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Abstract. Choosing the best LBCs is still debated among researchers due to the errors 
resulted. However, several recommendations have been documented to control the errors 
propagated by LBCs. One of the recommendations is employing higher resolutions LBCs. 
In the present, many LBCs are developed with various resolutions; spatially and temporally, 
for many applications but no claims regarding the best LBCs for tropical climate modelling 
have yet been documented. Therefore, this study intends to analyse the impacts of lateral 
boundary condition resolution during numerical downscaling within a tropical city. This 
study serves as a site-specific investigation to determine the suitable LBCs for the focused 
study area. Two widely used LBCs with different resolutions were utilized to initiate the 
Weather Research and Forecasting (WRF) simulation model. The performances of the two 
LBCs were compared using statistical tests and analyses. The study has found that the LBC 
with higher resolutions excels the other LBC during inter-monsoon season. Nevertheless, it 
was identified that both LBCs were able to provide reliable reconstruction of the tropical 
climate condition of the Kuala Lumpur City as portrayed by similar results obtained. Thus, 
it is concluded that both LBCs can be employed in numerical downscaling for tropical urban 
regions similar to the Kuala Lumpur City.  
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1. Introduction 
 

Obtaining the climate datasets is one of the main 
obstacles for studying climate condition. The evolution of 
technology has brought new approach of obtaining 
climate datasets which is through the implementation of 
numerical modelling [1]. Nowadays, general climate 
models (GCM) are used for climate studies worldwide. 
There are many GCMs developed by various institution to 
cater the needs which ensemble the climate circulation 
pattern via numerical modelling technique. However, the 
GCMs offer poor spatial resolutions for various scales of 
climate assessments especially for regional-scaled studies. 
The models succeed in resolving large-scale forcing but 
unable to represent the local climate impacts [2]. Due to 
this, regional climate models (RCM) are developed to 
simulate the GCMs using higher resolution nests over the 
targeted area [3]. This approach can account for the local 
climate impacts within the finer domains. In the urge for 
regional climate studies, numerical simulation models are 
often employed as a solution in obtaining climate datasets. 
These models are developed using complicated 
mathematical and physics theories (known as physics 
options) in order to resemble the complexity of climate.  

Six physics options are included in these models 
namely microphysics, planetary boundary layer (PBL), 
long and short-wave radiation, surface layer, land surface 
layer and cumulus parameterization. Microphysics 
involves the theory of atomic, clouds and others to define 
the behaviour of the surrounding environment [4]. The 
PBL is included to set up the lowest atmospheric 
condition which directly influenced by the its contact to 
the planetary surface since this layer has rapid fluctuations 
of physical quantities such as temperature, moisture, flow 
velocity and others creating turbulence [5]. The influence 
of emissivity, absorption and surface fluxes within the 
atmosphere is modelled using long and shortwave radiation 
schemes [6]. Cumulus parameterisation has been developed 
over few decades to model the clouds within the 
atmosphere. The clouds are significantly influenced the 
climate system in the distribution of sensible and latent 
heat and momentum, reflection, absorption and emission 
of radiation, precipitation, and modification of radiation 
and planetary boundary layer processes [7]. In modelling 
regional climate, the interactions of the earth features 
towards the atmosphere are very crucial since they can 
alter the original concept of physics and dynamics in the 
atmosphere making every place on the Earth surfaces to 
be climatically unique [8]. Surface layer is included to solve 
the surface layer characteristics that includes turbulence, 
sensible heat flux, surface moisture flux and others [9]. 

Using the physics options, numerical models are used 
to downscale global-scaled weather datasets into regional 
scales which requires the usages of lateral boundary 
condition (LBC) for model initializations. In numerical 
models, the LBC utilized represents the Earth surfaces 
which is required to downscale the climate datasets from 
coarser scale into regional scales. In the case of nested 
models, the LBC is provided by the parent domain for its 

child. The errors produced by the LBC have been disputed 
by previous studies, however, recommendations were also 
suggested to minimize the errors [2], [10-12] including the 
selection of temporal and spatial resolutions. Davies [13] 
recently has also identified that errors produced is very 
small as compared to the overall errors. Though, the 
studies were performed for non-tropical regions, thus, 
least information on the tropical regions can be found [2], 
[10-13]. Based on this fact, site-specific study is 
encouraged to choose the best LBC for tropical climate 
modelling. 

This study is conducted to analyse the performance of 
two different LBC in verifying the effects of urbanization 
on the thermal variation of a tropical urban climate like 
the Kuala Lumpur City. These two LBC were equipped 
with different resolutions are freely downloaded in the 
National Centre of Atmospheric Research (NCAR) 
archive. The result of this study can be be used as a guide 
for similar climate background. Future studies within the 
tropical regions are recommended to illuminate the errors 
resulted by applying the LBCs particularly when high 
resolutions climate modelling is required. 

Over thousands of years, natural factors are the key 
drivers of climate changes such as volcanic activities and 
solar output variations [14]. However, in 1700s, urbanization 
was recognized as one of the significant factors of climate 
changes after the Industrial Revolution. The rate of the 
climate changes is also found to be at its highest peak in 
the 21st century due the rapid increment of human 
population. [14, 15]. In order to cater the human needs, 
many developments were erected and eventually turning 
many regions of the world into concrete jungles. It is 
indeed for human well-being as many job opportunities 
and better facilities are provided in the urbanized areas. 
The increment of the human population also resulted in 
the vast migration from rural to urban areas for better 
living [16]. Ironically, the urbanization has also turning the 
urban areas into heat islands when it becomes 
uncontrollable. 

The urban thermal study has long been started [17-
20]. Urban areas have been proven to degrade the climate 
condition in global and regional scales by elevating the 
ambient temperature by many studies [21-25]. The centre 
of the urban areas tends to have higher temperature 
compared to its outskirts. The intensity of the temperature 
decreases in areas further away from the centre of the 
urbanized area. This has been proven by many large-scaled 
studies on urban expansions. Most of these studies 
monitor the temporal and spatial changes of the urban 
areas as well as its relationships to its thermal 
environment. Recent studies have confirmed that the 
urban expansion; using spatial and temporal monitoring, 
contribute to the increase of the ambient temperature [22], 
[26-29]. Therefore, there is a need to investigate and 
scrutinize the reasons of these negative consequences 
behind the urbanization process.  

Various studies on urban areas with more details have 
been conducted to identify the reasons behind the heating 
of the urban areas. Most of them suggest that the greatest 
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contributing factor of the urban heating is the increment 
of impervious surfaces by the man-made features such as 
buildings and pavements [17, 30]. The impervious surfaces 
tend to store more heat energy depending on their 
characteristics. The surface materials such as asphalt 
accounted as the contributor of heat energy by the 
impervious surfaces. Low albedo surfaces which fail to 
reflect the heat back on to the atmosphere during daytime 
makes the heat to be stored as latent heat by the urban 
features [31]. The heat will be released back into the 
atmosphere making the night time to be warm [32, 33]. 
This situation is worsened by limited sky view factor (SVF) 
which decreases the rate of heat release during night time 
[34].  

High density of buildings is also one of the 
contributing factors to the degradation of climate in urban 
areas. Cities with high density of buildings will not permit 
the wind flows into the city which degrade the air 
ventilation system efficiency [35, 36]. The disruption of 
the wind will accumulate the heat and pollution within the 
cities since the strength of the wind is weaken by the 
building facades or surface roughness making the wind 
unable to sweep the heat and polluted air away from the 
city [37]. Other than that, high density buildings will limit 
the SVF and contribute to the night time warming as 
mentioned earlier. However, large SVF brings more heat 
during day time as the effects of shadow will be lessened 
[34]. The optimization of the SVF amount should be 
quantified for ideal heat release and shadow effects for 
positive impact towards the climate. Based on these, it is 
determined that urbanization is affecting the climate 
significantly. Since regional climate model is very crucial 
to study urbanization effects towards the climate, this 
study was also conducted to investigate the performance 
of the LBCs in determining effects of urbanization 
towards the variation of thermal environment. 

 

2.  Methods 
 

In this study, a numerical model called WRF-ARW 
simulation model was employed to reproduce the air 
surface temperature of the study area. Remote sensing 
technique was used to extract the built-up area and GIS 
was utilized as the main analysis platform for the entire 
study. Parametric statistical methods were employed to 
analyse the performances of both LBCs. The methods 
employed for the study are discussed in the following 
sections. 

 
2.1.  WRF-ARW Simulation 
 

In this study, the two global LBCs, NCEP FNL 
Operational Model for Global Tropospheric Analyses and 
NCEP GDAS/FNL for Global Tropospheric Analyses 
and Forecast Grids were chosen for comparison and 
denoted as Simulation 1 and Simulation 2 respectively. 
The characteristics of the LBCs’ utilized are presented in 
Table 1. These datasets were utilized due to their wide 
applications to resemble tropical conditions for regional 

climate downscaling [38-42]. The datasets were dated 17th 
April 2017 corresponding to the date of the Landsat 
satellite images employed during this study. The date 
chosen was within the inter-monsoon season phase when 
less synoptic forcing occurred as compared to monsoon 
seasons and another inter-monsoon season in October 
[43].  
 

Table 1. LBCs’ characteristics. 
 

 NCEP FNL 
Operational Model 
Global Tropospheric 
Analyses, continuing 

from July 1999  

NCEP GDAS/FNL 
Global Tropospheric 
Analyses and 
Forecast Grids 

Data Type Grid Grid 

Data Format WMO_GRIB1 
WMO_GRIB2 

WMO_GRIB2 

Temporal 
Resolution 

6 hours 3 hours 

Spatial 

(Grid) 
Resolution 

1˚ × 1˚ 0.25˚ × 0.25˚ 

Data 
Coverage 

From 0E to 359E and 
90N to 90S 

From 0E to 359E and 
90N to 90S 

 
 

 
 

Fig. 1. The domains design and setup. 
 

The regional modelling process was performed using 
WRF-ARW simulation to downscale the datasets. 
Domains with three nests were designed with the grid size 
of 37.5km (40 × 40), 12.5km (88 × 88), 2.5km (201 × 201) 
and 0.5km (151 × 151) to reproduce the near surface 
temperature. The grid dimensions were designed in easting 
and northing direction as shown in the parentheses. Figure 
1 shows the domain designed for this study. Based on the 
figure, the four domains were designed using the same 
centre which focuses on the Kuala Lumpur location. This 
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is to provide relaxation zone for the domain edges to 
reduce the errors that might resulted by employing LBC 
[8]. The fourth domain (D04) covered the Klang Valley 
region where the study area is located, and the largest 
domain was designed to cover parts of Southeast Asia 
(D01). 

 
Table 2. Physics schemes used during the simulation process. 
 

Physic Option Physic Scheme 

Microphysics WRF Single-Moment 3-
class scheme 

Longwave Radiation RRTM scheme 

Shortwave Radiation Dudhia scheme 

 Surface Layer MM5 similarity 

Land Surface Noah Land Surface Model 

Planetary Boundary Layer Yonsei University 

Cumulus Parameterization Kain-Fritsch 

 
The WRF-ARW offers multiple physics options, 

simple as well as complicated schemes. Thus, a well-tried 
scheme combination was employed in configuring the 
physics and dynamics of the targeted area. The scheme 
combination used in the model as shown in Table 2. The 
study has employed the same domain design and scheme 
combinations for Simulation 1 and Simulation 2. The 
physics schemes chosen was a set of well-tried options 
conducted by [44] that successfully simulate the diurnal air 
surface temperature of the Kuala Lumpur city with the 
accuracy of over 90% agreements with the ground station 
observations provided by the Malaysian Meteorological 
Department (MMD). Using the same physics schemes as 
the study, the diurnal air surface temperature of the study 
area was simulated. The schemes have also been employed 
by many studies to remodel the actual urban climate 
condition within tropical countries [44-47].  

 
2.2.  Remotely-Sensed Data Extraction 
 

This study has utilized the Landsat 8 Operational 
Land Imager (OLI) satellite image to extract the urbanized 
area. The image employed was dated 17th April 2017 
during the first inter-monsoon season of the year. The 
image was also chosen due to a clear sky view that reduce 
the chance of atmospheric errors to occur [44]. The 
radiometric calibration procedure was conducted to 
correct the image to ensure it is free from radiometric 
errors [48]. The process converts the pixel values into 
surface reflectance as shown in Equation 1. Then, sun 
angle displacement was corrected using Equation 2. 
 

 
(1) 

 
where ρλ’ = surface reflectance without sun angle 
              correction 

            Mρ = band-specific multiplicative rescaling factor 
                      from metadata 
          QCAL = Quantized and calibrated standard product 
                      pixel value 
             Aρ = band-specific additive rescaling factor from 
                      metadata 
 

 
(2) 

 

where ƟSZ = Local sun elevation angle 

           ƟSE = Local solar zenith angle 
 

A combined algorithm developed by [49] was 
conducted to extract the built-up areas (urbanized areas). 
The algorithm is suitable to be used since the area of study 
share the same climate experiences as the Kuala Lumpur 
City. The study [49] suggested that the original NDBI 
algorithm developed derived by [50] should be corrected. 
Supported by [51]-[54], the confusion to separate the built-
up areas from green cover and water features were 
suggested to be eliminated or reduced using Normalized 
Difference Vegetation Index (NDVI) and Modified 
Normalized Difference Water Index (MNDWI). Principal 
Component Analysis (PCA) is also suggested to be 
employed to assign the best pixel values for the MIR 
wavelength. The algorithm of NDBI, NDVI and 
MNDWI are shown as Equation 4, Equation 5 and 
Equation 6 respectively. 
 

     (3) 

  

 
(4) 

  

 
(5) 

  

 
(6) 

 

2.3.  Model Validation 
 

In this study, three statistical error indices namely 
mean absolute error (MAE), root mean square error 
(RMSE) and linear agreement were used to evaluate the 
performance of the selected LBCs during simulation 
process. The air surface temperature layer produced via 
the simulation were compared against the ground data 
observed by the Malaysian Meteorological Department 
(MMD) stations. As shown in Fig. 2, the observation of 
three MMD ground stations were utilized namely MARDI 
Serdang station, FRIM Kepong station and
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Subang station. The locations of these ground stations are 
presented in Fig. 2. 
 

 
 

Fig. 1. Location of MMD ground stations. 
 
2.4.  Data Sampling and Inferential Statistics 
 

Data filtration was conducted to ensure that the 
original data was free from outliers. As suggested by [55], 
[56], the process was carried out based on quartiles and 
boxplots to exclude the outliers. Prior to data analysis, the 
data was examined to identify the nature of the data 
distribution. The study has utilized the whole data samples 
and it is found that the data was approximately normal-
distributed. This was indicated by the ratio of kurtosis and 
skewness value against the standard error. Thus, a series 
of parametric statistical approach was selected. Two 
statistical approach were used namely Pearson’s 
correlation test; to examine the interaction of urbanized 
areas with the air surface temperature, and one-way 
Analysis of Variance (ANOVA); to determine whether the 
impact is significant. The one-way ANOVA was 
conducted with the control of Welch’s and Brown-

Forsythe’s test to ensure the error that may resulted can 
be reduced. 

 

3.  Result and analysis 
 

The results and findings of this study are discussed 
into two parts; 1) the simulation performance and 2) the 
urbanization impacts towards the thermal environment of 
the Kuala Lumpur City. The results and findings are 
presented as follows: 

 
3.1.  Simulations Performance 
 

The values of MAE, RMSE and R2 for the two 
simulations are presented in Table 3. The results show that 
Simulation 2 excels Simulation 1 in reproducing the air 
surface temperature of the study area. It is based on the 
value of MAE of ±1˚C, RMSE of ±1.4˚C and R2 of 0.881 
compared to Simulation 1 which has slightly lower results; 
the value of MAE is ±1.5˚C, RMSE is ±1.8˚C and R2 is 
0.763. Figure 3 shows the diurnal pattern of the near-
surface temperature of the city. Based on the figure, it is 
found that similar pattern was identified. Both simulations 
were found to underestimate the near-surface temperature 
in MARDI Serdang and Subang. However, both models 
were found to overestimate the near-surface profile during 
morning hours. On the other hand, both models tend to 
overestimate the temperature in FRIM Kepong despite 
some underestimation during the highest temperature 
readings. Through the study also, larger residuals were 
identified in Simulation 1 especially when the temperature 
was rapidly increase. 
 
Table 3. MAE, RMSE and R2 of Simulation 1 and Simulation 2. 

 NCEP FNL 
Operational Model 
Global Tropospheric 
Analyses, continuing 
from July 1999 
(Simulation 1) 

NCEP GDAS/FNL 
Global Tropospheric 
Analyses and 
Forecast Grids 
(Simulation 2) 

MAE ±1.5˚C ±1.0˚C 
RMSE ±1.8˚C ±1.4˚C 
R2 0.763 0.881 

  

 

Fig. 2. Hourly profiles of near-surface temperature for both simulations in three different stations. 
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3.2.  Urbanization Effects 
 
3.2.1.  Spatial distribution of urbanized areas and near-

surface temperature profile  
 

Figure 4 shows the distribution of built-up areas 
within the Kuala Lumpur City. It was found that, the city 
was dominated by built-up areas by approximately 85% of 
area coverage. The highest built area percentage found to 
be 99.5% indicating the imperviousness of the surface 
area. The lowest built-up percentage is 0% indicating there 
are no built-up coverage found within the area. Most of 
the highest built-up percentages are found in Sentul 
whereas the lowest built-up percentages were found in 
natural forest reserve such as Bukit Tabur, Bukit Besi and 
Bukit Gasing. 

This study has identified that the northern, southern 
and central regions of the Kuala Lumpur City have higher 
built-up area percentages as compared to other regions. 
These areas are developed areas such as Sentul (residential), 
Kepong (industries), Central of Kuala Lumpur (business) and 
Bukit Bintang (business). These developed areas are expected 
to have higher near-surface temperature as compared to 
other less developed areas. Bukit Tunku and Mont Kiara are 
expected to have lower near-surface temperatures as the 
distribution of built-up areas are lower.  

Spatial distribution of the daily mean air surface 
temperature of the Kuala Lumpur City produced by 
Simulation 1 and Simulation 2 are depicted in Figure 5. 
The lowest daily mean air surface temperature was 27.1˚C 
and the highest value was 29.9˚C. In Simulation 2, a close 
resemblance was identified. The lowest daily mean air 
surface temperature was 27.0˚C and the highest mean 
temperature was 29.9˚C. Based on Figure 5 also, the study 
has determined that the spatial distribution of both 
simulations was similar. In each simulation, the eastern 
regions own lower daily mean air surface temperature 
whereas the northern and southern regions  
experienced higher temperature variation. 

In deeper examination of Figure 5, the lowest air 
surface temperature was found in the mountainous regions 
of Bukit Tabur which located in the north-eastern region of 
the city. Mont Kiara, Bukit Tunku and Bukit Besi are other 
areas that own lower daily mean air surface temperatures. Sri 
Petaling has identified to have the highest daily mean air 
surface temperature which located in the south-western 
region of the city. Other regions with high daily mean air 
surface temperature are Kepong, Danau Kota, Bukit Bintang, 
Chow Kit, Kampung Baru and Segambut. Based on these 
results, it can be concluded that urbanized areas contribute to 
the increase of the air surface temperature within the Kuala 
Lumpur City. 

 

  
 

Fig. 3. Spatial distribution of built-up area percentage in 
the Kuala Lumpur City. 

 

 
 

Fig. 4. Spatial distribution of the daily mean near-surface temperature for Simulation 1 and Simulation 2. 
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3.2.2.  Pearson’s correlation test result  
 

The comparison made has determined that a close 
result was obtained for Simulation 1 and Simulation 2. 
Based on the Pearson’s correlation test, the correlation 
between the daily mean air surface temperature and built-
up percentage for Simulation 1 and Simulation 2 were 
0.662 and 0.648 respectively with a positive relationship. 
The relationship was indicated by the increasing trendline 

as portrayed in Figure 6. As shown in the figure, the 
distribution of the points in the graph is closer in 
Simulation 2 which explained the slightly higher result. 
Thus, in presenting the correlation between the daily mean 
air surface temperature and built-up area percentage, both 
simulations gave a very similar result. Therefore, both 
LBC can be employed for similar climate background 
studies.  

 

 
 
Fig. 5. Trendline of near-surface temperature and urbanized area for Simulation 1 and Simulation 2.
 

 
The current results obtained through this study 

support the findings of previous researches. In this study, 
it was identified that the urbanization was affecting the 
thermal variation of the Kuala Lumpur City. This 
advocates that urbanized areas is responsible in the 
increase of the near-surface temperature of the city; the 
higher the built-up coverage percentage, the higher the air 
surface temperature. 

 
3.2.3.  One-way ANOVA test result   
 

The investigation of the performance of both LBCs 
employed was further by conducting one-way ANOVA 
procedures. A similar test was performed for both 
simulations. Using the daily mean air surface temperature 
produced, this study has identified that both models a 
similar result; where both test rejecting the null hypothesis 
which suggesting the same conclusion. The effects of 
urbanization towards the near-surface temperature were 
identified as significant as the p-value rejected the null 
hypothesis of one-way ANOVA. Through the test, it was 
confirmed that there was at least one significant difference 
between the classes of data samples. This result suggests 
that the changes in the built-up area percentage will 
significantly affect the near-surface temperature value 
within the Kuala Lumpur City. 

Previously, many studies have documented that rapid 
urbanization leads to fast conversion of green covers such 
as natural forest and croplands which is the prime cause 
to the rise in the surrounding temperature that leads to the 
formation of UHI [25], [26]. The green covers and 
croplands are replaced with built-up areas which increase 

the heat capacity storage. This will lead to the increase of 
heat release into the air, making the surrounding 
temperature to be hotter. The present study also 
discovered similar phenomena occurred in the Kuala 
Lumpur City as documented by previous studies. The 
region with high built-up areas experienced high 
temperature as compared to the area with less built-up 
areas [40, 43]. 

 

4.  Conclusion 
 

The performance of two LBCs with different spatial 
and temporal resolutions in initializing the boundary 
conditions in WRF-ARW numerical simulation were 
analysed in this study. The performance was tested in 
regenerating the near-surface temperature of a tropical city 
in Malaysia. The study has identified that the LBC with 
higher spatial and temporal resolution gave higher 
performance for regional downscaling. However, this 
study has also identified that both LBCs offers similar 
performance, thus, both LBCs are suitable to be utilized 
in reproducing the near-surface temperature of tropical 
cities. Future studies regarding this matter are urged with 
separate analysis on spatial and temporal resolutions 
impacts in regenerating the tropical urban climate 
condition. 

As Malaysia envisions its cities to be climatic-friendly 
in the near future, implementation of the urban climatic 
aspect should be emphasized in urban planning process. 
In line with the National Policy on Climate Change and 
the National Green Technology Policy introduced by the 
government, consideration on the urban climatic aspect 
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require active participation from the multi-disciplines 
experts. At the moment, international efforts in addressing 
the importance of sustainable development are also 
evident through many programs such as the Global Cool 
Cities Alliance (GCCA), World Urban Forum (WUF) and 
New Urban Agenda by United Nations which encourage 
the countries worldwide to join the alliance to combat the 
climate change impacts on urban regions. 
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