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Abstract 

Nanoparticles of CoFe2O4 were synthesized by chemical co-precipitation method. While, 

CoFe2O4/MWCNTs nanocomposites were synthesized with increasing contents of 

MWCNTs i.e. 0.0%, 2.0%, 3.0% and 5.0% by weight via ultrasonication method in a 

dispersive medium using ortho-xylene. The synthesized cobalt ferrite nanoparticles and 

their nanocomposites were characterized by Impedance Analyzer, Fourier Transform 

Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and X-ray 

diffraction (XRD) techniques. The XRD indexed patterns confirmed the face-centered 

cubic structure of CoFe2O4/MWCNTs nanocomposites. The average crystallite size in all 

the samples was in the range of 15 to 35 nm. The decorations of CoFe2O4 on MWCNTs 

were confirmed by SEM images. The FTIR results showed two vibrational bands. With 

the increasing contents of multi-walled carbon nanotubes in the cobalt ferrite/MWCNTs 

nanocomposites, the dielectric properties were also enhanced. At 1 MHz, dielectric 

constant, dielectric loss and tangent loss factor were increased from 26, 15.1, 0.580 for pure 

cobalt ferrite to 47, 28.9, 0.614 for loading of 5% MWCNTs respectively. While at 1GHz, 

dielectric constant, dielectric loss and tangent loss factor were increased from 11.6, 0.33, 

0.028 for pure cobalt ferrite to 19.4, 0.61, 0.031 for loading of 5% MWCNTs respectively. 



Such huge increase in the dielectric properties of cobalt ferrite and multi-walled carbon 

nanocomposites exploited their applications at high frequency.  
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1. Introduction 

Due to the massive usage of high-carbon energy, environmental degradation, and 

energy crisis are continuously increasing. In recent scientific research, the need to discover 

low-carbon and sustainable sources of energy are seeking attention worldwide [1, 2]. Ferrites 

generally represented by MFe2O4 ( M= Ni, Co, Zn, Mn, etc.) called spinel ferrites that exhibits 

cubic spinel structure has shown improved optical, magnetic and electrical properties [3]. 

Spinel ferrites have been extensively studied due to their applications in supercapacitors, 

microwave devices, high-density magnetic recording, magnetic fluids, and medical diagnostics 

[4-7].   In this research work, CoFe2O4
 was synthesized via chemical co-precipitation method. 

Although nanoparticles of spinel ferrites can be prepared by numerous methods such as sol-gel 

techniques [8], solvothermal [9, 10], co-precipitation [11], hydrothermal synthesis [12], 

mechanical alloying [13], auto-combustion [14, 15] and microemulsion method [16, 17]. 

Owing to the high aspect ratio of the carbon nanotubes (CNTs), it attracts worldwide 

attention having an sp2 hybridized structure with multiple layers of graphene rolled over one 

another [2, 18]. CNTs may be classified into three types namely, multi-walled carbon 

nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs) and junctions-

crosslinking. In recent years, researchers have paid special attention to MWCNTs due to their 

exceptional physical, chemical [19, 20] and electrical [21] properties, huge surface area, high 

aspect ratio, and nanosized stability which shows their capability in the field of nanoscience 

engineering.  

MWCNTs coupled with nanoparticles of ferrites can be widely used in magnetic force 

microscopy, drug delivery [9], purification of water [22], dielectrics [23-26] and removal of 

uranium from aqueous solution [27], etc. In order to optimize the potential abilities of the 

ferrite’s nanoparticles, various techniques are used for the decoration of nanoparticles over 

MWCNTs. Due to their huge dielectric losses, these nanohybrids are preferred for EMI 

shielding, dielectric and microwave absorption properties [28, 29]. At room temperature, 

researchers have noticed the ferromagnetic behavior of ferrites/MWCNTs nanohybrids [30]. It 

has also been reported that due to enhanced microwave absorption properties, CNTs/ferrites 



nanohybrids have significant utilization for reflection losses in military applications [22]. The 

real and imaginary part of permittivity also enhances by the introduction of CNTs which permit 

their application at high frequencies [28]. In this research work, the synthesized cobalt 

ferrite/MWCNTs nanocomposites were studied and confirmed by utilizing FTIR, XRD, SEM 

and Impedance Analyzer. Finally, the high frequency dielectric nature of CoFe2O4/MWCNTs 

(MWCNTs=0.0%, 2.0%, 3.0%, 5.0%) system was analyzed at room temperature. 

2. Materials and Synthesis Procedure 

2.1 Materials 

Chemicals used in the synthesis include; Fe (NO3)3·9H2O supplied by EMSURE® 

Merck KGaA Darmstadt Germany (99.5% purity), Co (NO3)2·6H2O supplied by Scharlau, 

Scharlab S.L Spain (99% purity), NaOH supplied by Fischer Chemical Ltd. – Hong Kong 

(99% purity) and ortho-xylene (99% purity) and MWCNTs (99% purity) supplied by Sigma 

Aldrich. All these reagent grade chemicals were utilized without any additional 

decontamination. Deionized and double distilled water was utilized for the synthesis of cobalt 

ferrite nanoparticles as a solvent and for washing purposes respectively. 

2.2 Synthesis Procedure 

0.1 M solution of Co (NO3)2·6H2O and 0.2 M solution of Fe (NO3)39H2O were 

taken in separate glass beakers using deionized water and magnetically stirred it for 10 

minutes. In order to make a complete homogenous solution, both the samples were then 

mixed and magnetically stirred for 25 minutes at room temperature. Then it was placed on a 

hot plate until temperature of the above-mixed solution reached to 90 °C. 3 M preheated 

solution of NaOH at 90 °C prepared in a separate beaker and rapidly poured to the cobalt 

nitrate hexahydrate and iron nitrate (III) nonahydrate solution. The resulting solution was 

maintained at 90 °C for an hour followed by continuous magnetic stirring, then switched 

off heating until the temperature reached ambient temperature followed by washing with 

double distilled water to achieve pH value of 7. Samples were then dried in the oven by 

maintaining overnight heating at 110 °C to obtain moisture-free desired powders. To obtain 

discrete spinel phase by eliminating any carbonaceous impurity, these powders were 

calcinated for eight hours at 820 °C. For synthesizing desired nanocomposites, MWCNTs 

were dispersed uniformly in a beaker utilizing polar solvent of o-xylene kept in ultra-

sonication bath. Similarly, cobalt ferrite nanoparticles were dispersed uniformly in a 

beaker utilizing o-xylene kept in ultra-sonication bath. Sonicated mixture of cobalt ferrite 

nanoparticles was then added drop by drop to MWCNTs dispersion and sonicated for 16 



hours. For complete drying, it was kept in the oven obtaining porous powders and then 

mechanically homogenized. For studying the effect of increasing contents of MWCNTs on 

the dielectric properties of cobalt ferrite, the concentration of MWCNTs was varied for 

0.0%, 2.0% (0.03 grams), 3.0% (0.045 grams) and 5.0% (0.075 grams) in each sample 

respectively. In this research, the E4990A Impedance Analyzer was used to record the 

dielectric properties of each sample as a function of frequency from 1MHz to 1GHz. X-ray 

diffraction using CuKα radiation (having wavelength of 1.5405 Å) in the range of 20–80° 

was utilized for the determination of the crystal structure and phase formation at ambient 

temperature. The structural morphology was studied by SEM (Model No.6390). The existence 

of oxygen-metal lattice sites and bonding nature were explored by FTIR spectroscopy 

(Perklin Elmer spectrum 100) utilizing KBr powder in preparing pellets of cobalt ferrite 

and cobalt ferrite/MWCNTs nanocomposites. Pellets having diameter 10 mm with varying 

thicknesses were prepared by applying load up to 4-5 tons using a hydraulic press for 

dielectric and electric measurements.   

3. Results and Discussion 

3.1 X-ray Diffraction 

Figure 1 indicates the x-ray diffraction patterns of calcined powder of CoFe2O4 and 

CoFe2O4/MWCNTs nanocomposites obtained at ambient temperature. Table 2 lists the 

XRD peaks of (220), (311), (222), (400), (422), (511), (440) and (533) exhibiting Fd-3m space 

group at 2θ Braggs angle. The observed peaks were well indexed in conformity with the 

characteristic’s peaks of these materials in JCPDS card No.00–022-1086, validating FFC 

spinel structure formation. The crystallite size in case of each sample for the most intense peak 

i.e. (311) was calculated by Debye-Scherrer's equation [31]. The calculated crystallite sizes 

were listed in Table 1. No other peaks of MWCNTs were observed in cobalt ferrite’s 

nanocomposites, representing their synthesis route efficiency. A small sharp peak may be 

observed at 26° when the weight percentage of MWCNT exceeds 7 %. 

Porosity fraction plotted against MWCNT's contents is shown in Figure 2. Bulk density 

and x-ray density plotted against multi-walled carbon nanotubes contents are shown in Figure 

3. The various values of porosity, bulk density and x-ray density against multi-walled carbon 

nanotubes contents (wt. %) are listed in Table 1 and calculated using Equation (1), (2) and (3).  
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Due to lots of heptagon-pentagon pair defects and interstitials observed in MWCNTs 

are confirming their porous nature [32]. That’s why MWCNTs have higher volume with low 

mass. Bulk density was calculated by division of mass of the prepared pellets of cobalt ferrite 

and its nanocomposite with MWCNTs by volume of pellets and was plotted against MWCNTs 

contents which show the decreasing trend with increasing contents of MWCNTs. The 

decreasing trend was also noticed in the case of x-ray density with increasing contents of 

MWCNTs. Generally, porosity shows increasing trend with increasing contents of MWCNTs 

because of MWCNTs porous filler matrix addition, more interfaces are formed that results in 

producing of large number of voids hence confirming their increasing trend [33].  

 

Figure 1: X-ray diffraction patterns of pure CoFe2O4 and CoFe2O4/MWCNTs 
nanocomposite. 



 

Figure 2: Porosity fraction variation as a function of MWCNTs contents (wt. %) for pure 
CoFe2O4 and CoFe2O4/MWCNTs nanocomposite. 



 

Figure 3: Bulk Density and X-ray Density variations as a function of MWCNTs contents 
(wt. %) for pure CoFe2O4 and CoFe2O4/MWCNTs nanocomposite. 

Table 1: Variation of crystallite size, porosity, bulk density and x-ray density of pure 
CoFe2O4 and CoFe2O4/MWCNTs nanocomposite as a function of MWCNTs contents 
(wt. %). 

MWCNTs Contents 
(wt.%) 

Crystallite Size 
(nm) 

Porosity (%) Bulk density 
(g/cm3) 

X-Ray density 
(g/cm3) 

0% 35 47.516 2.786 5.3095 
2% 26 50.601 2.622 5.3093 
3% 30 55.186 2.346 5.236 
5% 15 60.761 2.026 5.164 

 
Table 2: Pure CoFe2O4 and CoFe2O4/MWCNTs nanocomposite’s peak position as a function 

of MWCNTs (wt.%) at various 2θ angle. 

MWCNTs 
Contents 
(wt.%) 

2θ at 
(220) 

2θ at 
(311) 

2θ at 
(222) 

2θ at 
(400) 

2θ at 
(422) 

2θ at 
(511) 

2θ at 
(440) 

2θ at 
(533) 

0% 30.191ᴼ 35.558ᴼ 43.124ᴼ 44.208ᴼ 53.532ᴼ 57.095ᴼ 62.706ᴼ 74.193ᴼ 
2% 30.121ᴼ 35.558ᴼ 37.049ᴼ 43.144ᴼ 53.560ᴼ 56.985ᴼ 62.654ᴼ 74.177ᴼ 
3% 30.104ᴼ 35.389ᴼ 37.066ᴼ 43.068ᴼ 53.437ᴼ 56.966ᴼ 62.561ᴼ 73.998ᴼ 
5% 30.115ᴼ 35.388ᴼ 37.112ᴼ 43.135ᴼ 53.545ᴼ 56.875ᴼ 62.549ᴼ 73.397ᴼ 



3.2 FTIR Spectroscopy 

The structural formation of synthesized cobalt ferrites and respective ferrite/MWCNTs 

nanocomposites were investigated by FTIR spectroscopy at room temperature. For the 

spectroscopic analysis, KBr base pellets of the respective samples were utilized in the range of 

350 cm-1 to 1000 cm-1. FTIR spectra of all the samples are shown in Figure 4. The FTIR spectra 

of the samples are almost identical thus confirming the presence of similar chemical bonding. 

In all these spectra, two lattice vibration bands were observed which consist of metal ion and 

oxygen ion thus confirming spinel structure formation. These results were in good similarity 

with the results described by Waldron et al. [34]. Due to the difference in the metal-oxygen 

bond lengths at tetrahedral (A) site and octahedral (B) site, a slight difference in these 

vibrational bands was observed. The stretching vibrational bands around 409 cm−1 to 413 cm−1 

confirm the octahedral (B) position due to Co+2-O-2 bond while stretching vibrational bands 

around 582 cm−1 to 586 cm−1 agree to tetrahedral (A) position due to Fe+3-O-2 bond in pure 

CoFe2O4 and CoFe2O4/MWCNTs nanocomposites. 

 

Figure 4: FTIR spectra for CoFe2O4/MWCNTs nanocomposite as a function of MWCNT's 
contents (wt. %).                                                             



3.3 Scanning Electron Microscopy 

The scanning electron microscope was used to study the surface morphologies of the 

synthesized pure ferrite and its nanocomposite. The SEM images of surface morphology of 

CoFe2O4 nanoparticles and CoFe2O4/MWCNTs nanocomposite for x=3.0% are shown in 

Figure 5 and Figure 6 respectively. The SEM image of nanocomposite showed that MWCNTs 

were decorated uniformly with cobalt ferrite nanoparticles which shows the efficiency of the 

synthesis method of nanocomposites. The grain size obtained from the SEM is in the range of 

23-40 nm. It is also important to mention here that grain size may be present as a single crystal 

or agglomeration of several crystals. The directional coating of the respective ferrites’ 

nanoparticles was observed on the MWCNTs due to the decrease in surface energy. This 

decrease in surface energy of the ferrites nanoparticles is due to the o-xylene solvent used in 

the sonication for long time. Agglomeration can also be seen among ferrites nanoparticles 

because of their Van Der Waals attraction [35]. Moreover, EDX was also performed for the 

elemental analysis of CoFe2O4 nanoparticles and CoFe2O4/MWCNTs nanocomposite. The 

EDX spectra of the CoFe2O4 nanoparticles and CoFe2O4/MWCNTs nanocomposite are shown 

in Figure 7 and Figure 8. The results revealed that the elements Co, Fe, O coexist in the 

CoFe2O4 nanoparticles and Co, Fe, O, C elements coexist in the CoFe2O4/MWCNTs 

nanocomposite. The experimental mass percentage and atomic percentage of CoFe2O4 

nanoparticles and CoFe2O4/MWCNTs nanocomposite are also shown with Figure 7 and Figure 

8. 



 

Figure 5: Scanning Electron Microscope image of pure nanoparticles of CoFe2O4. 

               

Figure 6: Scanning Electron Microscope image of nanocomposite of CoFe2O4/MWCNTs 
(x=3.0% MWCNTs). 



 

Figure 7: EDX Spectra of CoFe2O4 nanoparticles. 

 

Figure 8: EDX Spectra of CoFe2O4/MWCNTs nanocomposite. 

3.4 Impedance Analyzer Results 

3.4.1 Dielectric Constant 

The real part of the permittivity i.e., dielectric constant (ε') depends on the operating 
frequency and is related to the degree of polarization.  From the results of dielectric constant, 
the usage of pure ferrite and respective synthesized nanocomposite for high-frequency 
applications were investigated. A decreasing trend with the increase in frequency was 
observed in dielectric constant as shown in Figure 9. This dependence upon frequency of 
dielectric constant is due the interfacial polarization theory as predicted by Maxwell-Wagner 
[36]. According to this model, the ferrite’s dielectric structure is made up of two layers; a 
conductive layer that consists of ferrite grains and a high resistive poor conductive layer that 
consists of grain boundaries. The mechanism through which a polarization in ferrites 
occurred is similar to the conduction process as indicated by the Novikova and Rabinkin 
[37]. The local displacement of the electrons occurs in the applied field direction owing to 
the electron exchange between Fe+2 and Fe+3 and these electrons determine the polarization. 



At low frequency, electrons through hopping mechanism reach the grain boundaries and pile 
up there owing to highly resistivity i.e., insulative nature of grain boundaries and hence 
results in polarization. The higher value of dielectric constant at low frequency may also be 
due to defects, dislocations, and voids, etc. The decrease in dielectric constant with the 
increasing frequency is because at higher frequency any factors contributing to the 
polarization are lagging the applied field. The electron hopping cannot follow the applied 
electric field fluctuations outside a certain frequency boundary causing a decrease in the 
dielectric constant due to the decrease in interfacial polarization. Table 2 indicated an 
enormous increase in dielectric constant with increasing contents of MWCNTs. This is 
because of MWCNTs which are establishing a conductive network in ferrite matrix while 
acting as a parallel plate capacitor [38]. In ferrite matrix, the polarization contributed by 
dipole formation boosts the capability of storing charge by enhancing contents of stored 
charge. 

 

Figure 9: Variation of the dielectric constant of pure CoFe2O4 and nanocomposites of 
CoFe2O4/MWCNTs as a function of frequency and MWCNTs contents (wt. %). 

Table 3: Variation of dielectric constant (Ԑʹ), dielectric loss (Ԑʺ), tangent loss factor (tan δ) 
and AC conductivity (ϬAC) of the pure ferrite (CoFe2O4) and nanocomposites 
(CoFe2O4/MWCNTs) as a function of frequency and MWCNTs contents (wt. %). 

MWCNTs contents 
(wt.%) 

0.0% 2.0% 3.0% 5.0% 

Ԑʹ (1MHz) 2.6E+01 3.59E+01 4.02E+01 4.70E+01 
Ԑʹ (1GHz) 1.16E+01 1.52E+01 1.69E+01 1.94E+01 
Ԑʺ (1MHz) 1.51E+01 1.98E+01 2.19E+01 2.89E+01 
Ԑʺ (1GHz) 3.32E-01 3.85E-01 4.71E-01 6.11E-01 
Tan δ (1MHz) 0.580 0.551 0.544 0.614 
Tan δ (1GHz) 0.28E-01 0.254E-01 0.280E-01 0.314E-01 
ϬAC (1MHz) 0.001100 0.001431 0.001709 0.005709 
ϬAC (1GHz) 0.02139 0.03050 0.1416 0.1456 

 



3.4.2 Dielectric Loss 

The imaginary part of permittivity i.e., dielectric loss (ε'') is related to the energy 
dissipation that depends upon operational frequency of pure cobalt ferrites and synthesized 
nanocomposites. A decreasing trend with the increase in frequency was observed in 
dielectric loss as shown in Figure 10. This dependence upon frequency of dielectric loss is 
predicted by Koop’s theory [39].  According to this theory, at low-frequency electrons move 
to the highly resistive grain boundaries results in high dielectric loss because more energy is 
required for the hoping mechanism between Fe+2 and Fe+3 ions following the applied electric 
field. Whereas electrons cannot move to the grain boundary due to the lagging behind of the 
applied electric field at high frequency, so minimum energy is needed for the electron 
hopping in low resistive grains region, thus the energy loss is minimum. Table 3 indicated 
an enormous increase in the dielectric loss with the increasing contents of MWCNTs. This 
is because of the formation of the voids and defects by the MWCNTs at the interfaces 
between MWCNTs and respective ferrite nanocomposites.  

 

Figure 10: Variation of dielectric loss of pure CoFe2O4 and nanocomposites of 
CoFe2O4/MWCNTs as a function of frequency and MWCNTs contents (wt. %). 

3.4.3 Tangent Loss Factor 

The ratio of the dielectric loss to the dielectric constant is known as tangent loss factor 

(tan δ) and is indicated variation upon the applied AC field as well as with MWCNTs content. 

It also indicates a similar decreasing behavior as observed in dielectric constant and dielectric 

loss with increasing frequency. Whereas increased tangent loss factor with increasing contents 

of MWCNTs is shown in Figure 11. This dependence upon frequency of tangent loss factor is 

in good agreement with Koop’s theory as well as with Wagner-Maxwell model which was 

already discussed in detail in case of dielectric constant and loss. However, synthesized 

nanocomposites become suitable for high-frequency applications at such high-frequency 



region due to the very small variation of tan δ with frequency. In Table 2 an enormous increase 

in dielectric loss tangent was noticed in each sample with the increasing contents of MWCNTs 

due to the introduction of conducting networks in ferrites matrix. 

 

Figure 11: Tangent loss factor variation of pure CoFe2O4 and nanocomposites of 
CoFe2O4/MWCNTs as a function of frequency and MWCNTs contents (wt. %). 

3.4.4 AC Conductivity 

The variation of synthesized pure cobalt ferrite and cobalt ferrite/MWCNTs 

nanocomposites with increasing frequency and increasing contents of MWCNTs is shown in 

Figure 12. The values of the alternating current (AC) conductivity at 1 MHz and 1GHz as well 

as at different concentrations of the MWCNTs are listed in Table 2. Generally, AC conductivity 

increases with increasing contents of MWCNTs. This is because of the MWCNT's domination 

resulting in band conduction domination in addition to hoping conduction due to their 

conductive nature. That’s why pure cobalt ferrite has the lowest AC conductivity and 

nanocomposites with 5% MWCNTs have the highest value of AC conductivity. Also, the AC 

conductivity increases with increasing frequency because, in the low-frequency region, the 

grain boundaries are more active which are highly resistive. While in high-frequency regions, 

grains are more active which are conductive in nature.  



 

Figure 12: Variation of AC conductivity of pure CoFe2O4 and nanocomposites 
(CoFe2O4/MWCNTs) as a function of frequency and MWCNTs contents (wt. %). 

4. Conclusion 

In this work the chemical coprecipitation method was utilized effectively for the 
synthesizes of cobalt ferrite’ nanoparticles. Ultrasonication technique with a polar dispersive 
medium like ortho-xylene was used in the nanocomposites of respective ferrite with MWCNTs 
contents (wt.%). The cubic spinel FFC phase of the synthesized ferrite was confirmed by the 
XRD patterns and in case of nanocomposites, no additional peaks in XRD patterns were 
observed confirming the efficiency of utilized method. Images obtained from SEM indicated 
effective coating MWCNTs with nanoparticles of cobalt ferrite and grain size obtained in all 
the samples that were in the range of 23-40 nm. FTIR Spectra confirmed the structural 
formation of the ferrite’ nanoparticles showing vibrational band ranges for tetrahedral and 
octahedral lattice sites. In all the samples, the dielectric properties and the AC conductivity 
were increased massively with the addition of the increasing content of MWCNTs. Whereas, 
with increasing frequency AC conductivity was increased and tangent loss factor, dielectric 
loss and dielectric constant were decreased. All these results indicated that for the 
improvement of dielectric properties, the MWCNTs are the best material with ferrites in the 
nanocomposites. 
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