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Abstract. Vulnerable source code in software applications is causing
paramount reliability and security issues. Software security principles
should be integrated to reduce these issues at the early stages of the
development lifecycle. Artificial Intelligence (AI) could be applied to de-
tect vulnerabilities in source code. In this research, a Machine Learning
(ML) based method is proposed to detect source code vulnerabilities in
C/C++ applications. Furthermore, Explainable AI (XAI) was applied
to support developers in identifying vulnerable source code tokens and
understanding their causes. The proposed model can detect whether the
code is vulnerable or not in binary classification with 0.96 F1-Score. In
case of vulnerability type detection, a multi-class classification based on
CWE-ID, the model achieved 0.85 F1-Score. Several ML classifiers were
tested, and the Random Forest (RF) and Extreme Gradient Boosting
(XGB) performed well in binary and multi-class approaches respectively.
Since the model is trained on a dataset containing actual source codes,
the model is highly generalizable.

Keywords: source code vulnerability · machine learning · software security ·
vulnerability scanners

1 Introduction

Security threats evolve rapidly, forcing developers to be up to date with the
latest security vulnerabilities to minimize the risk of software attacks. Educa-
tion of security for developers is an ongoing process. To date, many software
developers have overlooked security issues throughout the software development
lifecycle [22, 24]. One of the main reasons for this could be a possible lack of
understanding about how common errors in software development result in ex-
ploitable vulnerabilities in software systems [15] and possible pressure towards
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fast deployment. Also, the communication disconnection between developers and
cyber security experts has led to widespread software vulnerabilities [26].

Traditional security tools and penetration-testing techniques are considered
very complicated, time-consuming and expensive processes in dynamically chang-
ing cyber attacks [14]. For example, one of the challenges businesses face today
is that the mandate to be agile and release software faster while ensuring that
their product is secure against cyber threats. Possible other solutions include
static code analysis tools, which can have low detection capability (high false
negative rate) due to the lack of up-to-date cyber attack data [9, 14]. Therefore,
the software development industry is in definite need of automating vulnera-
bility detection with the growing impact of cyber attacks on businesses due to
downtime, reputation damage, loss of customers and asset sabotage.

Due to the advancement in computational power, new algorithms and avail-
ability of data, AI and ML can be successfully used to address problems in various
domains. Many applications in the computer security and privacy domain, have
been addressed using AI/ML techniques [28]. Software vulnerabilities are such
area in which AI/ML algorithms can be used to detect vulnerabilities in source
codes [1, 2, 19]. In the context of vulnerability detection, use of AI/ML algorithms
help to reduce the need of human expertise [29] and automate the process. Pro-
gramming languages can be considered as languages with words, numbers and
different symbols. Hence previous works have used Natural Language Process-
ing (NLP) techniques to detect vulnerabilities in source code, treating code as a
form of texts [5]. Extracted features through NLP techniques are used to train
AI/ML algorithms to model this problem as a classification model.

A requirement of having a high accuracy source code vulnerability detection
method is fulfilled in this work which used AI/ML techniques. In summary, the
following contributions are made:

– Improved data pre-processing approach to identify important features: Pre-
senting a method using a Concrete Syntax Trees (CST) to identify the most
important features of source codes to train a ML model.

– Generalized vulnerability detection models: Source code vulnerability detec-
tion using binary and multi-class classification models. The generalization
capability of the proposed method is high since the models are trained on
a carefully generated dataset that includes real-world source codes and a
subset of a synthetic dataset.

– Model explainability: Visually representing the identified vulnerable source
code segments to help make the necessary changes to convert the code from
vulnerable to benign. Furthermore, this supports for optimising the data
pre-processing approach to improving the model accuracy.

The rest of the paper is organised as follows: Section 2 contains background
and related work. Section 3 explains the methodology of this work. Section 4
discusses the performance evaluation. Finally, the conclusions and future work
directions are discussed in Section 5.



AI-Powered Vulnerability Detection for Secure Source Code Development 3

2 Background and Related Work

This section sets the base for the study by providing a sound knowledge of source
code vulnerabilities and weaknesses, various pasrers and scanners, and various
vulnerability detection methods while discussing the related studies.

2.1 Source Code Vulnerabilities and Weaknesses

There is a wide scope of human error within the software development process,
especially if an extensive testing and validation process is not followed from the
initial stage of the software development lifecycle [7]. Due to these potential hu-
man errors, several vulnerabilities in the code can occur. Reducing vulnerabilities
in source code is identified as a good practice in secure software development
[23].

Source code weaknesses are flaws, bugs, faults, or other errors that, if left
unaddressed, could result in the software being vulnerable to attack. Software
source code weaknesses are identified in CommonWeakness Enumeration (CWE)
[3] and the known vulnerabilities are identified in Common Vulnerabilities and
Exposures (CVE) [4]. Identifying weaknesses in source code at early stages,
make the software less vulnerable. Some weaknesses have relationships with other
weaknesses (parent-child relationship in CWE category). Therefore, there can be
overlaps of codes related to more than one CWE ID (i.e. CWE-120 and CWE-126
are related to buffer sizes).

2.2 Parsers and Scanners

Software developers require supportive tools which can be integrated with their
coding to minimize developer errors by detecting vulnerabilities at an initial step
to mitigate them after performing the source code analysis [22]. The source code
needs to be initially formatted into a generalized form with CST or Abstract
Syntax Trees (AST) [25]. Static analysis can be used [9] to create these syntax
trees. The rate of false alarms on vulnerabilities depends on the accuracy of
formulating the CST/AST and its generalisation mechanism. Tree-sitter3 is an
open-source parser generator tool which can create a CST for a source file. It
also can efficiently update the tree when there is a change in the source code.

Using the parsed code, scanners can be used to perform analysis. Few scan-
ners are available which can perform analysis in C/C++ source code with rel-
atively good accuracy [17]. Cppcheck4 is one of the open source static analysis
tools to detect bugs, undefined behaviour and dangerous coding constructs in
C/C++ code. It can provide the following data for each alert: filename, line,
severity, alert identifier, and CWE. This also can be integrated with other devel-
opment tools. Flawfinder5 is another open source tool that can examine C/C++

3 https://tree-sitter.github.io/tree-sitter
4 https://cppcheck.sourceforge.io
5 https://github.com/david-a-wheeler/flawfinder
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source code and report possible security weaknesses. It works by using a built-
in database of C/C++ functions with well-known vulnerable problems, such as
format string problems (printf, snprintf, and syslog), buffer overflow risks (str-
cpy, strcat, gets, sprintf, and scanf), potential shell metacharacter dangers (exec,
system, popen), poor random number acquisition (random), and race conditions
(access, chown, chgrp, chmod, tmpfile, tmpnam, tempnam, and mktemp).

2.3 Vulnerability Detection Methods

Metric-based and pattern-based techniques have been used in previous works [6]
for vulnerability detection. Metric-based techniques use supervised or unsuper-
vised machine learning algorithms using features such as complexity metrics,
code churn metrics, token frequency metrics, dependency metrics, developer ac-
tivity metrics or execution complexity metrics [6]. Pattern-based techniques use
static analysis to identify vulnerable codes using known vulnerable codes. How-
ever, the technique used in this, limited to function level codes and considered as
a pre-step for vulnerability assessment as the proposed solution did not identify
the vulnerability type or the possible location of the vulnerability. Addition-
ally, usage of metric based features in compared ML algorithms showed a low
detection capability.

Authors in [10] have used text features in source code to predict software
defects. They have considered everything as texts separated by space or tab ex-
cept comments. Naive Bayes (NB) and Logistic Regression (LR) were used as
the classification algorithms in this study. This concept was adapted by [20] and
used for software vulnerability prediction tasks using the same algorithms with
Bag of Words (BoW) as features. Everything except for comment words sepa-
rated by space or tab have been treated as features for this model. Experimental
results showed a lower F1-Score for all selected test cases. This might be due to
the poor feature selection without focusing on the proper data pre-processing
approach. In [8] n-gram (1-gram, 2-gram and 3-gram) and word2vec were used
as the features to predict if a test case contains vulnerability or not. As a solu-
tion to the class imbalance problem, the authors used the random oversampling
technique. However, both of the above-mentioned models [8, 16] are limited to
binary classification models to detect the vulnerability states.

Minimum intermediate representation learning was used to source code vul-
nerability detection in [19]. Unsupervised learning was used in the pre-training
stage to solve the lack of vulnerability samples. Convolutions Neural Networks
(CNN) were used to generate high-level features. Finally, these features are used
in classifiers such as LR, NB, Support Vector Machine (SVM), Multi-Layer Per-
ceptron (MLP), Gradient Boosting (GB), Decision Tree (DT) and RF for vul-
nerability detection. Only two CWE-IDs of a synthetic dataset were selected as
the training dataset and therefore, this model has a low generalization capability
for other CWE-IDs and real datasets.

Authors in [27] proposed a method to guide manual source code analysis
using vulnerability extrapolation. To this end, the authors generated AST using
a parser. This work is limited to vulnerabilities present in a few source code
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functions. The vulnerability detection method proposed by [1] is also based on
the AST representation of source code. Pycparser6 library was used to generate
AST for the C language. It was modelled as a binary classification task using
MLP and CNN algorithms. The proposed model used four CWE classes and
achieved between 0.09 to 0.59 F1-Score.

Though the trend toward applying ML for vulnerability detection is high, as
discussed above, many studies do not provide a high accuracy/F1-Score when
detecting source code vulnerabilities. Many of them were not trained on a dataset
that includes a real-world dataset, following enhanced preprocessing techniques.
Furthermore, they were only limited to binary classification or a limited number
of CWE classes. Therefore, our study addresses these problems by using a real-
world dataset to achieve an F1-Score of 0.96 in the binary class model and 0.85
in the multi-class classification model for twenty CWE classes.

3 Methodology

3.1 Dataset

Lack of vulnerability dataset is one of the major challenges for developing vul-
nerability prediction model [11, 21]. Authors in [12] showed the importance of
using sufficient and accurately labelled data to achieve good accuracy of the
vulnerability prediction task. Previous works used different datasets to train
proposed algorithms. The proposed method in [20] has used data of 182 releases
of 20 apps. It used a source code analyser to identify vulnerabilities without
using a vulnerability database. Datasets published by Software Assurance Ref-
erence (SARD) and the National Vulnerability Database (NVD)7 used in [19].
To identify the ground truth of mined open-source code, the authors used static
analysis, dynamic analysis with commit-message and bug-report tagging. SARD
is a dataset produced by the National Institute of Standards and Technology
(NIST) as a result of the Software Assurance Metrics And Tool Evaluation (SA-
MATE) project8. SATE IV juilet test suit9 of SAMATE project, debian linux
distribution and data on public git repositories on GitHub were used in [1].

Since this research focuses on predicting both vulnerable and non-vulnerable
codes and detecting the CWE-IDs, both positive and negative classes data is
needed. As the vulnerable dataset, synthetic test cases (C and C++ languages)
of SATE IV juilet test suit was selected. This dataset was developed to encourage
the improvement of static code analysers. The selected dataset includes 52,185
source code samples. Since this dataset is limited to vulnerable codes and CWE-
IDs distribution is highly imbalanced, a web crawler was developed to retrieve
more C and C++ source codes from public GitHub repositories. The entire

6 https://github.com/eliben/pycparser
7 https://cve.mitre.org/
8 https://samate.nist.gov/SARD/
9 https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-tool-
exposition-sate-iv
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source code was considered as a sample. Existing static analysis tools were used
to identify the ground truth of the retrieved source codes. In general, signature-
based detection methods have lower false positives. Since they might suffer from
higher false negatives, they were used in an ensemble way to obtain the ground
truth. The main objective here is to learn the capabilities of these analysers and
obtain a lower false negative and positive rate from the ML-based models. To
this end, the sample was considered as malicious if one of the analysers identifies
the sample as malicious. If all analysers identify the sample as benign, then it
was considered as benign. Based on the combined dataset of SATE IV Juilet
test suit and GitHub data, twenty highest frequent CWE-IDs were selected as
vulnerable code samples, including over 0.3 million source codes. Vulnerability
class distribution is depicted in Figure 1. Similar size of C and C++ source codes
were selected as the benign dataset, making it approximately 1:1 positive and
negative class distribution.

Fig. 1. CWE-ID distribution

3.2 Model Architecture

The proposed model includes two machine learning models for binary and multi-
class classifications. The binary classification model is trained to detect the
source code as benign or vulnerable code. Multi-class classification model uses
the identified vulnerable code to detect the CWE-IDs associated with it. The
XAI is used on the multi-class classification results to explain the model predic-
tion and hence to identify vulnerable code segments. This process is depicted in
Figure 2.

Data Pre-Processing The selected dataset contains C and C++ language
source codes. Previous works [1, 13, 27] used AST and CST representations of
codes to identify features. In this research, CST is used to identify the tokens
of source code to retain more details in the code using a parser generator tool.
Following pre-processing steps were applied to source codes.
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Fig. 2. Model Architecture

1. Use a parser generator to generate CSTs (parse tree) of source codes.
2. Clean CST outputs to generate tokens.
3. Create numerical vectors for ML models.

All source codes were passed through the parser generator to generate CSTs.
CSTs contain much information, such as comments, symbols, hexadecimal num-
bers and user-defined function names, which cannot use as generalized features
for machine learning models. Hence, comments and selected symbols were re-
moved and user-defined function names were replaced with common names such
as ‘UserDef’. Symbols to remove from the codes were identified with the sup-
port of a set of domain experts to avoid important symbol removal. Pre-processed
CST outputs were used to generate features for ML models. To this end, Python
library CountVectorizer and TfidfVectorizer were used to generate features of
Bag-of-words (BoW), n-gram (n=2,3) and term frequency-inverse document fre-
quency (TF-IDF). Grid search was used to identify optimal hyperparameters
including maximum (max df) and minimum (min df) document frequencies.

Algorithms: Data pre-processing produced three feature vectors from CST to-
kens: BoW, n-gram and TF-IDF. The complete dataset of 0.6 million source code
samples was used to train the binary classification model, whereas 0.3 million
source code samples which included 20 CWE-IDs were used to train the multi-
class classification model. Due to class imbalance, stratified random sampling
was used to split the dataset into 80:20 ratios for the multi-class classification
model. 80% of the data was used to train binary and multi-class algorithms and
the rest of the 20% was used to evaluate their performance. NB, RF, LR and
XGB algorithms were used with BOW, n-gram (n=1,2) and TF-IDF features.
Since a vulnerable code might have more than one vulnerability, the top K (K=3)
predictions were used as possible vulnerable classes to address the multi-label
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cases. Python sklearn library was used to implement these algorithms. Exper-
iments were conducted on a MacBook Pro 2.2 GHz Intel Core i7 with 16 GB
RAM.

Vulnerability explanation: Identifying the vulnerabilities and relevant CWE
IDs are not sufficient to convert the code into benign code. Identifying the specific
code segments (tokens) is helpful in evaluating the validity of model predictions
and making the necessary changes to the vulnerable code to make it a benign
code. This helps the developer to use the domain knowledge to make an in-
formed decision. Hence, model interpretability is an important factor in source
code vulnerability detection. To this end, Local Interpretable Model-agnostic
Explanations (LIME) [18] was used. LIME provides an explanation which is a
local linear approximation of the trained model’s behaviour [18]. LIME learns a
sparse linear model by sampling instances around specific instances, approximat-
ing the trained model locally. LIME supports text classifiers and provides visual
and textual artefacts that developers can understand. These explanations were
used to further fine-tune data pre-processing by removing non-related tokens
and keeping the important tokens. In addition, LIME provides the explanation
for top K predictions, which helps to identify multiple vulnerabilities of a code.

4 Performance Evaluation

This section presents the results for different classifiers and features described in
the previous section. All the results discussed in this section were based on the
test set. As mentioned earlier, F1-Score was selected as the evaluation metric
as it is the harmonic mean of precision and recall. Labels 0 and 1 represent
benign and vulnerable classes of the binary classification model, whereas twenty
CWE-IDs represent vulnerability classes of the multi-class classification model.

4.1 Machine Learning Models

As mentioned in the previous section, four machine learning algorithms were used
to predict vulnerabilities using three features. N-gram includes 2-gram and 3-
gram. Table 1 summarize the F1-Score for binary classification models for BoW,
2-gram, 3-gram and TF-IDF features. The best model performance was obtained
with the default parameters. The BoW feature achieved a higher or similar F1-
Score than n-gram for all algorithms except the XGB algorithm. XGB algorithm
showed a very low detection capability for benign class for all features, even with
different hyper-parameters. This might be due to the large number of available
hyperparameters of XGB, and the selected grid search values were out of the
optimum values for the binary classification. The RF algorithm achieved a sig-
nificantly higher F1-Score than other algorithms for TF-IDF. RF algorithm with
the feature BoW outperformed all other algorithms and features and achieved
0.96 F1-Score.
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Table 1. Performance of binary classification ML algorithms with BoW, n-gram, and
TF-IDF features (F1-Score)

NB LR RF XGB

Class BoW 2-
gram

3-
gram

TF-
IDF

BoW 2-
gram

3-
gram

TF-
IDF

BoW 2-
gram

3-
gram

TF-
IDF

BoW 2-
gram

3-
gram

TF-
IDF

0 0.72 0.57 0.63 0.84 0.90 0.88 0.89 0.91 0.95 0.95 0.95 0.95 0 0.02 0.03 0

1 0.81 0.76 0.78 0.85 0.89 0.88 0.89 0.91 0.96 0.95 0.95 0.95 0.68 0.63 0.66 0.68

Overall 0.76 0.66 0.71 0.84 0.89 0.88 0.89 0.91 0.96 0.95 0.95 0.95 0.34 0.33 0.37 0.34

Table 2 presents the performance achieved by multi-class algorithms with
respective features. NB algorithm achieved the lowest F1-Score for all features.
For both NB and LR algorithms, increasing the n-gram caused to achieve the
same F1-Score as BoW or slight detection improvement. In contrast, the opposite
was observed for RF and XGB algorithms. F1-Score was reduced when increasing
the n-gram. RF and XGB algorithms for BoW and TF-IDF showed nearly similar
detection capabilities.

According to the results, the best overall F1-Score was obtained as 0.85 for
XGB algorithm with BoW features. Overall, BoW features performed better
than the n-gram features. Generally, higher n-gram models contain more in-
formation about the word (token) contexts. However, this increases the data
sparsity with the n. This might be one possible reason for the lower F1-Score
for n-gram based models compared to BoW based models. Another possible
reason would be the association of key terms with the vulnerabilities than the
term combinations. Combining these key terms with the nearby terms might
reduce the vulnerability detection capability. CWE-IDs which had over 20,000
source code samples, achieved over 0.80 F1-Scores, whereas other classes showed
comparatively low detection capability. However, CWE-ID 676 detection rate is
higher for all algorithms regardless of the dataset size. Usage of potentially dan-
gerous functions such as strcat(), strcpy() and sprintf() introduce the CWE-ID
676 vulnerability. The frequent appearance of these vulnerable terms could be a
reason for the higher detection rate.

Multi-class classification results indicate the detection rate likely to be asso-
ciated with the dataset size for each class. To verify this, all classes over 20000
samples were considered and the remaining classes were categorized as ’other’
category. This produced 12 unique classes compared to 20 classes used in the
previous model. The best performing XGB with BoW feature was used to eval-
uate the performance. Table 3 presents the performance achieved for increased
sample size. As expected, this improved the overall F1-Score by 4%.

Detection latency is a critical criterion in a production environment for real-
time predictions. This highly depends on the number of features used and model
complexity. Since BoW provided the best detection rate, BoW was used to eval-
uate the detection latency of four ML algorithms. Table 4 presents the average
detection latency (ms) for one source code. NB provides the prediction in a very
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Table 2. Performance of multi-class classification ML algorithms with BoW, n-gram,
and TF-IDF features (F1-Score)

NB LR RF XGB

CWE
ID

BoW 2-
gram

3-
gram

TF-
IDF

BoW 2-
gram

3-
gram

TF-
IDF

BoW 2-
gram

3-
gram

TF-
IDF

BoW 2-
gram

3-
gram

TF-
IDF

20 0.39 0.39 0.34 0.56 0.63 0.63 0.63 0.70 0.82 0.79 0.74 0.82 0.87 0.83 0.76 0.87

78 0.57 0.57 0.56 0.66 0.78 0.75 0.73 0.83 0.91 0.88 0.84 0.9 0.95 0.91 0.85 0.95

120 0.06 0.34 0.35 0.55 0.59 0.60 0.59 0.62 0.80 0.78 0.75 0.79 0.83 0.82 0.78 0.82

126 0.30 0.32 0.32 0.53 0.58 0.60 0.61 0.66 0.83 0.80 0.75 0.83 0.87 0.84 0.80 0.87

134 0.40 0.43 0.45 0.54 0.65 0.68 0.69 0.69 0.85 0.82 0.80 0.85 0.86 0.84 0.79 0.86

190 0.35 0.29 0.28 0.57 0.70 0.71 0.68 0.73 0.88 0.87 0.83 0.88 0.91 0.89 0.83 0.90

327 0.57 0.53 0.51 0.69 0.87 0.80 0.75 0.84 0.94 0.90 0.85 0.94 0.96 0.91 0.83 0.96

362 0.49 0.50 0.49 0.58 0.71 0.69 0.67 0.71 0.84 0.82 0.79 0.83 0.87 0.84 0.81 0.87

377 0.26 0.23 0.24 0.32 0.36 0.41 0.48 0.62 0.74 0.67 0.62 0.73 0.86 0.72 0.65 0.85

398 0.70 0.73 0.74 0.74 0.86 0.87 0.87 0.86 0.93 0.92 0.91 0.93 0.94 0.94 0.92 0.93

401 0.39 0.42 0.43 0.43 0.42 0.54 0.59 0.62 0.78 0.76 0.73 0.77 0.79 0.80 0.77 0.79

457 0.39 0.40 0.44 0.57 0.65 0.67 0.68 0.69 0.84 0.83 0.81 0.84 0.84 0.82 0.78 0.83

476 0.30 0.32 0.33 0.23 0.40 0.47 0.54 0.47 0.77 0.76 0.75 0.78 0.72 0.72 0.69 0.71

562 0.30 0.31 0.29 0.17 0.47 0.50 0.56 0.38 0.77 0.77 0.76 0.76 0.70 0.71 0.70 0.69

664 0.26 0.26 0.27 0.21 0.34 0.38 0.51 0.48 0.77 0.76 0.74 0.77 0.81 0.82 0.79 0.82

676 0.50 0.48 0.45 0.49 0.79 0.73 0.68 0.80 0.92 0.88 0.80 0.92 0.97 0.91 0.83 0.96

732 0.36 0.40 0.40 0.48 0.66 0.61 0.64 0.70 0.85 0.81 0.75 0.85 0.91 0.89 0.80 0.91

758 0.52 0.53 0.52 0.63 0.70 0.73 0.78 0.76 0.92 0.92 0.91 0.92 0.89 0.87 0.83 0.89

775 0.27 0.27 0.30 0.44 0.38 0.44 0.52 0.52 0.68 0.66 0.64 0.66 0.72 0.73 0.71 0.70

788 0.10 0.29 0.33 0.23 0.16 0.21 0.30 0.43 0.66 0.67 0.65 0.65 0.64 0.67 0.64 0.63

Overall 0.37 0.40 0.40 0.48 0.59 0.60 0.62 0.66 0.82 0.80 0.77 0.82 0.85 0.82 0.78 0.84

Table 3. Performance of XGB algorithm with BoW for 12 classes (F1-Score)

CWE ID 120 126 134 190 208 327 362 398 457 758 780 Other Overall

F1-Score 0.8 0.88 0.86 0.9 0.87 0.96 0.87 0.94 0.83 0.88 0.96 0.89 0.89
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short time with lower detection rates. In contrast, RF takes much time despite
a higher detection rate. Overall, among the selected algorithms, XGB provides
the best detection latency and detection rate tradeoff.

Table 4. Average detection latency

ML Algorithm Detection latency (ms)

NB 0.005

LR 8.378

RF 175.968

XGB 14.378

4.2 Explainable AI

Even though ML algorithms with BoW showed a higher detection rate, this is
not much useful unless the reasons behind these predictions are known. Hence,
LIME was used to identify the vulnerable code segments of each source code and
potential other CWE-IDs which were not available as a ground truth. This is
highly important as multiple CWE-IDs might be there due to parent-child rela-
tionships. The selected example presented in Figure 3 includes CWE-ID 401 as
the vulnerability. This is relevant to the missing release of memory after an effec-
tive Lifetime. Developers should sufficiently track and release allocated memory
after it has been used [3]. XGB accurately predicts the CWE-ID 401 as the vul-
nerability of this source code. LIME provides the prediction probabilities for the
top 4 predictions and respective features (tokens) that caused the vulnerability.
Further, LIME provides the visualization of highlighted code. Since the original
codes were pre-processed, this shows the pre-processed code. In this example, it
identified that ’realloc’, ’malloc’, ’sizeof’ and ’unistd’ positively affect towards
CWE-ID 401. These tokens are highlighted with brown colour in the code. Even
though the ground truth was 401, as expected, this identified other possible vul-
nerabilities as well. CWE-ID 190 is another vulnerability that lies in this code
due to inappropriate usage of function ’atoi’. Additionally, inappropriate usage
of ’strlen’ leads to CWE-ID 126, also identified by the algorithm as the 3rd
possible vulnerability.

Based on these features, the developer can examine the code regardless of
its number of code lines and convert the vulnerable code into benign code by
changing the respective feature usage. These explanations also can be used to
optimise the feature pre-processing. There might be some features that are not
useful to predict the vulnerability and still, the algorithm identifies them as valid
features due to dataset bias. These features can be identified by analysing the
LIME output, which helps to perform the required pre-processing to remove such
features continuously.
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Fig. 3. Explainability of the predictions

5 Conclusion and Future Works

Vulnerable source code sometime can cause critical security flaws. Therefore,
the weaknesses of the source code must be reduced to a great extent. Though a
few methods are available to detect source code vulnerabilities, their accuracies
and generalization capabilities are low. Existing methods do not provide reasons
for the vulnerabilities, which is very important to the developers. The proposed
method in this work can detect source code vulnerabilities in C/C++ using
an ML-based approach with an F1-Score of 0.96 in binary classification (with
RF classifier) and an F1-Score of 0.85 in CWE-ID-based multi-class classification
(with XGB classifier). Furthermore, XAI was also applied in this work to explain
the causes of particular vulnerabilities. The F1-Score can be further increased
by improving the data pre-processing techniques and extending the dataset with
more source code examples. Currently, the CWE-ID based multi-class classifica-
tion model can detect twenty types of weaknesses, and by increasing the sample
source code, it can detect more classes with higher accuracy and improve the
detection capability for the extremely broad vulnerability categories. An auto-
mated solution to perform that is also integrated with a live web portal. Once
the dataset contains a high volume of data, it can also be explored as a future
improvement since there can be vulnerable source code associated with more
than one CWE-ID. Once the vulnerabilities are detected, mitigation methods
can also be proposed by integrating more features in XAI for future improve-
ment. Finally, the model will be deployed with a live web portal to validate
under real-world settings.
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Appendix: Common Weaknesses in C/C++ Source Code

CWE-ID CWE-Name Sample Vulnerable C/C++ Code

CWE-20 Improper Input Validation board = (board square t*) malloc( m * n *
sizeof(board square t));

CWE-78 Improper Neutralization of Special
Elements used in an OS Command
(’OS Command Injection’)

system(NULL)

CWE-120 Buffer Copy without Checking Size
of Input (’Classic Buffer Overflow’)

strcpy(buf, string);

CWE-126 Buffer Over-read strncpy(Filename, argv[1], sizeof(Filename));

CWE-134 Use of Externally-Controlled For-
mat String

snprintf(buf,128,argv[1]);

CWE-190 Integer Overflow or Wraparound re-
sponse

xmalloc(nresp*sizeof(char*));

CWE-327 Use of a Broken or Risky Crypto-
graphic Algorithm

EVP des ecb();

CWE-362 Concurrent Execution using Shared
Resource with Improper Synchro-
nization (’Race Condition’)

pthread mutex lock(mutex);

CWE-401 Missing Release of Memory after
Effective Lifetime

char buf = (char) malloc(BLOCK SIZE); read(fd,
buf, BLOCK SIZE) != BLOCK SIZE;

CWE-457 Use of Uninitialized Variable char *test string; if (i != err val) test string =
”Hello World!”; printf(”%s”, test string);

CWE-676 Use of Potentially Dangerous Func-
tion

char buf[24]; strcpy(buf, string);
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