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ABSTRACT
This paper proposes a model-based reference tracking scheme for stable, MIMO, nonlinear pro-cesses. A Joint Unscented
Kalman Filtering technique is exploited here to develop a stochastic model of the physical process via simultaneous
estimation of the process states and the time-varying/uncertain parameters. Unlike the existing nonlinear model predictive
controllers, the proposed scheme does not involve any dynamic optimisation process, which helps to reduce the overall 
complexity, computation overburden and execution time. Furthermore, the proposed methodology offers robustness to 
process model-mismatch and considers the effects of stochas-tic disturbances. A nonlinear two-tank liquid-level control 
problem and a nonlinear coupled level-temperature control process are studied to demonstrate the usefulness of the 
proposed scheme.
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1. Introduction

Model-based control techniques such as Internal Model Control (IMC) (Economou et al., 1986), Model Predictive 
Control (MPC) (Garcia et al., 1989; Qin & Badgwell, 2003; Rawlings, 2000), Model Reference Adaptive 
Control  (MRAC) (Henningsen & Ravn,  1992; Landau, 1974), etc., have drawn significant attention of the 
process control engineers over the last four decades. Among these techniques, MPC has already established 
its worth as a popular industrial control scheme due to its ability to maintain satisfactory performance and 
stability for complex nonlinear processes/plants by easily adapting to new operating conditions. At its 
inception and throughout the 1980s, MPC was a kind of model-based control and was a variant of 
IMC family of controllers (Economou et al., 1986). MPC can be primarily categorised as linear MPC 
(Morari & Lee,  1999) and Nonlinear MPC (or NMPC) (Allgower et al.,  2004) depending on the type of the 
underlying plant model. One of the significant challenges in designing any model-based control scheme 
is to select an appropriate model and to identify the process parameters. But real-time parameter identification 
is prone to be erroneous for higher-order and complex nonlinear industrial processes and especially when the 
process is subjected to stochastic uncertainties (e.g. process noise, measurement noises, random variation in 
process parameters). Because of these issues, both performance and stability deteriorate during real-time 
implementation since all industrial processes are more or less affected by the stochastic factors.
Stochastic MPC (or SMPC) (Heirung et al., 2018) has drawn profound attention of the process control 
community over the past two decades due to its advantages over the deterministic model-based control 
techniques in ensuring satisfactory, safe and reli-able operation in the presence of stochastic uncertainties. In an 
SMPC scheme, KF/EKF/DEKF/UKF estimation technique (Haykin, 2001; Mayne, Rawlings, 
Rao, & Scokaert, 2000) is exploited to construct the model states taking into account the effects of 
stochastic uncertainties and therefore, offers better closed-loop tracking performance despite the presence of 
noise and random exogenous disturbance (Heirung et al., 2018; Hu, Gao, Zhong, Gao, & Subic, 2015). Other 
critical aspects that we need to consider for implementing an NMPC/SMPC scheme are the computational 
complexity and the processing time. Notably, in case of SMPC implementation (Heirung et al., 2018), both an 
estimation algorithm and a batch of dynamic optimisation programmes concurrently run, which causes 
excessive computational burden and also renders the process too much time-consuming. As a result, a significant
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(1a)ẋ = f (x, u, d) + Gw, x0 = x(t0);

y = Cx + v, (1b)

where x ∈ X ⊆ Rn denotes the state vector, u ∈ U ⊂ Rm is the control input vector, y ∈ Rp is the output vec-tor. 
While d ∈ Rnd , w ∈ Rnw and v ∈ Rnv represent the external disturbance, process noise and measurement noise. The 
matrix G ∈ Rn×nw models the effects of wk on the process state x. The following technical assump-tions are 
satisfied by the class of systems described in (1a)–(1b).

Assumption 2.1: The vector field f : Rn × Rm × Rnd →Rn continuous in u and d and locally Lipschitz in x and 
satisfies f(0, 0, 0)=0. there exists at least one stableoperating point ( x, u, d=0) such that 
is stable and the triplet (A, B.C) is controllable and ¯∂uobservable where B := ∂f |

(x̄,ū,d̄=0).

Assumption 2.2: U is compact, X is connected and the origin is contained in the interior of U × X.

Note that x, y, u and d all are functions of time t ≥ 0, that is, x = x(t), y = y(t), u = u(t) and d = d(t). Below, 
we declare several technical assumptions which need to be satisfied for the proposed NMBC schemes to work. 
w and v satisfy the following assumption:

delay  occurs  in generating the  required control action, which may degrade both performance and stability 
of the overall scheme. Apart from state estimation, often parameter estimation also becomes necessary, 
especially when the parameters are uncertain or keep on varying. For example, in Walker (2006), KF has 
been used for parameter estimation involving state constraints. Note, KF and UKF are used for linear plant 
models; while EKF being an extended version of KF is applied for nonlinear systems (Haykin, 2001). Apart from 
that, Joint EKF (JEKF) and Dual EKF (DEKF) are used for joint or sequential estimation of both states and 
parameters (Haykin, 2001). For recent of applications MPC, SMPC and other model-based control techniques, 
the articles Ma, Matusko, and Borrelli (2015), Bhadra, Panda, Bhowmick, Goswami, and Panda (2019), Wang, 
Chen, Ren, and Zhao (2018), Yuan, Dai, Wei, and Ming (2020), Soumya Ranjan, Bidyadhar, and 
Subhojit (2017), Velarde, Maestre Ishii, and Negenborn (2018), Ringbeck, Garbade, and Sauer (2020), Liu 
and Guo (2021), Guo and Zhao (2022), Guo and Liu (2022), and Gao et al. (2020) can be referred.

Drawn by  the  issues  mentioned above, in  this paper,  we seek to develop an ‘SMPC-like’ nonlinear 
model-based control (NMBC) scheme for stable MIMO non-linear industrial processes, which utilises a 
JUKF estimation algorithm to construct the model states. Unlike an NMPC/SMPC, the proposed NMBC 
scheme does not apply any dynamic optimisation technique, instead generates the 'predicted' component of the 
control input by algebraically solving the steady-state response of the process model. A  s  a  r e  s u  l t ,  i  t  
c a  n  s  i g n  i f i  c a n  t  a  m o u n  t  o f  p r o c  e s  s i n g  t  i m  e .  Also note that, in this paper, JUKF estimation technique 
has been used instead of JEKF to avoid the limitations associated with the family of EKF estimation techniques.

1.1. Notation

Notation and acronyms are standard throughout. A > 0 (≥ 0) i  ndicates A ∈ Rn×n i s a positive defnite (semidefinite) 
m atrix. sgn represents the signum function and i s defined as: sgn(x) = 1 when x ≥    0 and sgn(x) = −1 when  x <   
0. The symbol | · | denotes the absolute value. x̂(k + l|k) represents the predicted value of the estimated states x̂ at 
time k+l based on information available at time k. ŷ(k + l|k) denotes the predicted value of the  model output y at 
time k+l based on information available at time k. E[·] represents the expectation operator. 
Ek[·] gives the expected value of a random variable (vector/matrix) based on the information available at time k. 
The symbol C1 denotes the set of continuously differentiable f unctions. NSR stands f or the noise-to-signal ratio.

2. Technical background and problem formulation

In this paper, we consider a class of finite dimensional, causal, nonlinear, well-defined, continuous-time systems 
described as



Assumption 2.3: Both w and v are zero-mean white noise with known probability distributions pw and pv, 
respectively, and Q = E[ww�], R = E[vv�], E[wv�] = 0 where Q and R denote respectively the covariance 
matrices associated with w and v.

wk can also be viewed as exogenous input that cap-ture the effect of model uncertainty and in that case, G 
can be used as a weight to represent the uncer-tainty. d either appears as a low-frequency output 
disturbance or it can be introduced by perturbing some of the critical process parameters. When the 
disturbances and noises are considered to be random variables, (1a)–(1b) becomes a stochastic model of the 
process dynamics. Note that this notion is different from a system (or process) that is inherently 
stochastic in the sense that the system naturally exhibits random behaviour.

2.1. JUKF algorithm

This subsection presents a slightly modified version of the JUKF algorithm based on the l iterature ( Julier & 
Uhlmann 2004; Sarkka,  2007; W   an &   van der Merwe, 2000; Yu et al., 2016). I n case of J UKF, both the system’s 
states ( xp) and the parameters ( θ) are estimated  simultaneously. We will define an combined state vector x = 
[xp� θ�]� Filter initialisation is done following the standard procedure (Haykin, 2001). We then choose a set of 
2L+1 sigma points χ(k − 1|k − 1, i)

χ(k − 1|k − 1, i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x̂m(k − 1|k − 1) (wh√en i = 0
x̂m(k − 1|k − 1) + (L + λ)P(k − 1|k − 1)

)
i

when i ∈ {1, 2, . . .( ,√L}
x̂m(k − 1|k − 1) − (L + λ)P(k − 1|k − 1)

)
i

when i ∈ {L + 1, L + 2, . . . , 2L}

(2)

where λ = α2(L + κ)  − L; κ ∈ R≥0 is a secondary scaling factor; α is another constant determined by 
the distribution of the  sigma points around  χ̂ (k − 1|k − 1) and usually lies in the range [10−4, 1]. 
Note  the sigma points are symmetrically distributed about x̂(k − 1|k − 1) and they are derived based on the 
esti-mated states and parameters x̂m(k−1|k−1) and their covariance P(k−1|k − 1). The weight functions are 
defined as

Wc(i) = Wm(i) = 1
2(L + λ)

∀ i ∈ {1, 2, . . . , 2L} (3a)

Wc(0) = λ

L + λ
+ (1 − α2 + β) (3b)

Wm(0) = λ

L + λ
. (3c)

The parameter β is used to incorporate prior knowl-edge of distribution of x(k) and for the Gaussian distri-
bution. The optimum value of β is 2. Now, the predicted values of the sigma points are obtained through the 
following procedure

χ(k|k − 1, i) = χ̂ (k − 1|k − 1, i)

+
∫ kT

(k−1)T
f (χ(τ , i), u(k − 1)) dτ (4)

χ(k|k − 1, i) = χ̂ (k − 1|k − 1, i) +
∫ kT

(k−1)T
f (χ(τ , i), u(k − 1)) dτ (4)



∀ i ∈ {0, 1, 2, . . .  , 2L}. The predicted state and param-eter estimates x̂m(k|k − 1) are obtained from the 
predicted sigma points as

x̂m(k|k − 1) =
2∑L

i=0
Wm(i)χ(k|k − 1, i). (5)

The error covariance matrix P(k|k − 1) is obtained from the predicted sigma points as:

P(k|k − 1) =
2∑L

i=0
Wc(i){χ(k|k − 1, i) − x̂m(k|k − 1)} × {χ(k|k − 1, i) − x̂m(k|k − 1)}� + Q

where Q is the process noise covariance matrix. The sigma points are 
now recomputed using the predicted  state and parameter estimates (5) as follows:

(6)

χ∗(k|k − 1, i)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂m(k|k − 1) for i = 0
x̂m(k|(k − 1, i)

+ √
(L + λ)P(k|k − 1)

)
i where i ∈

{1, 2, . . . , L}
x̂m(k| − 1, i)

− (k√
(L + λ)P(k|k − 1)

)
i where i ∈

{L + 1, L
+2, . . . , 2L}

(7)

These sigma points χ∗(k|k − 1, i) ∀ i ∈ {0, 1, 2, . . .  , 2L} are propagated through the measured output 
Equation (1b) to obtain the predicted measurement as 

ŷm(k|k − 1) =
2∑L

i=0
Wm(i)Cχ(k|k − 1, i). (8)

Figure 1. JUKF-based NMPC scheme.



Figure 2. Schematic diagram of the JUKF-based NMBC scheme for stable nonlinear MIMO processes.

Figure 3. Schematic diagram of a two-input-two-output (TITO) coupled-tank process.

The error covariance Pee(k) and the cross covariance between the predicted state and parameter 
estimation errors Pθe(k) are computed as follows:

Pee(k) =
2∑L

i=0
Wc(i)[C

(
χ∗(k|k − 1, i)

) −
× [C

ŷm(k | k − 1)](
χ∗(k|k − 1, i)

) (9)

and Pθe(k) =

− ŷm(k|k − 1)]� + R
2∑L

i=0
Wc(i)[χ∗(k|k − 1, i)

(10)



weights associated with the control input u and the predicted deviation of �e = ysp − ŷm respectively. The 
procedure for finding the sigma points χ(k + j|k, i), predicted states x̂m(k + j|k, i), predicted error covariance 
P(k + j|k, i) and the predicted model output ŷm(k + j|k, i) are the same as described in the JUKF algorithm.

over {u(k|k), u(k + 1|k), . . .  , u(k + Nc − 1|k)} subjected to

χ̂(k + j|k, i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x̂m(k + j|k) (for√i = 0, j ∈ {0, 1, . . ,Np − 1}
x̂m(k + j|k) + (L + λ)P(k + j|k)

.)
i

where i ∈ {1, 2,(√. . . , L}, j ∈ {0, 1, . . ,Np − 1}
x̂m(k + j|k) − (L + λ)P(k + j|k)

.)
i

where i ∈ {L + 1, . . . , 2L}, j ∈ {0, 1, . . . ,Np − 1}

(16)

where Np and Nc are respectively the prediction horizon and the control horizon; Wu and We are the

Similarly, the error covariance can also be updated as

P(k|k) = P(k|k − 1) − K(k)Pee(k)K(k)�. (14)

2.2. A JUKF-based NMPC scheme

This subsection will briefly explain the working princi-ple of an SMPC scheme that utilises a JUKF algorithm 
to estimate the model states (xm) and also some of the process parameters (θ). Given the desired reference 
trajectory ysp(k + j|k) ∀ j ∈ {1, 2, . . .  , Np}, the  JUKF-NMPC algorithm will determine the present and 
future values of the control signal u(k + j|k) ∀ j{0, 1, . . .  , Nc − 1} by minimising the following objective 
function (Figure 1)

J=
N∑p

j=1
We

[
�e2(k + j|k) +] Nc∑−1

j=0
Wu

[
�u2(k + j|k)] (15)

where R represents the Measurement noise covariance matrix. The innovation γ (k) is computed as

(11)γ (k) = y(k) − ŷm(k|k − 1).

Subsequently, Kalman gain matrix K(k) at the kth instant is defined as

K(k) = Pθe(k)Pee(k)−1. (12)

Utilising the Kalman gain and the residual at the kth instant, the state estimates x̂m(k|k − 1) can be updated as follows:

x̂m(k|k) = x̂m(k|k − 1) + K(k)γ (k|k − 1). (13)

2.3. Problem formulation

Given a stable nonlinear process that can be mathematically expressed by (1a)–(1b) satisfying 
Assumptions 2.1–2.3 and the possible stochastic behaviour, the control problem is to design a model-based 
tracking scheme such that the process output can satisfactorily track the desired set-point in presence of 
actuator saturation.



diagonal controller gain elements Kpij , i �= j, are chosen on the basis of a weighted average of the steady-state 
cross-coupling gains. If ŷmi (t) = 0 at some t ≥ 0, then Kpii may be chosen to be the preceding non-zero gain 
value of that particular channel. The total control effort ua is given by

ua(t) = NKp(t)e(t) + up(t) (18)

where N = diag{N1, N2, .  . .  , Nm} with Ni > 0 represents a set of multiplying factors used online for 
performance improvement in a perturbed/disturbed operating condition. The upper and lower limits umax 
and umin of the saturation blocks included in the scheme (Figure 2) are decided based on the physical 
strength of the actuators (Skogestad & Postlethwaite, 1996). Note here that the JUKF algorithm is executed 
on a discrete-time basis since both in simulation and real-time implementation, all input and output data are 
generated or measured at discrete time steps.

The working principle of the proposed JUKF-based NMBC scheme looks similar to that of the JUKF-based 
NMPC scheme discussed in Subsection 2.2 However, there is a subtle difference between these two 
methodologies. Contrary to the SMPC scheme, the NMBC scheme resort to solving the process 
Equation (1a) at the steady-state condition

f (x̂m,up, d̄) = 0 (17)

to obtain the ‘predicted’ component of the input up = [up1 , up2 , . . .  , upm ]� ∈ Rm where d̄ ∈ Rnd is the 
modelled disturbance input which incorporates the effect of exogenous disturbances. Controller gain of the ith 

channel Kpii (i.e. the main-diagonal elements of Kp) at each  time instant is selected as the inverse of the 
instantaneous gain of that channel, i.e. Kpii = ŷ

u
m

pi

i 
for each i ∈ {1, 2, . . .  , m} where ŷm = Cx̂m. While the  off

• The controller gains (Kp in Figure 2) can be tuned online based on the real-time input and output 
data, which makes the proposed scheme adaptive to changes in the operating conditions and parameter 
variations.

• JUKF estimation technique is used to jointly estimate the model states xm and some of the process 
parameters θ that are expected to vary.

• The control law does not rely on the plant model inversion, which helps to eliminate a lot issues during 
practical implementation.

• In contrast to NMPC/SMPC, the NMBC scheme does not involve any dynamic optimisation process, 
which significantly reduces the overall complexity, computational overburden and execution time.

• The proposed scheme also considers the physical constraints of the actuators by explicitly using the 
saturation blocks in each of the channels, as shown in Figure 2. The scheme also mitigates the risk of 
‘controller windup’ as it does not include any integral controllers.

• The NMBC scheme applies to a class of stable, MIMO, nonlinear processes that can be mathematically 
modelled by the Equations (1a)–(1b).

• The proposed scheme exhibits robustness to process model-mismatch due to parameter variations and 
stochastic uncertainties (d, w, v).

3. Designing a JUKF-based NMBC scheme

This section presents the JUKF-based NMBC scheme shown below which is the key contribution of this 
paper.

We will now mention several noteworthy features of the proposed scheme.

4. Case study: level control of a TITO coupled-tank process

The first case study considers the liquid-level control problem of a coupled-tank system (Lian et al., 1998)
(Figure 3).



where A1 and A2 indicate the respective cross-sectional areas of the tanks; h1 and h2 denote the respective levels of 
Tank 1 and Tank 2; qin1 and qin2 are the volumet-ric inflow rates of Tank 1 and Tank 2; qout1 and qout2 denote 
the outflow rates of the tanks; qout12 represent the flow rate to Tank 2 from u1 and u2 signify the voltages required
 to maintain qin1 and qin2; β1 = a1√2g and β2 = a2

√
2g are the downstream valve coefficients of Tank 1 and Tank 2

where a1 and a2 denote the cross-sectional areas of the outlet pipes connected to

Tank 1 and Tank 2, while 

¯ h̄

             √2g indicates the same for the value connecting the tanks where same for the valve connecting the tanks 
where a12 is the cross-sectional area of the connecting pipe. Note that h1, h2, u1 and u2 are all real-time variables 
defined for all t ≥ 0 but explicit dependence of time t is omitted everywhere. Differential changes in the levels �h1 

and �h2 with respect to the nominal values h1 and   2 are selected as the state variables x1 and x2. The 
process variables and their nominal values are listed in Table 1.

4.2. Simulation results

To test the tracking performance of the proposed NMBC schemes and to compare it with a NMPC 
scheme, the reference trajectories ysp1 and ysp2 were arbitrarily chosen respectively for the liquid level h1 of 
Tank 1 and h2 of Tank 2 as follow:

ysp1 =

⎧⎪⎨
⎪⎩
25 cm ∀ t ∈ [0, 20)
30 cm ∀ t ∈ [20, 300)
27 cm ∀ t ∈ [300, 500]

and

ysp2 =

⎧⎪⎨
⎪⎩
20 cm ∀ t ∈ [0, 20)
25 cm ∀ t ∈ [20, 300)
22 cm ∀ t ∈ [300, 500].

 β12 = a12

Table 1. Nominal values of the parameters and variables associated with the coupled-tank process.

Process variable Nominal value

A1 and A2
h1max  and h2max
β1
β2
β12
u1 = qin1
u2 = qin2
1

2

1

ū
ū
h̄
h̄2
g

32 cm2

40 cm
14.30 cm5/2/s 14.30 

cm5/2/s
20 cm5/2/s

0 ≤ u1 ≤ 1000 cm3/s 
0 ≤ u2 ≤ 1000 cm3/s 

114.9 cm3/s
20.95 cm3/s

25 cm
20.25 cm

980.7 cm/s2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1
dh1
dt

= −β1
√
h1 − βx

√
|h1 − h2|[

sgn(h1 − h )
] + qin1,

A2
dh2
dt

= −β2

2√
h2 − βx

√
|h1 − h2|[

sgn(h1 − h2)
] + qin2,

y1 = h1 and y2 = h2,

(19)

4.1. Process description

Liquid-level dynamics of the coupled-tank process is described by the following differential equations:



Figure 5. Set-point tracking response of the coupled-tank system obtained via applying JUKF-based NMPC and NMBC schemes 
considering both process model-mismatch measurement noise (NSR = 0.1): (a) level h1 of tank 1, (b) control input q1, (c) level h2 of 
tank 2, (d) control input q2.

Figure 4. Tracking response of the coupled-tank process obtained via JUKF-based NMPC and NMBC schemes considering 
measurement noise (NSR = 0.1): (a) level h1 of tank 1, (b) control input q1, (c)  level h2 of tank 2, (d) control input q2.

4.2.1. Tracking response with measurement noise 

Figure 4(a,c) show the tracking response of the liquid level h1 of Tank 1 and h2 of Tank 2. The figures 
suggest that both h1 and h2 are closely following the respec-tive set-point trajectories ysp1 and ysp2 
(marked by Red colour) in presence of measurement noise (NSR = 0.1). Figure 4(b,d) depict the 
corresponding control input demands from which it is observed that both u1 = qin,1 and u2 = qin,2 
remain within the prescribed bounds. We also notice that the performance of the proposed NMBC 
scheme is at par with the NMPC and moreover, the control inputs sometimes exhibit more oscillations in 
case of NMPC than NMBC.



The figures suggest that despite the process model-mismatch, both of the process outputs h1 and h2 are 
satisfactorily tracking their respective set-point trajectories ysp1 and ysp2 . The amplitude of oscillations in the 
tracking responses vary within 3 − 5% of the steady-state value. Figure 5(b,d) show the respective control 
input demands. Note here that both  qin,1 and qin,2 remain within the specified range. The figures reveal 
that the performance of the NMBC scheme is compa-rable to that of the NMPC scheme.

4.3. Comparative study on the performance achieved by NMBC and NMPC schemes

This subsection will analyse the impact of varying the tuning parameter N in both NMBC and NMPC 
schemes for improving their dynamic performances. Figure 6 shows the tracking responses achieved by the 
NMBC scheme subject to four different sets of values {10, 200}, {20, 400}, {30, 600}, {40, 800} of the tuning 
parameters N1 and N2. The figure reflects that the speed of response becomes faster with increasing values of 
N1 and N2. Similarly, Figure 7 portrays the tracking response achieved by the NMPC scheme subject to N 
∈ {30, 20, 10, 5}. The figure reveals that the speed of response improves with a decreasing value of N. 
Depending on the simulation responses, we conjecture that the performance of the NMBC scheme is as 
good as that of the NMPC scheme.

5. Case study on a coupled level and temperature control process

In this case study, we consider a benchmark two-input-two-output (TITO) level and temperature control 
process (Nakamoto &Watanabe, 1991)  which is quite common in process and pharmaceutical industries. 
The salient features of this process are: highly coupled (variation in the feed flow rate  af f ects both the 
liquid level  and temperature of the tank) and nonlinear (square root and inverse nonlinearities are present) 
which renders the level and temperature control process a challenging and non-trivial task. A schematic 
diagram of the process is shown in Figure 8.

The process has two inputs, viz, feed flow rate qin,1 = u1 and heat flow rate qin,2 = u2; and two outputs,  viz, 
liquid level h = y1 and temperature T = y2 of the tank. In this study, We assume that the process is adiabatic, 
the tank is stirred continuously throughout the experiment and the dynamics  of the sensor and actuator  can 
be neglected without loss of generality. Liquid level is measured by differential pressure level sensor while the 
temperature is measured by a thermocouple as indicated in Figure 8. Governing equations of the level and 
temperature control process are presented below:

ẋ1 = − k
A
x
1
2
1 + 1

A
u1, (20a)

ẋ2 = T0 − x2
Ax1

u1 + 1
CpρAx1

u2, (20b)

y1 = x1 and y2 = x2, (20c)

β1 = 14.30 for 0 ≤ t < 350 s,
13.5 for 350 s ≤ t ≤ 500 s;

β2 =
{
14.30 for 0 ≤ t < 30 s,
15.0 for 30 s ≤ t ≤ 500 s;

β12 =
{

Tc0 =

20 for 0 ≤ t < 200 s,
21 for 200 s ≤ t ≤ 500 s;{
350 for 0 ≤ t < 100,
352 for t ≥ 100.

4.2.2. Impact of process model-mismatch 

Figure 5(a,c) shows the tracking response of the two-tank system considering the effect of both process model-
mismatch and measurement noise (NSR = 0.1). The process parameters β1, β2 and β12 were perturbed as mentioned 
b{elow.          



Figure 6. Set-point tracking responses of the coupled-tank process obtained via applying JUKF-based NMBC scheme subject to 
variation of the tuning parameters N1 and N2.

Figure 7. Set-point tracking responses of the coupled-tank process obtained via applying JUKF-based NMPC scheme subject to 
different values of the tuning parameter N = 5,10,20 and 30.

Figure 8. A benchmark level and temperature control setup.



ysp1 =
⎪⎨
⎪⎩
40 cm ∀ t ∈ [0, 250)
44.5 cm ∀ t ∈ [250, 500)
40 cm ∀ t ∈ [500, 1000]

and

ysp2 =

⎧⎪⎨
⎪⎩
40◦C ∀ t ∈ [0, 250)
44.5◦C ∀ t ∈ [250, 500)
40◦C ∀ t ∈ [500, 1000].

5.1.1. Tracking response with measurement noise 

Figure 9(a,c) show the tracking response of the liquid level h and the temperature T of the tank. The 
figures suggest that the process outputs h and T are closely following the respective set-point 
trajectories ysp1 and ysp2 (marked by Red colour) in presence of measurement noise (NSR = 0.1). Figure 
9(b,d) depict the corresponding control input demands from which it is observed that both uin,1 and uin,2
remain within the prescribed bounds. We also notice that the performance OF the proposed NMBC 
scheme is at par with the NMPC and moreover, the control inputs sometimes exhibit more 
oscillations in case of NMPC than NMPC. 

5.1.2. Impact of process model-mismatch  

Figure 10(a,c) shows the tracking response of the closed-loop system considering the effect of both process 
model-mismatch and measurement noise (NSR = 0.1). The process parameter T0 in (20b) was perturbed to 
16◦C from its nominal value 18◦C at  t = 20 s. The figures suggest that despite the process model-mismatch, 
both of the process outputs h and T are satis-factorily tracking their respective set-point trajectories ysp1 and 
ysp2 . The amplitude of oscillations in the tracking responses vary within 3 − 5% of the steady-state value. 
Figure 10(b,d) show the respective control input demands. Note here that both qin,1 and qin,2 remain within 
the specified range. The figures reveal that the performance of the NMBC scheme is comparable to that of 
the NMPC scheme.

where the states x1 and x2 represent the liquid level (in cm) and temperature (in ◦C) of the tank. The 
process variables and their nominal values are listed in Table 2.

The control objective of this case study is to regulate (or track) (i) the liquid level of the tank by adjusting the 
control valve and (ii) the temperature of the tankby manipulating the current input to the electric heater, 
according to given reference (or set-point) trajectories of the level and temperature.

5.1. Simulation results

We will now analyse the Matlab simulation responses of the benchmark level and temperature control 
process subjected to a multi-step input applying both NMPC and NMBC techniques. The desired set-
point trajectories are mentioned as following:

Table 2. Nominal values of the parameters and variables associated with TITO coupled tank process.

Process variable Nominal value

75 cm
15.6 cm
191 cm2

Maximum height (H) 
Diameter (D)
A
Cp 4.2 J g−1 K−1

ρ 1.0 g cm−3

k 1.8 cm5/2 s−1

T0 18 ◦C
u1 = qin,1 0 ≤ u1 ≤ 22 cm3/s
u2 = qin,2 0 ≤ u2 ≤ 2700 J/s
1 40 cm
2 40◦C
1 15 cm3/s

x̄
x̄
ū
ū2 1500 J/s



Figure 11. Tracking responses of the level and temperature control process obtained via applying JUKF-based NMBC scheme subject 
to variation of the tuning parameters N1 and N2.

Figure 10. Set-point tracking response of the level and temperature control process obtained via JUKF-based NMPC and 
NMBC schemes considering both process model-mismatch and measurement noise (NSR = 0.1): (a) level h, (b) 
control input  qin,1, (c) temperature T, (d) control  input qin,2.

Figure 9. Set-point tracking response of the level and temperature control process obtained via JUKF-based NMPC and NMBC 
schemes considering measurement noise (NSR = 0.1): (a) level h, (b) control input  qin,1, (c) temperature T, (d) control input  qin,2.



Figure 12. Tracking responses of the level and temperature control process obtained via applying JUKF-based NMPC scheme 
subject to different values of the tuning parameter N = 5,10,20 and 30.

5.1.3. Comparative study between NMPC and NMBC

This subsection will analyse the role of tuning parameter N included in both NMBC and NMPC schemes for 
improving the dynamic performance of the closed-loop system. Figure 11 shows the tracking responses 
achieved by the NMBC scheme subject to four different sets of values of the tuning parameters N1 and N2 given 
by {0.1, 1.0}, {0.5, 5}, {0.8, 8}, {1.25, 12.5}. The  f i gure ref l  ects that the  speed of response  becomes faster  with 

increasing values of N1 and N2. Similarly, Figure 12 portrays the tracking response achieved by the NMPC 
scheme subject to N ∈ {30, 20, 10, 5}.  The f i gure reveals  that the speed of response improves with a 

decreasing value of N. Depending on the simulation responses, we conjecture that the performance of the 
NMBC scheme is as good as that of the NMPC scheme.

6. Conclusion

This paper put forward a nonlinear model-based tracking control (NMBC) scheme for stable stochastic 
industrial processes. The proposed scheme implements a JUKF estimation algorithm to jointly estimate the 
model states and some of the process parameters which are  prone  to vary. In contrast to the  NMPC techniques, 
the  NMBC scheme does not involve any dynamic optimisation method. Instead, the latter exploits a steady-
state behaviour of the process model  to design the ‘predicted’ control input.  Two case  studies 
on a two-tank process and a coupled level-temperature control process have been taken up to show the 
usefulness of the proposed scheme. Simulation results suggest that the 
NMBC scheme also of f er robustness against process  model-mismatch and stochastic uncertainties (e.g. process 
noise and measurement noise).
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