim^ary event. 

Primary events are connected by logical operators, generally AllD and OP 

gates. These form logical sub events which lead towards system failure, 

the top event. It can be seen that a tree analysis provides a means of 

determining critical failure paths, as sub events contributing to the 

top event are logically related to the primary events, and as will be 

seen later can be quantified. Greater understanding of failure 

mechanism.s offers an opportunity for system improvem.ents.



In comparison with the Markov approach, the fault tree method has 

two disadvantages. It is unable to deal with degraded component 

operation, and analysis of system behaviour is restricted to statistics 

of the occurrence of the 'working' or 'failed' state.

Investigations into tree construction [12,13] are closely connected 

with realisation of the Boolean function describing the top event in 

.terms of the primaries. The reason for this is due to the use of fault 

trees in determining analytical solutions to system reliability [14]. 

By this m.ethod, the top event is specified in terras of the m.inim.um cut 

sets. Minimum cut sets are simply sets of primary events in which the 

presence of each component is necessary to bring about the top event. 

Replacing the events in the Boolean expression by their probability of 

occurrence permits the probability of the top event to be calculated 

from the m.inim.um cut set equations. The method has found success and 

can tackle quite complicated systems, dealing with a range of 

probability distributions (unlike the Harkov approach) and maintenance 

policies. Unfortunately, the cost of executing such software studies 

has been high and this has lead to the developmÆnt of hardv/are modelling 

techniques [15,16]. Hardware techniques are generally employed in the 

calculation of system minimum cut sets, after which a computer is 

employed to determine system reliability.

Monte-Carlo simulations based on fault trees are also possible, and 

software implementations have been investigated [17]. Substantial 

numbers of runs would be required to simulaté system operation if 

results are to be obtained with acceptable confidence limits. It is 

doubtful if software implementations can be achieved with reasonable 

running costs. However a Mbnte-Carlo ■ sim.ulation of logical trees does 

have a considerable advantage, in that the Boolean functions describing 

the top event and sub-events are not required. A hardware Monte-Carlo 

simulation eraplo3>'ing logical trees is an area receiving little attention



[18]. High speed parallel hardware will make a valuable contribution to 

system reliability studies.

1.3 Proposed Simulator

A hardware Monte-Carlo simulator is proposed employing logical trees 

to define system configuration. The model developed is highly flexible, 

allowing varied system studies to be undertaken. System models are 

constructed from components. Each component employed by the model to 

simulate a particular system aspect may be programmed to characterise a 

range of behaviour. Components are equipped for considerable modelling 

detail, providing a simulator well suited to system studies containing 

small numbers of sophisticated components. The current design is for a 

simulator limited to 32 components.

Characteristic distributions selected during the programming 

operation are not limited to the exponential distributions. Maintenance 

and management policies are well catered for allowing manipulation^ of 

policies , the consequence of which can be studied in a controlled way. 

The use of logical networks enables system configurations to be easily 

altered. Further, they m*ake possible the identification of sequences of 

events V7hich have the potential to affect system operation.

Although logical networks are employed, statistical analysis of 

system behaviour is not only dealt with by monitoring the occurrences of 

logical tree events. The actual technique used permits information to 

be gathered about system behaviour which would be unobtainable via 

logical networks alone.

With a full knowledge of component reliability, it is possible to 

assess the probability of system failure in a very short time, as 

comiponents operate in a parallel fashion. Further, the operation of 

each individual com*ponent is itself in a high speed parallel operation. 

The advantages of asynchronous simulation are also exploited to gain



additional simulation speed. When a numerical reliability goal is set 

for the system, the required redundancy of various components and 

subsystems can be found, and an optimum preventive maintenance policy 

produced.

Attention has been paid to operator usability and the proposed 

simulator is particularly convenient and efficient. A graphical 

specification of logical networks and display of experimental results 

has been incorporated.

1.4 Development of Simulator

The Simulator models the stochastic behaviour of system components 

by generating random, binary signals at the occurrence of events, such as 

failure. Initially, interest is directed towards generating binary 

signals of uniform, probability distribution. Later, m.ethods of 

transforming the uniform distribution into any prescribed distribution 

are içvestigated.

Throughout the discussion of techniques to generate multiple streams 

of random event signals, statistical tests are employed to assess the 

various methods considered.

The construction of special purpose hardware to model, in parallel, 

the random, and deterministic events which effect com.ponent behaviour are 

undertaken. The high speed hardware is interfaced to a computer to 

enable easy operator control.

After the construction of the sim.ulator, systems of analyticaly 

determinable behaviour are m.odelled and the operation of the Simulator 

verified.

10



I«5 Conclusion

^any techniques have been used to achieve hiph simulation speeds. 

Modelling detail of systems under Investigation is not compromised for 

simulation speed or cost. The simulator is particularly suited to 

sensitivity analysis and reliability improvement problems.

11
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2.0 Techniques of Random Number Generation

There are several ways of approaching the problem of generating 

random numbers. One technique involves the use of a device whose 

intrinsic operation is based on random phenomena. Some sort of signal 

conditioning is normally necessary to convert the device output into 

number form. Another method is to consult a table of numbers 

specifically produced to pass all the statistical tests for randomness 

when taken in a sequence. By far the most popular method of random 

number generation involves programming a digital computer to

deterministically compute random numbers according to some simple 

algorithm. The resulting sequence of numbers is called pseudo-random 

since although the numbers might have excellent statistical properties, 

their origins are distinctly non-random.

The random number generator used in the simulator works on the 

principle that an n-bit random number can be constructed from n 

pseudo-random binary digits. The binary sequences are generated 

deterministically using shift registers with feedback. Such a generator 

is suitable for simultaneously producing multiple streams of random 

n-bit numbers. An analysis of the generator operation indicates that 

number sequences can be expected to have statistical independence. This 

Chapter describes the design of the generator and compares the method 

developed with other techniques for number generation. Statistical 

tests as well as mathematical analyses techniques are used to confirm 

the advantages offered by the design.

Uniformly Distributed Number Generation

15



2.1 Theory of Pseudo-Pandon Binary Sequences

The principle of using shift registers to generate [19,20] sequences 

of I's and O's has been vrell explored. Figure 2.1a shows a typical 

digital circuit technique. The combinational feedback logic applies 

modulo 2 addition to certain bits of the register. The result is 

entered into the first bit of the register on the next clock pulse, 

during which the contents of the register are shifted one bit along.

Consider an N-bit register. The succession of states in the
Nregister is periodic, with period P^2 -1. This is easily proven by

considering that each state of the register is completely determined by 

the previous state. So if it ever happens that a state is the same as

an earlier state then the sequence of states of the register would
Nrepeat. With an N-bit shift register there are only 2 different 

states. Thus the sequence of states in the register must start to 

repeat somewhere between the first and 2^ clock pulse. Further, the 

all O's state cannot be allowed to occur as this would result in only

logic 0 being fed back, and the register would rem.ain in the all O's
Nstate. Thus P^2 -1.

The sequence of I's and O's generated by the register is certainly 

of finite length and cannot be said to be truly random. The best that 

can be done is to single out certain properties as being associated with 

randomness, and to accept any sequence which has these properties as a 

random sequence.

The following properties are associated with randomness:

1. The number of logic 1 levels is approximately equal to the number 

of logic 0 levels.

2. Runs of consecutive logic 1 levels or logic 0 levels frequently 

occur, with short runs being more frequent than long runs. Half 

of the runs should be of length 1 , a fourth of length 2 , and an

16



eighth of length 3, and so on.

3. The auto-correlation is a measure of the amount of similarity 

between the sequence and the sequence phase shifted. The random 

sequence should have an auto-correlation function peaked at zero 

phase shift and near-zero for. all other phase shifts.

These characteristics of randomness can be satisfied by a logic sequence 

produced by a shift register with appropriate feedback.

2.2 Feedback Circuitry

The particular logic required to generate the random 'I's and 'O's 

pattern is given by the factorisation of the equation governing the 

N-bit cycling shift register. If the contents of the i-th stage of the- 

register is labelled (see Figure 2.2a) then it is easily seen that:

D ̂  Y . =Y.
1 1

where D is the well known delay operator, used to express the delay of 

one clock period. The above equation can also be expressed as:

(xN -1)Y. = 0 
1

( 1)

where the symbol D has been replaced by x. The sequence produced by the 

register satisfies equation (1). The same seauence may also

satisfy the equation (x*̂  -1)Y^=0 where d<N.

For this to happen x^-1 would have to be a factor of x^-l^ and the

roots of x'^-l would therefore also be roots of x*'*-l. Each factor of 

x ^ - 1  is of degree less than N, and therefore the sequence produced 

could be generated on a shorter register. Not all the factors will 

describe sequences with the appropriate random.ness properties. The 

suitability of each factor depends on its particular roots.

N - 1

17



In the field of complex numbers the roots, a^, of x^-l=0 are
k

ak=e ¡\j'(K=l,2, ... , N). The complex ones amongst these occur in

conjugate pairs. The roots for which K is prime to N are called 

primitive N-th roots of unity. The number of primitive roots is given 

by the Euler function, ^(N) [20,pg23].

Consider N=15. The solution of the equation x^^-l=0 will give the 

15 roots of unity (3^=2 -̂ ,K=1,2,..., 15), for which â ,̂  -1=0,

K=l,2,...,15.
i 2tt (-^)Taking the case a,̂ =e-' 15 which can be expressed as

^10 ® 3

10
3Thus a^Q is also a root of x -1=0. The divisors of

1S H15 are 1,3,5 and 15 so x -1 has binominal factors x -1, where d may be 

any of these divisors. All the 15 roots of unity can be arranged into 

groups which satisfy the equation x^ - 1=0 but not x^-l=0, where d'<d.
15Each root will satisfy an equation of the form x -l=(x-a, ).

Rearranging the roots into groups gives:

x^-1 = P(l) .P(3) .PX5) .P(15)

The root a15
=ej ̂ '^ 1̂1^=1 satisfiies x-l=0. The conjugate pair ar, a10

3satisfies x - 1=0, and so on.

P(l) =(x-a^^) = x-1 

P(3) =(x-a^)(x-a^p)

P(5) =(x-a^) (x-a^) (x-ag) (x-â 2̂)
P(15) =(x-a^)(x-a^)(x-a^)(x-a^)(x-ag)

X (x-a^p (x-a^g) (x-a^^)

The complex terms in the above equations occur in conjugate pairs 

and so can be expressed as polynom.inals with only real terms.

P(l) = x-1

P(3) = x^ +x +1

P(5) = x ^ + x ^ + x ^ + x + l
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P(15) = X® --¡J  -X® +X^ -X®  -x+1

These polynorrinaIs are called cyclotoKic pclynon^inals [19] and the
1Cpolynominal- P(15) is termed primitive because it is a factor of x'''-l 

and of no other x^-1 where d<15. The roots of P(M) are the primitive 

N-th roots of unity. The number of primitive roots, and hence the 

degree of the polynominal is given by the Euler function, 0(M).

When X is restricted to binary values the above mathematics is 

applied Modulo 2. The polynominaIs describe binary sequences which will 

satisfy the equation x^^+l=0 :

x̂  ® +1 = (x + 1) (x^+x+1) (x^+x ®+x^+x+1)

X (x®+x'^+x®+X^+x®+x+l)

Note the polynominal (x^ +x^ +x® +x^ +x® +x +1) can be factorised into 

(x^ +x2+l)(x^ +x +1) . Consider a sequence which satisfies the

polynom.inal P(5):

(x^ +x® +x^ +x + 1 ) Y. = 0
1

( 2 )

The same sequence would satisfy the equation:

(x^^ +1)Y^ = 0

Rememibering that x was defined as the delay operator, equation (2 ) can 

be set up on a 4-bit register (Figure 2.2b) using exclusive-OF^ gates to 

perform the modulo 2 addition.
5The roots of P(5) are also the roots of x -1=0, and therefore the 

sequence would also satisfy the equation.

(x'̂  +1)Y^ = 0

This proves that the sequence is only 5 bits in length. The sam.e

argument can be applied to the polynominal P(3). Roots of this
opolynominal are also roots of x'’ - 1=0 and a sequence, {Y^}, which
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satisfies:

(x^ +x +1)Y. = 0

will also satisfy (x^+l)Y^=C and therefore car. only be 3 bits in 

length.

It can be seen that the equation which is satisfied by the longest 

sequence is the priiritive polynominal. It has roots which are not

solutions to any of the binominal factors of x^^-1 , but only to the 

primitive polynominal and x^-1. Consider the expression x^ i-x“̂ +1, a 

factor of the primitive polynominal. A four bit register designed to 

generate the sequence governed by:

(x^ +x3 +1) Y. = 0

is shown in Figure 2.2c. The sequence will be 15 bits long which is the 

maximum possible length for a 4-bit register. The equation x^ +x"̂  +1=0 

is called the characteristic equation and the sequence is known as a 

maximum length sequence or.m-sequence for short.

In general for an N-bit shift register to produce a maximum length
Nsequence the period of the sequence must be p=2 -1. This would require

that the polynominal describing the generated sequence is irreducible

(that is, cannot be factorised). N-sequences pass all the statistical

tests for random.ness previously listed [Section 2.1].
NConsider an m-sequence of length p=2 -1, produced from an N-bit

N-1register; the number of I's in the sequence is 2 and the number of
N-1O's is 2 -1. The difference is due to the register never entering the

all O's state. The auto-correlation is given by C(t), where:

C(t) = 1 

C<t) . - -k

if t =Kp 

if Kp<t<(K+l) p 

for K =0,1,2,..
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The auto-correlatlon function of m-sequences Is two valued: C(t)=l

for a delay which is a multiple of the period, and n(t)=-l/p for all 

other values, since the number of I's in each period exceeds the number 

of C's by one.

2.3 Coset Structure

In Section 2.2, dealing with feedback circuitry of shift registers,

the initial equation (x^ -1) was assumed. This equation has N roots.

Some of the roots will also be roots of equation (x^-1) where d<N. The

rest will only be roots of (x^- 1 ) or some higher order expression.

Consider, as in Section 2.2, the case (x^^-1). The 15 roots are 
i 2 it(  ̂)given by â =e-* 15 , k=l,2,...15. It was shown that roots a^, â Q̂

3were also roots of (x - 1 ) and roots a^, a^, aQ, aj^2 were also roots 

of (x^ -1) and so on. The roots can be arranged into cyclotomie 

polynominals. For exam.ple, all the roots of (x^-1) can be arranged into 

polynom.inal P(5):

P(5) =(x - a2)(x - a^)(x - a^)(x -

The integers fromi 1 to N-1 can also be grouped into cyclotomie cosets 

[19]. A coset contains the integers which 'correspond' to the roots of 

a particular cyclotomie polynomiina 1. For example, the elements in the 

coset which correspond to P(5) above are

^ 6  12^ y u ,  L ^

If N is odd the integers 1,2,4,8,... 2*̂  (where îl=2̂ -1 ) are the elements 

of the first coset, known as the multiplier subgroup. The other cosets 

are obtained by m.ultiplying, modulo N, any of the remaining integers 

from 1 to N-1 by each member of the subgroup. For the case N=15 the 

cosets are
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Cl 1 2 4 p proper

C2 7 14 13 11 proper

n oV. _ 3 6 12 9 imrreper

C4 5 10 improper

Cosets which contain nuitbers prime to M (numbers vjhich correspond . to 

roots of the primitive polynotninal or a factor of it) are termed proper 

cosets, the others are termed improper. Each proper coset corresponds 

to a particular characteristic equation with its own m-sequence [19]. 

The number of possible m-sequences is given by the number of proper 

cosets.

2.4 Decimation of N-bit Number

Decimation of an m-sequence is the process of generating a new

sequence by selecting every q-th term of (a^).

If (a^} is an m-sequence of period r, and q is prime to r (proper

decimation), also has period r and is either a phase shifted

version of {a } or a different m-seouence altogether, n
Decimation can be understood by exam.ining the coset structure. As 

stated above, if q is prime to r, then {b^} is an m-sequence. This 

limitation on q corresponds to q, m:Odulo r, being a member of a proper 

coset. The sequence ^b^} produced depends on the coset to which q 

belongs and not the exact value of q. If q is a m.ember of the 

multiplier subgroup then is identical to except for a

possible phase shift. However if q belongs to another proper coset, a 

different m.-sequence is produced. Should q be a m.ereber of an improper 

coset, then {b^} is not a maximal length sequence.



The application of proper decimation is important when over-cor:inp 

the problem of producinp several random binary seciuences.

2.5 iT-bit Random I’umber

The. problem of producing pseudo-random binary sequences has been

dealt with. Consideration must next be given to how these random binary

digits can be used to produce an n-bit random number.

Let the n-bit random number be denoted by E^. The random variable

should be uniformly distributed in the interval [0,2*̂ -1 ], and each

num^ber in this range should be equally likely to appear at any point in

the seauence. There should be no correlation between E. and E.,,1 i+k
for any non-zero integer k. That is each number in the sequence should 

appear to be independent of all previous numbers in the sequence.

This criteria cannot be met with sequences of pseudo-random numbers, 

because each number is strictly determined by the preceding number in 

the seauence. However the generator can be considered acceptable if the 

numbers produced pass certain statistical tests, based upon the 

properties of sequences of truly random numbers. A description of the 

tests used and the results obtained shall be given later in this 

chapter.

As for the auto-correlation function of E^, it is knovm [21] that 

it is the existence of correlation variation rather than its absolute 

value that determines the quality of the random numbers.

The ideal generator should also be able to serve as a source of 

several random numbers. That is, an n-bit random number generator may 

have a demand put upon it to supply say p 'customers' with n-bit random 

numbers of the type described above. Further, the num.bers received by 

any particular custom,er should have statistical independence from che

numbers received by any other. (the first customer receives num.ber
1 2sequence E^, the second custom.er receives number sequence , the Jth
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customer receives the number sequence where The use of

r-sequences to meet these requirements must be treated with caution.

The following subsections describe a number of possible n-bit number 

generators, each employing m-sequence technicues. A discussion of tiie 

'quality' of the random numbers that would be produced is also given.

Work carried out in [22] has proved useful in understanding the 

problem of random number generation.

2.5.1 Multiple Til-Sequences
This generator is constructed from n separate feedback shift 

registers. Figure 2.5.1a shows the register arrangem.ent • All n 

registers are clocked together, therefore producing a new n-bit number 

at each clock pulse.

Each register is N bits long and produces an m.-sequence of length
N2-1. All m.-sequences are different. That is, the operation of each 

register is described by a particular primitive polynominal which 

applies to only that register. The binary sequences produced at ea«h of 

the n outputs share the sam.e period, but the actual pattern of I's and 

O's is different in each case.

The auto-correlation functions of the individual sequences are two 

valued, and the individual sequences will pass the statistical tests for 

random, binary sequences. Cross-correlation between the different 

m-sequences produced [19,pgP2, 20,pg65] is not zero, but assumes a

number of distinct values which is less than or equal to the number of 

cyclotomie cosets. This characteristic disqualifies the generator as a 

high quality pseudo-random number source.



The generator does have the advantage that the registers can be 

started froir. any initial condition. .¿Iso it can easily act as a source 

of several random numbers. Proper decimation of the output random 

number corresponds to a proper decimation of each m-sequence. Therefore 

the bit contributed to the random, numbers from any particular register 

has a relative phase shift round the same m-sequence, as explained in 

Section 2.A. This results in the cross-correlation between different 

bits of different random number sequences having the same form, as the 

cross-correlation function between different bits of the same random 

number sequence; or in the case where the bit is supplied by the same 

register, the auto-correlation function. It can be concluded from this 

that the independence between num.bers in different sequences should 

have the same statistical quality as the independence between

consecutive numbers in the same sequence. This type of generator has 

been tested [23] and the results of the test carried out on the numbers 

produced were considered adequate.

V

2.5.2 Two-feedback shift register pseudo-random sequences

This generator is very economical in hardware (see Figure 2.5.2a). 

Only two feedback shift registers, each producing an m-sequence, and a 

numiber of exclusive-or gates are required. The generator has been used 

in various applications as a pseudo-random number source. The 

Manchester University Institute of Science and Technology road-traffic 

simulator is one example of this kind of machine. It has been

investigated in [24,25,21,26]. The auto-correlation function of the 

binary sequences, produced at the output of the exclusive-OR gates., is 

certainly not two valued and is of the form :
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p.(t)= 1
X T a ‘ b

t +K.T fK„T, l a  z b ,K2 = 12  2

R(t) = -1
^b

t =K Tl a  2 b ,K2 = 1 2

R(t) = - i
T

t =K T, +K,T 2 b l a ,K.2 = 1 2 '̂
a

R(t) = 1 t =KT T, a D K = G,1

for C<t<T T, a D

VThere T^, are the periods of the ir,-sequence produced by registers a 

and b respectively.

A plot of the function, P.(t), is given in Figure 2.5.2b. A. randoir 

binary sequence is produced at each exclusive-OR gate, resulting in a 

new n-bit nunber at every clock pulse. Each sequence is a delayed 

version of only one sequence, which has period The exact air.ount

of delay is determined by the particular pair of stages which are 

selected for modulo 2 addition.

It has beef! show'n [21] that the auto-correlation of an n-bit random 

nunber produced by using n of these sequences is niany valued. This 

means that this generator cannot be considered as a first class random 

nunber generator.

Decimation of the n-bit output number to produce several sequencees 

of n-bit numbers, can be considered as decimation of several phase 

shifted, but identical, pseudo—random secuences. A proper decimation of 

the type of sequence produced by this generator has the sam.e result as 

decim.ation of an m-secuence. That is, the new bit sequences produced 

are identical to the original, and equally displaced from, one another, 

but contain an additional phase shift from the original.
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Thus the individual number sequences produced by decimation have the 

same statistical randomness quality as the number sequences produced 

from an undecim.ated generator. Cross-correlation between the num.ber 

sequences is indeterminable as the actual phase shift, relative to the 

original, introduced to the bit sequences by performing decim.ation, 

depends on the particular decim.ation and position in the sequence the 

decimation starts. This could lead to random bits of one n-bit number 

correlating with different bits of an n-bit number from another 

sequence, or the sam.e sequence, after a very short time. It can be 

concluded that decimation of an n-bit number which is produced from 

several phase shifted versions of the same sequence is an unreliable 

method of producing number sequences.

2.5.3 Cascaded shift registers

This type of generator, shown in Figure 2.5.3a, is very sim.ilar to 

the generator described in Section 2..̂ .2. There are n side registers, 

each M-bits long, and one main register of N-bits. The feedback 

circuitry on each register is such as to, if acting alone, produce 

m-sequences. Each side register is also coupled to the main register.

The generator has been statistically investigated in [27] . The 

random binary sequences produced have exactly the same form as in 

Section 2.5.2. Clearly the n-bit random numbers produced will have the 

same characteristics, and therefore are rejected. The difference 

between this generator and the generator employing only two feedback 

registers is in the way the phase shifts are achieved.

A phase shift of 2^-1 or a multiple of this (where 2^-1 is length of 

the main sequence) can be' achieved by simply ensuring that the coupling 

space is one or more between any of the side registers. By this method, 

a phase shift can be ensured between all of the output sequences 

regardless of the initial conditions of the registers.
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This generator (Figure 2.5.4a) has been investigated in [28] and

more extensively in [29] . It consists of n registers of length 

(i= 1 ,2 ,...,n) linearly interconnected so that the characteristic 

polynoniinal which describes the composite system is primitive and of 

degreee N =M^+N2+*• • •  At each clock pulse, n new bits are formed 

and used as inputs to the n registers. These n-bits can be used to form 

an n-bit random number.

Each of the n binary sequences is a phase shift of a single 

m-sequence. It was shown in [29] that considerable care must be taken 

at the design stage to ensure that the phase shifted sequences are 

'widely' spaced. The minimum phase shift difference sets a limit to the 

operation of the number generator before cross-correlation between the 

binary sequences occurs. Since each output sequence is identical, the 

cross-correlation function has the same formi as the auto-correlation 

function except there is an initial delay present.

The networks f^ and perform ^odulo 2 operations on the contents 

of the sub-registers. These networks m.ust be carefully, chosen to ensure 

an m-sequence is produced and relative phase shifts are achieved. 

Random num.bers produced by this generator will appear statistically 

independent when taken in sequence, but the com.putation involved in 

evaluating the phase shifts of lone m-sequences is excessive. From, the 

conclusion arrived at in Section 2.5.2, it is clear the technique of 

simply decimating the n-bit numbers produced to obtain several output 

num.ber sequences trould be unreliable.

2.5.4 Eeconposed Begister
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The techniques described in Sections 2.5.2, 2.5.2 and 2.5.4 involve 

n identical but phase shifted sequences being used to produce an n-bit 

randoni number. If the binary sequences used are ir.-sequenceS; the 

random number sequence can be expected to have good statistical 

properties. However the decimation of such a random number sequencee 

does not produce several sequences with adequate statistical randomness. 

It is suggested that the problem of synchronously generating multiple 

schemes of random numbers can be overcom,e by the phase-shifting of 

pre-conditioned sequences.

Any advanced or delayed pseudo-random, binary sequence produced by a 

shift register with feedback can be obtained by m.odulo 2 addition of 

selected stages of the shift register as shown in Figure 2.5.5a [30,

31] .

Let U . be the binary output of the j-th stage of an N-stage k > J
register at time k. Let b̂  be the output vector, i.e. a ' 1 ' in the 

j-th row of N vector b im.plies that the output sequence is

taken from, the j-th register stage. Let be the state vector

defining the contents of the register at time k. Then:

- T -U, . =b. V, k,J J k

2.5.5 Use of shifted tn-sequences

also
_T -k-1 -U, . =b . T V, 

3 1

Where is the initial state of the register and T is the register

transition matrix. A delayed version of the sequence {U .} namielyk j J
{U }. where s is the number of bits the sequence is shifted, may k±s,j^’
be considered as either the sequence {U .} operated on by thek j J
transition matrix s times, i.e.

— ISU, * . =u, . Tkis,j k,j
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=bJ Vi (3)

or as the weighted modulo 2 sum of the register states at time k
n

U, . = > d.U, . (4)k±s,j . 1 k,i
¡=1

Where d are the weighting coefficients. 
1

Substituting for U , in (4) and equating (3) and (4) gives:
 ̂j J

n

1 i d. [b"’” S  ] 1 1  1

b . T =
3

i = n 
n

i=1
The feedback stages of the shift register define matrix T. The

(5)

output stages of the register, to be used for the reference sequence

{U, .} define vector b.. From equation (5) it can be seen that • byK, J J
multiplying b^ by T, s times will determ.ine the stages of the register 

to be added to produce the required shift.

A com.puter simulation of the proposed technique revealed that a phase 

shift of approximately 2"̂  where J is an integer can be obtained with the 

addition of a small number of stages. This is an important point as the 

modulo 2 adders introduce excessive propagation delays in a hardware 

random number generator.

Phase shifted sequences produced by the method described can be used 

to produce an n-bit random number. Consider the case where a 31-stage
31shift register has feedback applied so as to produce a 2 - 1  bit

m-sequence. If an 8-bit random number is required, the relative phase
31shift between each binary sequence should be (2 -1)/S. Thus the maximum.

displacement is approximated by 228 The required phase shifts

(Sq ,Ŝ ., . . .Sy) are given by

„ • ,28S . =1 . 2
1

, i =0,1 , modulo 8

30



Sequences for which J is non-integer can be generated using the method 

snown in Figure 2.5.5b. A single 31 stage register with feedback is 

used to produce an r-sequence and the appropriate stages are

irodulo 2 added to obtain sequences {Uĵ  q  ̂ ^

{U^ S4 *̂  ̂sequence shifted by is further shifted by Sj

(j=0,l,...7) the resulting sequence is displaced fron the original by 

S.+S,. The sequence {U, „,) is fed into another register which

has the same modulo 2 addition operations performed on its contents as 

the first register. The resulting output sequences are {U. and

{U cc)* All eight sequences can be produced in this way. Fandom 

binary sequences produced by this technique have the same properties as 

the sequences produced by decomposed registers m.ethods but the necessary 

phase shifts are much more simply achieved.

The problem, of synchronously generating several n-bit random numbers 

can be overcome by em.ploying the described technique to pre-conditioned 

sequences. Each number sequence is produced by a generator of the type

described above. The phase shift between any two binary output

sequences is calculated from, a section of the m-sequence length and not

the whole m,-sequence. The length of a section is determined by the

number of random number sequences. Consider the case where four random 

numbers each of 8-bits are required simultaneously. The length of a

section should be 1/4 the length of the m-sequence employed and the

phase shift between output bits should be 1/8 of the section. There is 

now maximum displacement between any two bits of any number. 

Figure 2.5.5c illustrates the example. In practice the method can be 

simply implemented where there are 2̂  (I Integer) number sequences. 

Each shift register, operating on its allocated position of the

m-sequence, is preloaded with the m-sequence value at the start of its

section. This is achieved by decimation of a source m.-sequence. The 

hardware solution to the example above is shown in Figure 2.5.5d. There
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is an increase in the amount of hardware required but the random numbers 

produced can be expected to show good statistical independence. The 

generator is very ■fast producing all bits of each number at every new 

clock pulse. A generator of this type is proposed for use in tbe 

reliability simulator[32] •

2.6 Tests on Random Number Generator

In Section 2.5 the problem of producing an n-bit random numbers was 

investigated. The subsection which followed described particular 

generators which have been proposed as solutions to the problem. There 

were only three underlying methods present in the proposed generators;

1. Multiple m-sequences (Section 2.5.1). The generator of

Figure 2.5.1a was built to test this method. It produces a new'

8-bit random number at each clock pulse. The random number

sequence produced was decimated to produce a source of sixteen
1 2  16random, num.bers (E E. ). The results obtained for the

method are showm in Table 2.6a.

2. Com.bination of two m-sequences (Section 2.5.2 and 2.5.3). 

Figure 2.5.3a shows the generator built to test this method. The 

number sequence was not decimated as it may have led to results 

unrepresentative of the generator. An analysis of this type of 

generator showed how it was only suited to the generation of a 

single number sequence. For the purpose of statistical tests the 

generator was run sixteen times and each of the number sequences 

produced was considered separately. The results obtained from the 

method are shown on Table 2.6b.

3. S h i f t e d  m.-sequence techniques ( s e c t i o n s  2.5.4 and 2.5.5). Three 

g e n e r a to r s  were c onst ru cted  to t e s t  th i s  m.ethod. Tw'o V7ere of the
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type shown by Figure 2.5.5b. .Different m-sequences were used in 

each exaniple; the first had feedback from stages IF and 31, the 

second from stages 24 and 31. Although the generators v;ere 

constructed to produce 8-bit numbers the phase shifts were 

determined for a 16-bit number, thus enabling expansion to 16 bits 

at a later date. The stages required to be modulo 2 added to 

produce the phase shifts are given on Table 2.6f. Eoth the 

generators were decimated to produce sixteen number sequences. An 

analysis of this type of generator concluded that decimation was 

an unreliable method of producing several number sequences, but it 

may prove interesting to observe the effects (if any) on the 

statistical test results. The actual test results are given on 

Tables 2.6c and 2.6d. The third generator in this section is of 

the type shown by Figure 2.5.5d. It was constructed to produce 16 

sequences of 8-bit numbers. Actual phase shifts were determined 

for thirty-two numbers of 16 bits, allov/ing expansion at a later 

date} the stages required for modulo 2 addition are given on 

Table 2.6f num.ber sequences produced by this generator should be 

of the sam.e quality as number sequences produced by an undecimated 

version of generator 2.5.5b. This effectively enables the results 

which would have been obtained from, undecimated versions of the 

above two generators to be determined. The test results are given 

on Table 2.6e.

A number of statistical tests were used to examine the performance 

of the random number generators, with the aim of determ.ining the quality 

of the numbers produced. The results prove interesting as two of the 

methods were rejected on the grounds that they would produce random, 

numbers of insufficient statistical independence.



All tests were carried out for an 8-bit random number, that is E.1
lay in the interval [0,255]. A.lthough it was expected that a random 

number of greater amplitude variation would be required, limiting the 

range to a'smaller value allowed a smaller sample size of four thousand 

num.bers per sequence to be gathered. The actual tests carried out are 

discussed separately in the following subsections.

2.6.1 Empirical Mean

The em.pirical miean, the central tendency or location of the random 

variable, was calculated for each of the sixteen sources.
N

i=1

expected value =127.5

The results are shown in the first column of each of the tables of 

results. ^

2.6.2 Variance

The variancee of each sequence was calculated. A m,easure of the 

dispersion of the random variable:
N

.2

¡=1

expected value [20], cf ̂  = ( N 1 ) =2̂  ̂- 1
12

=5A61.25

12

The results are shown in the second column of each table.
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The random numbers should be uniformly distributed in the interval
9[0,255]. To check' this the chi-square (\r) test [33,34] was used to

examine the goodness of fit between the observed data distribution and

the theoretical expected distribution

The interval [0,255] was divided up into mutually exclusive and

equal groups. Each random number produced falls into one of these
2groups. By applying the X  test it can be determined whether a

significant difference' exis-ts between the observed number in each group

and the expected number in each group. The interval was divided into 64

groups and a sample of N num.bers were taken. The number

i=l,2,...64) of observations falling in each of the 64 groups was

determined. The reason for combining the interval into 64 cells was to

ensure that ©.>5 for every i.1 ^

2.6.3 Distribution

The test is given by:

3>C

64 9
1, n

where is the number of observations expected in the i-th group. In
Nthis case, E.= — a constant value, because the random numbers should

1 64
be uniformly distributed.

The hypothesis that the random numbers are uniformly distributed can

be checked by using a rule to reject or not reject the hypothesis on the
2basis of the result obtained from the %. test. The probability oc. to 

reject the hypothesis when it is true is called the level of

significance of the test. If chosen to be oc=0.05, then the critical
2 2value for q 05 found from tables (Xg^ is a chi

squared distribution with 64-1=63 degrees of freedom, 64=number of
2 2groups in test). If'from, the test results X  X̂g-, q then the 

hypothesis will be rejected at a-5% level of significance.



The results and critical values are shovm in the third colurrn of 

each table of results.

2.6.4 First Independence Test

An independence test on number pairs was carried out. The number 

pairs were:

1 . „ 2 . .J6 p16 V
— ’ * * * ̂ i  ’^i—1

i=2,3,4,...N

N is the number of samples in each of the sixteen sequences (For the 

tests carried out N=4000) .

Consider the first number source producing the sequence of random

numbers E ^  The interval [0,255] was divided into sixteen groups to
2allow the "K, test to be performed. Each random number produced falls

into one of the 16 groups. The quantity of consecutive numbers

l) falling in the same group was observed, and compared with

the expected value. In this case the expected value in each group is

N/(16xl6).
2The "X test determines whether a significant difference exists 

between the observed num.ber in each group and the expected number in 

each group.
2Results for this test and critical values of are shown on the

fourth colum.n in the tables of results.

2.6.5 Second Independence Test

A second independence test on the num.ber pairs:

(e ^,e 1 ),(e ^,e|),...(e !^,e!)A l  i l i I ’ l v;as done

As in the first independence test, the interval [0,255] was divided up
2into 16 groups. The X test was carried out esults are shown on the
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fifth coluir.n in the tables of results. Note that this test has only 

been carried out on decirated number sequences.

2.6.6 Distribution (Kolmogorcv-Smirnov test)

The Kolmogorov-Smirnov [34] test has been used to compare the 

experimiental cumulative distribution function observed with the expected 

distribution. The test is based on the difference between the 

cumulative sam.ple distribution calculated for each interval in [C,255] 

and the observed cumulative distribution. The value D obtained from the 

test is the difference with greatest absolute magnitude.

Test results produced by each of the sixteen sources are given in the 

sixth colum.n in the table of results. The hypothesis is that the

observed distribution matches the expected if the D value falls below

the critical value of D.

/ 2D . . , =multiplier x ---critical

V

N is the number of samples in each sequence. The m.ultiplier can be 

found from tables and is determined by the level of significance of the

test. The critical values of D are also shown in the sixth column in

the tables of results.

2.6.7 Runs Test

This test [33,pg55] can.determine if there are long runs of large or 

small numbers. It is considered to be a very discriminating test, that is 

it 'fails' more sequences of random numbers than other tests.
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The runs test is designed to deal with binary data, that is a 

variable which has only two values. To allow the test to be

implemented, the random numbers greater than or equal to 128 are 

replaced by a ' 1 ' . Random numbers less than or equal to 127 are 

replaced by a 'O'. A run is defined as a succession of identical I's or 

identical O's. The actual number of runs occuring in any of the sixteen 

random sequences is given the value r.

Let be the number of O's in the sequence and the number of

I's. The variable r will have a normal distribution, with:

mean = Uf =
N 1+N2

and standard deviation = CT̂ ^ 2 N, N 2 ( 2  N^N2 - - N 2 )

V (N^-N2 )̂  (N^ * N 2 ~ 1 )

The test to be carried out is to find the value of Z where;

r-u
2 =

Under the assumption that the original random numbers are uniformly 

distributed in the interval [0,255] the value Z should be normally 

distributed with zero mean and unit variance. The significance of the 

value of Z obtained from the test can be found from tables of the normal 

distribution. Actual values of Z obtained for the sixteen random, 8-bit 

number, sequences are shown in the last column of the tables of results. 

Critical values for the test are also given.
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Various techniques for producing several statistically independent 

streams of random numbers have been investigated.

The use of multiple m-sequences was considered. This technique can 

be easily implemented, and the n-bit numbers produced by a single 

generator whose output sequence is decimated have the same statistical 

quality as the original single number stream. However cross-correlation 

characteristics between different m-sequences rule out this generator as 

a highly independent number source. Decimation was also shown to be 

unreliable and this is reflected in the poor results of Table 2.6d.

The use of a two-m,-sequence com.bination was considered for two quite 

different implementations. Modulo 2 addition of m.-sequences offers a 

economy of hardware although care has to be taken to ensure that an 

adequate phase shift exists between output bit sequences. The use of 

cascaded shift registers eliminates the phase shift problem, but at the 

cost of additional hardv?are. Investigations of the auto-correlation’̂ 

function of an n-bit number produced by this technique indicated that 

the numbers are not of high statistical quality. In addition, proper 

decimation of such a number sequence may result in significant 

correlation between the output number sequences.

Finally the principle of producing n output sequences from a single 

m-sequence was considered. This may be achieved by decomposed register 

techniques. However considerable effort is involved in ensuring that 

the n sequences produced are widely spaced. Modulo 2 addition of 

selected stages of a feedback shift register also yields phase shifted 

sequences, and the necessary combination of stages is more simply 

calculated.

2.7 Conclusion
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A new pseudo-randorr’ number generator is proposed for use with tiie 

reliability simulator[ 32], The technique relies on phase shifting 

pre-conditioned sequences, drawn from a single iri-sequence. Each output 

number sequence is simultaneously generated, making the technique well 

suited to high speed simulation. Statistical tests performed on the 

generator confirm the high statistical quality of the numbers produced [32],
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No. of elements in each sequence - 4000

SEQ MEAN VAR CHI TEST1 TEST2 K -S RUNS
1 126-4 5441-2 91-3 12-2 12-2 0-011 -0-06

2 126-7 5555-3 56-4 19-3 10-7 0-013 -0-22

3 126-6 5407-1 64-7 26-8 14-7 0-013 1-06

U 125-7 5529-2 64-2 17-2 12-4 0-016 0-52

5 125-5 5476-8 115-6 56-4 18-0 0-015 0-98

6 127-2 5397-8 55-6 28-5 25-7 0-012 0-77

7 126-1 5585-8 68-1 25-9 30-7 0-015 0-14

8 128-7 5505-1 64-6 12-3 171 0-014 0-48

9 127-9 5345-3 58-0 25-2 21-0 0-015 0-66

10 127-8 5482-0 64-0 28-0 240 0-009 1-77

11 127-0 5388-4 66-6 11-7 15-5 0-009 -0-19

12 128-4 5544-6 50-3 9-4 15-2 0-012 0-04

13 126-9 5433-2 61-1 20-0 11-2 0-008 -0-13

U 128-1 5457-4 44-9 15-9 18-7 0-012 -0-89

15 125-9 5383-2 53-3 19-6 16-1 0-017 1-02

16 127-6 5602-2 53-5 12-9 17-7 0-011 -0-38

(l27-5 5400)  (̂ 82-5 24-9 24-9 0-030 ±1-96"J

expected
values

crihcQl I A nr , 
v a l u e s = 0 . 0 5 )

Table 2-6a MulTiple m- sequence



No. of elements in each sequence = 4000

SEQ MEAN VAR C H I T E S T I K - S RUNS

1 128-5 5579-3 5 8 -8 8 -8 0 -0 1 0  ■ - 0 -9 1

2 12 5 7 5471-4 8 4 -9 14-7 0 -0 1 6 - 0 - 3 9

3 127-4 5470-2 63 -3 11-0 0 -0 1 2 0 -4 9

4 128-0 5486 -5 82-8 7 3 -4 0 -0 0 9 1 -3 6

5 127-4 5 4 8 0 -4 7 3 -4 7 -9 0 -0 0 9 - 0 - 7 3

6 127-7 5 4 3 6 -9 57-1 17-3 0 -0 0 5 1 -0 5

7 126-6 5 3 8 8 -9 70-2 11-5 0 -012 - 0 - 4 1

8 128-5 5 5 4 8 -2 79-7 ■ 15-7 0-013 - 1 - 2 8

9 127-2 5 4 5 3 -8 5 4 -0 14-5 0-010 0 -8 5

10 127-4 54 79 -6 29-2 16-8 0 -0 0 4 M 4

11 126-8 53 7 6 -9 7 8 -5 32 -8 0-011 - 0 - 4 3

12 127-5 5553-1 4 8 -2 26-3 0-011 - 0 - 0 9

13 127-5 54 11 -6 71 -9 15-1 0-012 2-30

14 129-4 5 4 3 5 -2 65-0 11-7 0-017 2 -6 0

15 128-7 5 4 9 4 -5 7 2 -4 2 2 -0 0-011 - 0 - 8 5

16 128-6 5 5 0 6 -4 61 -7 18-1 0 -0 1 2 - 0 -8 1

(^127 -5 5 4 0 0  ] f 8 2 - 5 24 -9 0 -0 3 0 ± 1 7 6 )

expected
values

critical , „ ,
v o t e  t°^ = 0.05)

Table 2-6b Combination of two m-sequences



No of elemenfs in each sequence = 4000

SEQ ME4N VAR CHI TESTI TEST2 K-S RUNS

1 125-5 5465-5 71-3 19-7 19-7 0-019 0-50

2 128-4 5491-0 49-2 18-4 19-4 0-011 -0 32

3 126-8 5518-6 57-4 19-9 16-6 0-011 -1-26

4 127-1 5527-2 53-3 11-4 16-7 0-010 -0-92

5 127-2 54508 44-3 25-8 4-8 0-006 -0-57

6 128-2 5419-1 56-0 14-6 21-4 0-007 0-19

7 ■ 128-2 5394-2 64-3 15-3 10-3 0-010 -0-84

8 129-4 5489-7 49-2 18-8 14-9 0-016 -0-03

9 127-2 5559-0 55-4 12-4 16-4 0-011 -0-98

10 127-3 5466-4 43-8 8-3 17-1 0-007 -0-53

11 128-9 ^^5433-9 66-8 20-9 16-2 0-022 -1-82

12 128-2 5380-9 52-9 13-4 11-2 0-011 0-39

13 126-0 5479-5 86-0 17-1 20-8 0-016 -1-77

14 127-5 5501-9 65-2 20-8 5-2 0-006 1-55

15 128-8 5535-8 58-8 22-3 1A-0 0-014 3-08

16 128-0 5374-4 56-7 28-0 23-6 0-010 -0-36

(l275 5400) (s2-5 24-9 24-9 0-030 ±1-76)

expected
value

cri ficai 
values (oc:= 0-05 )

Table 2-6c Shiffed m-sequence fechnique



No. of elements in each sequence = A-000

SEQ MEAN VAR CHI TESTI TEST2 K-S RUNS

1 126-4 5519-7 55-6 26-3 26-3 0-012 -0-060

2 127-0 5416̂ 6 66-3 8-9 14-6 0-009 -1 -26

3 128-0 5510-4 69-6 9-7 24-4 0-010 0-22

4 127-1 5 639-0 90-6 25-2 31-6 0-014 0-70

5 126-3 5590-1 47-0 33-3 6-2 0-012 0-26

6 126-4 5528-3 93-5 17-2 20-3 0-014 -0-50

7 126-1 5362-0 50-0 21-3 11-2 0-015 0-87

8 128-3 5429-9 65-6 30-1 52-8 C-009 -1-14

9 128-0 5420-5 38-1 14-8 24-8 0-008 -0-92

10 126-3 5599-4 93-5 14-4 17-5 0-016 -0 -54

11 126-8 5399-0 46-7 18-6 13-3 0-011 -1-14

12 127-9 5570-6 106-8 20-2 21-3 0-013 -0-22

13 127-4 5395-7 52-7 7-6 26-6 0-006 -0-25

14 128-2 5536-4 175-9 AO-1 16-0 0-014 -1-32

15 127-7 5336-1 94-0 17-8 8-7 0-010 1-14

16 126-2 5534-0 69-3 9-8 18-9 0-017 0-59

(127.5 5400) (82-5 24-9 24-9 0-030 1.76)

expected
value

critical
value (oc= 0-05 )

Table 2-6d Shifted m-sequence technique



No. of elements in each sequence = 4000

SEQ. MEAN VAR CHI TE5Í1 K -S RUNS

1 128-3 5390-4 67-4 21-0 0-010 -0-79

2 126-5 5387-9 45-7 22-2 0-012 -0-60

3 128-2 54857 52-7 25-3 0-009 0-62

k 126-3 5410-8 375 23-6 0-012 0-02

5 126-2 5627-7 60-8 8-8 0-015 2-44

6 127-1 5413-8 61-0 28-6 0-011 -2-33

7 127-0 5421-7 42-8 14-0 0-009 -0-28

8 128-8 5294-5 65-8 24-8 0-018 -1-57

9 128-7 5481-0 50-1 10-0 0-012 -0-19

10 125-8 5460-8 . 66-0 14-8 0-018 0-48

11 126-4 5539-1 54-0 7-5 0-012 -0-31

12 125-2 5372-2 63-0 19-6 0- 018 -1-25

13 124-5 5426-5 84-1 28-4 0-026 0-56

14 121-2 54329 105-1 46-2 0-041 0-76

15 126-9 5412-9 78-2 13-6 0-012 -0-71

16 122-7 5445-7 74-8 17-9 0-028 0-55

(Í27-5 5400 ) (s2-5 24-9 0-030 ±1.76)

expected
value

critical
value (oc= 0-05 )

Table 2-6e Proposed method



approx.
phase

feedback from points 18 and 31

shift required MOD-2 addition stages

1 X 2̂ ^ 1, 8, 9. 18, 19, 28

2 X 2^ 4, 5, 16, 25

4 x 2 ^ 8,10,19

8 x 2 ^ 7, 16

approx.
phase
shift

feedback from points 24 and 31 

required MOD-2 addition stages

1 X  f  ̂ 2, 4, 16

2 X 2̂ ^ 2 , 5

U X f 1  7

1 X  2 "̂ 1  3. ^

-> ">22 2 x 2 1 5 7

4 x 2 ^ 1 9 13

8 x 2 ^ 1 16

Figure 2-6f Additions required to produce phase shifts



multiple m-seq. 2-m seq. shifted m- seq. method

Table 1 2 3
1
: A 5

CHI- test 2 2 1
1
; 6 2

Test 1 6 3 2 5 3

Test 2 2 - 1 1 A -

K - S  test 0 0 0 0 1

Runs test 0 2 3 0j______ 2
1 1 1 1
1 ' 
1 ' ' 1
1 1

' I
' 1 1 1 
1 1 1 1

number of 
seq. which 
passed all 

tests

9 10 11

1
1
1 6
1
______

11

proposed

In section A each box contains the number of sequences 
failing the particular test ( oc = 0 05)

Table 2-7a Analysis of results



3.0 Introduction

In the process of modelling the reliability behaviour of the system, 

under investigation, the system is broken down into a number of 

components. Each component continually undergoes a change of state. -At 

any time a component may fail and move into the non-operating state. 

Some tim.e later it will be repaired and m.ove back into the operating 

state. This Chapter is concerned with developing a mathematical model 

of the stochastic process undergone by components. By application of 

the model, an investigation of the accuracy of the modelling process is 

carried out, and increased control of the process is achieved.

The mathematical model is concerned with the generation of random 

numbers. The character and distribution of these numbers determines the 

\iehaviour of the system- com-ponent. It can be seen that modelling the 

stochastic behaviour of many real system.s requires the generation of 

random, variables of a wide range of distributions. In fact a generator 

which can faithfully produce num.bers of any distribution is desirable. 

Just such a generator, implementable in digital hardware, is described.

3.1 The R.enewal Process

Consider the sim.plest stochastic point process know’n as the renewal 

process. This process may be defined as one which generates events, and 

since all such events are assumed to be identical, its essential 

interest resides in their tim.es of occurrence. In this case, the word 

'event' refers to a renewal point in the system-.

lion-Uniformly Distributed Number Generation
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Now consider a process which is characterised by a non-negative 

random variable, X, called its renewal time. The renewal time can be 

thought of as the amount of time the process has been running until the 

renewal event occurs. The random variable X has a probability 

distribution function (p.d.f.) f (x) given by:

f(x) = lim Prob (x<X^x +^ix) 
AX -+0

,x>0

with CD

f(x) dx = 1

The renewal times of the system X^jX^,*.. are mutually independent. 

Figure 3.1a shows a possible time schedule of a renewal process.

^i-l’̂ i’V l ’ are renewal points of the system.

X , ,X ,X ,,••• are renewal times, i—1 i 1+ 1

The distribution of can be completely determined from the p.d.f., 

f(x), but it is also convenient to use the cumulative distribution 

function (c.d.f.) F(x), giving the probability of renewal occurring by 

time x:

F(x) = Prob (X$x) 
.X
f(u) du

clearly F(0) = 0 and F(00) = 1

Differentiation of the c.d.f. gives the p.d.f., thus:

f(x) = F'(x)
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Consider a syster>, at a tir-e x, at which renewal is known not to 

have occurred. The age-specific renewal rate, 0(x), is defined to be 

the litiit of the ratio of the probability of renewal in ( x , x + a x ] t o ^ i x .  

This can be expressed r^thematically as:

3.2 Penewal Pate

x) = lim prob (x<X^x+ a  xl x$:X) 
AX40 a X

0(x) gives the probability that the end of the randon tine X lies in 

the interval ( x , x + a x ] given that NO renewal has occurred in (0,x] . The 

end of the randon tine X^ corresponds to the renewal point S^. See

Figure 3.1a.

Mow for any two events A and B,

prob (A/B) Prob (A and B)
Prob (B)

But the event ( x < X ^ x + a  x and x<X) is the sane as the event (x<X<x+Ax) 

since X starts at zer-f from the previous renewal point. Thus

0 (x)

3i(x)

lin Prob (x<X.g:x +Ax)
A  X- +0 A  X

f (x)

1
Prob (x<X)

1 - F(x)

3.3 Reliability Applications

So far, the renewal process has been discussed as a sequence of 

events, renewal points. No physical interpretation has been given to 

the process. To gain an insight into the application of renewal theory, 

a process undergone by a corponent of equipment is defined. Initially 

the component is in v7orking order, but after some time, X^, it fails 

and is immediatejy replaced by a new component, which itself fails after 

an operational time of X^, replacement is again carried out and the 

process continues. The failure time of the r-th component used is X^
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and the r-th failure occurs at time S , where:r
c = V J.V
“r 1"2 '“r

The rerewal points of the process occur at the failure of 

components. At the renewal points, the process returns to the start and 

is then completely independent of its previous behaviour, thus the 

process is time homogeneous. The distribution of life time of 

components is given by the p.d.f. of X , f(x), and completely 

determines the renewal process.

3.4 Alternating Renewal Processes

The renewal process has so far been used as a mathematical model of 

a component of equlpm.ent which is undergoing a failure replacem.ent 

process. Replacement times have been considered to be negligible. The 

introduction of random replacement times, Y^, distributed according to 

p.d.f. g(x), leads to the alternating renewal process. Renewal points 

now occur when the component fails or is repaired. To remove any 

confusion between the term, renev;al rate and repair, renewal rate is 

generally known as the hazard rate.

A mathematical model of random failure and replacement times of a 

component of equipm.ent can nov; be produced. The- alternating sequence 

undergone by the component is described by two embedded renewal 

processes. Figure 3.4a shows a possible time schedule for the

component.

In the proposed Simulator, com.ponents can be any of eight states. 

Transition from state to state is dependent on both deterministic and 

stochastic .processes. Embedded renewal processes are used to generate 

the random times between state transition.
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The age specific hazard rate (i(x) gives the probability of an 

immediate renewal point given that the time from; the previous renewal is 

X .  Figures 3.5a, 3.5b, 3.5c show some typical forms of 0(x).

Figure 3.5a is a graph of a constant hazard rate (?5(x) is 

monotonic). Monotonic hazard rates characterise a process in which the 

probability of immiediate renewal is not dependent on the tim.e since the 

last renewal. The exponential distribution is m.onotonic and is widely 

used in reliability theory. It will be seen later that the generation 

of a renewal process is considerably sim.plified if the process has a 

monotonic hazard rate.

Figure 3.5b shows 0(x) as an increasing function of x. This is 

called positive ageing. In reliability theory it corresponds to the 

fact that the older the component is, the m.ore likely is its immediate 

failure. Negative ageing is shown in Figure 3.5c. In this case the 

older the component the less likely is its immediate failure.

It is well known that many components of equipm.ent follow a 

relatively standard failure rate pattern as shown on Figure 3.5d. The 

pattern is known as the 'bathtub curve'. The distribution can be 

conveniently divided into three sections. Firstly the 'burn-in' or 

'infant mortality-' stage, which could be due to poor manufacture. 

Secondly the 'useful life' stage. Here the distribution is monotonic 

and it is by this portion that normal operation is described. Lastly 

the 'burn-out' stage where 0(x) increases rapidly. This stage 

represents the end of the useful life of the equipment as it begins to 

rapidly wear out.

3.5 Graphs of Hazard Rate



The generator developed can simulate renewal processes in which tt'e 

random time interval, X, between renewal points can take on only 

discrete values. The p.d.f. of a discrete random variable X is given 

bv:

3.6 Generator of Ordinary Renewal Processes in Discrete Time

f̂  (!<Ax) = Prob (k Ax<:X<(k+l) Ax)

and its c.d.f. is given by Fj^(kAx)

The random tim.e X can only have values X=kAx, k=0,l,2... Figure 3.6a 

shows the generator block diagram. There are only three train elements :

1. A Generator of uniformly distributed random numbers

2. A Function generator giving the quantity 0, .

3. A Comparator which compares F. and W and gives an output pulse1 tC
if E.<W, .1 k

There are three assumLptions made in the operation of the generator.

1. The random numbers are statistically independent and uniformly

distributed in the interval [0 ,H). H=2^  , where m Is the number

of bits in which is represented.

2. The quantity W can take on all values in the interval [0,H) i.e.K,
W, and E. are not quantised, k 1

3. The comparison between E^ and is done instantaneously at the 

tim̂ e points iAt.
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P t  each clock pulse, a random number E. and a U, value are1 k
presented Co the comparator, which gives an output pulse if E .<W, .1 K
The c.d.f. of E^ is given by:

Prob ( L , 4 y )  = y + 1
H

,0<y<II

it can easily be seen that:

yProb (E.<v) = --
 ̂  ̂ H

Thus the probability of an output pulse is:

Prob (output pulse) = Prob (E.<W, ) = — —I k  |-j

Consider a process which started at time kAx=0 with a renewal 

point, and no renewal has occured during (0,(k-l)Ax), as shown in 

Figure 3.6b. The probability that a renewal point lies in the interval 

(k A X,(k+l)Ax] can be found from the age-specific hazard rate for the 

discrete random time interval X:

0(x) = Prob ((k-1) A  x<X^k A  X I (k-1) A  x<X) /Ax

= Prob ((k-1)A x<X^kAx) 
A X

1
Prob (X>(k-l)Ax)

= Fj^(kAx) - F^((k-l)Ax) 

1 - F ((k-1) Ax)tC

A renewal point in the process corresponds to an output pulse from the 

comparator, and the probability of this happening is given by 

Equating the two probabilities produces the relationship:

w.
F, (kAx) -F, ((k-l)Ax)

. H
1 - F^((k-l)A x) ,k=l,2,3 ...
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Thus for any given c.d.f., Fj^(kAx), values can be found enabling 

the simulation of the corresponding ordinary renewal process.

In many cases, the c.d.f. of the random time interval betx.’een 

renewal points can be completely continuous. Let F(x)=Prob ( Y . ^ x )  be 

the continuous distribution of random time intervals. Time quantisation 

is necessary, thus x=kzlx, k=0,l,2,... By choosing A x  \<re can 

approximate F(x) by Fj^(kAx).

That is: Fĵ (k A x) = F(k A x) , at k=1 ,2,1

3.7 Probability Quantisation

The generator of renewal processes described in Section 3.6 is 

implemented using digital circuitry. It is now necessary to consider 

not only tim.e but also probability quantisation. If m. is the number of 

bits the randora number is represented by, then E^ and can take 

on only values 0,1 , 2  ,. .. 2*^-1 .

That is, the probability of renewal, 0(x), can take on values in the 

interval [0,1.0) in steps of 1/2^ . If m. is increased then the 

probability resolution is improved.

The values calculated, necessary to simulate a renewal process

with random time intervals distributed according to a particular

discrete distribution, now have to be approximated by • Clearly

this results in random time intervals which have a c.d.f. that differs

from Fj^(kAx). Let the expected c.d.f. of the random tim̂ es be

F, (kAx). From the results of Section 3.6: kex

hap-
1 -
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3.8' Calculation of W,------------------- k
Figure 3.8a shows a flow chart of the basic process involved in 

calculating the U,. values. It is assumed that the process starts a t  a 

renewal point, and therefore the first value is calculated from:

W^= Fĵ (Ia x ) -

1 -  Y(6a  x )

.m

where F^(0)=F(0)=0, is the initial value of the c.d.f. of the random

time intervals. must be approximated by an integer value, •

W, +0.5>W,>W, -0.5lap 1 lap
The value is then presented to the comparator. An output from

the comparator results if E.<W, , that is if the random, number also1 lap
presented to the com.parator is less than comparator output

pulse corresponds to a renewal point in the process, which results in 

the process returning to the start. Should no output pulse occur, then 

the process continues, and th% next value in the sequence is
t

calculated. Each value is compared with a random number and the 

result' determines whether the process returns to the start or continues 

to the next stage. Obviously at some time during the process a renev;al 

point will occur.

Observing the process, it can be seen that the time intervals 

between renewal points (in the flow chart this time is given by k) are 

randomly distributed with distribution F, (kAx). Considering the 

probability quantisation, the distribution an

approximation to F (k). Considering both probability and timeK
quantisation F (k) is an approximation to F(x) (x=kAx,

tC0 X

k=0,l,2...). hTiere F(x) is the originally desired distribution of the 

tine intervals.

63



Using the method described above to calculate values, and

assuming a 'perfect' generator of the random number E^, tests have been 

carried out to estimate how good a fit Ax) is to F(x). The

value D, associated with the Kolmogorov-Smirnov test, [see Section 

2 .6.6] is defined as the maximum absolute difference between the desired 

c.d.f., F(x), and the expected c.d.f., F^^^^(kAx). The quantity D

has been plotted for two distributions considering different time and 

probability quantisations. The time quantisation is given by the value 

ofzix; the probability quantisation is given by the number of bits on 

which the comparator operates. Figure 3.8b gives the D value plotted 

for an exponential distribution of mean x=20 . Figure 3.8c shows the D 

value expected for a Weibull distribution. ( A =0.4, a=3.5).

It can be seen that the error (value of D) reduces as the quantum

time step (Ax) is reduced. Considering Figure 3.6b this is certainly

what would be expected. But this result only holds true for small

probability quantum steps (1/2*^). There is a simple explanation for

this. When the quantum time step is small, the values of W, required

to generate the distribution are also sr.all. Integer representation of

W by W, is more accurately achieved if the probability steps are iC K.3p
small. This is particularly important at small values of W, where the 

percentage error in the approximation .to can he large. An
interesting characteristic, which can be observed on both figures, is 

that accuracy in the generation of the distributions is not always 

improved by reducing Ax. With large probability steps reducing the 

time step results in a decrease of accuracy.
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3.9 Improved Calculation of

Fipure 2.9a shows a flov/-chart of an iir.proved n-etliod of calculating

W values. It results in generating randoiT; tirre intervals with a

distribution, F, . (k.Ax), that is considerably closer to the desired kek
c.d.f. F(x). The method described here is much the same as the 

original method described in the previous section, but contains two 

alterations.

Firstly, during the calculation of the value at time J the

present c.d.f. value F (JAx), (represented by FM in the flow chart)K
and the previous c.d.f. value, F^((J-l)Ax), (represented by FO in the 

flow chart) are used. An im.provement can be made here by replacing 

F ((J-l)Ax) by F, ((J-l)Ax). These two c.d.f. values are
rC K. 0X

different due to the probability quantisation of the previous W, values 

i.e. W^, k=l, 2, .. . , J-1. The expected p.d.f. f(kAx) values

(represented by p in the flow chart) are calculated from, the 

values and used to obtain F (k Ax), which is used in place ofK0X
Fj^(kAx).

\ap= 2
m

1 - F^^^((k-1) Ax)

\ap= 2
m

1 - F, ((k-l)A x) kex

using the terms of the flow chart, we have:

W, = 2 ^  P kap
1 -  FO

P = W, . (l-FO) kap >m

and also FN = FO + P, where P = f^^^^(kAx) = f(k A x)

=  F , _ ^ ( ( k - 1 )  a x ) + f ^ ^ ^ ( k A x )kex kex
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Thus by enployinp a form of feedback the error between the desired

cumulative distribution and the expected distribution can be reduced, by

reducing the error caused by approximating by •

Secondly, to reduce the effects of time quantisation, a 'tire

shifted' distribution can be generated in preference to the actual

distribution desired. See Figure 3.9b. Distribution F (x) is thes
desired distribution shifted by 1/2 Ax in time. That is.

F^(x) = F(x + O . S A x )

Obviously this is not a proper distribution as F^(Q)=0. However if 

an attempt to generate leads to a resulting distribution that is

a better approximation to F(x), then the process should be considered 

acceptable.

The programmed ordinary renewal process attempts to generate random

time intervals with the discrete distribution F , (kAx), which is ask
discrete approximation to F^(x). Due to the probability quantisation

of W , the random time intervals actually have a distributionk V
F , (kAx). It is easily seen from Figure 9.6b that this

S K G X

distribution is' a better approximation to F(x) than would have been 

obtained by an attem.pt to generate Fj^(kAx).

Using the methods described in this section to calculate the desired 

W, values, tests have been carried out to estimate the goodness of fitK.
of generated distributions. As in the tests carried out in the previous 

section, it was assumed that a 'perfect' generator of random number 

was available. The Kolmogorov-Sm.irnov test has again been used as the 

discriminating test.
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The value D has been plotted for a Ueibull distribution, using the 

feedback techniaue to improve the process. Different time and 

probability quantisations have been considered and the results are shown 

in Figure 3.9c. The value D has also been plotted for the same b’eibull 

distribution generated using both feedback and shifting in the 

generation process. The results from this test are shown on 

Figure 3.9d. It can be clearly seen, from the results obtained, that 

the error (value of D) reduces as the quantum, time step ( A x )  is 

reduced. Unlike the m.ethod first proposed to calculate this result

holds true for any value of probability quantisation. The 

characteristic, observed with the previous m.ethod, of the reduction of 

A x  not necessarily resulting in a lower C value is certainly no longer 

true. It can also be- seen that when using a very small probability 

step, feedback gives little improvement in D value. This is as would be 

expected, because an integer approximation of should be m:Ore

accurately achieved when the ffrobabillty time step is small. The 

effects of feedback, as observed from the results obtained in this 

section show that feedback makes it possible to reduce the D value by 

reducing A x ,  when a large probability step is being used.

The effect of time shifting the distribution can be clearly/ seen to 

have reduced the D value. The characteristics of the feedback process 

are unaffected by the shifting.

3.10 Tests on Number Generator

The random times between state transition are distributed according 

to known functions and the Simulator is expected to generate random time 

values which closely resemble those functions. Techniques have been 

developed which are expected to improve the accuracy of the generated 

distribution over a range of time and probability quantisation. This 

section presents statistical tests employed to confirm the random number
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generation process and evaluate irprovenent techniques.

A requirement for the operation of the non-uniforinly distributed 

random number generator (which is another name for the renewal process 

generator) is a source of uniformly distributed random numbers. This 

need can be fulfilled by tlie uniformly distributed random number 

generator proposed and tested in Chapter 2.

A description of the statistical tests carried out is given in 

Appendix Al, along with probability distributions frequently encountered 

in system modelling. A discussion of the application of the 

distributions is given, and the theory invoked to calculate the 

values necessary to program the generator is explained. The results 

from, the statistical tests carried out, along with a graph of p.d.f. 

for each distribution generated, are presented at the end of Appendix Al 

sub-sections. A table of results along with critical values for tests 

carried out is also presented.

The methods proposed in Section 3.9 to improve the cM^lculation of 

W values, and so improve the distribution 'fit' are investigated. TheK
abbreviation F.E. (feedback) shown in the tables of results 

corresponding to the first improvement proposed in Section 3.9 viz. 

that of replacing F^((J-1) A x ) by Fj^^^( (J-1 ) x) in the calculation 

of W^. Abbreviation T.S. (timie shift) corresponds to the time shift 

improvem.ent ; that is generating F^ (x), [F̂  (x)=F(x+0.521 x) ] , in

preference to F(x). All other distributions are generated by the 

sim.pler m.ethod of calculating [Section 3.8] .

The effects of the quantisation of probability values are 

investigated by experim.enting xiith 8-bit and 16-bit random, numibers. 

This requires the values to be calculated with an 8-bit and 16-bit 

representation respectively. The 8-bit generator is the actual 

generator tested in Chapter 2, and the 16-bit generator is simply an 

expanded version.
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The effects of tine quantisation, step size A x ,  are investigated.

Various distributions are generated with A x  values of 1, 1/2 and 1/4.

Altering the step size and the randon number size proves an interesting

test for the various methods of calculating W, values.k
Each test contains 160G or 3200 samples, the lower figure being 

chosen when small A  x values are being used. This is because of the 

resulting increase in tine required to gather results.

3.11 Examination of Statistical Test Results

As explained in Appendix Al, for the frequency test, paps were 

grouped together where the empirical frequency fell below five. A 

mininun grouping of five was a requirement of the chi-square test if 

accurate results were to be expected. When generating a random number 

of a particular distribution with ¿^x=1 .0 , the grouping arrangement led 

to a test with a particular number of degrees of freedom. (A further 

explanation of this is given in Section 2.6.3) IJhen the same

distribution was then generated with A x = Q ^ 5  or a x =9.25 the number of 

degrees of freedom, for the test was maintained at the previous value. 

This was not necessary as a larger number of groups could have been 

formed each at frequency greater than five. The result of this is that 

the chi-square test did not fully test these distributions, though the 

loss of inform,ation at Ax=0.5 could not have been too great. The test 

was carried out this way because distributions generated with Ax=C.25 

were few, and maintaining a fixed number of degrees of freedom for each 

distribution enabled a simpler comparison to be made between test 

results.
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The Koltrogorov-Sinirnov test, D value, did not suffer from the 

grouping arrangement of the chi-square test. All distributions were 

fully tested. A comparison of the test results v;as aided by keeping the

number of samples in each distribution to 2 fixed values viz. 3200 and

1600.

There are several clear points which can be concluded from, the test 

results. They are :

1. The feedback iirprover.ent to calculation of W values leads to anbC
improvement in both chi-square and Kolmogorov-Smirnov test 

results.

2. The time-shift improvement to the calculation causes a

dramatic im.provement in the Kolmiogorov-Sm.irnov test result but has 

a disastrous effect on the chi-square result. The effect on

chi-square result was reduced if feedback was also em.ployed or if 

¿ix was reduced. Certainly time shifting the distribution cannot 

be considered as an improvement. A reason for this can be seen by 

exam.ining the p.d.f. of the time shifted distribution.

Shifted p.d.f. = f (x) = / X>0s at

f  ( X )  =

This is obviously an illegal distribution, as was previously 

stated in Section 3.9. Integration over the complete range of x 

reveals:

F^(x) = e^^'^ . 1 1

IsTiich is always less than 1.0, and diverges further as Ax is 

increased. Figure 3.11a shows the discrete p.d.f. f̂  ̂ (kA x) 

which would be generated to represent the continuous p.d.f. f(x).
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Figure 3.11b shows the shifted p.d.f. discrete

p . d . f .  £ (kAx) relative to the desired p.d.f. f(x). The sk
figure displays the effect of T.S., and since the chi-square test 

is based on the.'fit' between the actual generated distribution 

and f(x), it can be seen that the T.S. technique has a 

considerable effect on that fit.

3. Reducing the probability quantisation of values is a sound

method of improving both statistical test results.

4. If one factor had to be singled out as the most effective way of 

improving test results it m.ust be that of reducing the value.

Generally, whenever Ax was reduced, the results improved. In 

Section 3.8 it was stated that, when the simple method of

calculating W was employed, "accuracy in the generation of the 

distribution is not alxv’ays improved by reducing Ax". The only 

evidence found for this was during the generation of the

exponential distribution when Ax was reduced from; 0.5 to 0.25; 

the D value reduced from. 0.0465 to 0.0469 when a reduction in D 

value would have been expected. When feedback was employed for 

the calculation of W values during generation of the ErlangK.
distribution, the D value went from 0.0548-to 0.039 when Ax was 

changed from. 0.5 to 0.25. This is an improvement which was not 

observed with the exponential distribution where feedback was not 

employed. However it must be said that the D value improved when

Ax went from 0.5 to 0.25 for the Erlang distribution without the

aid of feedback.
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It was decided that large samples would be generated for each 

distribution previously considered, and tests carried out. An 8-bit 

value was chosen as it was considered to be the most practical size. 

The time step ¿\-x. was set at 1.0 to enable full use of the chi-square 

test. The feedback improvement technique was employed in the 

calculation of W^, with all distributions except the exponential one. 

Using feedback for the exponential distribution results in loss of the 

memory-less ability in the generation of the values, which is 

considered a great advantage. The sample size was 9600 and graphs of 

the p.d.f.'s generated are shown on Figures 3.11c to 3.Ilf. The desired 

p.d.f. has been shown for comparison. Table 3.11g contains all results 

and critical values.

All distributions passed the chi-square test. The poorer result 

gained for the exponential distribution is due to the simpler method of 

calculating W^. The . D values produced did not pass the 

Kolmogorov-Smirnov test but this was expected, and is a result of 

chosing a large zix value. The D values which occurred are very close 

to the expected values.

3.12 Conclusion

Each component of equipment which makes up the reliability system 

undergoes a continual change of state. The random times between state 

transition are described by embedded renewal processes. A digital 

hardware simulator of the embedded renewal processes can be simply 

constructed from a digital comparator and a random number generator. 

The distribution of random time intervals, X, generated is completely 

controlled by the W, values, presented to the comparator. W, values 

range between 0 and 1 and correspond to the probability of instantaneous 

renewal. This value may vary with the age of the process. The ability 

to simulate W^(t), t>0 leads to generation of random times of any

72



distribution.

Anplitude quantisation of and tiir.e quantisation of X influence 

the generator's ability to accurately generate time intervals with a 

prescribed distribution. Hov/ever techniques have been developed which 

achieve an accuracy at quantisation values previously considered poor.

The feedback techniaue of calculating 11, values was successful in6 k
improving both the p.d.f. and c.d.f. distributions. Time shifting 

achieved the improvements expected in Kolmogorov-Smirnov test results, 

but severely affected the p.d.f. distribution. This therefore cannot 

be regarded as a useful technique in improving random time interval 

distributions.

The time step Ax had a considerable influence over the statistical 

test results. As was expected, from previous investigations , when the 

feedback technique is employed, the c.d.f. 'fit' is consistently

improved by reducing Ax.

The economic hardware design of the generator, coupled w’ith its 

capacity for high speed operation, make it well suited to modelling 

reliability for multi-com.ponent system.s. Within the Simulator a single 

random, numiber generator is employed to model the behaviour of each 

system component. The parallel stream of independent uniformly

distributed random numbers required to m.aintain the comiponent processes 

is supplied by the generator proposed in Chapter 2.
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4.0' Introduction

This Chapter contains an introduction to the philosophy behind tlie 

desifn of the reliability simulator. Consequently it also serves as an 

examination of the development of an engineering system, comprising 

digital hardware and software, to implement design ideas. The basic 

philosophy behind the system design was to break down the tasks of 

reliability simulation into a number of sub-groups. With sim.ulation 

aspects decomposed in such a way, there is a need for communication 

channels between the sub-groups to enable the groups to operate in a 

unitied fashion. This corresponds to bringing together all the aspects 

of a m.odel system during sim.ulation. The -result of decomposing the 

sim.ulator into separate sections is:

1 . Modular design which lends itself better to system, expansion.

2. Simple control of the^total system operation due to an efficient 

data bus structure.

3. Greater efficiency and a reduction in the amount of hardware 

required in each sub-section.
%

4. Ease of sub-section testing, and of whole system testing when the 

sub-sections are brought together.

The attractions of decom.position can only be achieved if the 

function of each sub-group is carefully chosen. Decisions about these 

functions greatly Influence the form of the interconnecting

com.m.unication channels. If the features listed above are to be 

achieved, the interconnection must take the form of a simple, efficient 

bus structure. ■

Stochastic Simulator
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The sub-groups chosen to represent separate aspects of reliability 

sirulation are shown on the block diagraic of tlie siirulator, Figure 4.Ca, 

and the bus structure is also indicated. The follov/ing sections of this 

Chapter describe and discuss tlie subsections and other features which 

irake up the sirulator.

4.1 CcTpponent

The simulator may contain any number of Component Modules. Each 

Component module represents a particular aspect of the real system being 

m.odelled. In the simplest form a component may represent an item of 

equipment such as a generator or relay. More abstract system aspects 

can also be represented in the same way, aspects such as computer 

software or human operator behaviour. Com.ponents interact wúth each 

other, and each component has to be versatile if it is to be possible 

for it to model such a wide range of system aspects. All simulator 

components acting together describe »the characteristic of the real 

system under investigation.

The behaviour of the system components is governed by both 

probabilistic and deterministic events. For example an electric motor 

may have a random time betw^een failures which is exponentially 

distributed. This means that there are stochastic processes going on at 

component level and that the processes are expected to satisfy some 

appropriate probability distribution.

In generating the random times associated with the stochastic 

processes a supply of random, num.bers is required. The numbers employed 

by each com.ponent should be of good statistical quality if the m¡odel 

behaviour is to appear truly random. Further the number sequences used 

by different components are also expected to show statistical 

independence. These specifications are difficult to meet, particularly 

in a high speed simulator requiring several sequences. A hardware
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impleir:entation could have led to excessive amounts of circuitry, but 

from investipations carried out, it was found possible to construct 

number generators for each component using only fourteen 

medium-scale-integrated (hSI) circuits.

The modelling aspect dealt with by each component is updated in 

asynchronous time steps. Different components may employ different time 

step values so as to achieve high speed and accurate m.odelling 

resolution. The asynchronous progressions undergone by components are 

kept relative in time to each other by instructions issued by a Control 

Module.

Component Modules take the form of special purpose hardware 

implem.ented with MSI and large-scale-integrated (LSI) circuits. The 

interaction between components is dealt with by both hardware and 

software features. The hardv7are features are used to deal with the most 

frequent and simpler actions, and the software features are used to give 

increased flexibility to the model, allowing it to describí^ greater, 

more complex variations of system behaviour. Each Component Module is 

constructed on a single printed circuit board and is automatically 

interfaced to the sim.ulator system by insertion into the common bus.

The parallel operation of component hardware ensures a considerable 

speed of sim^ulation. However, care had to be taken to ensure an 

economic design, as with a detailed model the hardware required can be 

excessive.

4.2 Sim.ulation Control

At the start of a simulation the Control Module takes charge of the

comm.unication data bus from the host com.puter. To carry out its

operation of controlling an asynchronous time simulation it also 

msonitors a dedicated communications bus, called the Time Increment bus.

Each Component iiodule is connected to the Tim.e Increment bus, and on



request froin. the Control Module it will reveal it current time 

quantisation value for the random tire process goinp on at component 

level. The Control Module determines the minir.um tire quantisation 

value currently in use by any component. A decision is then taken about 

how much the simulation should be incremented by in tire, and this value 

is communicated to the components via the system data bus. Further 

control signals are then issued to affect the components which have the 

required time quantisation.

Gathering Statistics on the model's behaviour is also directed by 

the Control Module. Whilst replying to the components, the Control 

Module also indicates to the Statistical Gathering Module how much the 

simulation is being incremented by.

As noted in Section 4.1, some of the aspects m.odelled by the 

components are dealt with by software. Components, on occasion, make 

requests to this software which enists in the form of routines held in 

^the host computer. The Control Module is involved in monitoring these 

requests and directing them, towards the host.
f

The Control Module is constructed on a single printed circuit board 

from MSI and LSI integrated circuits.

4.3 Statistical Gathering and Network Specification

The function of the Statistical Gathering Module is to gather 

evidence about the model system behaviour. It consists of a number of 

binary counters. Each counter within the Statistical Gathering Unit is 

programmed, by the simulator operator, to gather evidence about some 

particular behaviour of the system. Programmiing of the counters is 

achieved by defining logical events about which condition monitoring is 

to take place.
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Each coir.ponent produces a binary output signal indicating that it is

Ln an operating or non-operating state. Ecolean expression of

combinat ions of component states v;hich describe system events and 

sub-events can be developed. All logical event e;:p ress ions are stored 

in the Network Specification I'odule, which is prcgrammed before a 

simulation run starts. The Simulator is then in a position to decode 

the binary com.ponent signals and indicate to the Statistical Gathering 

Module the occurrence of a system event, thus enabling monitoring to 

take place. Clearly a Boolean function is required for each Statistical 

Gathering Unit counter. By making the Network Specification l:odule 

fully programmable, via the common bus, any interconnection of m.odel 

components which describes a system, under investigation can be entered 

into the Simulator. Further details of the techniques used to specify 

the system topology can be found in Chapter 5

4.^ Repair and Maintenance Policy

The Repair and ^faintenance Policy Module is continuously Inform^ed of 

the condition of each com.ponent m.aking up the model system.. Should any 

component have to make a decision about its future behaviour, it is 

required to inform the Policy Module. It should ’e noted that only 

decisions which influence the overall state of the system, or other 

components in the system., are dealt x̂ ith in this xcay. The Policy Module 

has been initially programmed with the system m.anagem.ent schem.e at the 

start of the sim.ulation and therefore can r.ake decisions effecting the 

global system. For exam.ple, consider a component representing an item 

of equipment which is due for maintenance. A. maintenance request is 

issued to the Policy Module which ' decides if there are maintenance 

facilities currently available, or xjhich could be released from a less 

imiportant task. This request must be considered. Further the Policy 

Module may decide that the system is in a critical state and maintenance
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should be queued for future consideration. Finally the r.'odule inforins 

each corponent of its decision.

The Policy Module takes the form of a large lookup table [39] which 

is addressed by component states and requests. The table contents are 

presented to the decision lines returning to the components.

4.5 Host Computer

The host computer has already been referred to in the Component 

Module section. It was stated that certain aspects of the component 

representation are dealt with in softw^are. This is made possible by the 

host computer having access to the com.rnon bus which can be used to 

effect changes in the simulator hardware.

The ability to manipulate hardware is extended to allow system, 

initialisation by the host. Examination of the Simiulator's progress is 

also possible as the host can request the contents of any register or 

counter accessible via the common bus. These are important points and 

were carefully considered during the design of the separate modules.

The programs contained in the host computer play an important role 

in the overall simulator system. With tlie ability to set up the 

Simulator's hardware, and store the configuration for future use, 

repeated sim.ulation of a particular problem is simply achieved. An 

analysis of statistical data, gathered by the hardware during 

simulation, is carried out by programs resident in the host com.puter.

To sum.miarise, considerable flexibility is offered by the Simulator. 

Operator control of the modelling process is by a visual display unit, 

com.municating directly to the host computer. Because the operator 

communicates with the Simulator via host software the system can be made 

much more user oriented and tedious control of hardware is eliminated. 

It is anticipated that the Simulator's hardware v;ill be mnre fully 

exploited by such a system.
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U . h  Host CoiT’.puter and Simulator Interface

Tl'.e interface is based on an fCP5 microprocessor and support chips. 

The layout is indicated on figure 4.6a. There are two modes of 

operation for the interface. In the first the VDU is connected to the 

host computer, giving normal peripheral terminal operation. The second 

mode of operation enables interaction of the simulator hardware with 

host software to take place.

The necessary protocol between the Sim.ulator and host is dealt with 

by the interface. Effectively the host behaves like a Simulator Module 

tied to the system, common bus. In a similar way to the Control Module 

the host can take control of the bus and both enter data and extract 

data from it.

The circuitry for the interface is constructed on a single board 

which has all necessary input/output connections for insertion into the 

common bus.

4.7 System Bus Organisation

The main communication path within the simulator is the com.mon bus. 

It comprises a 12-bit address/control portion and a 12-bit 

bi-directional data portion. On initialisation of the Simulator 

hardware, the bus is controlled by the host computer via the interface. 

During a simulation, the bus is controlled by the simulator Control 

Module. However the Control Module may pass control of the bus to the 

host computer. Bus contention is prevented by a hand-shaking 

arrangement between the interface and the Control Module.

An important bus for system operation is the Time Increment bus. It 

comm.unicates to the Control Module the time quantisation presently used 

by each component. For reasons which will become clear later, high 

speed operation can be more easily achieved if it is imiplemented in open 

collector form, k  1 2-bit bus is used.
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4.8 Conclusion

In conclusion, the Siirulatcr described here in offers a powerful 

tool in determining system reliability. Detailed models can be quickly 

constructed to simulate a real system with considerable speed. The 

unrestricted modelling ability makes this Simulator particularly useful 

in varied modelling experiments.

The Simulator operator would find the model very convenient to deal 

with. All control and setting up is dealt with by programs in the 

host computer.
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Influence of Digital Implementation

5.0 Introduction

The Simulator hardware is totally implemented in digital circuitry. 

This necessitates quantisation of all time and amplitude values in the 

model. The effects of quantisation have been investigated and are 

reported in Chapter 3. From the results obtained, it was decided that a 

1 2-bit data bus structure would be most suitable for hardware 

interconnection. With values represented in twelve binary bits, there 

are 2048 resolved levels. This is shown later to give an adequate range 

of time quantisation, and also a sufficiently small amplitude 

quantisation. An increase to more than 12-bits would give only small 

returns in m.odelling accuracy but would result in a considerable 

increase in hardware.

In Chapter 3 the process of generating random time intervals was

introduced which in reliability modelling may correspond to life times

of equipment. In essence, a random time value T^ can be generated in

which T^ is a multiple of a quantum value /AT. The minimum time value

which T can have determines the resolution of the distribution of n
possible' T values. If a T is chosen to be large, the generated

distribution of T would not model the desired distribution. Further, n
the model becomes unrealistic in that essential data may be lost during 

a simulation. Selecting a small AT value would solve these problems.

However when considering the problem of reliability modelling it is

found that the distribution being used for modelling depends on the 

state of the model. For example, repair distributions have a different 

form from failure distributions. Time quantisation values which would 

be considered small for one distribution may not be for another.

Running the whole simulation at the smallest AT required to model any of 

the random time values would introduce unnecessary detail to the
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simulation. Also, the time required to carry out a simulation would be 

much greater than if the optimum a T  value.were being used at all times. 

It would be also impossible to operate the system with a 12-bit bus 

structure, as with very fine time resolution, an increase in amplitude 

resolution is required to maintain modelling accuracy. Clearly there is 

a need for a mechanism which can operate with the optimum AT value. The 

technique described in this chapter offers a system which not only 

achieves this but maintains several random processes all of different a T 

values in a parallel mode. This makes possible a simulation possessing 

both considerable speed and resolution.

This chapter explains the operation of minimum a T value control. It 

also describes in detail the hardware structure of the Component 

Modules,and other simulator modules, which play an important part in 

giving the Simulator its versatility.

5.1 A T  Selection

In Chapter 4 it was reported that each Component Module takes on the 

job of modelling a particular aspect of the simulated system. Therefore 

a process is going on within each component for which a random time 

interval is being generated. All time values are quantised but the 

actual AT values used by components may be different.

Consider a simulator system in which each component is permitted to 

model its particular probability distribution with a time quantisation 

value of suitable resolution. There are three points to be noted here.

1. Investigations have shown that the range of AT values anticipated 

could all be represented within-a 12-bit binary pattern. Also the 

amplitude resolution required for such AT values could be achieved 

with a 12-bit structure.
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2. All time quantisation values must be integer multiples of an

absolute minimum quantisation value, ¿iT . . This must be truemin
if individually modelled aspects are to be kept relative in time 

to each other-.

3. The update of the modelling process corresponds to incrementing

the renewal process. Components would only be considered for

update when the basic counter keeping track of simulated time had

been incremented by an amount equal to their ¿aT value. For

example, if a component had time quantisation Zi3T andmin
another had A7T . , then the first component would have its min
modelling process updated more than two times for every one update 

of the second component.

For the simulator considered, the job of controlling simulated time 

would involve determining the amount to increment the basic counter by 

to reach the next component update. The drawbacks of the system would 

be :

1. Determination of the basic counter increment could not be achieved 

at high speed for a multi-component system.

2. A situation could be reached in which all components currently had 

the same time quantisation but were out of phase. This would mean 

that the ability to rapidly increment the basic time counter would 

be lost, as component modelling would be taking place in a serial 

fashion although a parallel mode was possible.

To overcome the problems described in this section the constructed 

Simulator limits the range of selected AT values to binary multiples of 

ATmin* This makes possible a system which can rapidly determine the 

minimum time quantisation present among components. Secondly, all
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components which currently have the same ihT value, are updated together 

and never allowed to fall out of phase. Considerable speed of 

simulation can be expected.

5.2 High Speed A T  Selection

Limiting time quantisation values to binary multiples of a basic

minimum value, 21T . , enables a 'wired - OR' function to calculatemin
the minimum AT value in use by any component. Figure 5.2a outlines the 

operation. Each component simultaneously presents its current AT value 

to the open-collector bus, known as the Time Increment Bus. At the 

Control Module, a wired-or function is performed on the bus and the 

minimum time value is found. This value is normally the amount the 

basic counter is incremented. The only diversion from this rule occurs 

when there is a change in minimum AT. In this case the simulation is 

incremented by the time required to reach the next scheduled update of 

whichever components have the new minimum AT. By this method a coherent 

simulation is maintained. A result of achieving in-phase simulation is 

that components experience an initial phase shift, to bring them in line 

with all other components of the same a T value. Shifting obviously only 

occurs when a component changes its AT value and therefore is relatively 

infrequent. If small AT values are used, the error introduced to the 

model should be negligible.

As an example to simulator operation, consider a system of

components for which simulation has been progressing with A T = A 2T^^^.

The time counter has reached A 6T . and it is found that the minimummxn
AT is A4T . . Figure 5.2b describes the process. It can be seen the min
simulation time counter should be incremented by A2T to reach themin
next scheduled update. At that point, components of AT values A4Tmin
and A8T . are updated. The Control Module performs the task min ^
described here. The hardware layout of the AT selector is shown on
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Figure 5.2c.

To summarise, the operation of the AT selector portion of the 

Control Module:

1. components are chosen for update depending on their AT value

2. components of AT value AT . are chosen twice as often as those ̂ min
of A2T . , and four times as often as those of A4T . and so min min
on.

3. By using the common bus, the controller indicates which components 

are to be updated.

5.3 Component Structure

The hardware structure of components is a limiting factor to 

Simulator's flexibility. Considerable effort has been directed towards 

obtaining an economic design without making major compromises in speed 

and flexibility. The final component structure presented here reveals a 

system of surprising flexibility with a high speed, parallel mode of 

operation. Flexibility is achieved by incorporating a micro-instruction 

controller which can be programmed by the Simulator operator. High 

speed is achieved by parallel hardware operation and careful design. 

The parallel philosophy to component operation ruled out a yi-processer 

implementation. A Simulator in which each component is mdelled by a 

single /i-processor is certainly achievable but would result in 

simulation times possibly two orders of magnitudes longer.

A diagram of the component layout is given on Figure 5.3a. The 

subsections which follow deal with the structure in more detail.
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5.3.1 Status Register

The status register »Figure 5.3.1a, is a 7-bit register which 

defines the overall condition of the component at any time. The first 

3-bits define eight possible component states. The remaining'4-bits are 

flags set during the modelling process.

The status bits of the register directly address the time 

quantisation memory. Therefore, on a request from the Control Module, 

the memory can transmit to the Time Increment bus, via the component 

bus, the time quantisation assigned to the current component state. The 

time quantisation memory described above also contains eight hazard rate 

values, one for each component state. These values can be presented to 

a comparator, along with a random number, via the component bus. This 

makes possible the generation of monotonlcally distributed random time 

values for each component state.

The flag bits are used to keep a record of the simulation process. 

They communicate to the Policy Module outwith the component, assisting 

it with global system decision-making. They also .communicate with the 

micro-instruction controller contained within the component, enabling 

decisions to be taken about component modelling behaviour. Bit 7 in the 

register has the special function of interrupting the simulation Control 

Module with a request for software modelling features contained in the 

host computer.

5.3.2 Mask and Micro-instruction Control

Due to the parallel operation of components, to make possible high 

speed simulation, a considerable amount of decision making has been 

devolved to the components themselves. The decision-making policy is 

contained in a single 1024x8 bit EPROM which issues micro-instructions 

to hardware within the component. At all times the 'micro-controller' 

communicates with the status register, and is informed of global policy.
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decisions. Clearly with this system, modelling aspects are contained 

within the micro-controller memory, and if an alteration to the model is 

required, then the memory must be re-programmed. A system operator 

would find this very inconvenient as each component contains a 

micro-instruction memory, and any number of these may require 

alteration. Also determination of the micro-instruction code is a 

time-consuming task. To overcome this problem, and maintain the desire 

to have a highly flexible simulator, an 8-bit mask register has been 

Introduced.

The first three bits of the mask connect directly to the

micro-controller, and the remaining five bits are used to operate on

information passing to and from the controller. This makes possible the

use of a small micro-controller memory. What is achieved is a

micro-controller which contains the instructions to model a wide range

of behaviour without the need for re-programming. The operator has now

merely to define the mask register setting to select a particular model.
«

5.3.3 Component Counters

Each component contains three hardware counters. These counters are

indicated on the component diagram. Figure 5.3a and also Figure 5.3.3a,

as C , C, and C . a b  c
Counters C , C are 12-bit programmable counters. Their contents a b

are fed directly to digital comparators for comparison with values T ,

T respectively. When C ^T or C =T occurs, a signal is sent to b a a b b
the micro-controller which takes appropriate action. The

micro-controller has the ability to increment and clear C^ but only

increment C, . Counter C, is automatically cleared when a match with b b
T occurs. With these counters, control signals (which effect the b
modelling behaviour) can be programmed to be issued after fixed periods 

of time or prescribed number of events.
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Value may correspond to a 'block replacement' time. Under a 

block replacement policy [35] the component is replaced at the end of 

regular intervals of time, regardless’ of its operation during the time 

interval. By employing counter C to record operational time an 'age
3.

replacement' policy [35] can be implemented. The component is then

replaced when it completes a working time T .a
Counter is intended for statistical gathering use. It is an

8-bit counter which can be incremented by the micro-controller. This

permits a record to be kept of the number of occurrences of a particular

event, such as visits to a particular component state. Use of counter

is essential for monitoring system behaviour not observable via the

logical network (see Section 8.7 on Optimal Economic System Operation).

The decomposed statistical gathering system formed by C counters andc
the Statistical Gathering Module enable information to be gathered about 

a systems performance in a way not possible by logical networks alone.

5.3.4 Non-Monotonic Distributions

Each component has the capability of modelling two non-monotonic

renewal processes. It is known that during the generation of random

time intervals which are not exponentially distributed, the hazard rate

for the corresponding process is not constant, but changes with time.

To enable high speed generation of such processes, the hazard rate must

be calculated at regular intervals and the values obtained stored in a

memory for use during the simulation.

For this purpose, a 256x8 bit read-write memory is provided on each

component, see Figure 5.3.4a. The first seven bits of counter C area
used as the address, with the eighth address bit giving selection 

between two stored distributions. With this organisation counter Ca
has the special function of recording the age of the process. The 

selection of non-monotonic distribution memory in place of monotonie
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distribution memory is carried out by the micro-controller. The

micro-controller can also, if instructed, join the two distributions

together forming a single 256 interval process. In this case the eighth

bit of C is used in place of the distribution select line, a
It should be noted that non-monotonic distributions are generated 

with an amplitude resolution of eight bit instead of the normal twelve 

bits. This does not lead to a poorer standard of modelling as 

investigations, reported in Chapter 3, have revealed techniques of 

calculating hazard rates which lead to increased modelling accuracy. 

These techniques make possible the use of an eight bit structure, which 

limits the hardware required.

5.3.5 Control of Component

Component control is devolved in two ways. Firstly during the

simulation, the process undergone by each component is directed by its 

own micro-controller. Each of these micro-controllers is governed by 

the Control Module which issues a limited number of instructions causing 

the whole simulation to progress. A 3-bit control bus is used.

The second form of control is by the address/control bus section of 

the common bus. Instructions issued by this bus would normally be 

accompanied by a value on the 12-bit data bus portion. Components

decode the bus, determining if the information is for them, and further 

where it is to be sent. A table of programming codes is given on 

Figure 5.3.5a. Each programming instruction is constructed from two 

octal characters. In this way micro-instructions can be issued by 

combining codes. An .example of micro-programming can be seen when 

entering data into the 256x8-bit, read/write memory. Both the

'enable-memory' and 'wrlte-to-memory' codes are required. The resulting 

instruction code is 44 octal.
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5.4 Control Module

The Control Module layout is given on Figure 5.4a. Its basic 

function can be easily described. Firstly, a signal is issued to all 

components to transmit their current time quantisation value via the 

Time Increment Bus. After examining the values received, the Control 

Module determines the updating quantisation value. All components are 

simultaneously informed of the updating value via the common bus. At 

this point a second control instruction is issued enabling the 

micro-controller of components which have the correct current time 

quantisation. Finally a third control signal is issued allowing the 

micro-controllers to update the component status registers. It can be 

seen because of the efficient bus structure that the amount of 

controlling signals required by components is greatly limited.

As well as carrying out the basic function described, the Control 

Module has two other functions. It must generate the three-phase clocks 

used to record simulated time. The clocking system is fully described 

in the following section on statistical gathering. The second function 

is to stop the simulation at the required point. This is normally when 

the digital comparator connected to the 24-bit simulation counter 

identifies a match with the pre-programmed stop time. However the 

simulation could also be stopped by the simulator operator, host 

computer. Statistical Gathering Module or any of the Component Modules 

by an interrupt request. Whenever the simulation is required to stop, 

the control procedure is the same. That is, control signals are no 

longer issued after the completion of the current time quantisation 

update. This ensures that the statistical gathering is correctly 

accomplished.
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The Master Control Unit, shown on the n»dule layout, makes up only a 

small proportion of the Control Module hardware, but is the key to the 

overall operation. It consists of a 24-bit recirculating shift register 

which issues all the necessary control signals as a single bit 

circulates around the register. The register is clocked at lOMHz 

leading to an updating of the simulation model every 2.4 microseconds.

Control of the Module itself is via the common bus in the same way 

as any of the simulator modules (This procedure has been described in 

Control of Component section). The Control Codes are given on 

Figure 5.4b.

5.5 Statistical Gathering and Network Specification Modules

Statistical evidence gathered about the model performance is the end 

result of any simulation. Throughout the simulation, data is gathered 

at the occurrence of prescribed logical events in counters constructed 

on the Statistical Gathering Module. A module layout is shown in 

Figure 5.5a. There are twelve twelve-stage counters arranged in six 

groups. Each Statistical Gathering Module provides the Simulator with 

four data gathering probes. A probe is an arrangement of counters given 

over to gathering evidence about a single logical event. Each probe 

contains a 24-bit counter recording simulated time, and a 12-bit counter 

recording the number of occurrences of a logical event.

The operation of the Statistical Gathering Module is best described 

by an example. Figure 5.5b shows a system flow diagram containing five 

components. The corresponding success tree is shown in Figure 5.5c. ' 

Success trees are a means of graphically displaying the Boolean 

functions which describe logical events. It can be seen that probe PI 

is connected to the final system output (the top of tree) representing a 

system failure event. Probe P2 is observing the condition of the two 

parallel signals corresponding to the logical sub event P2=(l+2)(3+4).
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Whenever a probe detects a logical 0 it increments its occurrence 

counter by one and enables incrementation of its time counter by the 

amount the simulation is progressing until a logic 1 appears. At any 

time during the experiment, and certainly at the end, the host computer 

may update its knowledge of the model behaviour by examining the probe 

counter values.

The binary signal produced by each component, indicating an 

operational or non-operational state, form the input to the look-up 

table known as the Network Specification Module . The table output 

represents enabling signals to the Statistical Gathering probes. The 

Network Specification Module is constructed on a small printed circuit 

board which is inserted on to the common bus. Figure 5.5d shows the 

layout. Its operation is simply achieved by a RAM table, where the 

mapping between input and output is according to Boolean functions 

defining logical events. That is, each location in memory contains a 

binary word speciflying system top event and sub-event occurrence. With 

a large system containing many components this table may be very large 

and a RAM decomposition technique employed. This can be achieved by 

limiting components to groups which form the input to a sub-table. The 

logical sub-event signals produced by sub-tables would then form the 

input to a table monitoring the top event. No difficulty should exist 

in describing the top event in terms of sub-events, as sub-event probe 

points represent intermediate terms for the top event Boolean 

expression.

By employing a programmable Network Specification Module, the 

operator is freed from the tedious task of connecting components with 

AND and OR gate logic to describe each system. The operator need only 

define the Boolean expression of the top event at the VDU terminal, 

allowing the host computer to determine the contents and then program 

the Network Specification Module table [40]. Any system configuration can
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be stored for re-use or modified during a simulation with this highly 

flexible system. Further development has made possible a graphical 

input of the model system success tree, eliminating the need to 

determine the Boolean expressions for system events.

Statistical probes are so called because they can be moved around 

the system tree, allowing a clearer picture to be formed of sub-events 

which lead to the top event. It should be noted that there is no need 

for all probes to be examining the same tree. Alternative system 

organisations leading to different trees, can be simultaneously observed 

by simply defining different system event expressions.

The size of the binary words contained in the RAM table determines 

the maximum number of statistical probes available for gathering 

results. With an N-bit word N-1 sub-events and the top event can be 

monitored for each combination of component state signals.

Probe number PI has a special feature in that it can be used to stop 

the simulation. If hardware in the Control Module has been correctly 

prepared before the simulation starts (via host software) then a stop 

request is issued at the occurrence of the first logical event at probe 

number 1. This makes possible such experiments as an investigation of 

'time to first system failure'.

The minimum value which any counter recording the simulated time can

be incremented by is <AT , corresponding to a single input clockmin
pulse. When these counters are Incremented they may be so by any number 

of clock pulses, within the limitation of the maximum time quantisation 

value of 2048. It would be impossible to clock the statistical counters 

up to 2048 times during the 2.4ju seconds cycle. A solution to the 

problem would have been to replace counters by adders which could have 

summed to stored values, the current time increments. This would have 

considerably increased the amount of circuitry required leading to a 

greater cost and a longer development time. The solution adopted was to
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use a three phase clocking system shown on Figure 5.5e. All time 

increments are constructed from combinations of the three clocks viz. 

XL, XI6, X256. For example, an increase of 38 time units is achieved by 

the combination 6x1+2x16. Care has to be taken to ensure that carries 

from early portions of counters are rippled to the inputs of succeeding 

sections. No more than sixteen clock pulses are ever required to 

increment the Statistical Gathering units. This can be achieved within 

the 2.4p seconds cycle time.

5.6 Repair Policy Module

The repair Policy Module is in charge of all system repair and 

maintenance resources. Continually, components make demands upon these 

common resources. The Policy Module monitors all component requests and 

distributes the resources according to the pre-programmed management 

policy. A decision-table implementation of the module has considerable 

advantages. It offers a method of clearly defining complex conditions 

for which decisions m u ^  be taken.

The behaviour of components is Interrelated, with respect to global 

resources and policy. The complexity of these relations does not affect 

the speed of the simulation, which is only concerned with the access 

time of the table. The table lists all combinations of component 

states, and for each combination provides the corresponding management 

action. Programming the table before a simulation starts requires a 

clear description of the rules governing any action. However once this 

has been carried out, modelling of complex systems is achieved with ease 

and confidence.
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Consistent with the nature of the hardware simulator described in 

this report,, the operation of the Policy Module is in parallel with 

Component Modules and the Statistical Gathering Module. It is expected 

that, for systems containing a large number of Component Modules, table 

decomposition will be necessary, particularly where components may be in 

more than two states. An increase in the number of possible component 

states permits more accurate modelling of management policy but would 

result in a considerable reduction in the number of components observed 

by each sub-divided table. The Policy Module could no longer be called, 

global and would be simply a collection of localised decision-making 

teams. Fortunately, smaller tables should be more easily developed and 

quicker programmed.

Stochastically and deterministically varying management policies can 

be achieved by making the table contents a function of particular 

components which need not appear in the system tree. These special 

components may represent changes (not failure) of repair crew staffing 

or different policies operative only in crises. The module is 

constructed in a similar way to the Network Specification Module, 

employing a read-write memory.
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Figure 5*2a AT selection portion of control module
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CODE
OPERATION DC tal decimal

— OO O
START SIMULATION Oi 1

RESET m a s t e r  control 0 2 2

STOP SIMULATION 03 3

CmMOH BUS handshake 0 4 4

in it ia l is e  clock generator 0 5 5

INDICATE STOP at event P1 06 6

enable Component interrupts 0 7 7

LOAD STOP TIME ( low byte) 10 8

LOAD STOP TIME ( high byte) 20 16

CLEAR SIMULATION COUNTER 30 24

READ . SIMULATION COUNTER ( low byte) 40 32

READ SIMUUTION COUNTERl high byte) 50 40

INDICATE STOP at time limit 60 48

(disenable Component interrupts) 70 56

Figure 5-4b Control module instruclions
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Reliability Modelling View of Simulator

6.0 Introduction

The description of the Simulator so far has been kept very general. 

No interpretation of model features, within the context of reliability 

simulation has been made. This was deliberate and is due to the wide 

ranging nature of engineering systems investigated for reliability 

perf ormance.

Versatility of modelling components is achieved through programmable 

operation. Further modelling power is brought to the simulator by the 

global Policy Module, which makes it possible to implement complicated 

system management policies without affecting simulation speed. Finally 

components can, if required, interrupt the simulation with requests for 

software modelling features contained in the host computer. However it 

is not suggested that this feature should be generally employed, but 

only when modelling component behaviour outwith the scope of the 

programmable components. Repeated interrupts during a simulation would 

result in longer run times.

To determine the Simulator's performance and enable the 

investigation of engineering systems to be carried out with a view to 

improving their reliability, work has continued in the direction of 

developing a component arrangement which may be considered universal. 

That is, a component description usable in a wide range of reliability 

problems.

Coinciding with this development, the necessary software enabling 

the host computer to prepare the model for simulation, and examine the 

results obtained has also been written. This Chapter reports on this 

work and although the model presented is general purpose it should be 

considered as only one of the possible component arrangements. For
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example the problem of modelling minimal repair, described in Chapter 8, 

is not dealt with by the general purpose micro-controller. To deal with 

such additional system characteristics, a modified micro-control memory 

was produced. The operator could then select from a library of control 

memories to achieve the necessary component operation.

Host software was developed to permit a high level of communication 

between the Component Modules and the host. The communication is in 

accordance with the general purpose micro-controller view of hardware 

operation, and any substantial change made to the micro-controller's 

direction of the hardware would require changes to the host programs. 

The higher level enables easy operator interaction with the hardware, 

and is made possible by the understanding of micro-controller and mask 

register operation. Throughout the development of the software, ease of 

operator use has been a prime consideration.

6.1 Status Register *

The format of the status register layout is shown on Figure 6.1a. 

The lower three bits are the actual component status bits indicating the 

current condition of the component. The next three bits are flags set 

during modelling. Bits SR4,SR5 are repair (R.R.) and maintenance (M.R.) 

requests respectively and are made available to the Policy Module. A 

repair request is issued immediately a component fault is detected. 

This corresponds to entry into the requiring repair state. A 

maintenance request is issued on reaching a scheduled maintenance time. 

However this does not correspond to entry into the component maintenance 

state. Transition to this state only occurs when the Policy Module 

permits maintenance to start. Throughout the delay the M.R. bit 

remains set. With this method, maintenance can be queued during a 

'system crisis' or when maintenance resources are in high demand. The 

Policy Module has a single reply line request allowed (R.A.), which
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indicates to the component that the request is granted, corresponding to 

a release of global resources to meet component demand. At this point 

status register bit SR3 (ack.R.) 'is set, acknowledging the response from 

the Policy Module. The ack.R. bit remains set until the completion of 

the requested task.

The final status register flag, bit SR6, is the component interrupt 

request (int.). If the mask register setting enables interrupts then 

the micro-controller sets the flag when component failure occurs. At 

this point, the Control Module stops the ‘simulation and Indicates to the 

host all components requesting attention. No general purpose interrupt 

service routine is presented in this chapter. In later work, reported 

in Chapter 8, the facility was used to model reliability growth, for 

which a limited service routine was constructed.

Control of status register flags is simply achieved by the 

micro-instruction controller within each component. Any variation of 

operation from that described above is possible by re-programming the 

control memory.

The eight possible conditions which any component may be in are 

defined on Figure 6.1b. The state descriptions given are self 

explanatory. A selection of these states may be used by components to 

describe quite general systems. Indicated on Figure 6.1b are the two 

states for which non-monotonic transition rates are possible. The 

relevant states have been defined such as to allow non-exponential 

repair and failure distributions, which for reliability modelling are 

most useful. Also shown are the states which must have the same time 

quantisation if use of the programmable counters is made in the way 

described by this chapter. The reason for this is as follows. Counters 

within components are used to record component age and length of time 

since previous replacement. With this information the micro-controller 

can issue maintenance request signals (M.R.). Counter values must be

132



kept up to date and an incrementing clock pulse may be issued by the 

micro-controller during a Control Module cycle. Each pulse corresponds 

to a single quantum time step increment. This makes it impossible to 

maintain counter updating and unrestricted asynchronous simulation. To 

overcome this problem, counters are only incremented when the component 

is in a limited set of states, resulting in certain states having the 

same time quantisation. The system is acceptable because the time 

quantisation value is the largest used by the component, and the states 

restricted to this value are the most commonly visited states. 

Therefore the amount of simulated time spent in states for which counter 

incrementation is not possible is small.

6.2 Modelling Counters

Component,counters C^ and C^ are used to implement a maintenance 

policy based on component operation times. The special task of 

recording the amount of time a component is resident in a particular 

state is assigned to counter C . This is necessary if non-monotonicâ.
renewal processes are to be simulated, as only counter C^ addresses the

instantaneous hazard rate memory. Whenever a component fails or is

repaired/replaced, counter C returns to zero. For components ina
working condition but not operating, such as cold standby, counter Câ
is not incremented. At all times the value of counter C is compareda
with T . If C ^T , a maintenance request (M.R.) signal is issued.

3. 3L 3.

This corresponds to age replacement after the component completes T3
time units of operation.

Counter is used to generate maintenance request signals at

periodic intervals of time. This is known as a block replacement

policy. The actual block replacement time is held in register T^, and

once again a digital comparator identifies the maintenance time. The

incrementation of counter C, is continuous (within the limitations ofb
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Section 6.1) and does not depend on the component working. Counter Cb
is not reset when the component is repaired/replaced but only when a 

(M.R.) is issued by the component. It should be noted, that the action 

of both counters can be separately enabled or disenabled by setting the 

component mask register.

Counter C^ records the number of component failures. This 

information may be used when statistically analysing model performance.

6.3 Component Micro-Instructions

A component models a particular system aspect by drawing upon the 

range of available component states. These states have been listed in 

Section 6.1. The range of states which can be visited by a component 

are determined by its mask register setting. The contents of this 

register constitute inputs to the micro-controller which is responsible 

for generating state transition signals. Certain bits of the register 

enable modelling options to be selected more directly, operating on
V

component hardware signals without the micro-controller. The layout of 

the mask register is given on Figure 6.3a. .The effects of individual 

register bits are described in more detail below.

MO; cold standby. When this bit is set the component moves into the 

passive standby state if the component which it backs up is working 

(working states are defined as 3 and 7). The components are numbered 

l,2,3,...n, and are positioned in a module card racking system in 

numerical order. Further, a passive component at position m backs up a 

working component at position m-1, a higher priority position. If a 

further passive back up component is added it must be inserted into 

position m+1 .
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Components which can be in a passive standby state observe a signal, 

failure allowed (F.A.), generated by its neighbouring component lower 

down the rack. Figure 6.3b illustrates the hardware implementation of 

this ripple signalling. The signal (F.A.) indicates to a passive 

component that no active or passive component, of higher priority, 

within the redundant group is working and therefore it is required to 

become active. It remains in a working state until a component, within 

the group, lower down the rack (of higher priority) is repaired.

Always the aim of the redundant group is to have the component of 

highest priority working and all others in a passive state. At all time 

the highest priority available component is the only component xdiich may 

be working.

Ml,M2; High start up failure, high start up delay. Setting these 

mask register bits selects the respective modelling options. Actual 

parameters must be entered into the component 16xl2bit RAM. 

Deterministic start-up delays are implemented by programming a unit 

impulse p.d.f. for the state transition time distribution. The delay 

is then the time quantisation value chosen for the 'random' transit 

t ime.

M3; Interrupt. Component generated interrupts are enabled by 

setting this bit. The micro-instruction controller is programmed to 

generate an interrupt whenever a component failure occurs.

M4,M5; Age replacement, block replacement. To enable the 

programmable counters to generate maintenance request signals these bits 

must be set. If both bits are set then maintenance occurs at block 

intervals only if the component exceeds the age limit T .
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M6,M7; These bits indicate that non-monotonic renewal processes are 

used to describe repair and failure times respectively. Setting any of 

these bits results in the storing of instantaneous renewal rates in the 

256x8bit RAM in place of the normal 16xl2bit RAM.

The micro-instruction input/output signal layout is given on 

Figure 6.3c. The output signals are self explanatory and show the 

control over component hardware. All input signals have been described 

except random event signal (R.E.) which is the random binary output from 

the renewal process comparator. Development of the micro-controller 

firmware must be carefully carried out if correct component operation is 

to result. Stipulation of control signals to be issued during state 

transition is somewhat simpler and is given in Appendix A2. The 

specification of the required input binary patterns causing state 

transition requires a clear understanding of the nature of component 

behaviour. A computer program was written to carry out the off-line 

programming of micro-controller memories. The program produces the 

micro-instructions to be issued during state transition. Appendix A3 

presents the derivation of these signals. It also gives a clear 

description of the component state transition process.

6.4 Host Computer Software

The operator communicates with the simulator via a VDU terminal. 

The behaviour of the Simulator is completely controlled from this 

terminal via the host computer software. Entering key instructions 

enables the initialisation, execution and analysis of all reliability 

system studies. The software has been developed with the aim of 

simplifying terminal input/output format, resulting in efficient use of 

the Simulator hardware.
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On powering up the Simulator and activating the control program at 

the host computer, the operator is presented with the following list of 

tasks that the host software is capable of undertaking:

INITIALISATION AND CONTROL OF SliiULATOR 
SELECT SUB-SYSTEM LEVEL TO BE AFFECTED

1.
2 .
3.
4.
5.
6 . 
6 . 
8 .

SIMULATION INITIATE 
COMPONENT MODEL 
STATISTICAL ANALYSIS 
NETWORK SPECIFICATION 
HARDWARE DEBUG 
RE-ENTER SIMULATION 
SYSTEM POLICY 
FINISH SIMULATION

INPUT SELECTION N=. .

To carry out experiments on a system, three files must be created (If 

these files have been previously generated then they may be recalled for 

repeated use). They are:

1 . the component description file

2 . network specification file

3. resource policy frle.

Generation of new files can be selected at this point in the control 

program. All other operations of the host computer are similarly 

selected at this frequently recurring branch point. On completion of 

each control or file handling task, the program returns to the common 

branch point. The following sections outline the entire simulation 

process, as seen by the operator, from model preparation to analysis of 

results.

6.4.1 Model Description

A model description file determines the characteristics of 

components representing system features. When creating or editing the 

file, each component is selected and individually initialised. A 

maximum of six components is permitted by the hardware currently 

available. On first describing any component, a mask register setting
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is developed by answering eight questions. The mask setting determines 

the modelling features to be used during simulation. On the basis of 

this setting, parameters are requested by the file handling routines. 

The listing given below shows the format of the parameter specification. 

The exact format varies for each mask setting and is unlikely to be as 

large as the one shown, which results from selecting every possible 

modelling feature.

INPUT NAME OF MODEL DESCRIPTION FILE . .MODO

COMPONENTS IN USE BY MODEL ARE 
1 2 3 4 5 6

MINIMUM TIME QUANTISATION = 1.000 HOURS
INPUT NEW VALUE OR RETURN FOR NO CHANGE

NOTE: 1. ALL TQ VALUES MUST BE A BINARY
MULTIPLE OF TQMIN ■

2. ALL VALUES IN HOURS
MAXIMUM TIME QUANTISATION = 2048.000 HOURS
SELECT COMPONENT TO BE ADJUSTED (1 TO 6)
ENT^R RETURN FOR NO FURTHER ALTERATIONS N=. .3

IS COMPONENT TO BE REMOVED Y/N. .N

DO YOU WISH TO DEFINE A NEW MASK REGISTER 
Y/N ANS.= Y

IS THE COMPONENT PASSIVE Y/N. .Y-

IS THERE A HIGH START UP FAILURE Y/N. .Y

IS THERE A START UP DELAY TIME Y/N. .Y

ARE COMPONENT LEVEL INTERRUPTS POSSIBLE Y/N. .Y

AGE REPLACEMENT OPERATIVE Y/N. .Y

BLOCK REPLACEMENT OPERATIVE Y/N. .Y

NON-MONOTONIC DISTRIBUTION FOR REPAIR Y/N.' .Y

NON-MONOTONIC DISTRIBUTION FOR FAILURE Y/N. .Y

NEW AGE REPLACEMENT TIME ( 1000.000)
ENTER RETURN FOR NO CHANGE. . . .

NEW BLOCK REPLACEMENT TIME ( 2000.000)
ENTER RETURli FOR NO CHAITGES. . . .
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TIME. SINCE PREVIOUS BLOCK REPLACEMENT ( 0.000)
ENTER RETURN FOR NO CHANGES . . . . .

INITIAL AGE OF COMPONENT ( 0.000)
ENTER RETURN FOR NO CHANGE. . .

DO YOU WISH TO CHANGE ANY DISTRIBUTION Y/N. .Y

FAILURE DISTRIBUTION INDICATOR = 1
SELECT DISTRIBUTION
WEIBULL ........  1
ERLANG ........  2
2 MODE WEIBULL . 3
ENTER RETURN FOR NO CHANGE . . . .

DISTRIBUTION PARAMETERS ( 500.0 , 2.00 )
ENTER RETURN FOR NO CHANGE ........
TIME QUANTISATION ( 8.000 )
MINIMUM VALUE FOR 128 ELEMENT MEMORY = 8.000
ENTER RETURN FOR NO CHANGE ........

REPAIR DISTRIBUTION INDICATOR = 1
SELECT DISTRIBUTION
WEIBULL ........  1
ERLANG ........  2
2 MODE WEIBULL . 3
ENTER RETURN FOR NO CHANGE . . . .

DISTRIBUTION PARAMETERS ( 15.0 , 2.00 )
ENTER RETURN FOR NO CHANGE ........
TIME QUAJilTISATION C 1.000 )
MINIMUM VALUE FOR 128 ELEMENT MEMORY = 1.000
ENTER RETURN FOR NO CHANGE ........

REPLACEMENT DISTRIBUTION MEAN ( 10.000)
ENTER RETURN FOR NO CHANGE ..........

TIME QUANTISATION VALUE ( 1.000) . .

UNREVEALED FAULT DISTRIBUTION MEAN ( 1000.000)
ENTER RETURN FOR NO CHANGE . .

START UP FAILURE RATE ( 10.000 % )
ENTER RETURN FOR NO CHANGE . .

IS START UP DELAY DETERMINISTIC OR RANDOM D/R 
ENTER FOR NO CHANGE ........ R

INPUT MEAN RANDOM DELAY ( 5.000). .
TIME QUANTISATION VALUE ( 1.000). .

INPUT STARTING STATE OF COMPONENT ( 71.000). .

SELECT COMPONENT TO BE ADJUSTED (1 TO 6)
ENTER RETURN FOR NO FURTHER ALTERATIONS N=. .
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Where non-exponential distributions are in use, an indicator of 

distribution type must be entered. The 2-mode Weibull indicator refers 

to failure times which occur according to two modes, each mode described 

by its own distribution [see Section 8.9].

Time quantisation values for non-exponential distributions can be 

selected freely. However the host computer determines the minimum 

quantisation necessary for the distribution c.d.f. to reach 0.95 before 

the final hazard rate memory location is reached. The suggested value 

is indicated as 'minimum value for 128 element memory'.

6.4.2 System Success Tree

The second file necessary for complete system description is the 

network specification file. This file contains information for forming 

the system success tree, which must be entered into the look-up table in 

the Simulator. There are two separate methods of creating and editing 

this file. If a conventional operator terminal is in use then the 

system success tree is constructed from logical boxes. The operator 

specifies the connection of boxes by identifying each with a number. An 

example of the output format for a 6-component system is shown on 

Figure 6.4.2a. Describing system success trees by this method is simple 

for small systems but could be tedious and error-prone for larger 

systems. At the completion of the tree description by this method, the 

operator is presented with a table which is merely a record of box 

connections.

The second form of file handling requires an interactive graphics 

terminal. This method is by far preferable as the operator need only 

'draw' the component boxes and their connections to specify the system 

tree. Figure 6.4.2b illustrates the tree drawn for the example system 

above. The software controlling graphical editing of the tree has been 

designed for simple operator use. Both tree construction methods
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require specification of statistical gathering probe positions, 

corresponding to logical events about which information is to be 

gathered. However the graphical method is particularly convenient to 

use as previous probe points can be quickly 'rubbed out' and the probe 

redrawn in a new tree position.

6.4.3 Repair Policy

The policy file contains information about the utilisation of repair 

and maintenance men. A distinction is made between repair and 

maintenance actions performed on components. However the men available 

to carry out the work are drawn from a common group. The distinction is 

necessary as the response to requests for a man to carry out 

preventative maintenance is likely to be postponed during a crisis where 

repair men are better employed on urgent repair work. A consequence of, 

this more accurate modelling of system, management policy is that each 

component requires two binary address lines to describe its condition to 

the Policy Module.

With a priority repair and maintenance policy, it is to be expected 

that, on occasion, resources released to meet a component request may be 

recalled and re-issued to a higher priority component. Later when the 

initial component resource demands are of sufficient priority to 

continue they commence from the point at which they left off. In the 

case of interrupted maintenance the component remains in the unusable 

maintenance state. If the (ack.R.) signal is made available to the 

Policy Module then decisions can be made with the knowledge of 

previously incompleted repair/maintenance operations within the system 

components. To prevent an increase in the number of policy address 

lines component signals are coded as follows:
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working order - 

request for repair - 

request for maintenance - 

task commenced -

- no request flags set

- a R.R. but no ack.R.

- a M.R. but no R.R. or ack.R.

- an ack.R.

With large numbers of components, the policy table may become too large, 

with regard to realistic implementation. Grouping components into 

sub-policy tables of six components results in a practical table size of 

4096x6 bits.

In programming the Policy Module table, it would be impossible to 

construct a table describing the actions to be taken for each 

combination of component states as the possible number of combinations 

could be very large. In practice, statements are made about component 

requests of particularly high priority. With the knowledge of these 

statements the host computer determines the decision table necessary to 

implement the policy and then programs the Policy Module. An example of 

programing a policy is given below.

INPUT NAME OF POLICY FILE . .POL 2

REQUESTS OF PRIORITY 1 ARE :
COMPONENT 2 R 

REQUESTS OF PRIORITY 2 ARE :
COMPONENT '3 R 

REQUESTS OF PRIORITY 3 ARE :
COMPONENT 4 R 

REQUESTS OF PRIORITY 4 ARE ;
COMPONENT 2 M
COMPONENT 3 M
COMPONENT 4 M

NUMBER OF POLICY "MEN" = 2
MINIMUM ACCEPTABLE PRIORITY = 6 
COMMENCED TASKS HAVE OVERRIDING PRIORITY

ADJUST SYSTEM POLICY. .REQUEST TYPES ARE:
M=MAINTENANCE
R=REPAIR

SELECT COMPONENT 
ENTER RETURN TO END.

INDICATE REQUEST TYPE

SELECT PRIORITY

.2

.R
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ENTER RETURN TO REMOVE PRIORITY SETTING . . .1

SELECT COMPONENT
ENTER RETURN TO END. . .

DO COMMENCED TASKS HAVE OVERRIDING PRIORITY Y/N .

MINIMUM ACCEPTABLE PRIORITY ( 6 )
ENTER RETURN FOR NO CHANGE • •

NUMBER OF POLICY "MEN" AVAILABLE

SELECT OPTION
0. EXIT
1. DISPLAY POLICY
2. PROGRAM MODULE . . .

• •

Note that component requests of priority below the stated minimum 

acceptable priority do not receive attention from repair men. When a 

repair or maintenance task is acknowledged by the Policy Module the 

component enters the '’task commenced' state. This state has the same 

priority as the repair state since they both describe a non-operational 

component. However by stating that commenced tasks have overriding 

priority then repair or maintenance tasks, once initiated, cannot be 

discontinued by -the occurrence of a request of higher priority.

6.4.4 Executing an Experiment

After the development (or recall) of the necessary system 

description files has been completed, the operator initiates experiments 

on the model system as shown below.

NAME OF FILE TO KEEP RESULTS . . RSTl

NO. OF EXPERIMENTAL RUNS . .100

NUMBER OF WINDOWS . . .
ENTER RETURN TO STOP AT EVENT PI . .2

TIME(HOURS) AT END OF WMNDOW 1 =. .10000

TIME (HOURS) AT END OF WINDOW 2 =. .20000

A file is used to contain results, allowing examination at a later date.
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The number of repeated experimental runs is entered, each run starting 

from the same specified initial system condition but with a different 

random number seed. During each run the Simulator is requested to stop 

at window points, at which the host computer updates its information 

about model behaviour. Any number of window points can be used, the 

actual times being entered by the operator. A request to stop at the 

first occurrence of logical event PI can be selected. Clearly in this 

case no stop times are entered. The technique is particularly useful if 

event PI is specified as 'system doxm'.

Experiments run to completion unless interrupted by the operator, an 

example of which is shown below.

COMPLETED 10 OF 100 RUNS
TIME TO COMPLETION = 2.06 SECONDS

SIMULATION STOPED BY OPERATOR
1. . RETURN TO MAIN PROGRAM
2. . CONTINUE SIMULATION

N=. . .

■On interrupt, the simulation is suspended and the operator may 

continue the experiment or return to the main feature selection point. 

When the operator interrupts the experiment the simulation run may be 

pre-examined, aborted, pre-examined, restarted or re-continued from the 

suspended position. Further, on causing an interrupt, the operator is 

informed of the Simulator's progress and of estimated time to experiment 

completion, as determined by the host computer.

In the example interrupt, the time given is for a simulation using 

at all times only the minimum time quantisation value. In practice, the 

time to completion would be reduced due to selection of larger 

quantisation values. Set against this is the increase in experimental 

run times due to delays experienced in use of a time shared host 

computer.
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The serial communication link between the host and the Simulator 

operates at its limit of 9600 bits/second. At this speed the problem of 

communication delays is reduced. It should be noted that run times 

reduce as the number of stop windows and statistical probes are reduced 

due to the reduced amount of data passing between the host computer and 

the Simulator. Probe control signals are not issued for probes 

unspecified at the Network Specification file. In practice, the 

estimated time to completion indicated to the operator takes into 

account both of the effects described above.

6.4.5 Results Analysis

On completion of an experiment the operator is returned to the main 

procedure selection point of the control program. At this point, a 

statistical analysis of a results file can be requested. The format of 

the statistical analysis is shown below.

ENTER NAME OF RESULTS FILE . .RSTl

MINIMUM TIME QUANTISATION = 1.000
NO. OF EXPERIMENTAL RUNS = 100

TOTAL NO. OF EVENT
PROB WINDOW DOWN-TIME EVENTS DURATION CRV

1 1 60305.2 592.1 101.85 0 .0 12
1 2 59982.8 587.5 1 0 2 .1 0 0.015
2 1 12491.6 826.2 15.12 0 .0 1 1
2 2 12406.2 793.7 15.63 0.009

IDENTIFY PROB OF INTEREST 
THERE WERE 2 IN USE

Results obtained for each probe are analysed separately. The values 

recorded by probe counters are averaged over the number of experimental 

runs performed to determine mean down time, mean number of events and 

mean event duration. Each window is dealt with separatly. Therefore 

the table of results presented lists moving average values monitored
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between window points. In the final column of the table of results, the

coefficient of relative variation (CRV) for down time is determined.

This measure ai-ds the experimenter in determining if results are a good

statistical estimate of the true value [see Section 8.1]. If a graphics

terminal is in use the operator may request a frequency distribution

plot of event times or number of events occuring for each probe window.

A hard-copy graph plotter option can also be selected.

No specific routines were written for analysing simulation results

recorded in Component Module counter C . However each counter would bec
examined and results recorded.

6.4.6 Hardware Debug

A software control section not required by the experimenter is the 

hardware debug. This section played a considerable role in the testing 

of the simulator hardware modules. It enables specific hardware control 

signals to be issued requesting and entering data into individual 

circuits in the Simulator. Pre-programmed sequences of instructions can 

also be issued to further check hardware operation.

6.5 Conclusion

Two main conclusions can be drawn from this chapter.

The universal instruction set developed for the programmable 

controllers enables a detailed description of component features 

to be achieved. Its flexible operation should free the operator 

from the need to re—program the micro-controller. The operator 

merely prepares a mask register setting to select from a range of 

modelling characteristics which m.ake full use of component 

modelling power.

If an interactive graphics terminal is used then graphical
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Figure 6-1b Universal state definition of micro-controller
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flow diagram

probe 1 connecfed fo box 9
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probe 3 connecfed fo box 8

box 7 requires 1 signals and is fed from 1 2

box 8 requires 2 signals and is fed from 3 4 5

box 9 requires 3 signals and is fed from 6 7 8
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Figure 6-4-2b Graphical development and editing of system success tree



Verification of Simulator Operation

7.0 Introduction

To verify the operation of the Simulator, a collection of system 

arrangements has been studied. Each system contains some different 

aspect of reliability engineering, and the range of systems examined 

covers the principal system topologies. A further consideration during 

each experiment was the full evaluation of the Simulator's 

characteristics. For this reason, system parameters have been varied to 

aid with identification of any modelling problems. In particular, the 

distribution time quantisation TQ was widely varied, in many cases 

outwith the normal working range.

For each experiment carried out, the Policy Module was programmed to 

allow repair or maintenance requests to be acknowledged without delay. 

That is, system components did not compete for repair men. This is 

necessary as an investigation of policy dependency would not have 

permitted any analytical estimation of simulation results, and hence 

detracted from the verification of Simulator operation.

The following sections of this Chapter describe the experiments in 

detail and results are presented. In each case, a mathematical analysis 

of the system has been performed, an essential task if confidence in the 

operation of the Simulator is to be obtained. Many results are 

presented in the form of mean unavailability (U|̂ ) or mean availability

(»A>-
Where preventive maintenance was applied, the mathematical analysis

of the systems considered maintenance to be instantaneous. This cannot

be achieved by the simulator. In practise maintenance times were

programmed to have their minimum values of T . . Consequently, tomin
permit any comparison of the values obtained by simulation with the
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theoretically expected values, the results have been adjusted as 

follows:

down time = measured down time - T a Ts min

where T = simulated life times
T = interval between maintenance
D

7.1 Single Component with Periodic Replacement

The simplest system conceivable is that of a single component for

which no repair takes place. Initially the component is in perfect

working order. During its operation it suffers a probability of failure

according to a specified probability distribution. Once failure occurs

the component remains in a failed state until it is replaced. Component

replacement occurs at regular test intervals regardless of the component

still being operational. Experiments carried out on systems of this

simple nature enable the behaviour of the Simulator to be more easily

analysed. Complex systems may have produced results obscuring

behavioural trends which are of important to this Chapter.

The replacement policy described is best simulated by specifying a

block replacement time T . The Repair and Maintenance Policy Module

must be programmed to only permit component maintenance requests to be

allowed. Component mean maintenance times are set to a value less than

AT . , this results in an actual maintenance time of A T  . . All min min
systems have been simulated over long time intervals permitting 

component unavailability to be estimated with little variance.

Consider a component for which T„=1000 hours and A T  . =1 hour.

The component failure distribution is exponential, with a mean value 

1/0. This arrangement has been modelled for 1/9 values of 200 hours, 

1000 hours and 4000 hours where the distribution time quantisation (TQ) 

has been varied from 1 hour to 128 hours. Selecting 1/9 values above
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enables a check to be madeon the generation of the correct distribution 

shape. When lower 1/0 values are used, the results are credible if only 

the distribution mean value is accurately modelled. However, a value of 

1/0=4000 hours where TQ=1 hour has been previously shown to be rather 

high for accurate modelling to be achieved. (Section 3.8 indicated the 

safe limit of 1/0 to be approximately 1500 hours). Theoretically, the 

component unavailability is given by [41]:

“d - f  y

■  >

where T = T.

- t0P(t) = 1 - e , failure distribution c.d.f.

7System life times of 10 hours have been modelled and the error in 

predicted mean unavailability determined. The results are shown on 

Figure 7.1a. As 1/9 is increased there is a slight increase in error 

due to the greater importance of distribution shape and the difficulty 

of accurately representing values. However clearly the most

important trend revealed is that of increasing TQ values producing 

poorer results. This is explained by choosing TQ values too large to 

make full use of the probability resolution possible. In addition, Tg 

is not an integer multiple. Hence its integer representation must also 

introduce error most noticeable at high TQ values.

To further examine the effects of high TQ values, Tg was reduced to 

100 hours and TQ varied from 1 hour to 16 hours for an exponential 

distribution. The mean component life time ranged from 50 hours, 

200 hours, 500 hours and 1000 hours. The results are shown on 

Figure 7.1b. The error in mean unavailability has now increased at low
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TQ values particularly where 1/9 is greater than T , indicating someB
difficulty in achieving the correct distribution shape. The higher than

previous error occuring at TQ=16 hours is due to T integration.B
Experiments have also been carried out on a component described by a

Special Erlang failure distribution. The mean unavailability is

calculated as before, with P(t)=1-(l+t9)e :
T

1
° T

P(t) dt

= l-_2_ (1+«T) - 1]
T 9  2

A model where 1/9=400 hours, T =200 hours and AT . =1 hour has beenB min
considered. The time quantisation TQ was varied from 1 hour to

32 hours. The results obtained for the error in u^ are shown on 

Figure 7.1c. Two curves are presented, showing the advantage of the 

feedback improvement developed in Chapter 3j Clearly very considerable 

where low TQ values are in use. This is explained by the increased 

demand put upon the reduced non-monotonic probability resolution by 

small time steps. In such cases good results are only achieved with the 

aid of feedback.

The suggested minim^um TQ value shown is the value indicated to the

experimenter (by host computer software predictions) at the time of

experiment initialisation. It corresponds to the minimum TQ value

necessary if the modelled distribution c.d.f. is to reach 0.95 before

the final W memory address. (That is when C.=127 units). Best k A
results have been achieved at TQ values equal to half the minimum 

indicated. This is explained by the automatic use of the extended 

memory feature (described in Chapter 6) available when only one 

non-monotonic distribution is in use. All 256 memory locations were 

available for distribution modelling.
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Further experiments employing Special Erlang failure distributions 

have been carried out with T once again 200 hours and 1 / 0  varied fromD
25hours, 100 hours to 400 hours. The results for the error in predicted 

unavailability are shown on Figure 7.Id, and compare well with the 

previous exponential distribution experiments. A similar trend of error 

at high TQ value is indicated.

Throughout the experiments described in this sub-section a wide 

range of parameters have been employed to highlight Simulator trends. 

Although the results presented are in the critical form of error between 

theoretical value and experimental value, they are believed to be within 

acceptable limits. In practice, TQ values would not be selected as high 

as those tested here. When non-monotonic distributions are in use, 

selection of TQ values according to the minimum indicated by host 

software can be used. However there appears no danger in selecting 

values below the minimum as the feedback technique employed maintains 

modelling accuracy.

A limitation to selection of TQ values not illustrated by the

experiments of this section is the maximum size of the maintenance

counter C . For example, selecting TQ to be 1 hour limits the maximum B
period between maintenance to be 4096 hours. Periodic replacement times 

longer than than 4096 hours require failure distributions to be modelled 

by TQ values greater than one hour.
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1 . 2 . 1  Series Systems with no Repair

A series system of m components implies that all m components are 

required to be operational for the system to be operational. With 

non-repairable systems it is assumed that all components are initially 

in perfect working order. Each component suffers a probability of 

failure during its operation time, and if failure occurs with any 

component the system is rendered in the failed state. Periodically, all 

components are tested and replaced by new components regardless of any 

component still being operational. If the probability of component n 

being operational at time t is given by P^, then the probability of the 

system being operational is given by:

m
P = TT P.X . 1I = 1

P is determined from P =1-P (t) where P (t) is the failure c.d.f. 

of component n.

Consider the case of a two-component system. If component failure
V

distributions are given by P (t) and P, (t), then the probability of
3. D

successful system operation up to time t is given by:

P = [1 - P (t)] [1 - P,(t)]X 3 D
To determine the mean system unavailability, the standard equation below 

can be used.

T

"d
0

where T = T^, periodic replacement time

P (t) = 1-P , system failure c.d.f.X X
If components have ‘failure distributions described by exponential

distributions of mean 1 / 0 and 1 /0, respectively, then the solution ofa b
is simply:

= 1 ---- 1---  (
• 3  D

1 -
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Experiments have been carried out on a system where

1/9 =1/9, =1000 hours, AT . =1 hour and T„=1000 hours. The time

quantisation TQ for the failure distribution, and consequently tim,e

spent awaiting maintenance when in the failed state, was varied from

1 hour to 64 hours. The Repair and Maintenance Policy Module was

programmed to only permit component maintenance requests to be allowed.

The results for system û  ̂are shown on Figure 7.2.1a, along with time
0

necessary to simulate 10̂  hours of operation. All values of are very 

close to the expected. The slight error o c c u r r i n g at high TQ values is 

due to :

1. Greater difficulty in accurately representing T^ by an integer 

value.

2. Not making full use of the probability resolution.

3. Difficulty in keeping comiponent test points in phase. Component 

micro-controllers are responsible for the updating of the block 

replacement counters, C . Updating not only depends on 

particular state transitions but also time quantisation values for 

individual states, a factor not fully catered for. Future 

development of the micro-controller firmware may include changes 

improving simulation results at high TQ. The simulation time was 

restricted to lO^hours to prevent phase shifts becoming too large.

These problems pose no serious problem to Simulator operation, as 

the error in u^ amounted to 1.8% with TQ=64 hours. The time required 

by each experiment fell, as expected, with increasing TQ values. A 

noticeable 'flattening' of the result curve appears at TQ=16 hours. 

This is explained by a reduced probability of selecting a high TQ value 

for model up-date when high TQ values are in use.
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The calculation of system unavailability is simpler for a series 

system than for a parallel system, due to the resultant system failure 

distribution being characterised by a hazard rate that is the sum of the 

individual hazard rates of each component [41]. Examining the solution 

for Uĵ above, it can be seen that ®x~®a"^b* Using this theory the 

above system can be represented by a single component having an 

exponential failure distribution, mean=500 hours. Such an experiment 

has been carried out and the result is given below:

expected system û  ̂= 0.568

single component model û  ̂= 0.565

Systems containing components with non-exponential failure 

distributions, can also be represented by a single component. The 

values necessary for process modelling are calculated from the system 

failure c.d.f., P (t)=l-(l-P (t))(1-P, (t)) ... This poses no problemX 3 0
to the initialisation software in the host computer.

7.2.2 Series Systems with Repair

The simplest system repair policy is that of commencing repair on 

any faulty unit immediately upon failure occurring. The Simulator can 

be instructed to carry out this policy by programming the Repair Policy 

Module to respond to all requests. Consider a single component 

undergoing a failure repair process. If the failure distribution has 

mean u^, and the repair distribution has mean u^, then the limiting 

availability of the component is given by the well known equation;

Uf* Ur

For a system containing m components each undergoing the above process, 

the limiting system availability is known to be :
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m
u. = TT uA .  ̂ Ai

I =1
The Simulator has been tested on a system containing three identical 

components. All distributions were exponential, and the mean failure 

and repair times were 1000 hours and 50 hours respectively. Life times
7of 10 hours were modelled, with hour, employing a range of

failure distribution time quantisations (TQ) from 1 hour to 128 hours. 

The repair distribution time quantisation was constant at 1 hour. 

Results for system unavailability and simulation time required are shown 

on Figure 7.2.2a. The values obtained for u^ are acceptable for all 

TQ. However a slight error (3.5%) appears at TQ=128 hours. This may be 

due to :

1. Not making full use of the probability resolution

2. Cross-correlation effects apparent when TQ exceeds the mean repair 

time. ’̂ When a component failure occurs, the system minimum time 

quantisation is 1 hour and remains so until all repair iŝ  

complete. Further component failures are not possible until a 

time increment reaches the failure distribution TQ value.

Expressed another way, components are unlikely to fail during the 

repair process of another component.

As expected, the simulation time required has fallen as TQ is increased. 

The usual flattening of the result curve is present, due to reduced 

probability of up-dating the model with high TQ values when high TQ 

values are in use.

Systems containing components in series can be represented by a 

single component. As discussed in Section 7.2.1, the hazard rate for 

the system failure distribution is the sum of the individual component 

hazard rates. For the above three-component system, the system failure
-30tc.d.f. is given by 1-e' , that is exponential with a mean value of
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333.3 hours. The repair distribution is not exponential for a series

system but can be modelled by an exponential of equivalent mean. The

mean repair time can be obtained by observing the actual three-component
0

system. This was done during an experiment of 10 runs each 10 hours 

long. A shorter life time was chosen to prevent overflow of the 12-bit 

event counters within the Statistical Gathering Module. The mean values 

for system repair and failure times are given below.

mean repair time = 54.28 hours 

mean failure time = 344.6 hours

Clearly the failure time was not the expected 333.3 hours, which is 

used to describe the single component failure distribution. The mean 

repair time observed was used to complete the single component 

description. Experimental results for the representative component u^ 

are given below along with the expected system u^.

expected system = 0.1362

single component model u^ = 0.1361

7.2.3 Series System with Staggered Testing

Where components within a series system are undergoing no repair, 

but receiving periodic replacement, system reliability can be reduced if 

replacement time between individual components is staggered. Unlike the 

non-repairable systems considered in Section 7.2.1, components within a 

system are then no longer of the same age.

Consider a two-component system which undergoes staggered 

replacement. Component A is initially new and is replaced at time T. 

Component B starts new at time kT (0^k<l) and is replaced at periods of 

T. As in Section 7.2.1 system unavailability is calculated from the 

system failure distribution c.d.f., which now changes at time kT. That
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IS:
kT

U 1 - [l-p (t)] [l-P, (t+(l-kT))]D / a b
0

+ 1 /I - [l-P^(t)][l-P^(t-kT)]
(1 -k )T  J  

kT

This is determined from P (t)==l-P and P =P PX X X a b
If P (t) and P, (t) are both exponential of mean 1/0 then the above a b
equation reduces to;

1 1 TM - e t , , - k e i - ( i - k ) 0 T , ,u = 1 - _ 1__[(1-e )(e +e ' )]
20 T

Differentiating u^ with respect to k and equating to zero gives a

worst case value k=l/2. This is as expected and it can be seen that

k=l/ 2  is the critical value for any system containing two identical

components regardless of there failure distribution. When k=l/2 and

P (t)=P (t) the system P (t) is the same over both test intervals a b X
0—^kT and kT—^T, enabling the system to be represented by a single 

component. In such case the system hazard rate is calculated from;

P (t) =1 - [l-P(t)][l-P(t+T/2]
X

where P (0) = P(T/2)

In the case of the exponential distribution this reduces to;

_2 0 tP (t) = 1 - ^

That is, a failure process characterised (as in the case of the

unstaggered replacement) by a hazard rate the sum of the individual

component hazard rates, and suffers an additional initial probability of
-0T

failure 1-e"^ . This initial probability of failure corresponds to 

replacement of a component not rendering the system operable. The 

system unavailability can now be calculated by integrating P̂ Ĉ̂ ) over a
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sub-interval.
T/2

-0T2 . -20t ^
= T j  e  ̂ dt

0

. 1 - )
9T

Consider a system of two components described by exponential failure 

distributions with 1/0=1000 hours. Critical staggered replacement

occurs for each component at intervals of 1000 hours. A simulation has
g

been carried out over 10 hours of operation, all time quantisations

being TQ= a t  , =1 hour. Simultaneously an experiment was carried out min
on a single component programmed to represent the system with a mean 

failure time 1/0=500 hours and start up failure rate = 39.3%. The 

results are shown below

expected ^  = 0.617

system model 0.611

single component model u^ = 0.621

The slightly increased single component û^ is possibly due to

considering the start-up failure state as a non operational state.

A single component representation of the system could have been 

tackled in other ways, resulting in the desired u^ value. However in 

other parameters a difference would appear. Consider an alternative 

component programmed with Tg=500 hours and an exponential failure 

distribution such that u^ was correct over the interval T^. 

Maintenance requests would be issued at the expected frequency but the 

distribution of down time and up time would not model the actual system, 

partly due to not including the possibility of properly scheduled 

maintenance leaving the system inoperable at time T^. For comparison, 

an experiment comprising this alternative system representation has been 

carried out. The results are presented below.
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mean down time mean up time

two-component model 502 hours 318 hours 0.611

Single component model 526 317 0.622

Poor alternative 304 198 0.614

7.3.1 Parallel System with No Repair

A parallel system of m components implies that only one of the m 

components need be operational for the. system to be successful. 

Alternatively all components must be faulty to bring the system down. 

Each components behaviour is described by a probability distribution of 

time to failure. The whole system is tested at regular intervals and 

components are replaced by new components regardless of their operating 

condition. If the probability of component n being operational at time 

t is given by Pn then the probability of the system being operational 

at time t is given by;

m
p = 1 -TT P.

^ i=1 "

where P =P (t), the failure c.d.f. of component n n n

As in the section on series systems with no repair^ consider the case 

of a two component system. Where components are identical having an 

exponential failure distribution, the mean =Vq . System unavailability is 

given by:
T

D  j (1 - e ® S ^  dt

where T=T0 , periodic replacement time. 

The solution is:

Up = 1 1 (3+e -4e )
2BT
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Unlike series component systems parallel systems are not described by a 

failure distribution function which has a hazard rate the sum of the 

individual component hazard rates. Limiting system component 

distributions to the exponential does not result in an exponential 

system failure distribution. If it is desired to represent the system 

with a single component then the problem of non-monotonic distribution 

modelling presents no difficulty. The necessary W values can be 

calculated from the system c.d.f. equation above.

A system containing two components each described by an exponential

failure distribution mean 1000 hours has been investigated. The time

between component replacement was 1000 hours and failure distribution TO

values were varied from 1 hour to 64 hours. System life times of

10^ hours were programmed to be repeated fifty times permitting results
5to be averaged. Limiting the time to 10 hours prevents overflow of the 

Statistical Gathering Module event counters occurt/Pg. The values 

obtained for u^ are shox̂ n in Figure 7.3.1a. The increasing error at 

high TQ values has been previously explained for the series system cas^, 

in Section 7.2.2. For the particular case TQ=1 hour,The results ' are 

presented below.

D
0.161

mean down-tim.e 

227.9 hours

mean up-time 

1181.0 hours

expected u^ value =0.168

Note that mean down time and mean up tim.e do not add to make 1000 hours. 

This is explained by the difficulty of maintaining simultaneous 

replacement.
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A single component representation has been carried out. The time 

quantisation was increased to 32 hours to allow the non-exponential 

system distribution to be fully stored in the component memory. The 

results are given below.

D
0.169

mean down-time 

173.hours

mean up-time 

849.7houfS

The mean times still do not add to 1000 hours, but this has a new 

explanation. The quantisation of the replacement time T is now poorer
D

at 32 hours. When T is not a binary multiple there is always an errorB
in its approximation which increases with increasing TQ values.

7.3.2 Parallel Systems with Repair

As with any parallel system, each component within the system is 

required to be operational for system success. The simplest system 

repair policy is that of commencing repair on faulty units immediately 

upon failure occurring. Programming the Simulator to carry out this 

policy has been described in the section on series systems with repair. 

As pointed out for the series component arrangement, individual 

component unavailability is given by:

Ui
= Uf-Ur

where u^ and u are mean failure and repair times respectively, f r
For a system containing m components each undergoing a failure repair 

process, the limiting system unavailability is known to be:

m
"d ■p; “Di 

1=1
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The Simulator has been tested for a system containing three

identical components. The failure and repair distributions were

exponential with mean values of 1000 hours and 50 hours respectively.
7System life times of 10 hours were modelled with AT . =1 hour, 

employing a range of failure distribution time quantisation TQ from 

1 hour to 128 hours. Repair distribution quantisation was constant at 

1 hour. The results produced for system unavailability are shown on 

Figure 7.3.2a. The values obtained for u^ are acceptable, but as with 

the series system previously examined, errors occur at high TQ values. 

The reasons for this error are the same as for for the series case. 

However it is noticable that the effect of high TQ values is now more 

damaging. This is understandable considering the much lower probability 

of system failure for the parallel case. Cross-correlation occurring at 

high TQ values has two effects:

1. It reduces the likelihood of component failure during the repair 

process of another component^ as explained in the series system 

case.

2. It increases the likelihood of simultaneous component fai'lure.

It is this second reason given that causes the system unavailability to 

increase at high TQ values.

Systems containing components in parallel can be represented by a

single component. The previous section showed that the system hazard

rate is not the sum of each component hazard rate. However by a

deduction similar to that of considering the hazard rate for the failure

process of components in series it can be seen that the hazard rate for

the repair process, in a parallel system, is the sum of the individual

component hazard rates. For the above system, the repair c.d.f. is 
-301given by 1- e , 0=1/50 hours. The mean failure time is obtained by
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observing the actual 3-component system. The values obtained are given 

below.

mean repair time = 17.8 hours

mean failure time = 164,629 hours

The repair time observed was not the expected 16.7 hours, to be used to 

describe the single component repair distribution. The failure time 

mean is very large and requires a large quantisation time if accurate

modelling is to be achieved. A value of TQ=128 hours was chosen for an

experiment carried out over a 

are below:

system 7life time of 10 hours. The results

3-component model u = D 1.081

single component model 0.963

expected 1.079

7.3.3 Parallel Systems with Staggered Replacement

Where components within a parallel system are undergoing no repair, 

but receiving periodic replacement, the system reliability can be 

improved if the replacement times between individual components are 

staggered. Staggered replacement has already been considered for series 

systems. The example 2-component system given in Section 7.2.3 is now 

dealt with for a parallel configuration. As for non-staggered testing, 

the probability of system failure is given by:

P =P P,_ X a b
-  -  , -0t,where P =P, =l-e a b

This equation can be used to determine the system availability by 

integrating over the intervals 0—>kT and kT—^T. The solution obtained 

would be complex. The problem is therefore simplified by making a few 

likely assumptions. Firstly, all components are considered identical. 

This results in the system availability being optimal for k=l/2, for

171



which availability is the same over each interval. The system mean 

unavailability is then given by:
kT

U =_1_ f ] dt
kT J

0

-0 T= 1+ (1-e ^ ') Ce 2 -2)
0T

An experiment was carried out for the parallel system, in the same 

manner as for the serial system (1/0=1000 hours, TQ=1 hour,

Tg=1000 hours). The results obtained are given below:

expected û  ̂= 0.1192

system u^ = 0.1187

A single component representation of the system is possible by 

applying the rules given in the section on parallel systems with no 

repair. For the example system, the single component failure

distribution would be non-exponential. This would present no difficulty 

to the host initialisation routines. Difficulty would occur in 

modelling the probability of selecting a component for maintenance which 

resulted in the system remaining operational. (Noting that for the 

series case, a start-up failure risk was added to represent the chance 

of replacement not rendering the system operational). This problem 

cannot be overcome with the current Simulator design. Therefore it 

should be expected that the distribution of up and down times cannot 

accurately model the 2-component system. An experiment on a single 

component system has been carried out, using a failure distribution time 

TQ=16 hours. The results are given below.

2-component model 0.1187

single component 0.1176

mean up time 

1155.5 hours

445.6 hours

mean down time

149.3 hours 

66.7 hours
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A majority voting system is one consisting of m components arranged 

siich that any n or more components are required to be working for the 

system to be operational (n<m). In examining such systems only

non-reparable systems are studied. Experience of modelling series 

and parallel systems indicates that no difficulty should occur with 

simple repair policy modelling.

Consider a 3-component system A, B and C. The probability of a

2-out-of-3 system being operational is:

P = P P,+P, P -P P -2P P^P a b  b e  c a  a b c

Assuming all three components are identical then the probability of

system failure becomes:
—  2 3P = 1 -3P^+2P'^

7.4 Majority Voting System

Integrating P over the operation time T gives the system mean

unavailability:V
T

u ^  =  j  I -3P^+2P^ dt 
O

-GtIf the component failure distribution is the exponential, P=e , then:

, - 3/ 1 -29T,, , 9  /I "39T,.u = 1 -_3_(l-e ) + 2 (1-e )
29T 39T

Staggered replacement can be performed on the components. Consider the 

case where component A has just been replaced and components are 

replaced in order A, B then C. It can be seen for an optimal 

replacement policy that:

p.e-e’a b c

Mean unavailability can now be calculated for the new replacement 

policy.
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T/3

"b " -i í "k -i'

.1 ._^a-eeT%H#Ti^-eT24^.;6T,+ ^,-eT„.5eT,
2GT 6T

Majority voting systems can be- represented by a single component. 

The system failure process cannot be described by an exponential 

distribution, but the necessary values are simply calculated from 

the system failure c.d.f.. Staggered replacement presents difficulty in 

the same manner as parallel component systems. The probability of 

selecting a component for maintenance not rendering the system 

inoperable cannot be modelled. A staggered policy in majority voting 

systems also contains the series system characteristic of maintenance 

possibly not rendering the system operable. However this can be 

modelled by the start-up failure feature. The actual value of SUF is 

given by the system c.d.f. at t=0.

Experiments have ‘been performed on a 2-out-of-3 system. The

components were identical with an exponential failure distribution whose

mean was 1000 hours. Periodic replacement occurred at intervals of
0

1000 hours and time quantisation was Ih. System life times of lO^hours 

were programmed to be simulated ten times, allowing the results to be 

averaged. The results obtained for both staggered and non-staggered 

replacement are given below:

expected u^

3-component system

single component 
( TQ=8 hours )

simultaneous
replacement

0.336

0.327

0.333

stagered 
replacement 

0.299

0.292

0.303 (SUF=13.8%)

174



A standby redundant system is essentially a parallel component 

arrangem.ent where not all components are working at the same time. 

Certain components have a redundant inactive state and are not made 

operational until the failure of another component. The general purpose 

micro-controller within each component has the facility to model such 

passive standby operation.

Consider the case of a 2-component system. The main element 

(component) is modelled- by a Component Board at position ' m ' in the 

Simulator. The standby component is positioned at m+1. Whenever the 

main element is not operational this second element becomes active, and 

remains so until the main element is repaired.

It cannot be assumed that the change-over process is perfect. It is 

more likely that some probability can be associated with successful

standby change-over. The change-over process can be viewed in two ways.
A

Firstly change-over is accomplished by a change-over component, which 

suffers a probability of failure during its life-time. This results in 

the probability of a successful change-over reducing, the longer the 

standby component waits before coming into operation. Modelling such 

behaviour requires an additional component to represent the switch-over 

element. However this can be avoided by including the change-over 

component failure characteristic with the standby-failure characteristic 

of the standby component. The resultant distribution for failure at 

change-over cannot be exactly described by an exponential function, as 

the change-over and standby components form an OR function to failure at 

change-over. To enable modelling to take place, an exponential

approximation is necessary. It is considered unlikely to introduce any 

significant error in any result.

7.5 Standby Redundant Systems
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The second method by which change-over failure can be represented by 

is constant failure probability. Failure now does not depend on the 

waiting time before change-over is required. This characteristic is 

modelled by a start-up failure (SUF) rate for the standby component.

For the purpose of verifying the Simulator operation, a

two-component non-repairable system is examined. The main component is 

denoted by A and the standby by B. The probability of the system being 

operational is given by :

P = P +P P,X a a b
In terms of distribution functions;

- i'-

0

where subscripts o indicate operational state

d dormant or standby state 

s start-up failure probability

The convolution integral, formed by the suî  of two random variables, 

necessitates the use of Laplace transforms before any algebraic 

manipulation can produce a solution to P^(t). Considering all 

distributions to be exponential and L[f (t)]=F (s) then :X X

9 bs ao 1
1 1 ao— F (S) = ---------S  ̂ S e +s s+(0 +0, ,) s+0ao ao bd bo

now applying tables of inverse transforms

P (t) = l-e®C10^ - Pi, 0 (e X . bs ao
0 +0, ,-e,ao bd bo

-e“ ^®ao

The system mean unavailability can be found by applying;

" s '  j -  I
O
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which yields:

Uî =i -0-e^ooT) + i.e^bo"̂]
e T ce +e^,)T tao ao bd bo

where k = P ebs ao
0 +0, ,-e,ao bd bo

Two standby system arrangements have been modelled. Each system

contained two components whose parameters are below.

1 /0 ao '/®bd ^ s Tb
First system 2000 1250 10000 0 1000

Second system 2000 1250 0 5% 1000

The mean values are given in hours. The Simulator AT , was 1 hour
^ min

and each system was programmed to be modelled one hundred times for
510 hours of operation. The simulations were then repeated with failure 

distribution quantisationsTQ varied from 1 hour to 32 hours.

For the first system, the probability of successful change-over 

reduces w/f/) delay before change-over is requested. It should be noted 

that the minimum time before a standby component can respond is TQ.- 

Mathematically the standby component 'responds' immediately. To allow a 

comparison of results to be carried out, an adjustment to the measured 

down-time is therefore required

down-time = measured down-time - maintenance time

- delay in response

j. _ 0 j
= measured time -_10_[l+(l-e ^ )TQ]

1000

The results are presented on Figure 7.5a.
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The second system has a constant change-over failure probability. 

For similar reasons to the above, the measured down time also requires 

adjustment.

down-time = measured down-time - maintenance time

- delay in response

- time in SUF state

= measured time - 10^ [l+(l-e^QO ) (TQ+1) ]
1000

The results are presented in Figure 7.5b.

Both result curves show a dip at TQ=1 hour, due mainly from selecting a 

TQ value too small for accurate modelling of the main component failure 

distribution. The usual fall off in accuracy is also present at high TQ 

values. With TQ set to the practical value of 8 hours the^error in u^ 

are 4.5% and 1.6% for systems 1 and 2 respectively.

7.6 Consideration of Common Mode Failure

A significant factor of the reliability of complex systems is common 

mode failures (CMF). The consideration of CMF for systems in which high 

reliability is obtained by application of redundancy techniques is most 

important. It is not satisfactory to consider parallel sub-system 

arrangements as statistically independent. Investigations [42] have 

shown that CMF can degrade a system's reliability by one or two orders 

of magnitude. Consequently, any simulator intended as a general purpose 

modelling tool must be capable of CMF modelling.

CMF can be dealt with by the Simulator in so far as once a failure 

mechanism has been identified, its affects on the system performance can 

be investigated and quantified. Within this section, CMF shall be 

considered as the failure of a single component, or group of components, 

which result in the loss of separate channels of a redundant system.
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Two of the principal types of CMF are hereafter considered for inclusion 

in multi-component systems.

Recurring maintenance errors can be expected to be, in the long

term, the predominant form of CMF. Maintenance errors arise from human

factor involvement during such tasks as component testing, calibration

and replacement. Statistical observation has indicated a task error
_2rate of 10 per sub-system-year [42]. This value is believed to vary 

with certain system conditions although the exact nature of which is not 

clearly known.

Maintenance-originating sub-system failures can be modelled by 

including a common component in the system network specification. The 

common component is then specified to have a start-up failure rate (SUF) 

immediately following maintenance, representing CMF. Where a sub-system 

can be represented by a single component, then the system success tree

may not need expanding, as the SUF can be modelled by the single

component representation.

Random errors account for about 30% of CMF [42]. Such failures are 

caused by catastrophic events, environmental extremes and operator 

error. Their inclusion in a system ̂ model is via component

representation.

A further method also useful in dealing with CMF representation is 

that of determining system success under CMF. This technique avoids the 

need for any expansion of the system tree with common mode components

and has found use with network analysis techniques where difficulty 

exists in determining minimal cut—sets when allowing for CMF. The 

probability of system success is given.by:

where
= fod-Cl) + h h

= probability of system success with no CMF 

Cĵ = probability of CMF
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= probability of system success with CMF present 

Consider a system consisting of two temperature sensors and two 

pressure sensors arranged such that one temperature sensor and one 

pressure sensor are required for system success i.e. two parallel

trains in series. Assume that the temperature sensors are identical

each having an exponential failure distribution, mean l/0^=2 years.

Assume that the pressure sensors are also identical and are described by 

an exponential failure distribution with a mean value of 1/9^=! year. 

Assume that the temperature sensors are tested and replaced

simultaneously at intervals of twelve months and that the pressure

sensors are maintained simultaneously at six monthly intervals. The 

system unavailability can be calculated from:
J

= A. / P dt
O

, T=1 year

where P^=l-(2e’®''Le^®''S (2e ® P W ^ ® P S

= 1 - ( 2e"®r r ê"® ( 2i®P^-e'2®P*

from t=0—>6 months

) t=6 months—>1 year

The solution is ^  ~ 0.1120

The system has been modelled for an operating life time of 438 years,

where A T  . =8.76h (chosen from 8760 hours/year). All exponential min
distribution time quantisations (TQ) were this resulted

in a simulation time of twelve seconds. Later, each parallel train was 

represented by a single component with a non—exponential failure 

distribution. The higher TQ values necessary for memory storage 

resulted in simulation times of less than 1 second. The statistical 

gathering probes were positioned to observe both the parallel train and 

the total system behaviour. The results are presented below.
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System u^ Single component u^ expected u^

temperature sensors 0.057 0.0587 0.0582

pressure sensors 0.0561 0.0587 0.0582

Total system 0.108 0.117 0 . 1 1 2

If information from sensors is arranged so that two cables each carry 

signals from a pressure sensor and temperature sensor, then a CMF in a 

single cable would result in a system configuration of two series 

components. During the above experiment this configuration was 

monitored to determine the system u^. The results obtained were:

System u^ (under CMF) expected

0.375 0.374

If the CMF can occur in each cable with probability Cĵ =0.1 then the 

system u_ is now given by

Uĵ  ^  0.117x0.8 + 0.375x0.2 

- 0.169

7.7 Conclusion

The simulation results are very close to the theoretically predicted

results for all system configurations examined. The time required to

model even long system life times was sufficiently short as to allow

sensitivity analysis to be performed on component parameters. Where

time quantisation TQ values greater than have been usedj the

simulation times are further reduced. Large TQ values (say

TQ>8 4T . ) do not lead to still greater speed gains due to the min
reduced probability of their selection for model updating. Certain 

problems can be associated with the use of large TQ values, viz:

1. Cross—correlation effects between components affects the system 

statistics. This ' is most noticeable with systems of high
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reliability, due to parallel trains showing less than expected 

reliability.

2. The rounding of the system parameters to binary multiples becomes

less precise e.g. the block replacement time T . This onlyB
appears significant where T <10TQ.B

3. Difficulty exists in keeping scheduled maintenance points in phase 

for multi-component systems. With the current Simulator design, 

component maintenance is kept in phase by micro-controller update 

signals. Updating not only depends on particular component state 

transitions but also on the TQ values used for individual states, 

a factor not fully catered for. This problem is considered to be 

the most damaging to the simulation results.

By limiting the TQ values to ^ a b o v e  problems are

avoided and speed gains in the order of X4 to X8 can be expected.

However certain systems, due to their inherent high reliability or use

of non-exponential distributions, require TQ values in the order

3 2  A T  • These systems usually have large T parameters and min B
therefore do not suffer from binary rounding problems. The greater TQ 

values produce the required increased simulation speeds for such 

systems. In the case of short T values, the use of a 12-bit 

resolution for exponential distributions and feedback for 

non-exponential distributions can be relied upon to ensure high 

accuracy. When non-exponential distributions are in use, initialisation 

routine predictions are useful in selecting TQ values.
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For each system examined, single component representation has been 

developed. This is intended for use where systems initially have more 

elements than the Simulator•has components. In such cases, sub-systems, 

whose components do not compete for repair facilities, can be selected 

for reduced component representation. The results obtained indicate 

that reduction can be successfully applied to many system 

configurations. Only where sub-systems contain a parallel arrangement 

with a staggered maintenance policy was difficulty observed. The 

particular problem encountered cannot be considered limiting as it 

concerned matching the Simulator model to a mathematical model which 

itself was unrealistic in practical system terms.

Many reduced systems resulted in more accurate reliability 

estimates. This is explained by maintenance points being kept more in 

phase, particularly between components employing different failure 

distribution time quantisation values
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Figure 7-1b Single componenl with maintenance Tß= 100h



Figure 7-1c Single component spatial Erlang failure distribution maintenance at Tgj = 200h



Figure 7-1d Single component with spectral Erlang failure distribution maintenance
at Tg = 200h
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Figure 7 2-2a 3 components in series



Figure 7-3-1a 2 component in parallel mainfenance af 1 ^ -  1000h
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Figure 7-5a 2 component standby system change-over success reducing with
delay



Figure 7 5b 2 component standby system constant switch-over
failure



8.0 Introduction

This Chapter is concerned with the application of the Simulator to a 

selection of realistic system reliability problems, many of which would 

be unsolvable by analytical means. It will be seen that considerable 

flexibility has been achieved within the Simulator design, and that 

simulation times are unrestrictingly short. The universal component 

micro-instruction code is revealed to make effective use of component 

hardwarej the need to re-programme the code only occurring once to 

enable minimal repair and economic operation to be dealt with.

Much of the Simulator's modelling ability is demonstrated by 

application to the example five component system, shown on Figure 8.0a. 

The system is considered to contain many interesting reliability aspects 

such as; series and parallel sub-systems, cold standby and 

non-exponential distributions, and various maintenance strategies are 

applied. The system success tree and probe positions about which 

information is to be gathered is given on Figure 8.0c, in the format 

acceptable by the Simulator.

Where maintenance schemes have been applied to the example system 

optimal maintenance strategies have been sought, and are shown to exist. 

The broader problem of unspecified maintenance policy with concern about 

necessary system maintenance resources is also dealt with. Simulation 

results indicate that effective application of resources produces 

improved -system reliability.

Application of Simulator
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I'/here system reliability is high, simulation times are necessarily 

'long' to ensure sufficient information is gathered about system events. 

A question is posed by this problem, that is 'how long should a 

simulation last to ensure good statistical estimation?'. Application of 

the Simulator to determine the distribution of 

time-to-first-system-event poses a similar question 'how many such 

events should be observed?'..

To aid the experimenter in determining if results obtained are a 

good estimate, the software analysing the results derives a measure of 

result variation about its mean. The measure is the coefficient of 

relative variation CRV [43], and is given by:

8.1 Statistical Estimation and Simulation Time

CRV =

where 6  = standard deviation of result 

X = mean value of result

If a simulation time is long, then it can be expected that the value 

for, say, mean unavailability u^ will have little variation about its 

mean value. An increase in simulation time should further reduce the 

variation in producing a smaller CRV value, therefore increasing the 

confidence that u^ is a good estimate of the true value. No assumption 

need be made that unavailability is exponentially distributed, imlike 

alternative tests.

Consider the estimation of for two sub-systems selected from the 

example system. The estimated values at probe P9 and component //2 

are 0.0039 and 0.074 respectively. An experiment to determine the CRV 

for increasing simulation time has been carried out for each 

estimation. The results are presented on Figures 8.1a and Figure 8.1b. 

The lower probability event occuring at probe P9 required 0.27 seconds
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of simulation time to achieve a confidence in estimation of CRV=0.1. 

For the higher probability, the same confidence was achieved in 

0.015 seconds.

Simulation of the sub-system at probe P9 required 8.8 seconds to 
7model 10 hours of life-time. This indicates a three-fold reduction in 

the simulation time compared with a calculated synchronous time of 

24 seconds. The gain is due to asynchronous time scaling produced by 

component failure distribution time quantisations of 4 hours and 

8 hours.

The problem of Statistical Gathering Module event counter overflow 

was reported in Chapter 7. If overflow is to be prevented, simulation 

times may have to be chosen lower than is desirable with regard to CRV. 

In such a case experiments can be repeated several times to ensure a 

good estimation.

8.2 Probe Positioning

After defining the system success tree, events about which 

information is to be gathered can be specified. This corresponds to 

positioning a statistical gathering probe at a logical box in the 

success tree. Probes can be easily removed and re-positioned, offering 

an opportunity to gain additional information about the system.

For the example system, the four probes available to the simulator 

have been located at various positions of the system tree according to 

Figure 8.0c. The results obtained are presented in Figure 8.2a. It can 

be seen that probes have been connected directly to primary logical 

boxes, giving information about particular component behaviour. In such 

cases, the probe positions are indicated by the components logical name. 

The results reveal that the parallel paths formed by component #2 and 

group //3,//4,#5 have much the same û ,̂ but their mean up and down times 

differ considerably.
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The hardware construction of probes specifies that down time is 

recorded. Thus information about up times can be calculated from mean 

unavailability and mean down time, or by employing an intermediate NOT 

box. For example, probe P2 monitors time between system failures where 

probe PI monitors time-to-system-repair. In the case of a system, 

initially in a down state, and information about the distribution of 

time to system repair is to be gathered, then a logical NOT box is 

essential in defining the logical event at which a simulation run stops. 

The distribution of time-to-first-system-failure at probe position P3 

has been determined for a sample of 1000 events, and is presented on 

Figure 8.2b.

8.3 Parameter Sensitivity

The high speed operation of the Simulator makes it well suited to 

sensitivity analysis of component parameters. Previous studies [44] 

have considered the sensitivity of system unavailability for changes in 

component distribution parameters and number of repairmen. It is 

proposed here to consider system unavailability, down-time and up-time 

sensitivity to varying component life times. Changes in the number of 

repairmen is dealt with in later sections of this Chapter.

For the example system, the sensitivity to component failure mean 

time (A) is determined for a range of A values. That is 0.5Â <X<3.0Â  
where is the normal parameter value. Each component is considered

in turn, all other components remaining unchanged at their normal A^ 

value, except in the case of component #4 and cold standby component #5 

where their A parameters are varied together. The system was observed 

at probe position PI. Results for u^, mean up time, mean down time are 

presented on Figures 8.3a, 8.3b and 8.3c respectively.
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The system unavailability is shown to reduce with improvement in 

component life times. Certain components effect the u^ more than 

others, in particular an order of component //l,//2,#3, (#4,#5) is

revealed. . An examination of the component arrangement in the system, 

success tree intuitively confirms the order of component 'importance' 

indicated.

The mean time between system failure is shown to increase with 

increasing component life times. The order of importance is different 

from the u^ case. Component #2 and component #3 are the most and least 

important respectively. This is explained by the component repair 

characteristics. For example, component #2 has a relatively long repair 

time. Avoiding repair by improving the life time of component #2 

produces a considerable increase in system up-time.

Results for system down-time are particularly interesting, as both 

an increase and decrease of mean-down time occurs for improvement in 

component life times. Throughout the modelling exercise no change of 

component repair characteristics was considered. The result for

mean-down time indicates that the system down time distribution can 

increase in mean value for improvement in component life times. This 

does not reduce system reliability because system failure occurs less 

frequently.

8.4 Application of Preventative Maintenance

It is well known [35] that application of preventative maintenance 

to system components improves the availability of the components 

themselves and therefore the system. To investigate the application of 

the Simulator to the problem of reliability improvement, the example 

five—component system has been studied with age and block replacement 

policies.
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Throughout, modelling maintenance and repair resources are 

sufficient to meet all component resource demands, without delay. A 

later section of this Chapter investigates the effect on maintenance 

strategies under the condition of limited resources. For the example^ 

system maintenance was considered to require one hour. Component #1 has 

not undergone maintenance because of its exponential failure 

distribution resulting in a deteriorated performance when maintenance is 

applied alongside repair.

Component #2 unavailability has been monitored for varying age and 

block replacement times. The results are shown in Figure 8.4a. Both 

replacement policies are shown to have an optimal replacement time. At 

time values above 300 hours, block replacement produces a lower value 

than age replacement. From 300 hours down to the optimal time value, 

block replacement is less rewarding . This is explained by the 

component micro-controller not incrementing the block replacement 

counter when the- component is non-operational. At time values below the 

optimal value, block replacement is also less rewarding due to the 

greater number of operational components removed for maintenance.

Unavailability of component #3 is shown on Figure 8.4b for varying 

age and block replacement times. The shorter mean repair time results 

in a more pronounced optimal time value. Also, due to the reduced 

amount of time spent in a non-operational state, block replacement is 

shown to be the better policy for all times above the optimal.

The sub—system formed by component #4 and cold standby component //5 

has been observed by probe #6 to determine the mean unavailability. Two 

alternative actions have been considered at failure of the cold standby 

component viz. replacement (corresponding to a maintenance operation), 

or normal repair. The results for varying age and block replacement 

times, applied to component /M, are shown on Figure 8.4c and 8.4d 

respectively. Preventative maintenance of component #4 is shown to be
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most rewarding in the case where the cold standby component undergoes 

repair at failure.

An age replacement policy has been applied to components #2, #3 and 

//4, and the system unavailability determined for varying replacement 

time. All components were considered to have the same replacement age. 

This reduces the graph of u^ to a one variate, two-dimensional, plot. 

The cold standby component was considered to undergo repair at failure. 

Results for the system û  ̂are shown on Figure 8.4e. Component #1 does 

not take part in the preventative maintenance scheme and causes an 

attenuation in the reliability improvements produced. Better 

observation of the effects of maintenance can be achieved by observing 

the system at probe P3, that is a sub-system not containing 

component #1. With the age replacement policy described above 

sub-system mean unavailability, mean time between failure and mean time 

to repair have been determined. The results are shown on Figures 8.4f, 

8.4g and 8.4h respectively. A particularly interesting result is an 

optimal mean-up time produced at 300 hours. The down time is shown to 

vary from the 1 hour required to carry out maintenance to 7.2 hours, the 

value previously determined for the subsystem undergoing no maintenance.

The system as observed at probe P3 has been further investigated for 

a block replacement policy. Components #3 and #4 are scheduled for 

simultaneous maintenance at intervals of T , Component #2 also
D

undergoes maintenance at intervals of T^ but starts with an initial 

time shift of kT^, 0^k<l. The system unavailability for T^ values of 

1000 hours, 500 hours and 200 hours is shown on Figures 8.41, 8.4j^and 

8.4k respectively. Reliability generally improves as T^ is reduced. 

The importance of the maintenance staggering parameter, k, is also 

greater at lower T„ values, and an optimal k value of 0.6 is indicated.

A value in this region may be considered likely when remembering, during 

the repair—only experiments, the mean time between failure of
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component #2 was found to be greater than the mean .time between failure 

of group //3,//4,//5. Certainly the difference between the up time 

characteristics of the two parallel trains forming the sub-system at 

probe P3 is the explanation for the improved reliability at k>0.5 rather 

than k<0.5 .

8.5 Maintenance and Minimal Repair

Repair of a failed component may not render the component in a 

condition as-good-as-newi Consider a component, initially new, which 

fails at time t. After repair the component is younger but not 

necessarily as-good-as-new. The age after repair is given by mt, where 

O^m^l. For m=0 the repaired component is as-good-as-new (RGN). And for 

mi40 the new component condition is better than repaired' (NBR). 

Modelling of a NBR characteristic can be dealt with in two ways 

depending upon the m value. Where 0<m<l the component interrupt 

facility is required to instruct the host computer to re-programme the 

component age counter. The second modelling technique can only be 

applied where m=l. In such cases repair is considered minimal [35,45], 

and the repaired component hazard function continues from the point at 

which failure occurred. Therefore re-programming of the age counter is 

not required. Such a method can only be employed if the age counter 

remains unchanged during the component repair process. However, 

modelling a non-exponential repair process requires the age counter to 

update the process. A compromise condition therefore exists, that is 

re-programming of the age counter can only be avoided if repair 

distributions are limited to being exponential.
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The example system, as observed by probe P3, has been examined for 

an optimal age replacement policy considering a minimal repair 

condition. Component micro-controllers were re-programmed to render the 

age counters jnneffective during the repair processes. The repair 

distributions were modelled by exponential distributions of equivalent 

mean value. Preventative maintenance applied to components #2, #3 and 

#4 returned components to a good-as-new condition. All components were 

considered to have the same replacement age, and replacement was carried 

out in one hour exactly. The results for the system u^ and 

mean-time-between-failure are shown on Figures 8.5a and 8.5b. Also 

shown are the results, obtained in Section 8.4, for perfect repair 

(RGN). It can be seen where repair is not RGN that preventative 

maintenance has an increasing importance in maintaining high system 

reliability. The optimal age parameter appears unaffected by the 

success of repair.

8 .6  Limited Repair and Maintenance Resources

The assumption of an unlimited resources of repair and maintenance 

men is frequently encountered in system reliability studies. When 

considering resources to be sufficient to meet all demands put upon 

them, without delay, the availability of each system component is 

statistically independent. Thus the evaluation of system reliability is 

made easier by assuming that no waiting for repair exists. Reducing the 

number of repairmen increases the waiting times, and therefore degrades 

the system reliability.

For systems described by non-exponentially distributed times for 

failure and repair, and containing limited repair facilities, the 

evaluation of system performance by analytical techniques is extremely 

difficult. However, system availability has been determined for such 

systems by applying software modelling [8]. The indicated method
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assumed that repair is conducted on a first-come-first-served principle. 

This cannot- be assumed to be true for all systems. It is anticipated 

that better use of a limited number of repair men can be achieved by

investigating a range of repair policies. Two experiments are now

described, where not only unavailability but mean up-time and mean 

down-time are determined for a range of repair men and policy. 

Consequently, a measure of sensitivity to system reliability policy is 

obtained.

The example system., as observed by probe P3, has been examined for 

an optimal age replacemient policy considering minim.al repair, NBR. With 

the condition new better than repaired, greater demand is put upon

repair facilities, highlighting the repair policy under consideration. 

Preventative age replacement, which returns components to the

as-good-as-new condition, was applied to components #2, #3 and The

cold standby component #5 underwent good as new repair, RGN, at failure. 

Replacement times were exponentially distributed and of mean value 

10 hours. Individual component unavailability has been determined for a 

range of replacement times. The results are shown on Figure 8.6a. It 

can be seen, for statistically independent components, that the optimal 

age replacement time for components #2, #3 and //4 is 200 hours,

500 hours and 300 hours respectively.

The system unavailability u^, mean up-time and mean down-time has 

been determined where components #2, #3 and //4 compete for a limited

number of repairmen. Note that repairmen are also required to carry out 

component preventative maintenance. Each component undergoes optimal 

age replacement, according to the times given above.
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Where three men are available, no priority policy is necessary as 

all component requests can be dealt with without delay. Limiting the 

resources to two men or one m^n, allowed three priority request policies 

to be considered.

Policy #1: Component requests are granted in order #2,#3,#4 where 

component #2 is of highest priority. Once a request has been 

granted, the repair man cannot be recalled for re-allocation 

until his current task is completed.

Policy #2; Component requests have priority as in policy #1. However

a repair man can be recalled from a low priority task to be 
redirected to a higher priority request. After completion of

the higher priority task, the repair man can return to his

interrupted work, unless the incompleted task has been taken up

by another repair man freed by the completion of some other

system task. It should be noted that the component

micro-controllers are instructed to commence interrupted repair

or maintenance from the point at which it was discontinued.

Policy #3: Component requests have priority #4,#3,#2. Discontinuation 

of incompleted requests is not allowed.

Note: For all policies described above, repair requests of any

priority are given preference over maintenance requests.

However, after acknowledgement of a maintenance request has been 

made, the request assumes the priority of the component repair 

request. This achieves a low priority for commencing

maintenance requests (enforcing a delay during crisis) but a 

high priority (and therefore less likely)- for discontinuation.
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The easy operator interaction with the Simulator enabled these 

varied policies to be specified and stored for future use in less than 

one minute.

The results for mean unavailability. Figure 8.6b, indicate that 

policy #2 and policy //I are to be chosen in preference to policy #3. 

This is intuitively correct, as examination of the component arrangement 

indicates system reliability to be more sensitive to component #2 than 

component #4. A more interesting result is that policy //2 is better 

than policy #1 , indicating gains in reliability from discontinuing lovz 

priority tasks. The results for mean up time. Figure 8.6c, contain a 

further two interesting observations. Where two repair men are 

available, policy #2 achieves a mean time between system failure as good 

as three men. With only one repair man, policy #2 produces a poorer 

mean up-time than policy #1. However it must be remembered that the 

unavailability is lower for policy #2. Results for mean down-time. 

Figure 8.6d, follow the same trend as for mean unavailability, that is 

policy #2 always produces the shortest time to system repair.

The system has further been investigated for a block replacement 

policy. Components #3 and #4 are scheduled for simultaneous maintenance 

at intervals of T_. Component #2 also undergoes maintenance atID
intervals of T„ but starts with an initial time shift of kT̂ ,, 0^k<l.B o

The maintenance times are again exponentially distributed and of mean 

value 10 hours. All repair is considered to be NCR. Components #2, #3 

and #4 compete for repair and maintenance men, which are allocated 

according to either policy #1 or policy #2 As before component #5 

undergoes repair at failure outwith delay from a repair man without the 

normal repair team.
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With Tg=1000 hours, the system has been determined for a range 

of k values under policy #1. The results for varied number of repair 

men are given on Figure 8.6e. T was then changed to 300 hours, andD
the system u^ determined for a one man and three men case under 

policies #1 and #2. The results are shown on Figure 8.6f. With 

Tg=300 hourSj maintenance is applied too frequently with respect to 

optimal Up. The one man policy achieves a better system availability 

than the three men policy, because many component maintenance requests 

cannot be immediately responded to, and are delayed for later

consideration. With the practical T value of 1000 hours^ system

availability showed an improvement for greater numbers of repair men. 

The greater degradation in performance shown for a reduction of two men 

to one man, compared with three men to two men, is probably due to the 

reduced likelihood of components#3 and /M being maintained 

simultaneously.

8.7 Optimal Economic System Operation

Preceding sections of this Chapter have dealt with determining the 

reliability of the example five-component system. Various age and block 

replacement policies were applied to the system with the aim of 

improving system reliability. Optimum implementations of chosen 

policies were derived with the view of minimising system unavailability 

and mean repair time or maximising mean time between failures. This 

section is concerned with obtaining maintenance strategies which 

minimise total system cost, therefore obtaining best value from the 

system function.
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Modelling a system's economic performance requires all the 

information about component behaviour associated with reliability 

modelling, and in addition information about the cost of repair and 

maintenance operations performed on components. The data about cost of 

repair men actions is not itself necessary to specify the system model, 

but is essential in analysing the cost of system up-keep determined at 

the end off a simulation. However, knowledge of the format of the 

com.ponent cost must be known before simulation can take place, as 

information about component behaviour not observable by the Statistical 

Gathering Module may be required to accurately determine component 

costs.

Consider a component undergoing preventative maintenance and repair

at failure. When the component becomes unavailable, due to either

repair or maintenance, the Statistical Gathering Module could only

record a down event, as it is unable to distinguish between different

kinds of events represented by the same binary logic level. Essentially

the Network Specification Module, through which the Statistical

Gathering Module is connected to the components, forms a window on the

simulation, and not all forms of system behaviour can be observed

through this window. To distinguish between repair and maintenance

events, component micro-controllers have been programmed to increment

component counter C at the completion of each maintenance task. Thusc
the host computer can examine the component counters at the end of a 

simulation enabling it to determine the total cost of repair and 

maintenance operations for each component.

Frequently investigations into the cost of system up-keep are needed 

to aid the selection of an age or block replacement policy [46], or to 

determine optimal replacement parameters [35]. Systems are normally 

single component with repair resulting in an as-good-as-new condition 

(RGN). Also repair and maintenance times are considered instantaneous.
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Variation of this arrangement, such as the possibility of unsuccessful 

maintenance, has been considered [47]. The restrictions of RGN, 

instantaneous repair, and single component system, requires preventive 

maintenance to cost less than repair, due to the association of 

component failure with system failure.

Where systems consist of several components and repair and 

maintenance times are not instantaneous but random variables of known 

distribution, optimal maintenance policies may exist \wkere maintenance is 

more costly than repair. For such systems individual component failure 

may not lead to system failure, and the optimal maintenance policy is 

the one which achieved the most economic availability of system 

components.

The cost of system failure is more likely determined from the total 

system out-time than the frequency of failure events. Whichever is the 

case, this additional 'penalty cost' and the cost of component repair 

will influence the optimal maintenance policy parameters. When repair
t

is considered to be minimal, an economic maintenance policy [48] exists 

regardless of the nature of the repair and maintenance distributions.

The example five-component system is now considered with the aim of 

obtaining an optimal economic operating condition. The system is viewed 

as a production plant where loss of the system has a cost penalty per 

hour. A linear function for system down time cost simplifies the 

problem as only the mean down time value need be known to evaluate cost 

of lost production. However the problem is complex and considerable 

information is gathered about the system performance. System components 

undergo age replacement, and an optimal age is found when repair and 

maintenance resources are considered unlimited. Later a cost penalty is 

associated with repair men and the optimal number of repair men is 

determined for a varying system outage penalty cost.

208



For the example system under investigation component #1 has been 

removed due to its exponential failure distribution. A component with a 

non-increasing hazard rate does not reward preventive maintenance with 

improved reliability. If component #1 had been included but not taken 

part in the maintenance scheme, the sensitivity of system performance to 

maintenance parameters would have been reduced.

Components #2, #3 and #4 have been individually monitored for an age

replacement policy, where minimal repair is applied at failure. The

cost of preventative maintenance applied to any component was two units

and the cost of repair was only one unit. Results obtained for the cost
L,of component component up-keep per 10 hours operation are given on 

Figure 8.7a for various age replacement times. The cost for the cold 

standby component is shown to be dependent on the age replacement time 

of component /M, i.e. the component whose failure activates the cold 

standby. Optimal, with regard to cost, replacement times for 

components #2, #3 and #4?* are revealed to be 800 hours, 800 hours and

400 hours respectively.

The system was then modelled where components underwent age

replacement according to the most successful time parameters observed

above. Components #2, //3 and #4 competed for available repair men which

were varied from one to three men. Note that repair men were also

required to carry out the preventative maintenance work necessary for

economic system operation. The repair and maintenance facilities were

utilised according to Policy #1 [Section 8.6]. Briefly, repair has

priority over maintenance and component requests have priority #2,#3,#4

where component #2 has highest priority. Component #5 received repair

without delay from a repair man outwith the normal repair team.. The

results for the system unavailability, mean repair time, mean time
4between failures, and number of failure events per 10 hours operation 

are given on Figure 8.7b. Also shown are the number of repair and

209



maintenance actions per 10 hours operation performed on each component.

It can be seen that as the number of repair men reduce, the overall

system performance degrades and the number of repair and maintenance

actions reduce as components are forced to wait for attention. The
Atotal cost of all repair and maintenance actions per 10 hours operation 

has been calculated and has been given. A cost of 230.1 units for 

actions taken by three men is significantly higher than the 90.4 units 

for the actions taken by one man.

When the cost of employing repair men is also considered then the 

cost penalty associated with lost production must be high to justify a 

3-man policy. Let the cost of employing a repair man be 100 units per
A10 hours. Figure 8.7c shows the total system cost (that is cost, of 

repair men, cost of repair and maintenance actions and cost of lost 

production) for increasing outage cost per hour. Where down-time costs 

less than 0 .3 units/hour, one man is shown to be most economic, and 

where the cost is higher than 0.53 units/hour, three men achieve best 

economy.

In the calculation of the system penalty cost, given here for the 

example system, certain information gathered about the system operation 

has not been included. However it is invisaged that o t h e r views of the 

economic operation of the system may require the additional information. 

For example when planning storage of system output, so as to maintain 

the supply of the finished product even when the system is 

non—operational, information about the mean system down time is

essential.
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Throughout reliability modelling, the assumption that repair or 

maintenance operations return system components to their initial 

condition is frequently made. The assumption leads to the time 

homogeneous processes for modelling system behaviour. However it has 

been shown [49] that repair of a failed system often results in times to 

subsequent failures which are not independently and identically 

distributed. Further, considering systems where design modifications 

and other corrective actions are taking place, successive failures 

should not be expected to be independent. The use of homogeneous 

processes, whether Poisson or not, cannot accurately model the behaviour 

of such systems.

This modification at failure or as a result of failure applies to 

both hardware and software systems. In the case of software, 

statistical models have been developed with the aim of monitoring 

reliability growth and predicting future times of failures [50, 51]. 

The model parameters are estimated throughout system development. No 

truly satisfactory model has yet been developed.

Reliability growth models employing non-homogeneous process models 

have been considered [52, 53], where the times between failures are 

exponentialy distributed and determined from the number of errors 

remaining in the system. This results in a hazard function, z(t), 

reducing in steps as errors are removed at failure. In the case of [52] 

the hazard function is simply calculated from:

8.8 Reliability Growth and Wearout

z^ = 0[N-(i-l)]

where i=number of errors removed. 

N=initial error content. 

^=proportionality constant.
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A more complicated function is given in [53], where the hazard rate is 

also a function of time.

Application of a non-Poisson process is described by [50] where z(t) 

is not only a function of number of system errors still present but also 

the amount of time spent debugging, measured from the previous failure. 

The hazard function is given by:

z ( t . )  =  0 [ N - ( i - l ) ] t ^

Note, where non-Poisson processes exist in conjunction with reliability 

growth, the hazard function may be increasing between failures, while 

the times between successive failures are nevertheless getting longer.

Many reliability growth models have application in describing both 

growth and wearout of hardware and software systems. The general 

application of Poisson processes however must be treated with caution 

until statistical testing confirms a constant hazard function between 

system modification or repair. However an interesting development of
V

the simple Poisson model described above has been made [54]. That is a 

hybrid geometric-Poisson process, taking into account random error and 

error removal/introduction which occurs in reducing/increasing groups. 

The hazard function is given by:

z^ = Dk '"^  +X

where A=tandom error rate.

D=initial failure rate of geometric process 

k=growth/wearout ratio
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Within the Simulator, the modelling of non-homogeneous processees is 

dealt with by host software modelling routines accessed by the interrupt 

facility incorporated in each Component Module. When the model is to be 

updated, the simulation is halted until the necessary com.ponent 

distributions are re-programed, after which simulation is continued. 

The method equally well copes with Poisson and non-Poisson processes. 

The generation of an interrupt can be micro-programmed to occur after a 

-prescribed length of time or a specified component operation or a 

stipulated number of events such as failure.

The Simulator has been used to study a two-component system where 

each component may undergo a non-homogeneous Poisson process. 

Components are in a redundant arrangement and statistical information is 

to be gathered about the distribution of time to first system failure.

Consider first components undergoing reliability growth. Each 

component has initially an expected life time of 1/9., but after a long 

geometric growth period components have life times of l/9^+l/9^, as 

shown on Figure 8.8a. The expected component life time is given by;

1/9 = 1/9^ + (l-k")l/9 ,n—0,1,2,...

For the example system, components are identical with,

1/9.=500 hours, 1 /9  =500 hours and a failure distribution time 
1 g

quantisation of 8 hours. The repair was carried out immediately upon 

failure and was exponentially distributed with a mean value of 50 hours.

The Simulator was programmed to gather 1000 samples of time to 

failure starting from an initial all-working state, for growth k values 

of- 0.75 and 0.5. The results were plotted ona50 bar histogram then 

'smoothed' for clarity as shown on Figure 8.8c. Also shown are the 

distributions of time to first failure for systems with no growth but 

starting with initial component life times of 1000 hours and 500 hours.
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on the mean time to failure, and as expected the more rapid growth of

k=0.5 produces the better system reliability. Where growth is applied,

the distributions tend to be initially peaky, corresponding to a large

number of failures before significant reliability growth has occured.

Reliability wearout has also been considered for the above system.

The components have initially expected life times of

1/0J.+1/6 =1000 hours which reduce geometricaly to l/0-=5OO hours, as t w r
shown on Figure 8.8b. At any instant the expected component life time 

is now given by:

It can be seen that reliability growth has a considerable influence

1/0  = 1/0  ̂ + 1/0 k t w ,n=0,l,2 ,

0<k<l

This wearout process, unlike the wearout processes previously 

described sets a limit to the deterioration of expected life time due to 

wearout. The failure distribution time quantisatio4 is again 8 hours 

and the repair times are exponentially distributed of mean value 

50 hours. The distribution of time to first system failure obtained 

from 1000 samples is shown on Figure 8.8d, for k values of 0.75 and 0.5. 

The expected system life time is shown to be considerably reduced by 

wearout. Where wearout is rapid, i.e. k=0.5, a peak is shown to 

develop at 3000 hours corresponding to extensive reduction in component 

life times. For the slower wearout process the peak is shallower and 

broader indicating better system survival.
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8.9 Valve Failure on Gas compressor (Industrial Problem)

The Sim.ulator is well suited to tackling problems which are 

mathematically difficult. To further confirm this aspect of the 

Simulator, an industrial problem encountered by an oil producing company 

operating in the North Sea has been studied.

The particular item of equipment chosen for study was a 

reciprocating gas compressor. In certain applications a significant 

portion of the repair effort applied to the compressor was directed 

towards valve failure. For this reason, modelling of preventative 

maintenance schemes was undertaken, With the object of assessing 

reliability improvement techniques, and most importantly determining 

strategies of repair and maintenance.

The compressor has six cylinders and each cylinder has a low and 

high pressure stage, termed first and second stages. All stages have 

suction and discharge ports, each consisting of two suction and two 

discharge valves. For the compressor to work successfully all valves 

must be operational. Thus in reliability terms^ the valve system is 

series. The preventative maintenance scheme is block replacement and no 

staggering of the replacement policy is allowed due to the series system 

arrangement. Modelling of the entire valve system is not required to 

determine reliability-improving maintenance policies. Any improvement 

experienced by a single valve directly contributes to the overall system 

improvement. In addition the optimal maintenance parameters for a valve 

operating alone remain optimal when considering that particular valve s 

contribution to overall system reliability. The simulation has 

therefore been concerned with modelling single valve behaviour.
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The operational life of any valve was found to be terminated by one 

of three possibilities:

1. The valve fails and is replaced by a new valve.

2. The valve is suspended during the repair process of another valve 

which itself has failed.

3. The valve is suspended at the block replacement time.

Only first-stage valve operation has been considered as second-stage 

data could not confidently be associated with a mathematical probability 

distribution. Two tables of data relating to suction valves and 

discharge valves respectively were constructed. For each table, a 

cumulative distribution plot was produced and a computer program used to 

determine the parameters of the best-fitting straight line through the 

data points. From the parameters obtained, the Weibull distribution 

describing valve life times was found to have a decreasing failure rate 

(DFR). Experience of the compressor operation indicated that the valves 

had a wearout characteristic, that is an increasing failure rate with 

time (IFR). The difference between the derived Weibull parameters and 

that anticipated from experience was confidently believed to be due to 

failure occuri'ng via more than one type of failure mode. By assuming 

failures that occur within 200 hours of start-up to be due to first mode 

Cearly-death mode) failure, the data was re-examined, and a

three-parameter IFR Weibull distribution obtained for second mode 

(wearout mode) failure.

To enable modelling to take place on the Simulator, data for a 

two-parameter DFR first mode failure and a two-parameter IFR second mode 

failure must be specified. The second-mode parameters were estimated 

from the graph of cumulative hazard rate for failure times greater than 

200 hours. Figures 8.9a and 8.9b show the graphs for suction and
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discharge valves respectively. The method [55] is not as accurate as 

the cumulative distribution plot, but due to the small number of samples 

it should be sufficient. First-mode failures were estimated to have a 

mean value of 100 hours and a cumulative distribution function reaching 

90% at 200 hours. This results in a DFR at B=0.4 [56]. The cumulative 

distribution function of failure is given by;

F(t) = P^F^(t) + P2F2 (t) »Pl+P2=l

where Fĵ Ct) = cumulative distribution function of first mode failures 

F2 (t) = cumulative distribution function of second mode failures

and, p^ is the probability of first mode failure (Ml). From the data 

tables, Pĵ was estimated to be 28.6% and 25% for suction and discharge 

valves respectively.

A two-parameter Weibull distribution was used to describe the valve 

repair times. In particular, B=1.12, C=7.31 giving a mean value for 

repair of 7.01 hours. The minimum time value for the three-parameter 

distribution was one hour and the c.d.f. value at one hour for the 

two-parameter approximation is,10%.

The aim of simulating valve operation was to improve the quality of 

decision-making relating to maintenance policies. The three following 

questions were posed:

1. What is the optimal block replacement time?

2. Should suspension at block replacement time be foregone if the 

valve was replaced within the block interval?

3. Can suspension during the repair process of som.e other faulty 

value be recommended?

To examine the effect of block replacement time (T^), valves have been
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modelled for various values ranging from 2000 hours to 12000 hours 

and the mean unavailability determined (maintenance is assumed to take 

place instantaneously). The results are shown on Figure 8.9c. Also 

shown is the unavailability achievable if first mode (Ml) failures are 

removed.

The suction valve reliability is improved by reducing T the 

improvement being most noticeable when Ml failures are removed. The 

discharge valve reliability also shows a large improvement when only 

wearout failures are considered, but the inclusion of early death 

failures in the model results in destructive maintenance for all 

replacement times. It is concluded that the generally more reliable 

discharge valves should not undergo preventative maintenance as it 

appears better to run the risk of wearout than to be subjected to 

possible early death of the replacement valve.

With regard to the second question above, a block replacement policy

of T =4500 hours (6 months) has been modelled where replacement is only
B

permitted if the valve operation time exceeds the operation time, T^. 

The results are shown of Figure 8.9d. For suction valves, a small 

improvement in unavailability is achieved at T^=1500 hours, and the 

reliability reduces as T^ is increased towards 4500 hours. 

Contrastingly, discharge valve reliability improves as T^ is increased. 

This, to some extent, confirms the block replacement results above, 

because as T approaches T , the probability of undergoing block
A. ^

replacement reduces and such replacement was previously shown to be 

unsuccessful.

To investigate the final question, that of suspending a valve at 

some random time point, an age replacement policy has been used. Under 

the policy, valves were instantaneously replaced at time T^. The

assumption that replacement is instantaneous can be justified by 

carrying out suspension during the repair process of the existing faulty
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valve. The results for varying values are shown on Figure 8.9e. 

The suction valve results indicate a considerable improvement in 

unavailability for T^ values above 2000 hours, and suspension at 

lifetimes greater than 2000 hours can be recommended. Suspension below 

1000 hours is shown to degrade valve reliability. The more reliable 

discharge valves show a very small improvement due to suspension after 

5000 hours, and suspension below 5000 hours leads to increased

unavailability.

8.10 Standby Power Supply System (Industrial Problem)

The following section describes a problem concerning a standby power 

supply system [57] . The problem was initially encountered by the 

National Center of Systems Reliability and has been successfully 

investigated by thier reliability simulation program ALMONA.

Consequently an analytical solution of the probability of system failure 

is available.

A schematic arrangement of the standby power supply system is shown 

on Figure 8.10a. The 3.3kV switchboard is normally supplied through the 

two transformers #1 and #2 operating in parallel. That is sections A 

and B are normally connected together

In the event of loss of the normal supply, it is necessary that 

sections A and B are separated and the emergency generators started to 

supply the essential loads on each section. Loss of the normal 

electrical supply is detected by two undervoltage (UV) relays, any one 

of which will initiate operation of the standby system. The events 

taking place following undervoltage detection are as follows:

1. Starting-up of both diesel generators.

2. Tripping of both transformer isolating circuit breakers.
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3. Tripping both bus-section circuit breakers. Operation of any one 

circuit breaker is sufficient to isolate sections A and B.

4. Tripping all six load circuit breakers.

Following the completion of the above, the essential loads can be 

re-connected by;

1. Closing both diesel generator circuit breakers.

2. Closing the four circuit breakers associated with the essential 

loads.

The system is considered successful if any two of the essential loads 

are re-energised.

Each component in the standby system undergoes simultaneous 

inspection at yearly intervals i.e. 1^=8760 hours. Faults which have 

occurred between inspection times are detected and components are 

returned to an as-good-as-new condition. The inspection time is 

considered to be instantaneous and the simulation results have been 

adjusted accordingly.

By modelling the system using the stochastic Simulator, the 

probability of unsuccessful operation at one year after the system was 

last tested was found. Also the mean unavailability was determined.

Component failure distributions are assumed exponential and are 

listed below.

Failure to trip 

Transformer CB 0.005

Bus-section CB 0.005

Generator CB --

Load CB 0.005

UV relay failure rate = 0.01 (F/yr)

Failure to close (F/yr)

0 .01

0 .01
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The flow diagram for the system is shown on Figure 8.10b. The load 

circuit breakers are shown twice, to represent the probability of 

opening and closing so as to re-energise the essential loads.

The system contains eighteen components, therefore in its present 

configuration it cannot be modelled by the Simulator, which is limited 

by hardware to only five components. To overcome this problem the 

system was sub-divided into manageable sections, and the results from 

each section used to determine the overall system performance. 

Figure 8.10c shows the equivalent flow diagram.

Section A and B Isolation. This.is accomplished if at least one UV 

relay detects a voltage drop and at least one bus-section CB trips. The 

probability of successful isolation at time t is given by;

Diesel generator probability of successful start = 0.98

P^(t) = [l-(P^(t))^][l-(P^(t))^]

where P^(t)=probability of UV relay failure.

P^(t)=probability of bus-section CB failure.

Modelling this section would require four component modules. However 

bus-section circuit breakers cannot be modelled with confidence. 

Consider a minimum time quantisation hours. The expected

life time of 200years for the CB would necessitate a distribution time 

quantisation of TQ=128 hours [Section 3.9]. The results from Chapter 7 

indicated that block replacement time T^ must be Tg>10TQ. Therefore

for successful modelling, T is required to be greater than, the
J5

8760/i 28 hours in use.
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Two component modules have been employed to simulate UV relay

operation only. The theoretical mean unavailability, u^, for the

relays has been determined by integrating P (t) over 0— T . The' u B
analytically determined results, together with those obtained from the 

Simulator are given below;

Expected Simulator result

pu 9.99x10"^ 9.42x10"^
-5 -53.31x10 3.40x10

Because of the high reliability expected from bus-section CB operation,

the mean unavailability of this section cannot be obtained with

confidence . However the probability of failure at TB can be determined

by combining P̂ Ĉt) above with the theoretical P^(t);

Expected Simulator/Analytical

1.24x10“'̂ 1.19x10”^
-54.14x10 ^

Section A and Section B. These are identical, each consisting of five

components connected in series. Consider section A. The probability of 

this section working at time t is given by:

PA(t) = P̂ Ct) P̂  (P̂ Ct))̂

where P^(t)=probability of the transformer CB tribing.

Pj =probability of the diesel generator starting and C3 closing. 

P^(t)=probability of a load CB opening.

The mean unavailability of the section, u^^, is obtained by 

integrating P^(t) over 0— T^.
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With a series arrangement the failure hazard rate is the sum of the 

individual component hazard rates. This enables the section to be 

simply modelled by a single component module. The results are given 

below.

DA

Expected 
-24.9x10

3.46x10- 2

Simulator results

4.83x10-2

3.42x10-2

Closing the Load CB. If both section A and section B are isolated and 

successfully operating, at least two of the four load circuit breakers 

must close to supply the essential loads. The probability of the 

two-out-of-four operation is given by:

P^^(t) = 6PJt)-8P^(t)+3PJt)

where P^(t)=probability of a load CB closing.

A four-component model has been used to determine the probability of 

success after one year and the mean unavailability.

Expected 
-6

V4

V4

3.9x10

9.84x10-7

Simulator result 
-65.12x10

-719.8x10

Should section A or section B fail, the two circuit breakers on the 

rem.aining section must operate. A simulation of two circuit breakers in 

series produced the following results.

V2

V2

Expected

1.98x10-2

9.94x10-3

Simulator result 
-2

2.15x10
-310.75x10
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System Operation. To determine the mean unavailability for the complete 

system, seven component modules would be required, i.e. one for each of 

the above sections and one for the four, essential load circuit breakers.- 

A six component model is possible by representing the two-out-of-four 

system by three components. However, in a similar manner to the reduced 

sub-section isolation model, the component parameters would be outwith 

the modelling range allowable

The probability of system failure at the one-year point can be 

determined by combining the results of the above sections. If P is 

the probability of system success, then:

The analytical and simulation results are then:

-3Theoretical Pg ~ 1-4.37x10
-3

Simulation Pg = 1-4.43x10

10.11 Conclusion

The Simulator has been applied to several reliability problems which 

would have been difficult to solve by analytical means. The systems 

studied were either derived from an interesting 5-component example 

system, or obtained from industry.

Extensive use of the preventative maintenance modelling features of 

the Simulator have been made. The' results produced show that the 

Simulator is a convenient mechanism for deriving reliability—improving 

maintenance policies where the characteristics of the system under study 

are complex. Throughout the modelling exercises, the simulation times 

have been consistently short.
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Figure 8 0q System under consideration

component
Failure

Distribution
Repair

Distribution features

1
exponential 
A = 2000h 
A T = 4 h
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A =15h 
AT=1h

2
Weibull 
X = 500h 
n= 2, AT=8h

Weibull 
A =40h 
ß = 2, AT=1h

3
Weibull 
A = 500h 
ß = 2, AT=8h

Weibull 
A =15h 
ß =2.AT=1h

4
Weibull 
A =250h 
ß = 2, AT = 4h

Erlang 
X = 10h 
n = 2,AT =1h

5
Weibull 
A = 250h 
ß=2,AT=4h

Erlang 
A = 10h 
ß = 2,AT=1h

cold standby 
failure rate 1/1000h 
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Figure 8-Ob Component specifications



Figure 8 0c Success tree of example system
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position

mean

Md

mean

down time

mean 

up time

componenti 0-0751 15-6 2037-9

component2 0-0787 35-8 416- 3

component 3 0- 0296 13-7 438-4

probe P6 0- 0397 5-9 —

probe P5 0-0549 8-6 —

probe P3,P4 0-00391 7-2 1809-6

probe P1,P2 0-0116 11-2 948-2
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Figure 8-2b Distribution ôf time to first system failure at P3



Figure 8 3a Mean unavnilabUify sensifivity to component parameters



Figure 8-3b Mean up time sensitivity to component parameters
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Figure 8-4b Component 3 unavailability for age and block replacement
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Figure 85a Age replacement with minimal repair
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Figure 87a Cost of age replacement policy
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Figure 8-7c Cost of system operation



Figure 8-Sq Expect-ed component life time with
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Figure 8 -8b Expected component life time with
reliability wearout



Figure 8-8c 2 componenl- redundant system with reliability growth



Figure 8-8d 2 component redundant system with reliability wearout
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Figure 8-9e A single first stage valve with 
age replacement
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Conclusions and Suggestions for Future Work

9.0 Overview of Project

The thesis begins with a discussion of the advantages and 

disadvantages of alternative reliability evaluation methods. The 

simulation approach is shown to be most useful where systems are complex 

and lead to analytical solutions which are intractable. For example, a 

system described by non-exponentially distributed random event times and 

limited repair facilities can only be investigated by simulation 

methods, unless the system is somehow 'simplified'. Complex systems 

generally require considerable system simplification before the system 

can be investigated by analytical means. This simplification, avoidable 

by simulation, can lead to results of questionable accuracy.

When modelling large complex systems, the simulation times

experienced as a result of using conventional simulation methods are 

normally long. The Simulator developed avoids long simulation times by
V

employing specially-constructed circuitry in place of the more

conventional general purpose computer hardware.

Logical network techniques are frequently encountered in reliability 

studies, particularly due to their close resemblance to the functional 

system layout. Within the Simulator, the arrangement of components to 

form a system under study is conveniently achieved by specifying the 

system network.

Chapter 2 was concerned with the generation of random n-bit numbers. 

These numbers are essential to the modelling process as they determine 

the stochastic behaviour of system components. A technique was 

developed to generate multiple streams of statistically independent 

numbers. The necessary circuitry was limited by employing software 

techniques to initialise each number-generating circuit.
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Statistical tests performed on software models of various number 

generating circuits indicated that the proposed technique yields highly 

random numbers. It is considered that the care taken during the 

development of the multiple random number sources has been reflected in 

the accuracy of the results obtained during later simulation 

experiments.

Chapter 3 described the use of the n-bit uniformly distributed 

random numbers, produced by the circuitry within each Component Module, 

to produce random event signals. These signals indicated the instant in 

time at which a change in the component state occurred i.e. from 

working to failed. A circuit that could generate event signals whose 

times between occurrence may follow any distribution was investigated. 

The effects of quantising both the probability and time values on the 

circuit operation were extensively researched, and a technique relying 

on error feedback was developed to gain greater modelling accuracy, 

whilst requiring less circuit memory storage.
V

Software modelling of the event signal circuitry was undertaken, and 

proved useful in determining the necessary binary word size by which 

component parameters are represented. A 12-bit representation was - 

decided upon and this resulted in the 12-bit common bus for

communication between the Simulator, host computer and the component 

modelling circuitry.

The modular format implementation of the Simulator was described in 

Chapter 4. Each of the key modelling elements required during 

simulation was explained and the role of the host computer made clear. 

Essentially the host enables the Simulator's operator to_ conveniently 

prepare the Simulator for a wide range of experiments, and after 

simulation is complete to extract the simulation results.
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Although the detailed operation of the Simulator circuitry is 

complex, the Simulator's operator need only understand the system being 

studied in terms of its reliability features. That is, the operation of 

the circuitry is completely transparent to the operator.

The modular construction used throughout enables simple expansion of 

the Simulator to take place. Other advantages are that m.odules can be 

more easily tested during construction and the communication between 

modules is simplified by use of a common data/control bus.

A detailed description of the modules which make up the Simulator is 

given in Chapter 5. The operation of the Control Module in determining 

the time by which the simulation is to be incremented by, to reach the 

next minimum tim*e quantisation value in use by any Component Module, is 

essential to the Simulator's operation, and is dealt with in detail. 

The use of a special bus to communicate each Component Module's time 

quantisation value to the Control Module simultaneously, ensures high
4

simulation speeds.

The Network Specification Module and Repair Policy Modules are 

implemented by RAM decision tables. This allows complex networks and 

repair policies to be modelled at high speed, as the simulation time is 

partially determined by the access time of the table. A single 

examination of the respective tables produces all the necessary 

information for model updating to proceed.

The hardware structure of the Component Module is the limiting 

factor to the Simulator's flexibility. Considerable effort was directed 

towards obtaining an efficient design. The use of a re-programmable 

micro-instruction controller was very successful in achieving component 

flexibility. Re-programing of the control memory was avoided by 

employing a programmable mask register, which selects the component 

modelling features from a range of features contained in the memory. 

High speed component Module operation is achieved by parallel hardware
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operation.

The reliability modelling aspects considered necessary by a 'general 

purpose' reliability simulator are presented in Chapter 6. The 

Component Module hardware was arranged to achieve just such a general 

purpose model, and the micro-control memories were programmed to carry 

out the control of the modules. From the description of the Simulator 

hardware operation required to sustain the general purpose model, the 

host computer software was developed. At this stage, the goal of making 

the Simulator's internal operations 'transparent' to the operator was 

achieved.

Use of an interactive graphics terminal greatly simplified the 

specification of system networks, and enabled the simulation results to 

be viewed in a graphical format immediately after the simulation was 

complete. A very convenient method of specifying a priority policy for 

component requests for repair men was also developed. This enabled 

changes in the policy or number of repair men to be easily made and the 

effects on system reliability to be rapidly determined.

To gain confidence in the Simulator's operation selected systems 

were studied in Chapter 7. Each system emphasised some particular 

aspect of reliability engineering, and mathematical analyses were 

performed on the system to confirm the simulation results. In all cases 

simulation results were very close to the theoretically predicted 

results, and the simulation times were short.

Two problems however were encountered. Firstly, the use of large 

time quantisation values lead to errors in the results, due to rounding 

error and cross—correlation effects. Secondly, the component scheduled 

block maintenance could vary, slightly, in time. These problems could 

be limited in their effect by careful use of the Simulator.

267



For each system examined, a single, or reduced number of component, 

representation was considered. The results obtained indicated that 

reduction can be successfully applied to many systems. By such methods 

the Simulator is able to tackle problems that have more components than 

the Simulator has Component Modules.

In Chapter 8 the Simulator is applied to a number of realistic 

system reliability problems, many of which would not be capable of 

solution by analytical means. The high speed of the Simulator is put to 

use in determining parameter sensitivity for a five component system. 

The actual system contains several interesting features and is employed 

for many of the simulation problems of Chapter 8.

Preventative maintenance schemes were investigated for system 

components, and optimal maintenance times were found where repair is 

considered good-as-new or minimal. Maintenance schemes where also 

investigated under the restriction of limited repair men. In such 

circumstances, priority request policies must be applied to obtain best 

perform*ance from the repair men resource.

By extending the information gathered about system behaviour, the 

economics of system operation were investigated. Stratagies which 

minimise total system cost where found by assigning costs to:

1 . component repair

2 . component maintenance

3. repair men

4. loss of system

The results from the modelling of economic system operation proved very 

interesting and it is believed the Simulator is particularly useful when 

dealing with such problems.
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After further development of the software at the host computer, 

non-time-homogeneous processes were able to be modelled. The Simulator 

was shown to be able to model components described by reliability growth 

or wearout. A two-component system was considered, the growth and 

wearout rates were varied, and the distribution of time to first system 

failure determined.

Finaly in Chapter 8 two industrial problems where considered viz. a 

standby power supply system and a reciprocating gas compressor. Each 

system contained features which are difficult to deal with analytically. 

The Simulator was shown to be a practical method of solving such 

reliability problems.

9.1 Hardware Versus Software Simulation

A hardware simulator is a system of electronic circuitry whose total 

system operation is affected by changing the interconnection between the 

circuit elements. The variations of interconnection must be performed 

by physicaly manipulating features of the circuitry.

Software simulators exist in the form of collections of code, viz

programs. A program may be decoded to produce the instruction signals

to direct a system of electronic hardware (computer) to perform the.

simulation task. The computer circuitry is different from the hardware

simulator circuitry in that its operation is determined by coded

instructions contained in a memory. Variation of the computer operation 
does not require any adjustment to the physical computer hardware, but

only to the instructions contained in memory.

Within the definition given above the simulator developed during the 

research project may be defined as software, when viewed by the 

simulator operator. However, it must be remembered that the actual 

simulation is carried out by digital circuitry dedicated to reliability 

modelling. Although the operation of the circuitry is programmable, it
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may only be varied in the context of reliability modelling. The title 

of the project arises from the investigation of the construction of the 

computer hardware.

The project has involved the construction of the simulator hardware 

and the development of a Fortran program, on another general purpose 

computer, which produces the code controlling the Simulator's circuitry. 

The general purpose computer is physically connected to the Simulator to 

allow the code to be entered into the Simulator's memory before 

simulation starts. The hardware of the Simulator is almost entirely in 

the form of special purpose circuitry, to achive considerable speed. 

The use of a network of general purpose microprocessors for the 

realisation of a hardware simulator was rejected because of the 

inherently slower operation that such a system would possess.

The arguments for and against software simulators intended for 

general purpose computers and hardware simulators^ where the special 

hardware is controlled by a program contained in a general purpose 

computer associated with the hardware^ favour the latter.

In terms of the financial cost to the experimenter, the amount spent 

on purchasing computer time for a large general purpose computer quickly 

exceeds the cost of constructing the special hardware. Including the 

cost of the small computer connected to the hardware still results in 

substantially lower simulation costs for all but the most trivial 

experiments.

Comparing the simulation speeds for complex reliability problems, 

the special purpose computer is significantly faster than even a high 

speed general purpose computer. The high speed is achieved by a 

multi-processor architecture and efficiency of programming code.
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The simulator described in this thesis offers a very powerful tool 

for reliability investigations. The necessary hardware is inexpensive 

and forms a peripheral device to a general purpose (host) computer. The 

software controlling the operation of the special hardware is developed 

in a high level language and is run on the host computer.

Setting aside the logistics of supporting the special hardware, 

which has itself been effectively achieved, the varied simulation 

problems carried out during the research work indicate the flexible 

nature of the arrangement. Further, system models need not be 

compromised for simulation speed.

9.2 Possible Simulator Developments

The current simulator design offers a high degree of flexibility 

whilst maintaining considerable speed. The experiments reported in 

Chapters 7 and 8 confirm the flexible operation by their varied nature. 

Many of the systems studied could not have been analysed by analytical 

methods, endorsing the Simulator as a means of investigating complex 

systems. Throughout the reliability experiments performed, the design 

decisions made during the Simulator's construction have been questioned 

and the strengths and weaknesses of the Simulator determined. This 

section is intended to review the weakpoints in the design and suggest 

how they could be overcome in any future simulator.

The principle aim of the research undertaken was to investigate the 

design of a stochastic reliability simulator. The fundamental 

philosophy inherent in the design arrived at through the research work 

appears successful. In the most simplest terms the philosophy has been: 

Firstly the decomposition of the modelling task into separate modules 

which operate in parallel. Secondly the use of a host computer to 

achieve easy .control and communication with modules. Most of the 

problems encountered with the Simulator have been in connection with
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module implementation. Because of the special purpose hardware 

construction of the modules (so producing high speed operation) the 

elimination of certain problems would unfortunately require partial 

hardware re-design. Aspects’ to which attention should be given during 

any possible re-design are now dealt with separatlly below.

1. The component Modules are the most sophisticated hardware units 

within the Simulator. Each module contains seventyeight I.C. 

devices of which fiftyseven are soldered into printed circuit board 

locations (see Figure 9.2a). The remaining I.C. packages are 

located in wire-wrap holders in the top right hand corner of the 

board. Several Component Modules are required if the simulation of 

large systems is intended. This necessitates the repeated 

construction of component circuit boards which is a time consuming 

task. The elimination of the wire wrap area would considerably 

simplify the module construction and testing procedure.

2. During a simulation, errors in the expected results have been shown 

to occur where large time quantisation (TQ) values are used. The 

problem arises where components have long expected life times, and 

therefore require large TQ values to ensure:

(a) good probability resolution of the hazard function (W^) 

values.

(b) the c.d.f. of component life time approaches unity 

before memory storage runs out.

When modelling life times which are exponentially distributed, a 

1 2-bit value is employed and (b) is not applicable.

Investigations reported in Chapter 3 indicated that exponential 

distributions up to mean value 1/A=1500 hours could be modelled with 

TQ=1 hour. This is satisfactory for all but the most extreme cases. 

However when modelling non-exponential distributions, only 8-bit Ŵ ^
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values are possible and memory storage is limited to 256 W values.iC
Because of the feedback technique used to calculate non-exponential 

values the selection of TQ values is dependent, to a great 

extent, on the memory size alone.

Consider a Weibull distribution with parameters A,a (a=l). For 

the c.d.f. to approach 0.95 when the last memory location is 

reached then a memory containing 3xl/A W values is required. This
1C

means that the maximum 1/A value possible for a Weibull distribution 

(a=l) modelled on the Simulator is 85.3 hours, where TQ=1 hour. It 

can be seen that modelling of non-exponentially distributed time 

values frequently result in the use of large TQ values. 

Fortunately, where the distribution hazard rate is increasing, a>l, 

then a factor of less than 3xl/A results.

A future simulator should contain more memory to store W^ 

values. Preferably as much memory as to achieve similarity between 

TQ values used by both exponential and non-exponential 

distributions. For exponential -distributions, TQ values are 

determined by the memory word sizei If n is the word size measured 

in bits, and if a probability resolution of 0.5 is specified then 

the smallest W^ value representable is given by:

1 -kA= l-e

=> 1 . - 9'̂“''
A ^ ,where A<<1

This approximation can be used to determine the amount of memory 

required to 'match' memory size to memory word size. Figure 9.2b 

shows the memory size plotted against memory word size for the 

approximation. It can be seen that about 6K memory words will 

achieve similarity in TQ selection when considering a 12-bit 

value.
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3. When modelling with non-exponential distributions, the time

quantisation values are selected by the host computer to ensure the

distribution c.d.f. reaches 0.95 before distribution W valuek
memory runs out. This does not always ensure selection of the best 

TQ value, as many components undergo replacement before their 

expected c.d.f. reaches 0.95. Host computer initialisation

routines should take such effects into consideration.

4. The problem of maintaining block replacement times in phase for a 

group of components could be solved by removing the function of 

determining block replacement times from the components themselves. 

The Control Module should determine the block replacement times and 

inform the Component Modules. By this method, block replacement is 

centralised and the problems encountered with the present 

distributed scheme solved.

5. When modelling repair which results in a new compoi^nt being better 

than repaired (NBR), repair distributions are limited to being of an 

exponential form unless use of the component interrupt facility is 

made. The only practical way of overcoming this problem is to 

employ a microprocessor in the Component Module design, to store age 

values during the repair process.

6. Programing the Simulator to run for a time t^, results in the 

statistical gathering probes observing the number of occurrences of 

particular events, and also the total duration of all events. This 

enables the mean duration of an event to be determined but not the 

probability distribution of its duration. The probes were equipped 

with a 12-bit event counter, so that up to 4096 events could be 

observed before overflow of the event counter occurred. Probe 

counter overflow was a problem where very long simulation times
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where used to ensure good mean value estimates. This suggests that 

the event counter should be increased in size or that the simulation 

should be stopped when the event counter limit is reached.

To enable distribution information to be gathered about event 

duration, some memory/counter circuitry should be incorporated in 

the Statistical Gathering Module. With as little as 4K memory 

words, a sufficient number of event durations could be observed to 

enable the distribution to be examined.

7. Systems which contain cold standby components suffer from the 

problem of a delay (TQ) before the standby component responds to a 

primary component failure. Design changes made to enforce

immediate cold standby response, regardless of the time quantisation 

values in use.

An increase in simulator flexibility, as well as a solution to 

several of the problems listeed above, could be obtained by constructing 

Component Modules from microprocessor based circuitry. Such an

implementation was previously rejected because of its slower operation. 

However the simpler circuit construction and increased flexibility may 

be regarded as more rewarding.

Considering a microprocessor based Component Module, the use of a 

micro-instruction memory would be retained to accomplish complex 

modelling decisions at high speed. The memory contents could be do^m 

loaded from the host computer prior to Simulation run, eliminating the 

need for a mask register, and offering greater flexibility for component 

operation. The program running in the microprocessor would itself be 

down loaded from the host, thus enabling the operation of the

microprocessor to be varied whilst operating at any particular time with 

the minimum program size. Essentially the microprocessor program would 

be concerned with preparing the input signals to the micro-instruction
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table and, following receipt of each model updating instruction, 

carrying out Component Module updating.

9.3 Conclusion

A general purpose programmable reliability simulator has been built 

largely according to designs originated during the three years of 

research. The Simulator, shown on Figure 9.3a, is constructed from 

special purpose digital circuitry to achive short simulation times. 

Stochastic signals, describing system characteristics, are manipulated 

by the circuitry in a parallel fashion.

The Simulator was shown to operate according to theoretical 

predictions. Systems which could not have been investigated by 

analytical techniques were studied. The Simulator was revealed to be a 

convenient and flexible method of studying complex systems. The special 

purpose circuitry employed enables several hundred years of system 

lifetime to be modelled in seconds.
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Appendix A1

Tests on non-uniform distributed random number generator

The probability distribution observed, for each random variable 

generated, has been plotted as a continuous distribution. The method 

used enables simple comparisons and judgments to be made on the 

generated distributions.

Al.1.1 Empirical Frequency Test
2An empirical frequency test the "X, test, described in

Section 2.6.3, is used to compare the generated p.d.f. against the

programmed p.d.f f^(k/ilx). The discrete time intervals (gap) between

renewal points were recorded and the empirical frequency of each gap

calculated. The theoretical absolute frequency for each gap was also
2determined and the X  tests used as a measure of goodness of fit 

between the generated distribution and expected. Note that . gaps have 

been grouped together where the theoretical absolute frequency has
2fallen below 5. The X  values obtained for each distribution have been 

given on each p.d.f. graph. The tables at the end of each distribution
2section contain critical values for the X  tests.

AI.1.2 Cumulative Distribution Test

The Kolmogorov-Smirnov test, described in Section 2.6.6 has been 

used to compare the experimental c.d.f. observed with the expected 

c.d.f. . The test is based on the value D which is the difference with 

greatest absolute magnitude between the two distributions. The value D 

obtained for each distribution has been given on the p.d.f. diagram, 

and on the table of results at the end of each distribution section. 

Critical values for the test are also given in the table of results.
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Results for exponential and Weibull distributions also contain 

expected values of D. These values are based on the work of 

Sections 3.8 and 3.9. They are the D values 'predicted for the 

distribution 

generator is used.

^kex^^“̂ ^^ considering a 'perfect' random numbe:

A1.2 Exponential Distribution

The exponential distribution [1,34,35] is used widely to represent 

component operating times. Data collected on the life time of equipment 

has led to this assumption. The family of exponential distributions is 

now the best known and most thoroughly explored. Figure A1.2a shows the 

c.d.f. F(x), p.d.f. f(x) and hazard rate 0(x) for an exponential 

distribution. It has the property that if failure of a component has 

not occurred by time t then the probability distribution for its future 

life is the same as if the component were new. Only the exponential 

distribution has this property and it is explained by the monotonlc 

hazard rate.

The exponential distribution has been applied to the- repair times of 

components, though there is evidence that this is not an accurate 

description [36]. However, modelling both repair times and operating 

times with exponential distributions, leads to a Markovian process which 

enables an analytical solution to the reliability problem. The 

exponential distribution can be regarded as a continuous analogue of the 

discrete geometric distribution.

Calculation of W(k) values (simplified method):

Density function, f(x)= ]\e-Ax ,xS:0

mean interval time _1_
A
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c.d.f. F(x) = J X e  dt
o

= 1 - e- \ x

To form a discrete approximation to F(x), F(kAx)

F(k/^x) = 1 - e Xnxk

The W(k) values can now be calculated:

W(k) = F(kx^x)-F((k-1) xî x)
l-FC(k-l)x5.x)

, -Axk -XAx(k-1)x=1—e —(i+ e  ;
H

W(k) = H ( 1-e“^^ ^  )

It can be seen that this method leads to a constant value of W(k), 

as would be expected from a monotonic failure rate. Generation of this 

distribution is greatly simplified as the memory ability to store W(k) *
Vvalues is not required.

Statistical tests have been carried out on an exponential

distribution of mean=l/A =10. The p.d.f. generated for various methods 

are shown on Figures A1.2b to A1.2j , and a table of all results is 

given on A1.2k.

A1.3 Weibull Distribution

The Weibull distribution [lpg30, 36] is a continuous distribution 

which is especially applicable whenever the process at hand is yielding 

a random variable that is essentially the maximum (or minimum) value 

among a large set of random variables. For example, if a system, such 

as an electronic instrument, is deemed operational until such time as 

any one of its components has failed, then the time S between repairs 

will be a random variable of the Weibull family, since S is essentially
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defined as the minimum of its components lifetimes.

Figure A1.3a shows the c.d.f. F(x), p.d.f. f(x) and hazard rate 

0(x) for a Weibull distribution over a range of parameter (a) values. 

Weibull distributions with increasing hazard rate (a>l) have been found 

useful in simulating equipment lifetimes [14].

The following describes the calculation of W(k) values necessary to 

generate a Weibull distribution.

.a
c.d.f. F(x) = 1 - er (A x )

-(X AX k )
a

discrete approximation F(kAx) = 1 - e

density function, f(x) = a^x^  ̂ , x>0

calculation of W(k) value:

W(k) = F(k Ax)-F((k-1) ̂ x) 
1-F((k-1) ̂ x) •H

a a
» a x ) Ax(k-1 ))

l-l+e- ( X A X ( k - l )  )
a ■ H

W(k) =H.(

Statistical tests have been carried out on a Weibull distribution of 

parameter A =0.04, a=3.5. The p.d.f. generated for various methods

employed are shown on Figures A1.3b to A1.3j ,and a table of all results 

is given on Figure A1.3k.

AI.4 Erlang Distribution

It is possible to 'simulate' a number of arbitrary distributions by 

a compound system of negative exponential distributions. The resulting 

distribution is known as an Erlang distribution [36,37]. By 

experimenting with the number r, it is possible to match any observed 

distribution. Figure A1.4a shows the c.d,f.-, p.d.f. and hazard rate
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for a range of parameter r values. For large values of r, the Erlang 

distribution approaches the normal distribution.

density function f(x) =
( r - l ) !

consider the case when r = 4

f / N V  3 -  Axf^(x) = — X e ,x>0

the corresponding c.d.f. is given by :

-X

^ 4 ^ ^ )  =  ff 4 ( t ) dt

1_ J_ . X t e
^3! ^

•4^.2 —xt \4c*  ~xtX 3t e X 6 t e...... + —...........
X'

In general:

L [ 6 - e  X^x^ ♦ X^3x2 * X6x  ̂ 6 ) ]
o  *

F^(x)

 ̂ [ ( r - D ! - e ^ ^ ( ( A x ) ' ' ~ ^  ♦ (Ax)' '"2(r-1)*...*(r-D! ) ]
(r-D!

r-1

n=0

= 1 - e " ^ V '  (Xx)^
n!

discrete approximation:
r-1

F(kAx) = 1 - e-  X  A  X k ( X A X k )
n !

n=0

The W(k) values can be calculated:

W(k) = F(k Ax)-F((k-1) a x ) 

1-F((k-1) Ax)
r-1

P  ( > L ^ [  ( k - D ^ - e ^ ^ ^ k * ^  ] 
1— I n !
n= 0_____________

r-1 n
A a x  ( k - 1 )

[ ]
n=o

n!
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Statistical tests have been carried out on an Erlang distribution of 

parameters A =0.3, r=5. The p.d.f. generated for various generation 

methods are shown on Figures A1.4b to A1.4m, and a table of all results 

is given on Figure A1.2n.

A1.5 Poisson Distribution

The Poisson distribution [36] is another discrete distribution of 

importance in system simulation. It gives the probability of exactly x 

independent occurrences during a given period of time if events take 

place independently and at constant rate.

For example the simplest waiting line models assume that the number 

of arrivals occuring within a given interval of time, t, follows a 

Poisson distribution with parameter At, where )\t is the average number 

of arrivals in the interval of time t. Note X represents the arrival 

rate, and x the number of arrivals in the interval t.

density function f(x) = (At f  e 
x!t

,x=0,1 ,2 ...

c.d.f F(x) = r  (At)^
U  x!

k - Me

k=0

The W(k) values can be computed from :

W(k) = F (k Zlx)-F( (k-1)x)
1-F((k-1) Ax)

( tA )/ X 

¿t K  (At)*<
,x=k A  X

C  k!
k=o

Statistical tests have been carried out on a Poisson distribution of 

parameter Xt=25. The p.d.f. generated for each generation method 

employed are shown on Figures A1.5b to A1.5d, and a table of all results 

is given on Figure A1.5e.

A1



p.df., f(x)

c.d.f., F(x)

renewal rafe, 0(x)
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EXPONENTIAL
DISTRIBUTION number

of
samples

number 
of bilsof 
random 
number

Ax
K - S  TEST X a lE S T

fesf
result

value
expected

critical
value result

cri tical 
valuemefhod figure

simple 4-2b 3200 8 1-0 0 0875 0-181 0-034 61 3 56-9
simple 42c 3200 16 1 0 0-0850 0-181 0-034 35-2 56-9

TS 42d 3200 8 1 0 0-0422 0-034 135-8 56-9

simple 42e 1600 8 0 5 0-0456 0-095 0-048 53-9 56-9
simple /.2f 1600 16 0 5 0-0555 0-095 0-048 52-6 56-9

TS 42g 1600 8 0-5 0-0419 0-0A8 72-2 56-9

simple 42h 1600 8 0-25 0-0469 0-0488 0-048 48 0 56-9
simple 4 2 i 1600 16 0-25 0-0316 .0-0488 0-048 342 56 9

TS U-2] 1600 8 0-25 0-0456 0-048 61 2 56-9

Table A1-2k Table of resulfs and crifical values (oC= 0-95)
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WEiBULL
DISTRIBUTION number

of
samples

number 
of bits of 
random 
number

Ax

K -S  TEST ^n.o[EST

value of 
result

value
expected

value
critical result

critical
valuemethod figure

simple 43b 3200 8 1 0 0 0612 0-0710 0-034 47-9 52-2
FB 43c 3200 • 8 1 0 0 0577 0-0558 0-034 40-0 52-2
TS 43d 3200 8 1 0 0-0549 0-034 126-7 52-2

FB &TS 43e 3200 8 1 0 0-03 65 0-0286 0-034 67-5 52 2
FB 43f 1600 16 1 0 0-0487 0-0538 0-048 30-2 50-9

simple 4 3g 1600 8 0-5 0-0455 00693 0-048 34-8 AO-1
FB 43h 1600 8 0-5 0-0 A74 0-0286 0-048 36-7 40-1
FB 4 3 i 1600 16 O S 0-0499 0-0268 0-048 27-5 AO-1

FB a TS 43j 1600 8 0-5 0-0162 0-0155 0-0A8 38-0 40-1

TableA1-3k Table of results and critical values ( oc=  0-95)
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ERLANG
DISTRIBUTION number

of
samples

number 
of bits of 
random 
number

K -S T E S T
2

X TEST

Ax critical!
value result

critical
valuemelhod figure result

simple A-4b 3200 8 10 0 0857 0 034 58-4 42-6
FB 4-4c 3200 8 10 0 0789 0-034 38-4 42-6
TS 4- 4d 3200 8 10 0 0495 0-034 76-2 42-6

FB aTS 4-4e 3200 8 10 0-0504 0 034 68-7 42-6
FB 4 4f 1600 16 10 0 0776 0-048 27-6 42-6

simple 4- 4g 3200 8 0-5 0-0469 0-034 110 8 40-1
FB 4- 4h 3200 8 05 0-0548 0-034 36-6 401
FB 4- 4 i 3200 16 05 0-0525 0-034 41-2 40-1

FB &TS 4-4j 3200 8 05 0-0269 0-034 75-7 AO-1

simple 4-Ak 1600 8 0-25 0-0270 0 0A8 34-1 28-9
FB. & TS 4-41 1600 8 0-25 0-0240 0 048 35-6 28-9
FB 4-4m 1600 8 0 25 0-0239 0-048 45-1 28-9
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POISSON
disfribufion

Na

of samples

No.

of bifs

of random 
number

K-S

value
result

fesf

critical
value

•y  ̂
•̂ n,c

test
result

critical
valuemefhod figure

simple 4-5b 3200 8 0 0723 0-034 124-2 43-8

FB 4-5c 3200 8 0-0881 0-034 63-4 43-8

4-5d 1600 16 0-0890 0-048 14-6 AO-1

TableM-Be Table of resulfs end cnMco l  values (o< = 0-95)



Control Signals Generated at State Transition

Appendix A3 presents the the necessary input signals to the 

Excro-controler causing state transition. The output signals generated 

by the micro-controller to update the component model are presented 

here.

A * in the table of output signals indicates the generation of the 

particular control signal. The possible control signals are:

APPENDIX A2

I /int. c
Clear

__T

Clear counter A.

Increment counter A 

Increment counter B

Increment counter C and flag Component interrupt^ 

Clear Policy Module request flags.

Transition to working state from:
I

working “ *
Slid
maintenance *
SUP
repair *
cold standby

I /int. Clear c

Transition to unrevealed fault state from:

cold standby 
unrevealed fault

I /int. Clear c
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Transition to SUD state from:
C T

J . I.SUD a 3. D

maintenance *
repair *
cold standby *

Transition to maintenance state from:
C I

working a . DK

unrevealed fault * *
SUD *

maintenance
SUF *

cold standby * *■
unattended failure * *

I /int. Clear c
*

*

I /int. Clear c

Transition to SUF state from:
C

SUD ^
maintenance *

repair *
cold standby

I /int. Clear c
*
■k

Transition to repair state from:

working
unrevealed fault 
SUF
repair
unattended failure

■k"

*
*

**•
*

I /int. ClearCj.*

Note 0: only if request allowed (R.A.)

Transition to cold standby state from:
C I

working ^
SUD
maintenance
SUF
repair
cold standby *

I /int. Clear c

A2



Transition to unattended failure state from:

repair
unattended failure

I /int. Clear c

A 2



Figure A3a presents all possible state transitions on a transition 

diagram.

APPENDIX A3

State Transition Equations

7. Present state = working

possible next states: undergoing repair 

maintenance 

cold standby 

working

[workingrepair] transition requires RE.FA

There is no higher priority state

PRIORITY

1

2

3

4

[working-^maintenance] transition requires MR.RA.(PASS+PASS.FA) 

(Note: Passive components in operational state a^e not permited 

maintenance)

Hardware reductions reduce this to MR.RA.(PASS+FA)

Working-^maintenance AND (Not any higher priority state)

=MR.RA. (PA^+FA). (RE+M)

=MR.RA.(PASS.RE+FA)

[working—»standby] transition requires- FA 

working-^standby AND (Not any higher priority state) 

=FA. (i®+RA+PASS .FA). (RE+FA)

=FA. (ifll+RA)

A 3  1



working-^working AND (Not any higher priority state] 

= (^+FA) . (MR+^+FA.PASS) .FA 

=FA. RE. (>ffi+RA+PAS S)

6. Present state = unrevealed fault

PRIORITY

possible next states: undergoing repair 1

maintenance 2

unrevealed fault 3

[unrevealed faultrepair] transition requires FA 

There is no higher priority state

[unrevealed faultmaintenance] transition requires MR.RA

unrevealed fault->maintenance AND (Not repair)

=MR.RA.FA

unrevealed fault-»unrevealed fault AND (Not any higher priority state) 

=FA.(MR+RA)

= start up delay (SUD)

5. Present state = start up delay (SUD)

possible next states: maintenance 

cold standby 

SUF

working

SUD

PRIORITY

1

2

3

4

5

[SUD-» m^aintenance] transition requires MR.RA. (PASS+FA)

There is no higher priority state

A3 2



=FA. (^+RA+PASS .FA)

=FÄ(i®+RÄ)

[SUD-)start up failure risk (SUF)] transition requires RE.SUF 

SUD-^SUF AND (Not any higher priority state)

=RE.SUF.FA.(MR+RÄ+PASS.FA)

=RE.SUF.FA(MR+RÄ+PAS S)

[SUD-)working] transition requires RE 

SUD-4 working AND(Not any higher priority state)

=RE.(RE+SÜF).FA.(MR+RÄ+PAS S.FA)

=RE. SÜF. FA. (iffi+RA+PAS S)

SUD-4SUD AND (Not any higher priority state)

=RE.(RE+SÜF).FA.(iffi+RA+PAS S.FA)

. FA. (m+RA+PAS S)

[SUD->standby] transition requires FA

SUD-^ standby AND (Not any higher priority state)

4. Present state = scheduled maintenance

possible next states; cold standby

SUD

SUF

working order 

maintenance

PRIORITY

1

2

3

4

5

[maintenancestandby] transition requires RE.FA

There is no higher priority state

A 3



=RE.SUD.(FA+RE)

=RE.SUD.FA

[maintenance->’SUF] transition requires RE.SUF 

maintenance->SUF AND (Not any higher priority state)

=RE.SUF.(FA+RE).(RE+SUD)

=RE.SUF.FA.SUD

[maintenance-4working] transition requires RE 

maintenance-4working AND (Not any higher priority state)

=RE. (^+SUD). (^+SUF). (FA+^)

=RE.SUD.SUF.FA

maintenance -4 maintenance AND (Not any higher priority state) 

= (RE+SUb).(RE+SUb) . R E . (FA+RE)
_ A
=RE

3. Present state = start up failure risk (SUE)

[maintenance->SUD] transition requires RE.SUD

maintenance-?SUD AND (Not any higher priority state)

possible next states:

PRIORITY

1

2

3

4

repaxr 

maintenance 

cold standby 

working

[SUF-4repair] transition requires RE

There is no higher priority state

[SUF-4 maintenance] transition requires MR.RA.(PASS+FA) 

SUF-4 maintenance AND (Not any higher priority state)

=MR.RA.(PASS+FA).RE

A 3



[SUF-^cold standby] transition requires FA 

SUF->standby AND (Not any higher priority state) 

=FA. r1 . (iffi+RA+PAS S . FA)

=f a .r1. (M+RA)

SUF->working AND (Not any higher priority state) 

=FA. O:.(OTL+RA+FAS S.FA)

. FA. (>®+RA+PAS S)

2. Present state = requiring repair

possible next states; cold standby

SUD

SUF

working

repair

unattended failure

PRIORITY

1

2

3

4

5

6

[repair-^standby] transition requires RE.FA

There is no higher priority state

[repairSUD] transition requires RE.SUD

repair-»'SUF AND (Not any higher priority state) 

=RE.SUD.(RE+FA)

=RE.SUD.FA

[repair-»SUF] transition requires RE.SUF 

repair-»SUF AND (Not any higher priority state) 

=RE.SUF.(RF+FA).(RE+SUD)

=RE.SUF.FA.SUD

A3



repair-4 working AND (Not any higher priority state)

RE. (RE-I-FA). (RE+SUD) . (^+SUF)

=RE.FA.SUb.SUF

[repair-4 repair] transition requires RA 

repair-4 repair AND (Not any higher priority state)

=RA. (RE+FA). (RE-I-SUD) . (RE+SUF) .RE 

=RA.RE

repair->unattended failure AND (Not any higher priority state) 

=RE.RA

[repair->working] transition requires RE

1. Present state = cold standby

possible next state; unrevealed fault

SUD

SUF

working

maintenance

standby

PRIORITY

1

2

3

4

5

6

[standby-4unrevealed fault] transition requires RE 

There is no higher priority state

[standby-4SUD] transition requires FA.SUD

Standby-4SUD AND (Not any higher priority state)

=f a .s u d .r1

[standby-4SUF] transition requires 

=FA.SUF. (M-(-sud).RE 

=FA.SUF.SUD.RE

FA.SUF

A3



standby-)workiiag AND (Not any higher priority state)

=FA.SUF.SUD.RE

[standby-»maintenance] transition requires MR.RA.FA 

standby-» maintenance'AND (Not any higher priority state)

=MR.EA.FA. (FA+SUD). (FA+SITf ) .FA.RE 

=MR.RA.^.FA

standby-»standby AND (Not any higher priority state)

= (>®+RA+FA) . F A .  ( T A + S V F )  . (M+SUD)

=FA.RE. (iffi+RA)

0. Present state = unattended failure

PRIORITY

possible next state: maintenance 1

repair 2

unattended failure 3

Note: hardware ensures a MR is not issued unless ack.R. = 0

This prevents a transition to maintenance when repair has been 

started but temporarily discontinued.

[unattended-»maintenance] transition requires MR

There is no higher priority state

[unattended-»repair] transition requires RA

unattended-»repair AND (Not any higher priority state)

=RA.i5l

unattended-»unattended AND (Not any higher priority state)

[standby->working] transition requires FA

A3



srnntL.rLcal nsan = tt I
i = 1

values cbtained and critical ’;alues for the 
test, X^^O.OS/ sre gi',^ in each tabj£ of

excected ■'/alue = 2« - 1 = 127.5

he results are shewn in th.e first colurm of 
jach table of res'ults.
(ii) The variance of eadi sequence was 
calculated, a neasirre of tfs distersicn of th.e 
randan ■'/arLable

N
= 2  ̂ (Ê  - S). ?rx̂ :

Eoected valuE '_2J , (N̂ 1) _

, X = 2'

215 _ 1
12 12

(v) '2ie XoIirK̂ gcrov-Smirncv oast l̂i] was used to 
cotpara trie ercerimental cumulative distributicn 
functicn 'Observed for Ê  with thje expected 
distributiai. The value D, given in the sixth 
colurm in each table, is the difference cbser'.ed 
'd.th greatest absolute magnitude. Criticai 
values for D, with -a = 0.C5, are also given.
(vL) A runs test [1̂  was enplcyed to determine 
if there '«ere Icnq mis of large or small 
numbers. It is coisidered to be a very 
discriminating test, that is it 'fails' more 
sequences of randan numbers than other tests. 
Values cbtained for the test and critical 
values obtained from cables of t h s normal 
distributicn (a = 0.C5) are given cn the last 
column of each table of results.

= 5461-25 CCfiPAEISCN CF TEST EESULTS
he resiiLts are shewn in doe second column of 
each table.
(iii) To test doe geoerated prcbaoilit:/ 
oistributiqi funccicn of , doe chi-square 
(X‘) test ill, 12! was ’used to carpare doe 
<iser';ed frequsoev with the theorecical 
e-xcected "zalue. ̂  To carry cut the test, the 
integral [0, 255i was sub-diviced into 
sixcvfcur groups gi’̂ring sixtythree degrees of 
o^edan for thè test. Critioai values of are 
'5i'';an along with results in the third coluim
3t each table. The level 
te tese, a, was docsen d

or sigrancancs ror 
) oe 0. C5.

(iv) Independence tests '.•jere carried out on 
ouiber pairs. Firstly n’onber pairs,

vE. , (i. ,E._.) , ... (—. ,

X = number of ¿armies
= 2, 3, 4, X

''tra chosen and cximared to determine 
tuaotitr/ of caisecucd-TO numbers , (2 . , .
-tc., following in doe same group. ~For octn 
iidspendence tests applied, doe intsr'/3—  ̂

0̂,25ii was 3ubdi''t.ded into sixteen equai.'- 
sized <̂ mucs. This rreant that the expected 
tuber’of cbsercraticns in each group was 
-V(15 X 15) . ihe second independence test 
was for number pairs,

Ŝ ) , (Ê , Ê ) , (E_. ,

2tics again doe numbers vsre observed ̂ 
'ttnsacutiveness, that is both Lying in —~ 
ssrs grouD. The test was oily canted, ou 
■.■ben the decimated number seqr^nce tecno.,' 
■'fas 'used. The X‘ tast. 'nas besi 'used to ̂  
‘̂termine the goextoess cx the results. s

The performance cf number .generators based cn 
doe follcwing techniques has been considered :
(i) The multiple m-secruence rrsthexi, described 
in Section 2.1. A circuit diagram, cf doe 
generator built to test this medood is shown in 
Figure 1, and the experirrental results obtained 
are qi''.en in Table 1.
These indicate that doe sequencss produced 
possessed relatively poor indepenc^ce 
charactexis'tics. Only 38% of the sequences, 
had 'Tal’ues in excess of the criti'Oai ̂ /alue for 
doe number-pairs tested and 13% faiued doe test 
for ccnsecutiveness. Cn the ether hand, 
sequences produced by this oEthed are proved no 
"nave good disrributicn 'doaracteristics, 56% 
passing all tests.
(ii) The cerbinatien of twc-m-sequencss 
technique 'using as described on Secoiaos 2.2 
and 2.3. 'The generator used to teso die 
osthed is shewn in Figure 4. No decimaricn
or he ranean number secooencss was oertonrea.
Hewever doe generaror was run sixteen tines 
to producs doe netsssary output sequences. The 
resiiLts are shown cn Table 2.
The sequences prcduced performed averagely 
•«ell in both these tests examining their 
distributiai characteristic and their 
independence chara-cteristic. Qoly 13% failed 
to pass the former and 19% failed to meet doe 
critical test values. Overall, 63% cf doe 
sequences passed all tests.
(iii) Shifted ui-sequence techniques -.vere 
investigated by testing dorse different 
generators. All of doe generators enplcyed doe 
phase shifting techniques described in Secticn 
2.5. The stages required to be mcdalo-2 added 
to produce doe phase sruLfts are giv^ in Figure 
10. * Cioly oie, shewn in Figure 9, has the



the majority, ele\’en, passed all tests 
successrallv.

approx.
phase

f e e d b a c k  from points 18 a n d  31

shift required M O D - 2  a dd i t i o n  stages

1 X  f 2 ,  3, 9 , 1 8 ,  19, 28

2 X 2"" 4,  5 , 1 6 , 2 5
k X f 8, 10, 19

3 X 2^' 7 ,  16

approx.
phase

feedback from points 2 4  and 31

shift required M O D - 2  addi ti on st ages

1 X 2^' 2 ,  4 ,  16
2 X 2̂ "" 2,  5
4 X 2 ^ 1, 7

1 X 2"" 1 ,  3,  4
2 X 2 1,  5,  7
4 X 2 ^ 1,  9, 13
8 X 1 ,  16

Ad di nons r a a u i r s d  fo p r o d u c s  
p h a s e  shi f t ’s

prxcsed technicre ire lamented to produce 
sucasn syndironous straairs of ranccmi nuiLers. 
'2'e result of the statistical tests cn this 
^-erarcr are shown In TabJe 3. The other 

generators, of the t/oe shown in ricura 7, 
■"era decimated to orocucs sixteen seciEncss.
Tte in''.̂ '!iigaticns concluded that dedmaoren 
■''as an 'mraliable method of producing several 
ttmber secisncss, 'out it may prove interastmg 
to cfaser.e the effects (if anv) on the tests.TJ-cv--- -
4.'-s ^u lts  obtained are edven in Tables 3 and

I t  should 'oe noted tn a t the 
oet-ieen these two generators r s  m  wt- 
r^sec-Encs 'jsed.

the tachnicues 'osing snirdd n-S'=g'jancas, 
oropcsed technicroe ’nased cn 'jse 
Paconditioted saquencas vtalds cot.Sj.3 ̂

ra su its. A lthcu i^  two sequenc^ - te s t s '"
Cti and Koiircgorov-3rra.m ov c istrib u is.cn  
316 four fa ile d  to  pass tne inceoeiceniS

A summary of tne results is gi*;si on Table 5.
For each methed. tested tea number of seqoHncas 
which failed a particular test is indicated, 
finally th.e number of sequences whierr passed 
all tests has been calculated for each method.

5 CINCLTBIOT

Various techniques for producing se-';eral 
statistically independent streams of randan 
numbers have been investigated.

The use of multiple .m-sequences was considerad. 
This technique can be easily impiemEnted, and 
the n-’oit numbers produced by a single generator 
'whese output sequence is decimHtad have the 
same statistical quality as the original single 
number stream. Crcss-ccirralatiGn characteristics
between different m-sequences rule out this 
generator as a highly indepencent ntmber acuros.
The use of a twe-m-sequsnee 
censidered for two quite di 
implementaticns. 
m-seouences ofsrs a eocnenv

■tren ’was
rent

vfcdulo-T addition of 
hardware

although care has to he taken to ensure that an 
adequate phase shift exists betcvesn 'outpuo bit 
sequences. The 'use of cascaded shift registers 
eliminates the phase shift prcblem but at rhe 
cost of additional 'nardware. Zru'estigation of 
th.e a’utc-ocrralaricn function of an .n-bit 
number produced 'ey this oechnicoe indicated 
that the numbers are not of 'nigh statisoioal 
quality. In addition, proper cedmatiG?- of 
such a nimber seqiance may result in 
significanu correlaoicn 'oetween the output 
number sequences.

Finally the principle of producing .n cutpuc 
sequences from a single m-sequencs was 
considered.' 'This may be achie-';ed by decoirpcsed 
register tecbniqias. Carsiderable affort is 
iir/olved in ensuring that ate n sequences 
produced are dcely spaced. ’'Scd'uio-2 additicn 
of selected stages of a feedback shift register 
also yields phase shifted sequEncss. 'The 
necessar'/ cobinaticn of soacas is more simply 
calculated. Proper dedmaticn -of a single 
number sequEnce produced by this technique may 
result in crcss-ccrrelatiai 'cetivesn the cutpiut 
number sequences.

A new pseudo-random number generator is 
proposed. Each cxitput number sequence is 
simultaneously generated, making the 
technique well suited to high speed problemrs.
'The tadunique relies cn phase-shifting pre- 
ccnditicned aeqrsnces, and lends itself to a 
I'BI circuitry implemEntaticn- Statistical 
tests perfoimBd on the generator cenfim the 
high statistical qualitv’’ of the sequences 
produced vis-a-vis aitemativE techniques.
Of tra sequences produced by this new rrE-ihcd,
69% oassed all the sta-oistical tasos. .ALtheugh



a smlar pass rate -/ras achieved usicg the 
drcjit ccniiguraricn illustrated in 
Figure 7, the results given in Table 4 
indicate that th*is technique cannot be regarded 
as ceing reliable.
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No. of eiemenfs in aach saquence = 4 00 0

expected^ 
values

s x p e c f e d ,
v a l u e s

s e a MEAN VAR CHI T E S T 1 TEST2 K - S RUNS
1 1 2 6 - 4 5441-2 91-3 1 2 - 2 1 2 - 2 0-011 - 0 - 0 6
2 126- 7 5555-3 56-4 19-3 1 0 - 7 0-013 - 0 - 2 2
3 126-6 5407-1 6 A 7 26-8 14-7 0 - 0 1 3 1 - 06
4 125-7 5529-2 64-2 1 7 - 2 1 2 - 4 0-016 0-52
5 125-5 5476-8 115-6 56-4 18-0 0-015 0-98
6 12 7 - 2 53978 55-6 28-5 25-7 0 - 0 1 2 0 - 7 7
7 126-1 5585-8 68-1 25-9 30-7 0-015 0- 14
8 128-7 5505-1 64-6 12-3 17-1 0 - 0 1 4 0-48
9 127-9 5345-3 58-0 25-2 21-0 0 - 0 1 5 0-66

10 127-8 5482-0 64-0 28-0 24-0 0-009 1 - 7 7
1 1 127-0 5388-4 66-6 1 1 - 7 15- 5 0-009 - 0 - 1 9
1 2 1 28- 4 5544-6 50-3 9 - 4 15-2 0- 012 0-04
1 3 126-9 5433-2 61-1 20-0 1 1 - 2 0-008 - 0 - 1 3
1 4 128-1 5 4 5 7 - 4 44-9 15-9 18-7 0 - 0 1 2 - 0 - 89
1 5 125-9 5 3 0 - 2 53-3 19- 6 16-1 0 - 0 1 7 1- 02
1 6 1 27 - 6 5602-2 53-5 12-9 1 7 - 7 0 - 0 1 1 - 0 - 3 8

(_127.5 5400 ) (32-5 24-9 24-9 0 - 0 3 0 ± 1 - 9 6 1

T a b l e 1 M u l t i p l e m -  s e q u e n c e

No.  o f a l e m e n t e in each s e q u e n c e  - 4 0 0 0

S E Q MEAN VAR C H I TEST1 K - 5 RU N S
1 123-5 5579-3 58-8 3 - 3 0-010 - 0 - 9 1
2 125-7 5471-4 84-9 1 4 - 7 0-016 - 0 - 3 9
3 1 2 7 - 4 5470-2 63-3 1 1 - 0 0 - 0 12 0 - 4 9
4 128-0 5486-5 82-8 7 3 - 4 0-009 1 - 3 6
0 1 2 7 - 4 5480-4 7 3 - 4 7 - 9 0-009 - 0 - 7 3
6 1 2 7 - 7 5436-9 57-1 1 7 - 3 0-C05 1 -05
7 126-6 5388-9 70-2 1 1 - 5 0-012 - 0 - 4 1
8 128-5 5548-2 79-7 1 5 - 7 0-013 - 1 - 2 8
9 127-2 5453-8 54-0 1 4 - 5 0-010 0 - 8 5

1 0  . 127-4 5479-6 29-2 16-8 ■ 0-004 1 - 1 4
11 126-8 5376-9 78-5 32-8 0-011 - 0 - 4 3
1 2 127- 5 5553-1 48-2 26-3 0-011 - 0 - 0 9
1 3 127-5 5411 - 6 71-9 15-1 0-012 2 - 3 0
1 4 129- 4 5435-2 65-0 1 1 - 7 0 - 0 1 7 2 - 6 0
1 5 128-7 5494-5 72- 4 22-0 0-011 -  0 - 85
1 6 128-6 ■- 5506-4 61-7 18-1 0-012 - 0  - 81

( 1 2 7 ^ 5 5 4 0 0 l  f S 2 - 5 24-9 0-030 ± 1  - l e ]

cri ti cal  values 
>  = 0-05)

»critical values 
[ «  = 0 - 0 5 )

T a b l e  2 C o m b i n a t i o n  of t v o  m -  sequences



e x p e c t e d ,
v a l u e s

e x pe c t ed ,
v a l u e s

No. o f e l e m e n t s in e a c h sequence = 4000

S E Q M E A N V A R ' C H I  •' E S T 1 T E S T 2 K - S R U N S
1 125-5 5465-5 7 1 - 3 1 9 - 7 1 9 - 7 0 0 1 9 0 50
2 1 2 8- 4 5491-0 49-2 . 1 8 - 4 1 9 - 4 0 O i l - 0 32
3 126-3 5518-6 57- 4 1 9 - 9 1 6 - 6 0 o il - 1 26
4 127-1 5527- 2 53-3 1 1 - 4 1 6 - 7 0 010 - 0 92
5 127-2 5450-8 44-3 25-8 4 - 8 0 006 - 0 57
6 128-2 5419-1 56-0 14 - 6 2 1 - 4 0 007 0 19
7 128-2 5394-2 64-3 15- 3 10-3 0 010 - 0 84
8 1 2 9- 4 5489-7 49-2 1 8 - 8 1/.-9 0 016 - 0 03
9 1 2 7 - 2 5559-0 55- 4 1 2 - 4 1 6 - 4 0 O i l - 0 98

10 1 2 7 - 3 5466- 4 43- 8 8 - 3 1 7 - 1 0 007 - 0 53
11 128-9 5 4 3 3- 9 66-8 20-9 16- 2 0 022 - 1 82
12 128- 2 5380-9 52-9 1 3 - 4 1 1 - 2 0 oil 0 39
13 126-0 5 4 7 9 - 5 86-0 1 7 - 1 20-3 0 016 - 1 7 7
1 4 1 2 7 - 5 5501- 9 65-2 20. 8 5-2 0 006 1 55
1 5 123- 8 5535-8 58 -3 22-3 1 4 - 0 0 014 3 08
1 6 1 2 8- 0 5 3 7 4 - 4 56-7 28-0 23-6 0 010 - 0 36

( l 2 7 - 5 5 4 0 0 ) ( S 2 - 5 24-9 24-9 0 030 i 1 i ]

T a b l e  3 Shi f t ed m - s e q u e n c e  
Technique

N o .  o f  e l e m e n t s  in each sequence = ¿*000

S E Q M E A N VAR C H I T ES T 1 T E S T 2 K-S R U N S
1 126-4 5 5 1 9 - 7 55-6 26-3 26-3 0 ■012 - 0 060
2 127-0 5416-6 66-3 8-9 1 4 6 0 -009 - 1 26
3 128-0 5510-4 69-6 9-7 24. 4 0 -010 0 22
4 127-1 5639-0 90-6 25-2 31-6 0 - 014 0 70
5 126-3 5590-1 47-0 33-3 6-2 0 - 0 1 2 0 26
6 126-4 5528-3 93-5 1 7 - 2 20-3 0 -014 - 0 50
7 126-1 5362-0 50-0 21-3 11-2 0 - ‘315 0 87
a 128-3 5429-9 65-6 30-1 52-8 0 -009 I 14
9 1 2 S 0 5420-5 38-1 1 4 - 8 24-3 0 -008 -  0 92

10 126-3 5599-4 93-5 1 4 - 4 17- 5 0 -016 - 0 54
11 126-8 5399-0 46-7 18- 6 13-3 0 -011 - 1 - 1 4
12 127-9 5570-6 106-8 20-2 21-3 0 ■013 -  0 22
13 1 2 7 - 4 5396-7 52-7 7-6 26-6 0 -006 -  0 25
1 4 128-2 5536-4 175-9 43-1 16-0 0 -014 - 1 32
15 127-7 5336-1 94-0 17-8 8-7 0 -010 1 14
16 126-2 5534-0 69-3 9-8 18-9 0 - 0 1 7 0 59

( l 2 7 - 5 5 4 0 0 ) ( 82-5 249 2 4 9 0 -030 ± 1 7 6 )

T a b l e  4 S h i f te d  m - s a q u e n c e  
t e c h n i q u e

►critical values 
( o c  = 0 - 05 )

»critical v al ues 
[ o c =  0 . 0 5 )



No. of e l e m en t s in each sequence = 4 0 00

SEQ V A R CHI T E S T I K-S R U N S
1 128-3 5390-4 6 7 4 21-0 0-010 - 0 - 7 9
2 126-5 5387-9 45-7 22-2 0 012 - 0 - 6 0
3 128-2 5485-7 52-7 25-3 0 009 0-62
k 126-3 5410-8 37-5 23-6 0 012 0-02
5 126-2 5627-7 60-8 8-8 0 015 2 - 4 4
6 127-1 5413-8 61-0 28-6 0 oi l  - 2 - 3 3
7 127-0 5 4 2 1 - 7 42-8 1 4- 0 0 009 -0- 28
8 128-8 5294-5 6 S 8 2 4 3 0 018 - 1 - 5 7
9 128-7 5481-0 50-1 10-0 0 012 - 0 - 1 9

10 125-8 5460-3 66-0 1 4 8 0 018 O-ifi
11 126- 4 5539-1 54-0 7-5 0 012 - 0 - 3 1
1 2 125-2 5372-2 63-0 19-6 0 018 - 1 - 2 5
13 124-5 5426-5 S A I 28 - 4 0 026 0 -56
1 A 121 -2 5432-9 105-1 46-2 0 041 0 -76
1 5 126-9 5412-9 78-2 13 -6 0 012 - 0 - 7 1
16 122-7 5445-7 74-3 1 7 - 9 0 028 0-55

{ l 2 7 - 5 5 4 0 0 ) ( 32- 5 2 4 9 0 030 ±1- 76^

axpecf ed
v e l u e

T a b l e  5

critical value 
( oc = 0-05 )

P r o p o s e d  merhed

1 1 
1 mul ti pl e m - s e q . | 2 - m  seq. sh i f te d m - s e q .

proposée
method

T a b l e
i 1
 ̂ 1 I 2 3 4 5

C H I  -  t e s t ! 2 I 2 1 6 2

A -
T e s t  1 ! 6 I 3 2 5 3
T e s t  2 ; 2 II I 1 4

■

K - S  t e s t I 0 i 0 0 0 1

R u n s  t e s t i ' 0 ! 2 3 0 2

n u m b e r  o f  
seq. whi ch 
p a s s e d  a l l  

tests _

10 11

In section A  each box contains a  number of sequences 
fai l i ng the p ar t ic u l ar  t e s t  ( cC= 0 - 0 5 )

T a b l e  6 An a l y si s of  r e s u l t s
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THE DEVELOPMENT OF A NEW' HARDWAPE RELIABILITY SIMULATOR

N. D. Deans and D. P. Mann
Robert Gordon's Institute of Technology, Aberdeen

A new concept, based on the use of random signa ls , is  
proposed fo r  a computing instrument fo r simulating the 
r e l ia b i l i t y  aspects of a system. Random signals interact 
with determ inistic signa ls . A Simulator has been designed 
and constructed using large -sca le  integrated c ircu its . A 
high degree of para lle lism  has been incorporated in the 
design, and the use o f asynchronous tim e-scaling techniques 
have yielded operational speeds of the order of 10̂  
computations per second. Experiments have been carried out 
on unreliab le  systems using the Simulator and typ ica lly , 
system lifetim es o f 10  ̂ hours are simulated by the equipment 
in approximately one second.

INTRODUCTION

Two basic approaches to the calculation of the r e l ia b i l i t y  of a system ex ist , 
viz ; '

1 Analytical methods in which the solutions to the equations describing a 
mathematical model of the system are sought. However, the investigation  
of systems whose behaviour cannot be accurately modelled by exponential 
distributions and/or which contain complex, repair and maintenance 
po lic ies  presents d if f ic u lty .

2 Simulation techniques in, which sampling experiments are carried out on 
the model. For acceptable accuracy of solution, such an analysis carried  
out on a d ig ita l computer with a von-Neumann architecture necessitates 
long computational times.

A new stochaistic r e l ia b i l i t y  simulator based on Monte-Carlo simulation techniques 
has been developed to enable the r e l ia b i l i t y  o f complex systems to be studied.
The technique re lie s  upon the generation of random variables with known 
s ta t is t ic a l d istributions to describe particu lar properties of the components 
which make up the system. By allowing these properties to 'in te rac t ' in 
accordance with a mathematical model describing the overall system, 
observations on the overa ll system r e lia b i l it y  can be made.

generation o f number distributions with prescribed properties is  described 
hy B iro lin i (1) and can be eas ily  rea lised  with medium or large-sca le  integrated  
circu its. In addition the processing of random number sequences can be carried  
out at high speed using special purpose d ig ita l c ircu itry . By allowing the 
modelling o f each component to proceed simultaneously with a l l  other components, 
a high degree o f para lle lism  can be achieved,

A block diagram o f the Simulator is.shown in Figure 1. I t  consists of a number 
of subsystems acting co llective ly  as a special-purpose peripheral device to a 
host computer. In operation, the host computer in it ia lis e s  the Simularor 
specifying in particu la r ;
a

b
the fa ilu re  d istribution  o f each component 

■the repair d istribution  of each component 

the component interconnection pattern

lB / 3 / 1
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i d e ta ils  c f  aca or block raplacamant p o lic ie s  fo r  each comscnerit

e dera ils  o f any s ta rt - 'jp  delays associated  with any cosacnent

i la fo raa ticn  ra la t in c  to any high start-'oo fa i lu re  risk

g deta ils  c f the t i r e  span over which the shucy is  to be race and the 
t ire  resc lu ticn  factors to be used throughout the s iru la t ic n  during 
the t ir e  that the corpcnent is  cperationai and during the t i r e  i t  is  
being aaintained o r  repaired .

a deta ils  o f p o licy  re la t in g  to resources etc.

The host oorputer then re linqu ishes ocntro l o f  the Simulator and the la t t e r  
proceeds to act autonorcusly. In d iv idu a l corpcnents operate in a -oni tad 
fashion, each process in g  random number d istrihu tion s in  oonjunction with the 
prescribed fa i lu re  and rep a ir  d is tr ibu tion s  to- datarrina i t s  operational- 
condition. During the sim ulation period , in taracticns between oompcneats may 
take place. In  oau rtic ila r, requests f o r  main.tananca, rep a ir  etc are dea lt  with 
by the Po licy  Module. The S t a t is t ic a l  Gathering Module is  designed to c o lle c t  
statistics re la t in g  to the behaviour c f  the ove ra ll ,  system model or to the 
oerformanca ci
'a-r-

s o a c i f ic  sub -un its w ith in  the- model; i t  acts in a f fe c t  as a
sta tist ica l prone’ .

Subsequent to a sim ulation run, the host ccmputar re-engages the Simulator and 
transfers in to  i t s  main, memory, data re la t in g  to the perfom anca c f the modal 
and its  component p a rts . A. su ite  o f programs w ithin the host ccmpirtar process 
this data and present i t  to the- eceperimentar as tabulated  numerical informaticn  
or d irectly  in  g raph ica l form on cathode—ray d isp lays.

QuarmsAUCN

Ihe compcnents which comprise the o v e ra ll  systam are continually  undergoing 
changes, o f s ta ts . At any time, a compcnent may f a i l  and f a l l  in:S3 a 'ncn— 
operating' s ta te r  some time la t e r  i t  w i l l ,  be rapairad  and move back into an 
' operating' s ta te -  Mathem atically, th is  changing sequenca i s  described by hue 
changing renewal process,, in  which there are emcedcad renewal procasses. The 
random time intervals, used in  the renewal p rtcasses are generaosd using psaudc- 
^dom  number generators- described by Deans and. Mann (.2) . A random, time in te rv a l 
Tn^ts generatad in. whi-ch 2^ a m ultiple of. a  quantum time value 12. Ihe 12 
^ lu as  used by d if fe re n t  compcnents w i l l  vary, and a l l  12 values are considered  
to be in teger m ultip ies o f an absolute TTrin-i-n-CTr quantisation value 12''min) . The 
'updating o f the m odelling process corresponds, to  incrementing the renewal process. 
A^compcnent is  only considered fo r  updating 'vhen a bas ic  counter keeping account 
or the time in to  the sim ulaticn has been incremented by an. amount equal to it s  
u2 value. 2hus a compcnent w ith  a time quantisation value o f 12 »  3 12 (min)
VQuld ha-'Te i t s  m odelling process utdated twice as often as the comocnenr fo r  whom 
iT «  4 I2 (m in ).

A- CCMPONIDTT MODQT.'?=’

Component Module represents a p a rt ic u la r  aspect c f  the actual systam being  
aodalled. In  i t s  sim plest form, a component may represent an item o f equipment 

as a generator" o r  a re lay . More abstract systam aspects such as ccmputar 
software or human behaviour can a lso  be represented, and the design of the 
Component Module u t i l is e s  microprogramming techniques to y ie ld  the degree o f 
- ie x ib ii ity  required. A. block diagram of the Module i s  shewn in  Tiqure 2.

age and blotfc replacement times are held in. reg iste rs  2a and 2b respective ly , 
‘ueir contents are ccntinuotisly compared with the current values held in

Ca and Gb. 2he former records the age o f the cempenent, the la t te r  the 
elapsed since the la s t  block reolacemen-c operation. When equality  of 

siuber comparison occurs, a. s ign a l i s  sent to a*m icrocontroller which then takes 
« e  appropriate action.

A Status iiegistar is  used to maintain a b i t  pattern, indicative of tb^ stats of
^ ® component. At any the comnenent mav be in any one c f the fo llow ing
states : - * .
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In working-order 

Undergoing repa ir  

Undergoing scheduled main tan an cs 

In a fa i le d  state -  unattended 

Ca cold standby

Possessing an unravealad fa u lt  condition 

Unavailable during s ta rtin g  delay 

Su ffering  additional risk  during start-up  

In addition, the Status R egister contains the fo llow ing f la g  b its  :

(i) A ’ repa ir request' f la g ,  set immediately a component fa u lt  is  
detected.

(ii) A 'maintenance request' f la g  that is  set on reaching a scheduled 
maintenance time

(iii) An 'acknowledge request' f la g  ind icating that the request fo r  assistance  
has been recorded by the Simulator and that g loba l resources are being 
released to s a t is fy  the request.

A Mask R egister and, a M icro-instruction Controi Unit contaiined within each 
Component Module allow a considerable amount o f decision-making to be devolved 
to component le v e l. The decision-making po licy  is. stored as a series o f 
controls in a 1024 x 8 -b it  programmable read-only-memory. In operation, requests 
by component fo r  attention are acted on by the m icrocontroller only a fte r  i t  
carries out an examination o f  the state of the component in conjunction with the 
b it  pattern held  in the Mask Register. 3y setting  d iffe ren t b i t  patterns i-n this  
reg ister, p a rt icu la r  features o f  component behaviour can be enabled or disabled.

Each compcnent has the a b i l ity  to model two ncn-expcnentiallv d isoributed state  
transition times. This is  achieved by storing the repair and maintanance 
^ str ibu tio n s  in read-w rite memories, these being w ritten to by the host computer 
during the in i t ia l i s in g  phase and read from during the simulation phase.

CONTROL MOCU'!'.?̂

Tollcwing the in it ia l is a t io n  phase by the host computer, the Control Module 
takas control o f the in terna l data buses o f the Simulator. Its  prime function 
rs to determine the amount by which the system simulation is  to be advanced in 
tame, i t  achieves this by investigating  each Component Module's time quantisation  
value (At) ie  the t ire  resolution on which that Component Module is  currently  
‘Operating. The Ccntroi Module se lects the sm allest AT value found, and advances 

simulation in time by that amomt. Thus the simulation proceeds by leaning 
corward in time eg in steps o f days when nothing s ign ifican t is  happening, but 
advancing slow ly eg in steps o f minutes while a compcnent is  undergoing repair.

STATISTICAL GATHERING .MODULE

During a simulation run, information re la tin g  to the number o f times prescribed  
ev ^ ts  occur, and th e ir  durations, is  recorded in the S ta t is t ic a l Gathering 
Module. I t  consists o f a number o f binary counters each o f whic.n can be 
programn:ed by the host computer, during the in it ia lis a t io n  phase, to record the 
occurence o f sp ec ified  events eg dcwn tjn^ of a p a rticu la r component or group 
Or components, time to f i r s t  system fa i lu re , nuaber of maintanance requests.

At tile ccnclusica o f a simulation run, the host computer regains access to the ■ 
^ r io u s  data buses within the Simulator and is  able to access and read data from 
« e  o c n t e r . recorders o f the S ta t is t ic a l Gathering .'-lodule.
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IMPAIR POLICY MODÜLS

The behaviour and state o f any coiriponent .in a system is  in te r -re la te d  to that o f 
each, of the other constituent components in that system espec ia lly  i f  lim ited  
maintenance and rep a ir  resources are ava ilab le . The Module is  programmed by the 
host computer during the in it ia l is a t io n  phase with data re la t in g  to the character 
and extent o f the resources ava ilab le  fo r  use. Throughout a simulation run, 
components issue requests fo r  rep a ir  and maintenance support, and i t  is  the 
responsib ility  o f the Repair Po licy  Module to accede to these requests within  
the bounds o f the ava ilab le  resotorces.

EKPSRIMEMTAL PROCEDURE

During the in it ia l is a t io n  phase, the experimenter defines the component and 
system spec ifica tion  by responding to a se ries  o f questions displayed on a 
terminal. In p a rt icu la r  the fo llow ing parameters are required fo r  each 
component :

(i) the time quantisation values to be used

(ii) whether an age replacement po licy  is  to he used

(iii) whether a block replacement po licy  is  to be used

(iv) the age and block replacement .times

(v) whether o r  not the component has a- high start-up  fa ilu re  p robab ility

(vi) whether or not the component has a start-up  delay associated with i t

(vii) the repsiir d istribu tion

(viii) the fa ilu re  d istribu tion

(viiii) the i n i t i a l  age of the component

The configuration o f the compcnents which comprise the system must a lso  be 
specified. A program within the host computer allows the experimenter to enter 
the topology o f the system being studied on an in teractive graphics terminal.
The position o f the components together with th e ir  connective relationships are 
entered as a success tree and the points in the network at which the S ta t is t ic a l  
Gathering Module w i l l  co lle c t data are defined.

fin a lly , the time over which the behaviour o f the. system is  to be obsejrred, is  
specified.

5XPSRI:^TAL results

To verify  the operation of the Simulator, a selection  o f system arrangements 
*.ave been studied. As an illu s tra t io n ' o f the Sim ulator's performance and 
asynchronous operation, the resu lts o f a two-comnonent series system are 
presented.

The components are id en tica l, each having a fa ilu re  d istribution  described by 
311 a-^onential function o f  mean 1/9. Global maintenance resources are 
su ffic ien t to ensure that a po licy  o f simultaneous block replacement o f 
components is  successfu lly  carried  out at in terva ls  o f Tb. With no repair  
permitted, the th eo retica l mean u n ava ilab ility , ujj, fo r  the system is  given by :

Ud X - 29Tb (1 -

^ block replacement time o f 1000 hours was selected and 1/8 chosen to be 1000
parameter Uq  is  uhen equal to 0.36 8. The minimum time quantisation  

IT(niin) was selected to be 1 hour and the fa ilu re  d istribution  time quantisation  
T̂Q) vas varied from 1 hour to 64 hours. The resu lts fo r .the mean unavailab ility  

the simulation time necessary to model 10° hours of operation are shewn on 
‘ igure 3. High TQ values are shewn to produee short simulation times. However,
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very high TQ values are net rewarded with, s ign ifican t speed ga in s , as the 
grohabiiity o f a coinponent existi.ng in a state employing such a TQ value 
reduces.

The example system described u t ilis e s  l i t t l e  o f the modelling features 
available. To demonstrate a selection  o f these features, consider ine .five- 
component system shown in Figure 4. The component fa ilu re  and repair  
distribution parameters are shown in Figure 5 along with other component 
features. The system success tree and probe positions at which information is  
to be gathered are shown in Figure 6 in ihe format d irec tly  acceptable to the 
Simulator.

The sen s it iv ity  o f system r e l ia b i l i t y  to ind iv idual component fa ilu re  
distribution parameters can be quickly determined. The d istribu tion  parameter .\ 
has been varied from it s  normal value ,\ji through the'range 0.5 \^ < \ < 3.0 Xn 
for each component in turn, a l l  other components remaining unchanged. The 
system mean _ un ava ilab ility  ug has been determined by probe ?1 fo r  system l i f e  
times o f 10“ hours. Each, simulation lasted  0.9 seconds and the resu lts are 
shown on Figure 7.

The system as observed by probe ?3 has been investigated fo r an age replacement; 
policy. Component 1 is  removed because it s  exponential f a i l ’ure d istribu tion  
results in an impaired performance when maintenance is  applied alongside repair. 
The four-component system can then be modelled fo r  l i f e  times o f 10“ hours in 
0.88 seconds. Only components 2, 3 and 4 took part in the maintenance 
programme. The cold standby un it, component 3 ’underwent normal repa ir at 
failure. The system rep a ir  and .maintenance rasotircas were such that a l l  
requests mace by components could be allowed. That i s ,  chrae 'men' were 
available to carry out the repa ir and maintenance policy . Repair at fa ilu re  for  
the components undergoing maintenance was considered to take two possib le  forms. 
Firstly  rep a ir  resu lted  in a component being as good as new (R G N policy ) . 
Eecondly, repa ir was minimal, that is  the repair did not rerum  the fa ilu re  
hazard function to its  startin g  value. In this case, the new cempenenr 
condition achieved by maintenance was better than the repaired condición ( i-l 3 R 
policy ). The time required to carry ouP main tan an cev on any component was 1 hour, 
.and the ace at which maintenance was applied was varied over a wide range o f 
values. The resu lts for. system ug are given in Figure 3, and fo r  the mean-time- 
between-sysrem-failures on Figiire 9.

.3 CC 
wich

oe

7

The system has further, been investigated  fo r a blocic replacement policy . 
Components 3 and 4 are scheduled fo r simultaneous maintenance ar intam/al 
Tb. Component 2 also undergoes maintenance at in tervals o f Tb but scarts 

in i t ia l  time sh ift  o f k Tb, 0 < k < 1. The maintenance times are 
exponentially d iscributed with mean vai'ue o f 10 hours, and repair is  R G M. 
maintenance and repair resources can be e ither 'one man' , ' Pwo men' or ' thr 
men' , applied according to two resource po lic ies  viz Policy 1 or Policy 2.
These po lic ie s  assign a p r io r ity  order to component requescs for use o f ice 
shared resources. Of, highest p iio r ity  is  component 2 followed by cemnonen 
'^en 4. The p o lic ie s  d i f fe r  in chat Policy 1 does not permit a low p r io r i  
request to be ^scontinued by the a rr iv a l of a higher p r io r ity  requesc a fte r  
bhe low p r io r ity  task has commenced.

'•'iith Tb = loco hours, the system has been determined for a range of k values 
for Policy 1. The resu lts fo r  varied numbers'of repair 'men'ere given on 
Tigure 10. Tb was then changed to 300 hours. The syscem uq determined for
 ̂ 'one man' and 'three men' case under Po lic ies  1 and 2. The results are shown 

on Fi'gure 11. With Tg = 300 hours maintenance is  applied too frequently with 
respect to optimal ug. The 'one man' policy  achieves a better system 
^ '^sllab ility  than the 'three men' one because many compenent maintenance requests 
cannot be immediately, responded to , and are delayed fo r la te r  consideration.

CONCL as I  OMR

A design, based on the use o f random signals is  proposed fo r simulating the 
raliafailit,y aspects of a system. Random signals interact wit.h deterministic 
signals representing features of a system in a stochastic d ig ita l processor. A 
Simulator has been designed and constructed using L S I  devices. .A high^ degree 
®f para lle lism  has been incoroorated in 'the design, and the use of asynchrono^ 
time-scaling techniques allows system Lifetimes of 10  ̂ hours to be simulated in
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approximataly one second. The ccntrol lo g ic  o f the Simulator is  implemented 
using mi crop rogramming techniques, enabling complex system features to be defined  
and modelled.

The Simulator has been designed to be general-purpose and has wide application . 
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•common b u s

Figure 1. Block diagram of Simulator
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Figure 2 Block diagram of a Coiroonent Module
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Figure 3 Two components in se ries  Maintenance at Tb = ICOO hours
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Figure S Success Tree o f five-coinponeiit system

Figure 7- Sensitiv ity  o f Uq to component parameters
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HIGH-SPEED STOCHASTIC RELIABILITY SIMULATOR

N D Deans and D P MannRobert Gordon's Institute of Technology, Aberdeen

A hardware Monte-Carlo simulator is proposed, employing logical trees to define the topology of system components. Component modules are employed by the simulator to model pcurticrular system aspects and they may be programmed to accommodate a wide range of behaviour. The highly flexible operación of the component modules yields a simulator well suited to the study of complex unreliable systems. Characteristic failure and repair distributions are selected during an initial programming phase, together with a definition of any maintenance and resource-management policies to be referred to during an e:cperimental run. The design and operational behaviour of such a simulator is reported and the results of a series of experiments carried out using the simulator are presented.

1. INTRODUCTION
Conventional methods of calculating the reliability of a system require a mathematical model of the system to be developed. A measure of the reliability is then obtained by either solving the system equations by analytical means, or by carrying out simulation exercises on the model using a digital computer. Using these techniques, investigators face difficulties :
(i) in establishing appropriate mathematical models for anything other than simple systems.
(ii) in dealing with components whose characteristics of reliability cannot be modelled by exponential' distributions.
(iii) in producing results within acceptable times.
Attempts are often made to minimise 
■these difficulties by sinrolifying the 
original model, but this leads to 
results of questionnable accuracy.
A new computing instrument, based on the use of random signals, is proposed for simulating the reliability aspects of a system. Random signals interact with deterministic signals representing features of a system in a stochastic digital processor. As a result, a departure from the conventional von Neumann processing structure can be m.ade, and a considerable degree of parallelism achieved.
The Simulator is in effect a high 
speed special-purpose digital system 
acting as a dedicated peripheral

device to a host computer. It is comprised of a number of identical programmable 'Component Modules'. Each Component Module represents a particular aspect of the actual system being modelled. In its simplest form, this may be a resistor or transistor, but more complex items of equipment or abstract aspects of a system such as human behaviour can be represented, provided their particular operational characteristics can be defined.
Each component in the system undergoes, during a simulation run, a series of failure and repair processes. In operation, values with prescribed distributions are compared with random numbers, producing probabilities for the instantaneous state transitions for each component.
Two techniques of time-scaling can be used in the simulator. In the first, referred to as synchronous operation, the 'real' lifetime is subdivided into a number of equally spaced time intervals. At the start of each new interval, all aspects of the model are brought up to date.
The second method producing a much faster simulation time can be achieved however using an asynchronous mode of operation. In this mode the updating of a component occurs when a high probability of a state transition exists. The reliability behaviour of all conroonents is simultaneoiisly being modelled and the time at which updating takes place is selected on the basis of the shortest time-to-next-probable- event. According to the event selected, the model is updated. In this mode, the quantum of time that the simulation is incremented is not a constant; for example, during times when the system
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Figure 1 Simulator block diagram

is working, the simulator leaps forward in large time periods (e,g. weeks) whereas- when- the- system is undergoing maintenance or repair, the simulator moves forward in relatively smaller periods (e.g. hours).
The simulation process is controlled by three 'levels' of definition viz
(i) At a Primary Level, special- purpose digital circuitry is used to store the distributions for the failure, maintenance and repair characteristics of each component, and these, together with an internally generated random number source, determine the state (operational, requiring repair, undergoing scheduled maintenance etc) of that component.

(ii) At a Secondary Level, reprogram­mable memories are used to provide microprogrammed control of key system features. The particular states that any component can exist in can be individually defined, as can the power devolved to the component to enable it to unilaterally issue requests for maintenance and repair. In addition, particular features may be masked out of a simulation, restricting the range of behaviour of the component.
By redefining the system features, component behaviour can be altered dramtically.
Ciii) At a Tertiary Level, a suite computer programs exist in a main­frame (host) computer to which the

of



Simulator is connected. These are designed to allow the user to define, inter alia, the topology of the system, being simulated, tl̂ e characteristics of individual components, the specific type of information to be collected during the simulation, and the length, of time that the simulation should continue for. Logical networks and tree analyses are used to define the system topology and operational conditions, and graphical entry techniques are used in the host computer to enter such data.
2. MODELLING HARDWABE (PRIMARY LEVEL)
The Simulator takas the form of a number of sub-units interconnected by a common data bus as shown on Fig 1, the whole being connected via a communications processor to a host coniputer and an operator terminal. A number of Conponent Modules, each capable of simulating a particular feature of the system being studied, model the reliability characteristics of that system. The remaining sub­units serve to monitor, support and control the Component Modules.
2.1 Component Module
Each Component Module is comprised of the following circuit units :
(i) "Memory devices that are used to store the failure and repair distributions. These are reprogram­mable, enabling a wide range of distribution types to be used.
(ii) A source of random numbers [l] to interact in a stochastic manner with the coit̂ ionent reliability characteristics. The random number generator used [ 2] ensures a high degree of statistical independence between component behaviour.
(iii) A number of counters to record age replacement times, block replacement times, component age, number of event occurences etc.
(iv) A 'status register' defining the condition of the component at any time. As a result of entering 
certain statesr the Component Module will issue requests for assistance via the Policy Module.
(v) A reprogrammable 'Mask Register' that allows the user of the Simulator to indicate whether or not certain states and features are required.
(vi) A microprogrammable control unit. This enables a considerable amcmt of decision-making to be devolved to individual Component Modules.

In operation, data from thé memories interacts with binary patterns from the number generators, the resul ts of these interactions determining the state of the component. At times specified by counters, certain major events eg the replacement of that component may take place.
2.2 Network Specification Module
Logical trees are used to provide che specification of the topology of the system whose reliability is being studied. The conçonent intercon­nections are programmed by the- user prior to a simulation run by writing data into look-up tablesin this module. In addition, the nodes in the logical tree at which statistical data is to be collected are defined.
2.3 Statistical Gathering Module
This unit consists of a number of counters. Data is collected during a simulation run in these counters and transferred to the host computer at the end of a run for inspection and further processing.
2.4 Policy Module
This unit is initially programmed with data relating to the available repair and maintenance resources and to the management policies to be used for the distribution of these resources. The Policy Module is continuously informed by the individual Component Modules of their conditions, and responds to demands for assistance.

MICROPROGRAMMABLE (SECONDARY LEVEL) FEATURES

To enable the Component Modules to simulate a wide variety of system features, a number of key control and decision-making circuits within the Simulator are microprogrammed. In particular, the behaviour of the Mask Register and the control electronics in the Component Modules is determined by firmware contained in a series of reprogrammable memories. By writing different data patterns to these memories via the host computer, the response of the Simulator to con̂ ionent behaviour can be altered.
4. OPERATIONAL BEHAVIOUR CTERTIARY LEVEL)
The operation of the Simulator is controlled at the tertiary level by commands issued to the system’software in the host computer via a visual display unit. Initially, the characteristics of each component must be entered. In a typical simulation.



the following parameters must be specified :
(i) the failure distribution
(ii) the repair distribution
(iii) the age replacement time iif applicable
(iv) the block replacement time iif applicable)
(v) whether or not the component has a high start-.up failure risk
(vi) whether or not the component has a start-up delay tine associated with it Figure 2 System under consideraHon
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Figure 3 Component’ specification

(vii) the initial age of the component
(viii) whether the component can interrupt the simulation with demands for attention.
The topology of the system is then entered. The component positions in the system and the connections that specify the success tree are defined using an interactive graphics terminal. In addition, the positions in the tree at which statistical information is to be collected during a simulation run are identified. This latter action causes a number of hardware counters in the simulator to be assigned to the task of recording data relating to system performance, e.g. the number of times a particular component was in a non-operational state. Finally the time for which the simulation should run is defined, either as a total elapsed time or as the tim.e to the occurrence of a specified event.

Following an experimental run, the host computer re-engages the data buses of the simulator and gains access to the statistical gathering counters. These are read into the host computer and subjected to various analysing procedures prior to being presented to the e:cperimenter as tabulated results or as graphical information.
5. EXPERIMENTAL RESULTS
A five-coa^Jonent system has been studied. The flow diagram for the system and component parameters are given on figures 2 and 3. When determining system reliability, 'long' simulation times are necessary where event probabilities are low if confidence in the simulation results is to be ensured. To aid the experimenter in determining sufficient simulation run times, the host computer



software determines the Coefficient of Relative Variation (CRV). The CRV can be used as a measure of good statistical estimation and is given by the ratio of standard deviation to mean value. For tlie example used, the CRV of the unavailability for the system and for component 2 have been determined for various simulation r m  times. The results are presented in 
figure 4.

of T hours but start with an initial time shift of kT, 0 < k < 1. The ■ system repair and maintenance resources were such that all requests made by components could be allowed. That is, three 'men' were available to form the normal repair team. The time to carry out maintenance, on any component was 1 hour, and the time. at. which maintenance was applied was chosen, to be 1000 hours, 500 hours and. 200 hours. The system mean ’unavailability has been determined for a range of k values and is presented on Figure 5.

simulated life time (hours) 

Figured CRV of unavailability .Figures Block replacement

The time required to carry out the investigation and reach a CRV of 0.1 was 0.27 seconds for the overall system and 0.015 seconds for component 2.
The reliability of the system with component 1 omitted has been investigated when a block-replacement policy is adopted.
Component 1 was removed because its particular exponential failure distribution characteristics concealed the significant effects of various preventative maintenance policies. In this truncated system, only Components 2, 3 and 4 took part in the maintenance programme. The cold- standby component (Component 5) underwent normal repair at failure without delay and by a repairman outwith the normal repair team.
Components 3 and 4 are scheduled for simultaneous maintenance at intervals

Further investigations have been carried out for an age replacement policy. The repair of components- 2, 3 and 4 was considered to be minimal [3] i.e. repair did not return the failure hazard fxinction to its starting valúe. In this case, the new component condition achieved by maintenance was better than the repaired condition (NBR) . To implement- this policy, component repair distributions were modelled by exponential fianctions of equivalent mean. The component maintenance times were exponentially distributed with a mean value of 10 hours. An investigation to determine best age replacement times was carried out. The results for component ud 3-̂ ® shown in figure 6. From the results, maintenance times of 200 hours, 500 hours and 300 hours were chosen for components 2, 3 and 4 respectively.The maintenance and repair resources could be either 'one man', 'two men' or



o

rn
I  °'B>ac

O

100 200 500 1000 10000
age replacement time (hours)
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'three men'. applied according to three resource policies. These policies assigned a priority order to component requests for use of the shared resources. Policy 1 gave highest priority to coniionant 2 followed by 3 then 4. Policy 2 was as policy 1, but allowed lower priority requests to be discontinued by the arrival of a higher priority request after the low priority task had commenced. Policy 3 gives components priority 4, 3,2 with no discontinuing allowed. Varying the global policy and number of policy men, the system unavailability mean up time and mean, down time has been determined. The results are presented in figures 7, 8 and 9.
6. CONCLUSIONS
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The concept and design of a stochastic reliability simulator has been presented. Special-purpose circTiitry, representing components in the system being studied, controls the inter­action of deterministic and random number sequences. This interaction results in a definition of the components' states. The conroonent and network specification is initialised by allowing a host », computer to access memories installed in the Simulator, and that same computer re-accesses various registers and counters following a simulation- run to determine the component and netv/ork's operational history.
A series of experiments, are reported, confirming the speed .and flexibili.ty of the simulator.- Lifetimes of 10̂  hours are shovm to be simulated in less than one second and the ease with which global resource policies can be studied are demonstrated.
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