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ABSTRACT Recent advancements in the field of Artificial Intelligence (AI) have provided an opportunity
to create autonomous devices, robots, and machines characterized particularly with the ability to make
decisions and perform tasks without human mediation. One of these devices, Unmanned Aerial Vehicles
(UAVs) or drones are widely used to perform tasks like surveillance, search and rescue, object detection and
target tracking, parcel delivery (recently started by Amazon), and many more. The sensitivity in performing
said tasks demands that drones must be efficient and reliable. For this, in this paper, an approach to detect
and track the target object, moving or still, for a drone is presented. The Parrot AR Drone 2 is used for
this application. Convolutional Neural Network (CNN) is used for object detection and target tracking. The
object detection results show that CNN detects and classifies object with a high level of accuracy (98%). For
real-time tracking, the tracking algorithm responds faster than conventionally used approaches, efficiently
tracking the detected object without losing it from sight. The calculations based on several iterations exhibit
that the efficiency achieved for target tracking is 96.5%.

INDEX TERMS Convolutional neural network, deep learning, object detection, target tracking, unmanned
aerial vehicles.

I. INTRODUCTION
Deep learning (DL) in Artificial Intelligence (AI) has recently
gained a significant interest. It is used in a wide range of
applications such as autonomous systems, facial recognition,
self-driving cars, image and speech recognition, classifica-
tion, and object detection. Among the most promising sys-
tems that can utilize Deep Learning are Unmanned Aerial
Vehicles (UAVs), which are becoming an attractive solution
for a wide range of applications. Recently, Convolutional
Neural Networks (CNNs) have achieved great results in
different fields of recognition, detection, and classification,
especially in computer vision. CNN is a class of deep neural
networks, and is mostly applied to analyze visual imagery.
For the application of object detection and classification,
CNN is considered as a very powerful tool. CNNs are bio-
logically inspired hierarchical models that can be trained to
perform a variety of detection, recognition, and segmenta-
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tion tasks [1]. The structure of a CNN typically comprises
a feature extractor stage followed by a classifier. In past
years, a lot of progress has been made on CNN-based object
detection. Several object detectors have been proposed by
the deep learning community, including Faster R-CNN [2],
R-FCN [3], YOLO [4] and SSD [5]. The main emphasis of
these designs is placed on improving (1) detection accuracy
and (2) computational complexity of their methods in order
to achieve real-time performance for mobile and embed-
ded platforms [6]. CNN-based object detectors are divided
into two categories with respect to their high-level structure:
(1) region-based detectors and (2) single-shot detectors.
Region-based detectors usually consist of a region-proposal
stage followed by a classifier. Faster R-CNN is an example
of region-based detectors. The problem with region-based
detectors is that they are computationally heavy and it is
difficult to achieve high performance in embedded platforms.
Single-shot detectors, on the other hand, employs a single
CNN to perform end-to-end object detection. YOLO and SSD
are examples of single-shot detectors. YOLO is designed
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for real-time execution and, by design, provides a trade-off
favoring high performance over accuracy [7].

Generally, traditional techniques utilize background sub-
traction [8] or Haar Cascade classifiers to detect object [9].
In [10], authors proposed an automatic disease detection
and classification method in radish fields using a camera
attached to a UAV. In [11], authors used CNN to detect drones
from other flying objects using deep convolutional neural
networks. In [12], authors used convolutional neural net-
work for real-time analysis of information and performance
in detecting cattle using drone. In [13], authors presented
target detection and safe landing algorithm for UAV. In [14],
an approach for drone wireless charging was implemented
using Hill-climbing algorithm. Many UAV studies have tried
to detect and track certain types of objects such as vehicles
[15, 16], people including moving pedestrians [17], [18], and
landmarks for autonomous navigation and landing [19], [20]
in real-time.

In this work, an approach to detect and track the tar-
get object, moving or still, using SSD object detector for
a UAV is presented. A CNN based on SSD architecture
is trained to detect a single class. In case of single class
detection, the training of CNN requires a particular approach;
it is different from the normal training of the network. For
this, we have implemented a training method using positive
(images with object) and negative images (images with no
object) for training. Also, SSD is selected because it aims
to combine the performance of YOLO with the accuracy
of region-based detectors [5]. SSD provides higher accu-
racy for object detection than YOLO (normally used for
real time implementation). The problem with SSD is the
computational time higher than other object detectors like
Faster R-CNN, R-FCN, and YOLO. To gain maximum pos-
sible accuracy, SSD is implemented with an optimization
method where the computational load is divided onto CPU
and GPU, resulting in a very low computational time (10ms)
compared to the normal time (27ms). Our system is divided
into two parts: (1) object detection and (2) target tracking.
Parrot AR Drone 2 is used to implement the object detec-
tion and tracking. The object or class used to detect in this
work is a ‘‘person.’’ For tracking, we used an approach to
use the front camera of the AR Drone 2. In order to use
front-facing camera, we have developed a tracking algorithm
based on the drone’s dynamics. In the tracking algorithm,
the control parameters include the following: roll ϕ, pitch
θ , yaw 9, and altitude Z , which are all controlled using
PID controllers. These PID controllers use the position and
distance of a target object as an input. Both position and
distance are calculated using single front-facing camera of the
drone.

This paper is divided into following sections: Section 1 pro-
vides an introduction, Section 2 describes the basic architec-
ture of the system; Section 3 explains the object detection and
tracking algorithm; Section 4 contains the results, discussion,
and future plan of the work; and Section 5 concludes the
study.

FIGURE 1. Basic architecture of the system.

II. BASIC ARCHITECTURE OF THE SYSTEM
Fig.1 shows the basic architecture of the system. A per-
sonal computer (PC) is used to communicate with the AR
Drone 2 through a Wi-Fi link. The drone sends the images
at a constant frequency of 30Hz (preset by drone driver).
These images are received and processed in PC through a
CNN for object detection. The detected object’s position and
distance are calculated to estimate the roll ϕ, pitch θ , yaw
9, and altitude Z values using PID controller-based tracking
algorithm. The estimated roll ϕ, pitch θ , yaw 9, and altitude
Z values are sent back to the drone to initiate the tracking
process.

A. HARDWARE SPECIFICATIONS
The AR Drone 2 is a low-cost hardware platform, costing
about US$ 400 [21]. The size of drone is about 50cm ×
50cm, weighing about 500g.The design of the drone makes
it feasible to use in indoor and outdoor environments.

The AR Drone 2 is equipped with two cameras, an Iner-
tial Measurement Unit (IMU) including a 3-axis gyroscope,
3-axis accelerometer, 3 axis-magnetometer, a pressure sen-
sor, and an ultrasonic altitude sensor. The cameras, a front
and a bottom camera differ in specifications. The front cam-
era has a resolution of 1280 × 720 at 30fps with a diago-
nal field of view of 92◦, whereas, the bottom camera has
a resolution of 320 × 240 at 60fps with a diagonal field
of view of 64◦. The camera used in this work is a front
camera due to its higher resolution. Accordingly, based on
our application of tracking a moving or still object (per-
son), front camera suits well as it always faces the target
object.

The AR Drone 2 has a 1 GHz ARM Cortex-A8 CPU and
an embedded version of Linux as its operating system. The
embedded software on the board measures the horizontal
velocity of the drone using its bottom camera and estimates
the state of the drone in terms of its roll ϕ, pitch θ , yaw
9, and altitude Z using available sensor information. The
horizontal velocity is measured based on two complementary
computer vision features: one based on optical flow and
the other based on tracking image features (like corners),
with the quality of the speed estimates highly dependent
on the texture of the input video streams [22]. All sensor
measurements are updated at 200Hz. The AR Drone 2 can
communicate with other devices like smartphones or laptops
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TABLE 1. PC specifications.

through a standard Wi-Fi network. In this work, a PC is used
to communicate with the drone. The specifications of the PC
are given in Table 1.

B. OPERATING SYSTEM OVERVIEW
The drone is connected to a PC through Wi-Fi link; in
the PC, Robot Operating System (ROS) framework is
used to implement object detection and tracking algorithm.
The ROS comprises of two nodes: Node 1 is the object
detection and tracking node and Node 2 is AR Drone
device driver package. Each node communicates with oth-
ers using ROS transport protocol [23]. In this system, six
ROS topics are used. Each ROS topic is responsible to
carry the data in the form of an encoded message between
the nodes. The node graph of the system is shown in
Fig.2.

FIGURE 2. ROS node graph.

Node 1 publishes 04 ROS topics related to drone opera-
tion. These ROS topics are /ardrone/takeoff, /ardrone/land,
/ardrone/reset and /cmd_vel. The /cmd_vel ROS topic is
responsible to carry the roll ϕ, pitch θ , yaw 9 and altitude Z
commands for ARDrone 2. Node 1 subscribes to 02 ROS top-
ics such as /ardrone/front/image_raw and /ardrone/navdata.
These ROS topics are responsible for the transmission of
video and navigation data respectively.

On the other hand, Node 2 subscribes to 04 ROS topics
published by Node 1 and publishes 02 ROS topics such as
/ardrone/front/image_raw and /ardrone/navdata.

FIGURE 3. Flowchart of the overall system.

III. OBJECT DETECTION AND TRACKING ALGORITHM
Fig.3 shows the overall flow chart of the system. The drone
sends image to a PC. The received image is processed through
a CNN for object detection. If the object is detected in the
image, the CNN returns the image with a boundary box on
the detected object. This boundary box provides information
on object position. Further, the error between the image center
and the object center is calculated. This error is given as an
input to PID controllers that generate roll ϕ, yaw 9, and
altitude Z commands. For pitch θ , the relative distance of the
object is calculated using the position data of the detected
object. Based on the relative distance of the object, PID
controller generates pitch θ command to operate the drone.

If there is no object detected in the image, the roll ϕ, pitch
θ , yaw9, and altitude Z values remain the same and the drone
holds its position until an object is detected.

A. OBJECT DETECTION
ARDrone 2 sends the image taken by the front camera to a PC
through Wi-Fi link. The received image is passed through a
CNN, trained to detect the desired object (person). The CNN
used in this work is based on a single shot detector (SSD)
architecture. The architecture of the SSD is shown in Fig.4.
The SSD approach is based on a feed-forward convolutional
network that produces a fixed size collection of bounding
boxes and scores for the presence of object class instances in
those boxes, followed by a non-maximum suppression step
to produce the final detection [24]. As shown in Fig.4, SSD
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FIGURE 4. Basic architecture of SSD.

architecture builds on the VGG-16 (Visual Geometry Group
-16) architecture, but discards the fully connected layers.
VGG-16 is used as the base network because of its strong
performance in high quality image classification tasks. It is
also effective in addressing problems where transfer learning
helps in improving results. Instead of the original VGG fully
connected layers, a set of auxiliary convolutional layers (from
conv6 onwards) was added, thus enabling to extract features
at multiple scales and progressively decreasing the size of the
input to each subsequent layer. The detailed description of
SSD architecture can be found in [24].

1) CNN TRAINING
The CNNwas trained to detect a single class, in this particular
study, a person. It should be noticed that the training is not
done to detect a particular person. Detection of a particular
person requires different techniques where some special fea-
tures are extracted. In this work our focus is on single class
detection rather than unique single class. An image database
was formed containing positive and negative images (images
without object). We took 5,100 images, with the ratio of 3:1
(negative to positive images). Each positive image containing
the object (person) was labeled. Images were divided into
training and test dataset. 80% of the images were used for
training dataset while 20% images were used for testing the
network. The network was trained for 50,000 iterations on
a PC with specifications mentioned in Table 1. Fig.5 shows
some examples of the images used for training and testing
the CNN. The accuracy achieved for the object detection is
98.2 %. Fig.6 presents some results of the CNN after training.

B. OBJECT TRACKING
Once the object is detected in an image, the CNN returns
the image with a boundary box on the detected object. This
boundary box contains the information about the position of
the object on an image. Fig.7 shows an example of the bound-
ary box with the position of the object in an image. It can
be seen from Fig.7 that the object position is given by pixel
values (xmin, ymin) , (xmax, ymin) , (xmin, ymax) ,

(
xmax , ymax

)
.

FIGURE 5. Examples of images used for training and testing the CNN.

FIGURE 6. Output of the CNN for some images from train and test
dataset after training.

From these position values the center of the object is calcu-
lated as:

(xo, yo) =
(
xmin + xmax

2
,
ymin + ymax

2

)
(1)
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FIGURE 7. Boundary box with detected object.

FIGURE 8. Block diagram of the control scheme for tracking the detected
object.

Also, the center of the image is required to track the object,
and is calculated as:

(x i, yi) =
(
imgwidth−imgwidth

2
,
imgheight−imgheight

2

)
(2)

(x i, yi) = (0, 0) (3)

For simplicity, the center of the image is taken as(0, 0). The
error between the center of the image and the object center is
given as:

ex (t) = xo − xi = xo (4)

ey (t) = yo − yi = yo (5)

From the equations above, it can be concluded that in order
to properly track an object, ex (t) and ey (t) should always
be equal or near to zero. In other words, the detected object
center should always be equal to the image center for proper
tracking.

FIGURE 9. Basic drone movements.

FIGURE 10. Basic axis of movement of drone.

For this, a control scheme based on PID controllers is
developed. Fig.8 shows the block diagram of the control
scheme for tracking the detected object. Fig.9. shows the
basic drone movements of the AR Drone 2. There are four
control parameters responsible for drone movement. Throttle
(altitude Z ) is responsible for upward or downward move-
ment, roll ϕ is responsible for left or right movement, pitch
θ is responsible of forward or backward movement, and yaw
9 is responsible for clockwise or counter-clockwise rotation
of the drone. Fig.10 shows the basic axis of the movement of
drone. In this work, based on the ARDrone 2 movement axis,
x-axis (position of the object) values are used to control the
roll ϕ and yaw 9 while y-axis (position of the object) values
are used to control the altitude Z . On the other hand, pitch
θ is controlled by measuring the relative distance between
the object and the drone. To calculate the relative distance,
the width of the boundary box of the detected object is
measured. If the width of the boundary box is higher than a
set reference value, the drone will move backward otherwise
it will move forward.
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FIGURE 11. Real-time output of the CNN through drone camera.

FIGURE 12. Some more results of the output of the CNN through drone camera.

IV. RESULTS AND DISCUSSION
In order to implement the SSD architecture-based CNN in
real-time, we have to use Split-Model method to reduce the
computational time of the object detector. In Split-Model
method, the processes are carried out by CPU and GPU rather
than done exclusively by either CPU or GPU. It gave us the
advantage of low computational time. The time it takes for
the object detector to process a frame and give output on the
detected object was 10ms, which is 2.7 times less than the
normal computational time of the SSD (27ms). The reduction
in the computational time made it feasible to implement SSD
on a system like drone where response time is a very critical
parameter to consider. Furthermore, it provided the chance to
take advantage of SSD’s accuracy over other conventionally
used real-time object detectors like YOLO. In 10ms, frames
received through theWi-Fi link from the drone’s front camera

are processed and the CNN gives the output in the form of an
image with the position of the detected object. The Frames-
Per-Second (FPS) achieved was 58 FPS. Fig.11 and 12 show
the results of the object detector output recorded during a real-
time test of the drone. Fig.13 shows the results obtained for
tracking of the detected target in any direction. From Fig.11,
12, 13, it can be seen that the target object moves in different
directions but drone keeps the target in the center of the image
and continue to track the object. In the results presented the
target moved in forward and backward direction, left and right
direction, also with varying height.

To evaluate the performance of the object detector we
applied the following four metrics:

(1) Intersection over Union (IoU): In the context of object
detection, the IoU metric captures the similarity between the
predicted region and the ground-truth region for an object
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FIGURE 13. CNN detection and drone tracking for varying altitude of the object.

present in the image. This metric is defined as the size of the
intersection of the predicted and ground-truth regions divided
by their union.

(2) Sensitivity: This metric is defined as the proportion of
true positives that are correctly identified by the detector. This
metric is calculated by taking into account the True Positives
(Tpos) and False Negatives (Fneg) of the detected object as
given by (6).

Sensitivity =
Tpos

Tpos+ Fneg
(6)

(3) Precision: This metric is a widely used metric by the
object detection community. It is defined as the proportion
of True Positives among all the detections of the system and
is given by (7).

Precision =
Tpos

Tpos+ Fpos
(7)

(4) Frames-Per-Second (FPS): FPS is the rate at which an
object detector is capable of processing incoming camera
frames.

In order to compute the overall performance of the object
detector, we define a composite scoremetric. Thismetric con-
sists of a linear combination of IoU, Sensitivity, and Precision
together with the achieved FPS. We parametrize the score
with respect to a vector of weights w ∈ [0, 1]4 as given by
(8). We prioritized FPS with a weight of 0.4 over the other
three accuracy-related metrics, which were equally weighted
with 0.2.

Score (w) = w1 × FPS + w2 × IoU + w3

×Sensitivity+ w4 × Precision (8)

With Tpos = 4998, Fneg = 90 and Fpos = 12 out
of 5100 images database. The calculated score with sensi-
tivity of 0.98 and precision of 0.99 for the object detector
was 23.594. We compared our SSD object detector with a

FIGURE 14. Output of the PID controller for Roll.

FIGURE 15. Output of the PID controller for Yaw.

YOLO object detector with same image database and the
score calculated for the YOLO was 21.18. More importantly,
the accuracy achieved for the SSD was 98% higher than
YOLO’s 96%.

With respect to object tracking, the results achieved are
presented in Fig.14–18. In Fig.14, the response of the drone
in the form of a calculated error for roll ϕ is presented. The
graph was drawn after a time test for 45 seconds. During this
period, the target object (person) kept on moving. It can be
noticed that the drone tends to follow the target object and
tries to minimize the error between the reference and the
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FIGURE 16. Output of the PID controller for Pitch.

FIGURE 17. Output of the PID controller for Altitude.

FIGURE 18. Output of the PID controller for varying Altitude.

current value of the x-axis position of the detected object xo.
In addition, from Fig. 15, the recorded response for the yaw
9 is almost the same as for the roll ϕ except the direction
of the yawing is opposite in this case. This is because of the
limitation of 2d axis of the image using the front camera of
the drone, as the roll ϕ and yaw 9 are along the same axis of
movement and the current value of the x-axis position of the
detected object xowas used to control these two movements.

For pitch θ , the relative distance was fixed to a reference
of 200, which is equal to the distance of 1m on ground
between the target object and the drone. It is observed
in Fig.16 that the error between the reference and the calcu-
lated relative distance changes in relation to the movement
and the distance between the target object and the drone.
In controlling the altitude of the drone, the y-axis position of
the detected object yo was used. Fig. 16 shows the recorded
response between the reference altitude Z and the calculated
altitude Z of the drone. It should be noticed that the results

presented were recorded after the initial takeoff and track-
ing algorithm activation. In Fig.17, the altitude Z at start
is zero because when the drone takes off the altitude Z is
fixed to 1m. After takeoff, the drone starts hovering at the
fixed altitude Z and waits for the activation of the object
detection and tracking algorithm. Once an object is detected,
the drone starts the tracking process. In Fig.17, the reference
value of zero is equal to the fixed altitude Z of 1m. Fig.18,
shows the result obtained when the detected target changed
the height, it can be observed that the drone continues to
track the detected object and keeps on following it (as shown
in Fig.13). It should also be considered that the minimum
height selected is 1m which is necessary in the system like
drone due to the fact that when drone is flying near to the
ground, there are some forces known as OGE (outer ground
force) and IGE (inner ground force) acting on the drone’s
body. These forces cause disturbance in the drone flight [25].
The tracking system works well to eliminate the error in all
of the three-axis (x-axis= roll ϕ & yaw 9, y-axis = altitude
Z , z-axis = pitch θ ). The efficiency (calculated based on
50 tests iterations) achieved for target tracking is 96.5%. The
tracking algorithm can be further improved by using some
other type of controllers such as Fuzzy Logic and Fuzzy-PID
controllers. We previously implemented those controllers for
target tracking in [26] but in this case asmentioned previously
that main problem with CNN is the computational time so
adding Fuzzy Logic or Fuzzy-PID controller increases the
time and also response of the drone gets bad. Hence further
research is required to implement such kind of controllers
with CNN and AI.

Some problems we had to tackle during the implemen-
tation of the object detection and tracking algorithm were
the drone response time and limitation of the drone device
drivers provided for ROS. The drone response time for AR
Drone 2 needed to be synchronized properly with the ROS
device drivers. Using ROS drivers for drone, it was noticed
that at least 100ms time is required to update the drone
control parameters roll ϕ, pitch θ , yaw 9, and altitude Z .
That is why, in the presented results, it is documented that the
response of drone is a bit slow, although in practical results,
no lag or delay was observed.

Also, while implementing SSD object detector it was
noticed that object detector missed the target object. It is
because of some limitations of the CNN. Practically, it is very
hard to observe and there is not much effect on the tracking
process of the drone but it can be further improved.

A. FUTURE WORK
Since getting the results from the AR Drone 2, we have
recently tried to implement the object detection and tracking
algorithm for an application of bridge surveillance to detect
structural cracks. Previously Open-CV is used in such kind
of application but with recent development of AI and CNN,
better results can be achieved. We are trying to implement
the same algorithm but using a different drone, this time a
quadcopter big enough in size for such kind of application.

69582 VOLUME 7, 2019



A. Rohan et al.: CNN-Based Real-Time Object Detection and Tracking for Parrot AR Drone 2

The real challenge is the implementation of the same algo-
rithm on an embedded Artificial Intelligence (AI) computing
device NVIDIA Jetson TX2 as the computational time will
increase in comparison to the one, we have achieved in this
work. The problems found during this work such as object
detector missed detection will also be solved by introducing
some trackers to smooth the detection process and Fuzzy
Logic will be used to control the drone in tracking.

V. CONCLUSION
In this work, an approach for real-time implementation of
CNN-based object detector and tracking system for AR
Drone 2 using SSD architecture is presented. In real-time
system where computational time is very big parameter and it
effects the efficiency of the system, SSD implementation with
one class detection is a challenging task. We have developed
an approach which can be implemented in real-time and
advantages of high accuracy of SSD architecture can be used
by reducing the computational time. The proposed system
comprises of two parts: object detection and target object
tracking. The efficiency achieved for object detection is 98%
which is very reasonable for a complex system like drone.
Target object tracking with simple PID controllers is com-
bined with the detection algorithm by designing a specific
approach where x, y and z axis (a 3d-plan) is considered.
The accuracy achieved for the target object tracking based
on several experiments is 96.5%. The achieved results have
proved that using an SSD object detector, more accurate
results can be achieved within a reasonable computational
time. Significantly, it is very feasible to implement such kind
of strategy in a complex system like drone.
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