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Abstract: In the current Industry 4.0 revolution, prognostics and health management (PHM) is an
emerging field of research. The difficulty of obtaining data from electromechanical systems in an
industrial setting increases proportionally with the scale and accessibility of the automated industry,
resulting in a less interpolated PHM system. To put it another way, the development of an accurate
PHM system for each industrial system necessitates a unique dataset acquired under specified
conditions. In most circumstances, obtaining this one-of-a-kind dataset is difficult, and the resulting
dataset has a significant imbalance, a lack of certain useful information, and contains multi-domain
knowledge. To address those issues, this paper provides a fault detection and diagnosis system
that evaluates and preprocesses imbalanced, scarce, multi-domain (ISMD) data acquired from an
industrial robot, utilizing signal processing (SP) techniques and deep learning-based (DL) domain
knowledge transfer. The domain knowledge transfer is used to produce a synthetic dataset with
a high interpolation rate that contains all the useful information about each domain. For domain
knowledge transfer and data generation, continuous wavelet transform (CWT) with a generative
adversarial network (GAN) was used, as well as a convolutional neural network (CNN), to test
the suggested methodology using transfer learning and categorize several faults. The proposed
methodology was tested on a real experimental bench that included an industrial robot created by
Hyundai Robotics. This test had a satisfactory outcome with a 99.7% (highest) classification accuracy
achieved by transfer learning on several CNN benchmark models.

Keywords: domain knowledge transfer; big industrial data; generative adversarial network (GAN);
convolutional neural network (CNN); prognostics and health management (PHM); artificial
intelligence (AI)

MSC: 68T40

1. Introduction

In contemporary industrial settings, the majority of tasks are performed by elec-
tromechanical devices, such as robots. These robots are made up of several electrical and
mechanical components joined together to perform a uniquely engineered operation. Yet,
such electromechanical components are vulnerable to degradation due to continued oper-
ation. Over time, proper assessment and maintenance strategies are required to prevent
irreparable damage. To counter this, prognostics and health management (PHM) has
evolved as an attractive method in establishing techniques for system health monitoring,
diagnostics, remaining useful life (RUL) prediction, and prognostics. PHM is considered to
be an effective approach to providing comprehensive, tailored solutions for health man-
agement [1]. PHM has three critical tasks: (1) fault detection: detection of fault trigger at
the early stage of the component or system degradation; (2) fault diagnosis: segregation
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and identification of fault and its source; and (3) prediction: RUL forecasting. Figure 1
shows the essential tasks of a PHM system. PHM can be applied at the component level,
system level, or both. PHM at the component level directs the development of health
monitoring strategies for specific components, such as electric motors, electronic devices,
bearings, and gear reducers. It determines whether the health of the monitored component
is time-degraded due to various environmental, operational, and performance-related
parameters [2,3]. In contrast, PHM at the system level evaluates the detailed system health,
factoring in system operation, design, and process-related parameters [4].
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In recent years, the tremendous progress in artificial intelligence (AI) has strengthened
the potential for designing PHM systems that are powerful enough to detect, diagnose,
and predict faults at an earlier stage with high precision. Deep learning (DL) and machine
learning (ML) have become essential tools in establishing the decision-making capabilities
of a PHM system. Numerous studies have been conducted on designing and implementing
such a system at the component and system levels. PHM is generally classified into
either mathematics- or data-based approaches [5–7]. Awareness of the core knowledge
of the component understudies, such as those relating to material characteristics and
architectural attributes, supports mathematical model approaches [8,9], while data-driven
approaches derive information from statistical data to forecast a component’s health [10–14].
The mathematical model-based methods [15–17] require the development of a physics-
based model of an element or system beforehand, from which to develop PHM strategies.
Yet, they struggle with several issues, such as noisy and dynamic work environments,
which affect the requisite precision needed to create the desired model. Furthermore, these
models cannot be upgraded with newly recorded data in real-time.

In contrast to the model-based approaches, data-driven approaches [18,19] are be-
coming popular due to their ability to update and transform in real-time under different
scenarios. There have also been substantial improvements in the computing capabili-
ties of devices, with improved sensing technologies that allow efficient data acquisition.
Current data-driven approaches require significant information and additional real-time
measurements, such as vibration, acoustic emission, laser displacement, temperature,
speed, and electrical current [20,21], to design a PHM system. Recently, researchers have
suggested data-driven approaches that focus primarily on the DL-based fault diagnosis
or prognosis [22,23]. In contrast, others have concentrated on the applicability of a specific
item, such as a bearing or an electronic system [24–26]. Other studies have addressed
alternative propositions, such as intelligent condition-based monitoring of rotating electri-
cal machines (REMs) using a sparse auto-encoder approach [27], rolling element bearing
(REB) PHM based on a deep convolutional neural network (DCNN) [28], and improved
DCNN, i.e., the hierarchically adaptive DCNN [29]. CNN-based mechanical bearing fault
detection [30] was introduced as a feature-learning basis for health monitoring to freely
learn useful features from the data. Meanwhile, my previous study [31] introduced an
ML-based fault detection and diagnostic method based on a different feature selection,
extraction, and infusion process.

The success of the aforementioned approaches is highly dependent on the following
factors: (1) data availability: if data are available, or can be acquired for specific components
or systems; (2) data type: what type of data is known, or can be obtained, such as the
vibration, acoustic emission, or electric current; (3) data quality: if data are recorded with
precision, and they are constitutive of all the information required to analyze the features
and behavior of a particular component or system; and (4) data quantity: if data are sufficient
in quantity for analysis and the creation of an interpolated PHM system. Generally, due to
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the complexities of industrial parts and processes, it is difficult to collect data that satisfy
all these factors. The raw data collected are often imbalanced: the numbers of samples per
class are not evenly distributed (sometimes with a significant volume of data for one class,
alluded to as the majority class, and much fewer samples for one or two other classes,
alluded to as the minority classes); scarce: data are not adequate to create sustainable DL
models that can be applied at the production stage; multi-domain: the dataset is comprised of
information regarding several domains, e.g., speed characteristics of a rotating electrical or
mechanical component at a different level of speed. Thus, imbalanced, scarce, multi-domain
(ISMD) data represent a significant bottleneck in the growth of PHM systems.

Research continues to tackle the challenges related to DL applications for PHM. Pre-
viously, in [32], the authors provide a brief introduction to several deep learning models
by reviewing and analyzing fault detection, diagnosis, and prognosis applications. Yet,
a challenge remains about how to resolve ISMD data, which poses a significant challenge
for AI-based applications. Several proposed methods, such as data augmentation and
transfer learning, have been used to address the imbalance and scarcity of data. The gener-
ative adversarial network (GAN) was frequently used for this purpose. In [33], the authors
proposed balancing-GAN (BAGAN) as an augmentation method for restoring balance
in imbalanced datasets, while in [34], a concept for learning the discriminative classifier
from unlabeled or partly labeled data using categorical-GAN (CatGAN) was established.
In another variation, a data augmentation process was proposed [35], producing artificial
medical images by using GAN to classify liver lesions. Apart from these methodologies,
to address current issues with traditional electromechanical system monitoring approaches
used in industrial settings, some researchers focused on incremental learning and novelty
detection methodologies [36,37]. These methodologies mainly focus on the development of
fault detection systems in industrial settings with a lack of data for faulty conditions. By in-
troducing a systematic approach—of feature selection, extraction, and classification—to
retraining, to include new patterns to the novelty detection and fault identification models,
these techniques have shown promising results. In recent studies [38,39], GAN was used
for multi-domain image translation with various image syntheses. The architecture was
called StarGAN. The study implemented a rigorous approach to converting images from
two different domains into a single domain, without losing any useful features, thus paving
the way for the introduction of domain knowledge transfer using GANs in the field of DL.

ISMD data have been a specific research challenge in creating interpolated DL models,
regardless of the type of classification issue. In particular, the problem of multi-domain
data has not yet been adequately investigated. Therefore, this specific work expands the
ISMD data issue by focusing on multi-domain data, intending to develop a holistic fault
detection and diagnosis system for component-level PHM. By adding multiple faults re-
lated to a mechanical component, the rotate vector (RV) reducer, data for several domains
were recorded in real-time from an industrial robot. The recorded data were then pre-
processed using signal-processing techniques such as discrete wavelet transform (DWT)
and continuous wavelet transform (CWT). The power of StarGAN was used to transfer
domain knowledge using image-to-image translation to generate a synthetic dataset from
real data. The final dataset was then validated using transfer learning with a variety of
CNN benchmark models.

Relevant literature was examined for this study, finding that such a technique has
not yet found any practical application specifically for PHM. So, the prospects of using
motor current signature analysis (MCSA) to detect and diagnose mechanical faults were
investigated in this study. Previously, mechanical faults were detected by contrasting
approaches—vibration signal analysis, acoustic emission, or ferrography analysis. Among
these, the most effective method has been vibration analysis. Yet, this method faces certain
challenges such as its usage requiring costly vibration sensors, which are challenging to
place and install in particular areas to record vibration signals. The ambient environment
also generates noise, causing erroneous sensor readings. As an improved option, MCSA
has a range of benefits over vibration analysis. For instance, MCSA uses the built-in current
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signal of the motor control unit and needs no extra sensors, resulting in a low-cost and
less complicated framework. In addition, the current signals are not easily affected by the
ambient operating conditions.

The following sections present the details of the proposed fault detection and diagnosis
approach: Section 2 defines the materials and methods, including the experimental test
bench, and describes the suggested technique; Section 3 presents the results and discussion;
Section 4 concludes the paper.

2. Materials and Methods
2.1. Experimental Test Bench

The experimental test bench in this study, as shown in Figure 2, consisted of three main
components: an industrial robot, controller, and personal computer (PC). Manufactured
by Hyundai Robotics, Deagu, South Korea, the robot used was the model YS080, with a
maximum payload capacity of 80 kgf. Figure 3 shows details of the robot as follows: (a) a
free body diagram and (b) the Hyundai robot YS080. The robot comprises six axes or
joints where an individual axis is mounted with an electric motor (those are of diverse
specifications), enabling it to move freely, taking 360-degree turns about each axis.
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The motors are attached to reducers at each axis to increase or decrease the rotation
speed. The robot is operated by sending commands to the controller through a PC, which,
in turn, operates electric motors to produce a specific motion. Three-phase servo motors
are used on each axis. The power of the motors is configured based on the amount of
mechanical load on each axis. The first three axes are equipped with high-specification
motors, whereas the others are equipped with lower specifications. Table 1 summarizes the
details of the electric motors.

Table 1. Specifications of the electric motors.

Axes No. Power (kW) Speed (rpm) Voltage (V) Current (A) Frequency (Hz)

1, 2, 3 5.9 2000 200 25.1 166
4, 5, 6 2 3000 200 11.7 250

2.2. Architecture of the Proposed Methodology

Figure 4 shows the overall basic architecture of the proposed methodology for the
fault detection and diagnosis system. The proposed method is divided into three steps:

1. Data analysis;
2. Domain knowledge transfer;
3. Data splitting and classification.
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Several experiments were conducted on the experimental test bench shown in
Figures 2 and 3 under different conditions to record the data. The recorded ISMD dataset
was further used to create a multi-domain infused dataset using GAN and image-to-image
translation. Finally, the generated dataset and original ISMD dataset were used, and a CNN
was used to perform the classification task between several faults related to the RV reducer.
The following subsection contains a detailed explanation of the proposed methodology.
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2.2.1. Data Analysis
Data Acquisition

The three-phase current signal data for each axis servo motor were recorded using Hall
Effect Base Linear Current Sensors WCS6800 manufactured by Winston Semiconductor
Corp., Hsinchu, Taiwan. Sensors were installed at each phase of the electric motor on each
axis of the robot. The current signals were recorded using a total of 18 current sensors
for six motors. Figure 5 describes the data acquisition system. NI DAQ 9230 modules
manufactured by National Instrument (NI), Texas, United States were used to acquire the
data. This module for data recording sends the collected signal to a PC with a LabView
program installed on it. The received data were processed, and a concluding archive was
established containing the signal information for the three-phase current signals of each
axis motor.
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Figure 5. Block diagram of the data collection process.

The data were recorded concurrently for each motor under various fault situations.
An RV reducer eccentric bearing fault was introduced into the reducer, coupled with the
fourth axis motor in one case. In another case, the fault was introduced by replacing
the RV reducer with a degraded one. The data were recorded for a total of three classes:
normal, faulty (RV reducer with eccentric bearing fault), and faulty age (RV reducer with
aging fault). Figure 6 pinpoints the positions of the faults in the Hyundai Robot with a
comprehensive logical view offered. Figure 7 depicts the fault modes using an example of
a fault specimen. For several cycles, the robot was operated to move freely around the axis
of rotation.
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Data-driven methods typically involve a huge volume of data and more samples,
which is the optimal case. However, in this case, the data were recorded for 10 cycles for
each axis to generate ISMD data. Each cycle corresponded to the completion of motion
along a particular axis. To introduce scarcity into the dataset, 10 cycles were chosen.
The data were recorded with an imbalance between the three classes (each class containing
a different number of samples). Subsequently, the motors were operated at various speed
profiles, ranging from 10 to 100% of the rated speed, to obtain multi-domain data. Each
speed level was characterized as a single domain since each speed included information
about the various time and frequency components of the original signal. Figure 8 shows the
details of the hardware used in the process of data acquisition. For each axis motor, the data
were recorded, although the fault was only placed into the RV reducer at axis four, as due
to mechanical coupling, a fault in one axis could influence the operation and performance
of the other axis motors. Table 2 shows the details of the recorded dataset. There are
multiple speed domains from 10 to 100%. The data are imbalanced, with a different number
of samples for each class—30, 27, and 24 for normal, faulty, and faulty age, respectively.
The data are scarce as only 30 samples were recorded for the single domain at one axis.
The final dataset consists of 4860 samples for the three classes.
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Table 2. Details of the recorded dataset.

Recorded Dataset

Multi-Domain (Speed Profiles)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Normal\Faulty\Faulty Age (Number of Samples (Cycles))

A
xi

s
N

o.

Axis 1 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24
Axis 2 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24
Axis 3 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24
Axis 4 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24
Axis 5 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24
Axis 6 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24 30\27\24

Total No. of
Samples 180\162\144180\162\144180\162\144180\162\144180\162\144180\162\144180\162\144180\162\144180\162\144180\162\144

Dataset Size 4860 × 3 (No. of Samples × No. of Classes)

Data Preprocessing

To reduce the dimensionality and size of the recorded dataset, DQ0 transformation
was implemented on the three-phase current signals. The DQ0 transformation was utilized
to convert the three-phase current signal to a two-phase current signal in such a way that
the information in the remaining two signals was preserved. DQ0 transformation is a well-
known technique to reduce the dimensions of the electric signal, transforming three-phase
current data to an arbitrary rotating framework of DQ0 by projecting the knowledge from
a three-dimensional to a two-dimensional space. The resulting signals can be described
by a circle in the projected two-dimensional space. This helps to simplify the frequency
analysis since the circle correlates to the signal and helps in conserving the magnitude of
the current or voltage signals. In this work, sinusoidal-based DQ0 transformation, which
is given in Equation (1), was used. Figure 9 shows the three-phase and two-dimensional
representation of the DQ0 transformation.

Tabc−dq =

√
2
3

sin ωt sin
(
ωt− 2π

3
)

sin
(
ωt + 2π

3
)

cos ωt cos
(
ωt− 2π

3
)

cos
(
ωt + 2π

3
)

1√
2

1√
2

1√
2

 (1)
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Signal Processing and Data Dimension Conversion

Signals extracted from the sensors are in raw form and normally require preprocessing
to eliminate noise and unnecessary information. Signal-processing techniques are used for
this purpose, which help in analyzing the features of a specific signal in the time, frequency,
and time-frequency domains. There are several types of signal-processing techniques based
on different domains. These techniques are categorized as time-domain, frequency-domain,
and time-frequency domain analyses. Statistical parameters illustrating valuable knowl-
edge in the time domain are extracted from the signal [40–42] in time-domain analysis,
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whereas, for frequency-domain analysis, Fourier transform (FT) is the most frequently used
method. This decomposes the signals into constituent frequencies. Another technique is
the fast-Fourier transform (FFT), which is widely used for the analysis of continuous-time
signals. This transformation uses spectral frequencies for the analysis of a signal. However,
for the processing of non-stationary signals, such as in this particular work, time- and
frequency-domain analysis techniques have certain limitations.

Time-frequency domain analysis, a combination of the frequency and time domains,
has been established to reduce these limitations [43]. The standard method used for this
purpose is known as short-time Fourier transform (STFT) [44], which segregates the whole
signal via FT and windows of small time periods into different segments. Another common
method with a similar purpose is wavelet transform (WT) [45,46]. WT is an empirical
technique that utilizes the interpretation of wavelet decomposition as a scaling idea for
time-varying or non-stationary signals. This is a better approach for analyzing signals with
a dynamic frequency spectrum at high resolution in both the time and frequency domains.
Unlike other techniques, it not only informs which frequencies are present in a signal but
also at which time these frequencies occurred.

WT is mainly divided into two types, DWT and CWT, each with its function in
signal analysis. DWT is a non-redundant transformation that mainly focuses on one-
to-one interaction between the information in the signal and transform domains. This
close interaction makes DWT more appropriate for applications such as signal de-noising
and reconstruction. However, CWT is more suitable for scalograms because the analysis
window can be sized and configured at any position. This adaptability facilitates the
generation of smooth images. Therefore, in this work, to construct a dataset rich with
features of both the time and frequency domains, DWT was used for signal de-noising,
and CWT for the generation of scalogram representations of each cycle for multiple speed
domains. CWT was also used for the conversion of data from a one-dimensional signal to a
two-dimensional image. CWT can be mathematically given as:

Xω(a, b) =
1

|a| 12

∫ ∞

−∞
x(t)ψ

(
t− b

a

)
dt (2)

where ψ(t) is the continuous mother wavelet and the overline represents operation of
complex conjugate, which is scaled by a factor of a and translated by a factor of b.

Figure 10 shows the overall flow of the signal processing and data dimension conver-
sion techniques implemented in this work. Figure 11 shows an example of the de-noised
signal using DWT where the blue signal is the original signal while the green signal is the
de-noised signal. The signal is for one cycle of mechanical rotation of the robot along one
axis, rather than an electrical cycle. On the other hand, Figure 12 shows an example of the
scalogram images after the implementation of CWT on the de-noised cycles for a single
domain of 10% rotation speed.
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Original ISMD Data

The final dataset after preprocessing and signal processing was stored in a database of
scalogram images reflecting the original current signal cycles in various speed domains.

As stated earlier, to produce the dataset in this work, a single parameter of speed
was the focus, to construct multi-domain data. Preliminary findings and signal processing
aided the simplification of the data collection by removing redundant data from the dataset
presented in Table 2. Hypothetically, when faults are imitated in axis four of the robot,
there is a risk that the current signals of the other axis motors may be affected, which
would entail simultaneous MCSA concentrating on the data of all axes at the same time
to identify the faults. However, this was not the case with the Hyundai Robot; it was
found that a fault in one axis would not affect the operation or signal pattern of the other
axis motors. This meant the data for the axis where the fault lay could be solely relied
on. Table 3 illustrates the size of the data after preprocessing and signal analysis. This
dataset is presented in a scalogram representation, rather than a signal cycle. Each signal
cycle is translated to a scalogram representation, and the number of samples is reduced
from 30/27/24 to 20/17/14 for the normal/faulty/faulty age class, respectively, thanks to
DQ0 transformation.
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Table 3. Original ISMD data.

Refined Original ISMD
Dataset

Multi-Domain (Speed Profiles)
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Normal\Faulty\Faulty Age (Number of Samples (Cycles))

Total No. of Samples (Axis 4) 20\17\14 20\17\14 20\17\14 20\17\14 20\17\14 20\17\14 20\17\14 20\17\14 20\17\14 20\17\14
Dataset Size 510 × 3 (No. of Samples × No. of Classes)

Figure 13 shows the detailed scalogram obtained after CWT implementation. The ex-
emplary scalogram is for the speed of 10%. The x-axis shows the time in milliseconds and
the y-axis shows the scales chosen based on the frequency spectrum of the input signal.
The color bar on the right-hand side shows the magnitude of a specific scale at a specific
instance. Note that the x- and y-axis values for each speed case were kept similar for better
comparison. Figure 14 shows the scalogram images for each speed domain for a single
cycle. There is a clear difference in the scalogram images: as the speed of the rotation
increases, the frequency also increases with different time scales. Figure 15 shows the
comparison of three classes in RGB and greyscale formats at a speed of 10%.
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2.2.2. Domain Knowledge Transfer

The original ISMD dataset, which had several speed domains with scarce and imbal-
anced characteristics, could not be considered to perform well for the classification of faults.
Yet, if the classification was carried out at a fair stage, the system would still be limited to
an application-specific environment, with little potential for interpretability. Therefore, it
was necessary to either collect further data with thousands of samples, which are, in most
cases, very complex for industrial robots and systems, or to adopt a method in which
data features with minimal samples across several domains can be translated, and based
on those translated features, create a new dataset of translated knowledge, which can be
further used to establish DL-based classification models. The latter was not feasible until
recently when studies [38,39] suggested methods for image-to-image translation, where
a GAN with an input source and the reference image is used to learn the features of the
source and reference, generating a new image with features from both. This GAN has
shown positive results in the field of computer vision, being particularly efficient in areas
such as image synthesis [47–49], translation [50–52], and creation [53–56]. The previous
GAN image-to-image translation framework was limited to a single domain, which could
be used with a single network. To translate images through multiple domains, a new
network was required, increasing the computational cost for the generation of systems with
the multi-domain image-to-image translation.

Figure 16 demonstrates the difference between the previous cross-domain models
and the StarGAN [38] used in this work, in (a), addressing how 12 independent generator
networks were trained to interpret images from only four areas, whereas, in (b), the model
demanded training data from several environments, and learned to map among all domains
using only one generator. Figure 17 displays the StarGAN architecture. The first part of the
network is a generator, which takes an input image and converts it into an output image
with a domain-specific style code. The second part is a mapping network that converts
hidden code to style codes for various domains randomly chosen during the training
process. The third part is a style encoder, which derives an image style code that enables
the generator to execute reference-guided image fusion. The last part, like other GANs,
is the discriminator, which differentiates between original and fake images from a variety
of domains.
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2.2.3. Data Splitting and Classification

Using domain knowledge transfer with the StarGAN mentioned in the previous
section, a dataset comprising scalogram images from each class and translated images
across each speed domain was created. Initially, three datasets for the normal, faulty, and
faulty age classes were generated using three StarGANs trained specifically to tackle a
single class with multi-domain data. Those, along with the original ISMD dataset, were
used as the final data, split into training and validation datasets. Figure 18 shows the details
of the data generation and domain knowledge transfer for a single domain of 10% speed.
Note that the digits on the blocks show the total number of images present at the specific
stage. The size of the generated images is 224 × 224 pixels. The same operation was carried
out for each domain, and the final dataset was obtained. The total number of images for
domain knowledge transfer among two domains can be calculated using Equation (3):

Nab = (na × nb)× (nd × Nd) (3)

where Nab is the total number of images after knowledge transfer between domains a and
b, na is the number of images in domain a, nb is the number of images in domain b, nd is
the total number of domains, and Nd is the domain number = 1, 2, 3, . . . , 10 for the speed
(10, 20, 30, . . . , 100) percentage. Table 4 shows the possible combinations of domain
knowledge transfer between different domains, with the total number of generated images
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(calculated using Equation (3)) and the overall final dataset size. Note that domain 10 with
100% speed is not present in the following table since it has already been compensated for
in the data generation for the other domains.
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Table 4. Final dataset with possible combinations of domain knowledge transfer.

Number
of Com-

binations/
Operations

Domain 1
(10%

Speed)

Domain 2
(20%

Speed)

Domain 3
(30%

Speed)

Domain 4
(40%

Speed)

Domain 5
(50%

Speed)

Domain 6
(60%

Speed)

Domain 7
(70%

Speed)

Domain 8
(80%

Speed)

Domain 9
(90%

Speed)

1 (10, 20) × × × × × × × ×
2 (10, 30) (20, 30) × × × × × × ×
3 (10, 40) (20, 40) (30, 40) × × × × × ×
4 (10, 50) (20, 50) (30, 50) (40, 50) × × × × ×
5 (10,60) (20,60) (30,60) (40,60) (50,60) × × × ×
6 (10, 70) (20, 70) (30, 70) (40, 70) (50, 70) (60, 70) × × ×
7 (10, 80) (20, 80) (30, 80) (40, 80) (50, 80) (60, 80) (70, 80) × ×
8 (10, 90) (20, 90) (30, 90) (40, 90) (50, 90) (60, 90) (70, 90) (80, 90) ×
9 (10, 100) (20, 100) (30, 100) (40, 100) (50, 100) (60, 100) (70, 100) (80, 100) (90, 100)

Genera-
ted Images/Classes 3620 3220 2820 2420 2020 1620 1220 820 420

Final Dataset Size 40847 × 3 (No. of Samples × No. of Classes)

The final dataset mentioned in Table 4 was used for the classification of the faults
using transfer learning on some of the prominent benchmark CNN models. In this work,
finetuning, a transfer learning principle that substitutes the pre-trained output layer with
a layer containing the number of final dataset classes, was used. The last three layers
were substituted with a fully connected layer, a softmax layer, and a classification layer.
The primary objective of using pre-trained CNN models is to achieve quick and accurate
training on a CNN’s manipulation of a random initialization of weights and to accomplish a
low training error. The effectiveness of the GoogLeNet [57], SqueezeNet [58], AlexNet [59],
VGG16 [60], Inception v3 [61], and ResNet50 [62] architectures was analyzed for this specific
fault detection and diagnosis system. Table 5 presents the characteristics of these CNN
architectures.
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Table 5. Characteristics of the benchmark CNN models.

Network Depth/No. of Layers Input Image Size

GoogLeNet 22 224 × 224
SqueezeNet 18 227 × 227

AlexNet 8 227 × 227
VGG16 16 224 × 224

Inceptionv3 48 299 × 299
ResNet50 50 224 × 224

3. Results and Discussion
3.1. Domain Knowledge Transfer for ISMD Data/Data Generation

Table 6 shows the specifications of the PC used in this work. For domain knowledge
transfer, StarGAN was trained for 100,000 iterations. The recorded training time was
approximately 5 h for a single class and 15 h for three classes. The number of iterations was
carefully selected after observing the loss for the generator and the descriptor module of
StarGAN. Figure 19 shows some results of the latent images generated during the training
process at 10,000, 20,000, 30,000, and 40,000 iterations. As can be seen, at different iterations,
the network learns more and more features, generating images with a similar pattern
to the input. For precise analysis, results are presented with a focus on only one class:
normal. The results for the other classes had a similar pattern, but with different features
and information. In Figure 19, (a) represents the speed domain of 30%, (b) 50%, (c) 80%,
and (d) 100%.

Table 6. PC specifications.

Component Detail

CPU Intel ® Core™ i7-8700k CPU Eight-core @ 3.0 GHz
Memory 32 GB

GPU NVIDIA GeForce RTX 2080 Ti
Operating System Linux
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Figure 20 shows some of the reference images generated during the training process of
the network for different domains and a different number of iterations for the normal class.
The red rectangular box in (a) represents the scalogram image for domain one at 40% speed,
while the orange one represents domain two at 20% speed; the yellow one, meanwhile,
is the generated output image after domain knowledge transfer at 10,000 training iterations.
(b) shows the domain knowledge transfer between 10 and 30% speed at 20,000 training
iterations, (c) 60 and 100% speed at 30,000 training iterations, and (d) 80 and 100% speed at
40,000 training iterations.
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Figure 21 shows the results of the generated images after training the network. The ref-
erence images are those provided to the network as a reference, with source images acting
as the input at a specific time. The network takes the source image, compares it with
the reference image, and based on the learned features from both sources and references,
generates the output image. For multiple speed domains, 10 to 100%, a relationship is
established, and several images are generated based on the combinations previously pre-
sented in Table 4. Note that there are combinations in Figure 21, such as (10, 10), (20, 20),
(30, 30), (40, 40), (50, 50), (60, 60), (70, 70), (80, 80), (90, 90), and (100, 100), which act as
‘do not care’ conditions (similar to in Table 4). These combinations are segregated from
the final dataset since the goal is to transfer knowledge across multiple domains with the
infusion of several frequency- and time-domain features at different levels of speed, rather
than the same set of speed domains. This also reduces the size and redundancy of the final
dataset. As previously mentioned, similar images as in Figure 21 are generated for the
other two classes, faulty and faulty age, to create a complete dataset. The implementation
of StarGAN is available as opensources for both the PyTorch and Tensorflow libraries in the
GitHub repository [63]. In this particular work, the TensorFlow implementation was used.

The dataset obtained from StarGAN with the original dataset recorded in real-time
was used by keeping the resource parameters intact. Each class of the generated dataset
with the corresponding class of the recorded dataset was used for training and valida-
tion purposes. The size of the final dataset (total dataset) was 40,847 × 3 (Number of
samples/images × Number of classes).
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3.2. Fault Classification

To classify the faults and validate the efficacy of the proposed data-generation method-
ology, transfer learning on some of the prominent benchmarks of CNN was adopted. Six
CNN models, where each had a different number of layers and input image size, and each
was developed with a different analogy to carry out image classification tasks, were trained.
For comparison purposes, each of these models was trained with the same number of
epochs, and with similar batch sizes and hyperparameters. Table 7 presents the values of
the hyperparameters used during the training of the CNNs. The training was performed on
the PC with the specifications mentioned in Table 6. The final generated dataset was used
as a training dataset. The validation dataset contained the data from the original ISMD
dataset, whereas the training dataset was composed of the data generated using StarGAN.
This was done to verify the interpolation capacity of the trained CNN models and to avoid
overfitting. The validation was performed on unseen data not generated by StarGAN.
The training dataset was further divided into the training and testing datasets with the
ratio of 70:30%. The split strategy was chosen carefully to counter the computationally
intensive task of classification.

Table 7. Hyperparameters used for training.

Hyperparameters Value

Batch Size 32
Epochs 30

Learning Rate 0.0001
L2 Regularization 0.00001

Optimization Algorithm Stochastic Gradient Descent

The performance of the six CNN models (GoogLeNet, SqueezeNet, AlexNet, VGG16,
Inception v3, and ResNet50) was evaluated using the following performance metrics. Some
of these metrics are widely used to test the performance of a trained ML/DL model. Among
these metrics available, the accuracy, sensitivity, specificity, precision, and F-score were
used. Accuracy is the most important metric, which reveals the number of samples that
are correctly classified out of all the samples. Generally, it is expressed as the ratio of true
positives (TPs) and true negatives (TNs) divided by the sum of the total number of TPs,
TNs, false positives (FPs), and false negatives (FNs). A TP or TN is a data sample that the
algorithm accurately classifies as true or false. On the other hand, an FP or FN is a data
sample that the algorithm falsely classifies. Equation (4) represents this metric:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)
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The sensitivity metric is also known as the recall. It is defined as the number of
accurately classified positive samples, which implies how many samples of the positive
classes are identified correctly. It is given in Equation (5):

Sensitivity/Recall =
TP

TP + FN
(5)

Specificity refers to the conditional possibility of the TN in the given class; this implies
a prediction of the possibility of a negative label becoming true. It can be represented as in
Equation (6):

Specificity =
TN

TN + FP
(6)

Precision, calculated as the percentage of TPs, divided by the number of TPs plus the
number of FPs, is given by Equation (7). This metric is about consistency, i.e., it measures
the prediction performance of the algorithm. It tells us how precise a model is based on
what is expected to be positive, and given how much of that is truly positive.

Precision =
TP

TP + FP
(7)

Finally, the F-score is defined as the relative average of precision and recall, as shown
in Equation (8). It relies on positive class evaluation. A high value of this parameter
suggests that the model performs the best in the positive class. Table 8 presents the results
achieved when finetuning the CNNs based on the performance metrics.

F− score = 2×
(

Precision × Recall
Precision + Recall

)
(8)

Table 8. Results of the evaluation metrics and CNN performance.

CNN Model
Metric

Accuracy Sensitivity Specificity Precision F-Score

GoogLeNet 99.71325864 99.61988796 99.75994398 99.61988796 99.619888
SqueezeNet 99.61988796 99.47983193 99.68991597 99.48506224 99.4798152

VGG16 99.3331 99.0997 99.4499 99.102 99.1
AlexNet 98.01269841 97.21904762 98.40952381 97.37777778 97.220979

Inceptionv3 97.9994 97.2992 98.3496 97.366 97.298
ResNet50 95.7055 94.2583 96.4921 94.7586 94.2398

The results are significantly promising for all six CNN models, starting with GoogLeNet,
which achieved an accuracy of 99.7%, with high predictability for the positive and negative
classes, and with a sensitivity of 99.6% and specificity of 99.7%. It was undoubtedly the
best model to classify the faults. Following it was SqueezeNet with an accuracy, sensitivity,
and specificity of 99.6%, 99.4%, and 99.6%, respectively. SqueezeNet performed consid-
erably well for the overall classification. The third best was VGG16, which achieved an
accuracy, sensitivity, and specificity of 99.3%, 99.0%, and 99.4%, respectively, followed by
AlexNet, which showed less accurate results compared to the top three models. The maxi-
mum accuracy was recorded as 98.0%, with a sensitivity and specificity of 97.2% and 98.4%,
respectively. Inceptionv3 and ResNet50, meanwhile, performed considerably less effec-
tively than the other models but were still better at solving the fault classification problem.

The architectures of these CNN models differ from one another. GoogLeNet is com-
posed of 22 layers, where there are multiple convolutional layers, followed by the inception
module and more convolutional layers. The greater number of layers helps the network
to extract useful, distinguishable, and prominent features from a given training dataset.
The model is heavy compared to the others but performs well in learning features with
multiple filters. On the other hand, SqueezeNet is composed of 18 layers, designed with a
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different analogy from GoogLeNet meaning it has relatively fewer parameters. VGG 16
and AlexNet are composed of 16 and 8 layers, respectively, where convolutional layers
are stacked one after another. While they were proven to be promising models for image
classification, in this study, they were inefficient for fault classification. While the number
of layers can be an important parameter to consider when designing the architecture of a
neural network, the relationship between the different layers of the network can also play a
significant role in improving the learning capacity of a network. Inceptionv3 and ResNet50
are examples of such networks. Even though both these networks have a high number
of layers compared to GoogLeNet, they nevertheless do not perform well for the fault
classification problem. Inceptionv3 is composed of 48 layers, while ResNet50 is composed
of 50 layers. The poor performance of these architectures has to do with the way the layers
are related to one another in the network. In Inceptionv3, multiple inception modules
are used that are comprised of multiple convolutional layers, whereas, in ResNet50, the
skip connection concept of residual networks is used, where the output from a layer can
be directly fed as an input to the other layer at a specific level of the architecture, while
skipping the layers between them. The results of this work also prove that such a network
fails to show more prominent results due to the design of the architecture and specific
implementation methodologies.

Figure 22 shows the confusion matrices for the top two models. The rows corre-
spond to the expected output class, while the columns correspond to the real target class.
The diagonal cells correspond to the groups that are precisely classified. Off-diagonal cells
correspond to groups that are falsely classified. Each cell displays the number of samples
and their percentile. The far-right column represents the percentiles of all the samples
expected for each class, correctly and incorrectly classified. These metrics are also known as
the precision and the false discovery rate. In both the cases of GoogLeNet and SqueezeNet,
more confusion is found between the normal and faulty classes. Figure 15, which shows
the scalogram images of each class, also confirms this. The difference between the Normal
and Faulty Age class is more visible than the Faulty class, making it easier for the CNN
model to classify with high accuracy. Almost 100% accuracy between the Normal/Faulty
Age and Faulty/Faulty Age class is achieved.
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4. Conclusions

This study provides a holistic approach to the detection and diagnosis of faults
related to the mechanical component of an industrial robot in ISMD data settings for
component-level PHM. The obtained results were impressive for six CNN benchmark
models: GoogLeNet, SqueezeNet, VGG16, AlexNet, Inceptionv3, and ResNet50, with accu-
racies of 99.7%, 99.6%, 99.3%, 98.0%, 97.9%, and 95.7%, respectively. The results achieved
demonstrate that the suggested methodology can overcome the key problem of ISMD data.
The benefit will be the ability to design potential methods for detecting and diagnosing
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faults before they worsen, at times when we have less knowledge about the type of fault.
Furthermore, interpolation between various types of faults and different robots will be
made feasible by the transition of domain knowledge. Collecting or providing a limited
amount of data could become the basis for constructing DL models that are highly efficient,
and that can be applied in real-time with a realistic framework. In future work, there is a
need to concentrate on further faults related to electrical and mechanical components in
various types of robots, to examine and build a system that can recognize not just faults
but also the robots where specific faults occur.
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