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ABSTRACT

 Well logging has been an integral part of decision 
making at different stages (drilling, completion, 
production, abandonment) of a well’s history. However, 
the traditional human-reliant approach to well-log 
interpretation, which has been the most common practice 
in the industry, can be time consuming, subjective, and 
incapable of identifying fine details in log curves. Previous 
studies have recommended automated approaches as 
a candidate for addressing these challenges. Despite 
the progress made so far, what is not yet clear from the 
existing literature is the extent to which these automated 
approaches can dispense with human interventions in real-
life scenarios. This paper presents an empirical review of 
different depth-matching techniques in real-life timelapse 
well logs, primarily focusing on gamma ray and the extent 
to which the outcomes of these techniques match the 

INTRODUCTION

 Well logging is a fundamental decision-support practice 
in the oil and gas industry because of its crucial role in 
subsurface exploration and formation evaluation. Well 
logs provide insightful petrophysical and geomechanical 
information, which can be significant at different stages of a 
well’s life cycle (Le et al., 2019; Torres Caceres et al., 2022). 
However, the acquisition of logs is often characterized by 
several uncertainties and limitations, making preprocessing a 
desideratum for the data analysis phase. While improvements 
in the quality of logging suites can help minimize noise and 
uncertainty due to random and systematic errors, depth 
misalignments of logs recorded at different passes or with 
disparate logging tools in the same well, and different 
resolutions, different noise levels between different logging 
passes have remained a challenging problem within the 
industry (Moore et al., 2011; Zimmermann et al., 2018; 

results from a human expert. Specifically, the performances 
of dynamic time warping (DTW), constrained DTW 
(CDTW), and correlation optimized warping (COW) are 
investigated. The experiments also consider the effects of 
filtering and normalization on the performance of each 
of the techniques. Concerning the correlations of each 
technique’s outcome with the reference data and an expert-
generated outcome, this research identifies and discusses 
its key challenges, as well as provides recommendations for 
future research directions. Although the COW technique has 
its limitations, as discussed in this paper, our experiments 
demonstrate that it shows more potential than DTW and its 
variants in the well-log pattern alignment task. The work 
entailed by this research is significant because identifying 
and discussing the limitations of these techniques is vital 
for solution-oriented future research in this area.
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Bittar et al., 2021). Depth misalignments can be caused 
by several factors, depending on the logging technique 
(logging while drilling or wireline logging) used (Storey 
and Bolt, 2016; Torres Caceres et al., 2022). These factors 
include differences in weather conditions, varying sampling 
rates between tool types and logging passes, and friction or 
stick-slip between the wireline cable and the borehole wall, 
which can be higher if the borehole wall is rough or contains 
mudcake. The oil and gas industry, so far, relies hugely on the 
judgments of human log analysts to manually synchronize 
mismatched logs before providing interpretations for 
them. Nonetheless, this traditional human-dependent 
depth-alignment process is subjective, time consuming, 
and cannot match insightful minutiae within log curves. 
These limitations of the manual well-logging process have 
driven considerable attention toward automating the depth 
matching of logs as a potential solution to the problem. The 
automation of well-log preprocessing can speed up the well-
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integrity process, reduce costs, and make the process more 
practicable to nonspecialists. 
 Due to the availability of big historical data, high 
compute power, and the recent development of several 
powerful artificial intelligence (AI) algorithms, the oil and 
gas industry now leverages digital technology on virtually 
all fronts, including reservoir depth matching. In the 
literature, different machine-learning paradigms have found 
applications in the automation of well-log preprocessing and 
interpretations (Choubey and Karmakar, 2021; Koroteev 
and Tekic, 2021; Sircar et al., 2021). For example, Wang 
et al. (2020) and Hong and Kang (2020) both applied 
deep neural networks, a supervised learning technique, to 
the log-matching problem. Deep reinforcement learning 
has also been applied to the same task (Bittar et al., 2020, 
2021). Although these techniques have been reported to 
have performed well at this task, they have several issues 
capable of limiting their real-life applications. Firstly, 
training these algorithms requires a large amount of data, 
which cannot always be guaranteed in geological problems 
(Downton and Hampson, 2019), and high-performance 
computing hardware, which can contribute substantially to 
climate change (Strubell et al., 2019). To illustrate, despite 
being described as the best in natural language processing 
(NLP) tasks (Edwards, 2021; Wang et al., 2021), the carbon 
dioxide emissions from training and applying a transformer 
(a type of deep neural network) are even more substantial 
than the lifetime emissions of an automobile (Strubell et 
al., 2019). With calls from different quarters to decarbonize 
the energy system, within which the oil and gas industry 
has a significant role to play, the industry has to reconsider 
operations that can further contribute to global warming 
(Nurdiawati and Urban, 2022; Smil, 2022; Zachmann et 
al., 2022). Moreover, due to the difficulty in implementing 
complex algorithms such as deep neural networks from 
scratch, the AI community depends, to a large extent, on 
third-party libraries such as TensorFlow (Abadi et al., 2016), 
Pytorch (Paszke et al., 2019), Theano (Al-Rfou et al., 2016), 
and Keras (Gulli and Pal, 2017). However, the combination 
of novel deep-learning approaches with industrial software 
is limited.
 This paper drives towards an optimal but easy-to-
implement and deploy lightweight solution to the depth-
matching problem. The insights from this study are from 
collaborative research between academia and the industry 
on addressing practical challenges with automating the well-
log alignment process.  Due to the problems associated with 
the powerful but expensive AI techniques, as identified in 
the preceding paragraph, this paper focuses on dynamic time 

warping (DTW), constrained DTW (CDTW) (Sakurai et 
al., 2005; Müller, 2007), and correlation optimized warping 
(COW) (Nielsen et al., 1998). Our experiments with these 
algorithms on real-life well logs reveal that none of these 
algorithms can eliminate the need for a human specialist. 
Nonetheless, COW demonstrates to have more potential than 
DTW and CDTW. This paper discusses practical problems 
identified with these algorithms and recommends strategies 
to improve their performances.

THEORY

Mathematical Description of the Depth-Matching 
Problem
 Garcia Manso (2020) presents the mathematical 
description of the depth-matching problem as follows—s(t) 
and r(t) are continuous functions representing the survey and 
the reference, respectively, as functions of a variable depth, 
t. A warping function w(t) represents the misalignment
between the survey and the reference curves. The most
common misalignment is an offset. For example, with an
offset of k meters between the curves, the warping function
would be w(t) = t – k, and the relation between the curves
is that r(t) and s(w(t)) = s(t – k) are similar patterns. Since
w(t) is unknown in reality, methods for estimating warping
functions have attracted lots of research attention.

In practice, both the survey and the reference are 
discretized into a set of noisy samples. Vectors s and r 
denote the data points from the survey and the reference, 
respectively. The samples are taken at a certain depth, ti. To 
avoid ambiguity, s(ts,i) is the measurement recorded for the 
survey at ts,i, and r(tr,i) is the measurement for the reference 
at tr, i. These are expressed in Eqs. 1 and 2.

(1)

 (2)    

 Given the vectors r and s, the depth-matching problem 
seeks to estimate the warping function, w(t). However, 
this problem, in practice, is more complicated than the 
description above. Factors such as noise, differences in 
sampling rates, and the logs’ amplitudes, along with depth 
misalignment, can contribute to the complexity of the 
problem. The characteristics of the log curves determine the 
most suitable approach for the depth-matching process. 
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Overview of Automated Warping Methods
 Despite being recorded in depth, well logs can also 
be construed as a time series due to their unidimensional 
domain. Throughout this paper, the time series is assumed 
to be a direct analog to the depth series of well logs. Several 
methods for the comparison of different time series exist in 
the literature. However, some of these approaches are linear 
and can only yield a good result if the signals align in the 
time dimension. For example, the Euclidean distance metric 
is useful in computing the similarity between different 
time series if similar attributes or patterns in the signals 
correspond in time. However, there are situations in practice 
that involve time series which do not align properly. These 
situations are better addressed using nonlinear distance 
similarity metrics such as DTW. Next, we review nonlinear 
similarity metrics that are suitable for signal alignment.

Dynamic Time Warping (DTW)
 DTW is useful for measuring the similarity between two 
temporal sequences, which do not align in time, by warping 
these sequences in a nonlinear fashion to match each other. 
For example, Fig. 1a shows the linear element-wise distance 
between the two signals, which might not be representative 
for measuring their similarity. In contrast, Fig. 1b shows the 
nonlinear DTW measure between the two. Computing the 
similarity of the sequences in Fig. 1b requires a nonlinear 
metric such as DTW. This uses a recursive distance 
calculation method to generate a cost matrix that can be used 
to determine the optimal match between any two sequences. 

Fig. 1—(a) Linear matching and (b) nonlinear matching.

(a)

(b)

 Given the data sets of Eqs. 1 and 2, DTW aims to 
transform s such that it will match r as closely as possible. The 
algorithm transforms each data point in s to match another 
point in r while satisfying three necessary conditions—
boundary condition, monotonicity condition, and step size 
condition (Müller, 2007; Senin, 2008). DTW uses dynamic 
programming to generate a global cost matrix D  RN×M from 
a local cost matrix C  RN×M, where each element C(i,j) = 
c(si,rj) is a local cost that measures the similarity between 
two points in the survey and the reference logs. C(i,j) can be 
the Manhattan or Euclidean distance between the two points. 

With D(n,0), n [1: N] and D(0,m), m [1: M] set to 
and D(0,0) set to 0, each element of the matrix D is computed 
according to Eq. 3.

 (3)

 Backtracking from the upper right corner to the bottom 
left corner through valleys or low costs on the global cost 
matrix D, DTW finds the alignment path. The corresponding 
elements between the two sequences on the alignment path 
define a match between them. Figure 2 shows an alignment 
path on a global cost matrix. The darker the shade, the lower 
the cost.

Fig. 2—Alignment path on a global cost matrix. Please note the darker 
the shade, the lower the cost.

 DTW has a wide range of application areas, including 
speech recognition (Amin and Mahmood, 2008; Permanasari 
et al., 2019), handwriting and digital signature matching 
(Niels, 2004; Parziale et al., 2019), and sign language and 
gestures recognition (Jangyodsuk et al., 2014; Cheng et 
al., 2016). However, experiments in this paper reveal some 
of the challenges with the application of DTW in well-
log depth matching. Some of these challenges are due to 
factors such as differences in amplitudes between the two 
sequences, noise, variations in the lengths of the logs, and 
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the possibility of one-to-many or many-to-one mapping 
between the sequences. Our experiments empirically 
demonstrate different preprocesses to improve the effects of 
noise and amplitudes on DTW and other warping methods.

Constrained Dynamic Time Warping (CDTW)
 In practice, there are situations where the result of 
standard DTW does not give the best solution to a log 
alignment problem; this could be either because of many-to-
one matching or due to large amounts of shifts. The CDTW 
methods set a constraint to limit the extent of shifts within 
a given window as well as eliminating many-to-one or one-
to-many matching of the indexes of the signals to prevent 
overstretching or overcompression. The two most popular 
members of CDTW are the Sakoe-Chiba band and the 
Itakura parallelogram methods (Itakura, 1975; Sakoe and 
Chiba, 1978; Geler et al., 2019). They derive a parameter 
to limit the warping extent around the diagonal of the cost 
matrix.
 The Sakoe-Chiba band method is parameterized by a 
radius r (r is also called the warping window size), which is 
the number of off-diagonal elements to consider. The Itakura 
parallelogram method sets a maximum slope s for alignment 
paths, which leads to a parallelogram-shaped constraint. 
Figures 3a and 3b represent the Sakoe-Chiba band and the 
Itakura parallelogram methods. Choi et al. (2020) report that 
although the CDTW has a higher classification accuracy 
than standard DTW, fixing a correct window size can be 
problematic. A wrong choice for r or s can prevent relevant 
regions from participating in the alignment process (Zhang 
et al., 2017).   

Correlation Optimized Warping (COW)
 Although DTW and CDTW have been applied 
substantially in practice, they are not the best methods in 
shape-based pattern matching of signals because they make 
element-wise comparisons between time series. 
 Nielsen et al. (1998) proposed COW, which maintains 
the overall shape of a sequence by warping it into segments 
with limited allowable flexibility within these segments. 
COW first splits the sequence into equal segments, which, 
based on a parameter known as slack, uses different ranges 
of the segments to search for the optimal match between 
the sequence. The segments are scaled in time using linear 
interpolation.
 The number of segment borders is determined using 
the ratio of the points in reference to the selected segment 
length. The cost matrix for COW consists of the normalized 
cross correlation between the different segments. Because 
the length of the segments is variable, the different 

Fig. 3—Constrained DTW methods: (a) Sakoe-Chiba and (b) Itakura. 
Please note the darker the shade, the lower the cost.

configurations realized with different adjustments of slack 
must be considered; to obtain this, a secondary matrix is 
defined per segment. Similarly to DTW, the problem is 
finally solved using dynamic programming and backtracking 
the optimum path on the cost matrix.
 COW has been popularly reported in the literature for 
its applications in chromatographic alignment problems 
(Nielsen et al., 1998; Tomasi et al., 2004; Bloemberg et al., 
2013). One issue with COW is that it is very dependent on 
user-defined parameters such as the length of the segments 
and the slack (which determines the maximum stretch or 
squeeze of the warped segments). Slack and segment length 
contribute to the accuracy and speed of the method. For 
example, a larger segment length and a lower slack can speed 
up the computation time of COW. However, selecting a good 
segment size and an accurate slack can be challenging in the 
practical applications of COW.

Automated Well-Log Pattern Alignment and Depth-Matching Techniques: An Empirical Review and Recommendations
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(b)
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EXPERIMENTS

Data Set
 The experiments in this research are based on an 
anonymized real-world well. The data set, as shown in 
Fig. 4, consists of the reference log, the survey log, and a 
manually shifted log provided by a log analyst. The findings 
made in this paper are consistent with the results we obtained 
from applying these techniques to several wells from diverse 
localities. However, for the sake of this review, we focus on 
one representative well from our data set. Table 1 presents the 
summary statistics of the logs. Because manually shifting a 
log does not affect the statistics of the data set, the manually 
shifted log has the same statistics as the survey log. As can 
be seen in Fig. 4 and Table 1, the reference log has more 
than twice the amplitude of the survey log. Moreover, with 
a signal-to-noise ratio (SNR) (or a coefficient of variation 
(CV)) of 1.48 (or 67.57%), the reference log is noisier than 
the survey log with SNR (or CV) of 2.18 (or 45.87%), 
respectively.
 Noise and differences in amplitudes can constitute a 
problem for some warping methods more than others. As is 
conventional in most well-log pattern alignment tasks, the 
survey log is to be shifted in depth such that its features align 
as closely as possible with similar features in the reference 
log. The manually shifted GR will be used as a benchmark 
throughout the experiments since the automation of the 
well-log pattern alignment process aims to achieve at least 
human-level accuracy in the task.

Fig. 4—Data set.

Table 1—Summary Statistics of the Logs

Description of Experiments
 Using the data set of Fig. 4, experiments were conducted 
to demonstrate how the performances of different automated 
well-log warping methods compare with a manually shifted 
log from a specialist. The experiments investigate the 
standard DTW technique, two CDTW (the Sakoe-Chiba 
band and the Itakura parallelogram) methods, and the COW. 
Each technique has been combined with one or more 
preprocessing steps to understand how each method can be 
improved using different preprocessing such as normalization 
(either z-score normalization or min-max normalization) 
and filtering (median filtering or wavelet denoising (WD)) 
(Chang et al., 2000). All possible combinations of the 
normalization and filtering techniques have been applied 
to the problem. The results obtained using these methods 
are compared against the manually shifted log. Figure 5 
presents the experiment workflow. These experiments will 
help to identify methods that compare more closely to the 
performance of a human analyst. We also explore what 
works best for each method using different preprocessing 
techniques and, on this basis, recommend how to improve 
the automation of the well-log alignment process.

Implementation Details
 The parameters for parametric methods, such as the 
Sakoe-Chiba band, the Itakura parallelogram, the COW 
technique, and the WD method, are empirically selected to 
ensure that they yield the best result they can for this task. 
For the sake of reproducibility, the parameters have been 
reported in Table 2. Moreover, the DTW and the CDTW have 
been implemented with the dtwalign Python package1, while 
WD has been implemented using the Python scikit-image 
package.2 For COW, we replicated exactly the MATLAB 
implementation by Tomasi et al. (2004) in Python.

1https://github.com/statefb/dtwalign
2https://scikit-image.org

Ezenkwu et al.
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Fig. 5—Experiment workflow.

 The algorithms are run on Python version 3.8 on a 64-bit 
Windows 10 computer with Intel® Core™ i5-4570 CPU @ 
3.20 GHz and 16.0 GB (15.9 GB usable) RAM.

Table 2—Parameters

RESULT AND DISCUSSIONS

Quality of Log Alignment
 While the well-log pattern alignment task aims to 
match the survey log to the reference log, the aim is not to 
realize an output log that overfits the reference log to the 
extent of distorting the survey log unnecessarily. While we 
intend to match peaks in the survey log with those of the 
reference log, the aim is to achieve it similarly to the manner 
a log analyst solves the task. We define the quality of log 
alignment as a measure of how well a shift table solves the 
pattern alignment task without unnecessarily distorting the 
survey log. A warping technique can yield an excessively 
shifted log due to overfitting or many-to-one mapping 
of log features. For example, Figs. 6a through 6d show 
alignment paths for the different warping techniques applied 
on the survey log before preprocessing. In this case, COW 
produces the most similar alignment path to the manually 
shifted depths in Fig. 7a. The alignment path in Fig. 7a does 
not indicate any noticeable shifts because the maximum 
depth shift from the manual picks is only about 6 ft, 
as illustrated in Fig. 7b. From Fig. 6a, DTW resulted in 
an extreme distortion of the survey log due to its many-to-
one mapping of depths. CDTW methods do not result in as 
much distortion of the log as in DTW; this is because of 
the constraints the CDTW methods impose on the alignment 
path. However, the outputs from the CDTW methods on the 
unprocessed logs are worse than COWs, using the manually 
shifted alignment path as a benchmark.

Fig. 6—Alignment paths due to each of the warping techniques applied 
to the data sets without any preprocessing.

Automated Well-Log Pattern Alignment and Depth-Matching Techniques: An Empirical Review and Recommendations

(a) DTW

(b) Itakura

(c) Sakoe-Chiba

(d) COW
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 Table 3 shows that the outputs of DTW and CDTW 
(Itakura and Sakoe-Chiba) are poorly correlated with 
the original survey GR except when they are normalized 
(although, unlike in other cases, normalization has not 
improved DTW when combined with WD). The COW’s 
outputs give the highest correlation with the original survey 
log throughout Table 3, except for the z-score normalized 
data sets in which COW gives a similar correlation as 
other methods. From the table, after filtering, the COW’s 
correlation with the survey log is 0.74, with or without 
normalization. This value is the same as the correlation of 
the manually shifted log with the original survey log. This 
result implies that COW provides a similar depth alignment 
as the manually shifted log after filtering, with either median 
or WD filtering. 
 Unlike DTW and CDTW, normalization does not show 
any noticeable effect on the COW’s outputs; this outcome 
can be explained by the fact that COW is shape based and 
does not realize depth alignments using pointwise distance 
metrics similar to DTW and CDTW. Table 3 also reveals that 
the outputs of DTW and CDTW (Itakura and Sakoe-Chiba) 
give a relatively low correlation with the original survey GR 
except when they are normalized (although, unlike in other 
cases, normalization has not improved DTW when combined 
with WD). Figure 8 shows preprocessing techniques that can 
lead to the best alignment path for each algorithm. While a 
combination of median filtering and z-score normalization 
can improve the alignment paths of DTW and CDTW, COW 
does not need normalization. With only median filtering, 
the COW’s outputs compare more closely to the manually 
shifted log than the other warping techniques, as has been 
previously demonstrated.

Correlation With the Reference Log 
 Table 4 shows that the output logs due to DTW and 
CDTW give correlations of between 0.88 and 0.93 with 
the reference log, while the COW’s logs consistently 
give a correlation of 0.63 with the reference log. From 
Table 4 alone and assuming a higher correlation to mean 
improvement, DTW and CDTW can be adjudged better 
than COW and even the manually shifted log, which gives a 
correlation of 0.58 with the reference log. These results have 
been illustrated in Fig. 9. This section seeks to understand 
whether a high correlation with the reference log implies a 
better performance of a warping technique. 
 In machine-learning parlance, reference logs are the 
training labels in well-log pattern alignment tasks. Warping 
techniques should be used to correctly reposition the survey 
log in depth while comparing the features of the two logs. 
However, while reference logs provide an example for 

the task, a high correlation between the output log and 
the reference log does not necessarily guarantee a good 
result. A possible factor as to why the outputs of DTW and 
CDTW result in a high correlation with the reference 
log is overfitting. DTW and CDTW cost function is based 
on pointwise distance metrics such as Euclidean distance 
or Manhattan distance. These distance measures do not 
pay attention to the shape of the logs to be aligned. Using 
pointwise distance comparisons, DTW and CDTW try to 
fit the reference log as much as possible, which leads to 
the overstretching of the survey log (and, in some cases, 
the reference log as well) due to many-to-one or one-to-
many mapping between the two logs. Although CDTW 
seeks to prevent overstretching using constraints around 
the alignment paths, the problem persists with the current 
CDTW approaches.
 Figure 10 illustrates overfitting in the well-log pattern 
alignment task using DTW as an example. From the 
graphs, DTW overstretched the survey and the reference 
logs to enable them to match more closely with each other. 
In this case, DTW extrapolated the logs from the original 
maximum length of ~15,000 to ~30,000 ft. Not only that this 
overstretching resulted in an incorrect solution to the task, 
but the magnitude of the overstretching was also physically 
impossible. We argue that the reason why DTW and CDTW 
give a high correlation, as reported in Table 4, is that the two 
algorithms optimize the overfitting of the reference and the 
survey logs.
 Table 4 shows that the correlations of the COW’s 
outputs with the reference log are closest to that of the 
manually shifted log. COW is a shape-preserving segment-
based warping technique. COW uses segments and slacks 
to prevent overstretching of signals while optimizing 
their shape alignment. COW relates more closely to what 
a human analyst does in practice. A log analyst seeks to 
identify related features between the logs using their shapes 
while ignoring the numerical value and magnitude of each 
point on the curves. Figure 11 presents the windowed 
correlations of the survey log, the manually shifted log, and 
a COW output log against the reference log. From left to 
right of each of Figs. 11a, 11b, and 11c, the window size is 
decreased in order to reveal small differences between each 
log and the reference log. Figures 11a, 11b, and 11c show 
that the COW output correlates better with the reference log 
than the survey log but in a similar manner to the manually 
shifted log. Figure 11d provides a zoomed-in section of the 
logs for easier visual inspection of the extent to which the 
COW-automated warping of the survey log compares with 
the manually shifted log.

Ezenkwu et al.
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Table 3—Correlations Between Shifted GR due to the Different Methods and the Original Survey GR* 

*The correlation between the manually shifted GR and the survey GR is 0.74, while that of reference with the survey is 0.48. These are the results 
of 10 trials for each experiment.

Table 4—Correlations Between Shifted GR due to the Different Methods and the Reference GR*

*The correlation between the manually shifted GR and the reference GR is 0.58. These are the results of 10 trials for each experiment.

Direct Correlation With the Manually Shifted Log
 The numerous research in automating the well-log 
alignment process intends to realize a technique that can 
guarantee the same quality of service obtainable with log 
analysts. Hence, a suitable comparison for this task is the 
manually shifted log. In previous sections, the performances 
of the different techniques have been indirectly compared to 
the manually shifted log. For completeness, we discuss the 
direct correlation between the outputs from the automated 
well-log alignment techniques and the manually shifted log.

 Table 5 demonstrates that COW shows the overall best 
correlation with the manually shifted log when compared 
with DTW and CDTW. The table further confirms that 
while normalization (especially the z-score normalization) 
improves the performances of DTW and CDTW, only 
filtering improves the COW’s performance.
 While the evaluations of the automated well-log 
alignment techniques have been on the basis of their direct 
or indirect comparisons with the output from a human log 
analyst, it is not clear at this stage how best to determine 
which, between COW and the manually shifted log, is the 
most efficient. This warrants future research.

Table 5—Correlations Between Shifted GR due to the Different Methods and the Manually Shifted GR*

*These are the results of 10 trials for each experiment.

Automated Well-Log Pattern Alignment and Depth-Matching Techniques: An Empirical Review and Recommendations
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Fig. 7—(a) Alignment paths for the manually shifted depths. (b) Shift 
profile for the manually shifted depths.

(a)

(b)

Fig. 8—Preprocessing techniques that lead to the best alignment for 
each warping technique.

(a) DTW on median-filtered z-score normalized log

(b) Itakura on median-filtered z-score normalized logs

(c) Sakoe-Chiba on median-filtered z-score normalized logs

(d) COW on median-filtered logs

Ezenkwu et al.
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Fig. 9—Comparing the highest correlations each method’s outputs give 
with the reference log against that of the manually shifted log. Fig. 10—Illustration of overfitting between the survey and the reference 

logs using DTW.

RECOMMENDATIONS AND FUTURE RESEARCH

 Given the enormous research interest in the automation 
of the well-log pattern alignment process in the oil and gas 
sector, the findings made from this research are significant 
both for academia and industry. Firstly, this research has 
demonstrated that a high correlation between an output log 
from a warping technique and the reference log does not 
guarantee good performance. Key attributes for suitable 
warping techniques for well-log pattern alignment include 
good quality of alignment, shape preservation during 
alignment, not overfitting, and indirectly learning to generate 
outputs similar to a manually shifted log. These attributes 
can be evaluated using the analyses provided in this paper.
 DTW and CDTW perform poorly in the well-log 
pattern alignment task because they distort the logs to 
optimize their overfitting. Their warping process results 
in shifted logs which do not represent a good solution 
to the task. A fundamental property of these techniques 
that contributes to this outcome is their dependency on 
pointwise distance metrics. One way to improve DTW 
could be by re-engineering its cost function to use a shape-
based similarity metric. However, if, for any reason, DTW 
or CDTW is a requirement for a well-log pattern alignment 
task, then the normalization of the logs before warping is 
recommended.

 CDTW techniques are designed to overcome the 
many-to-one challenge of DTW. But because these 
methods are parametric, choosing suitable parameters 
for them remains a challenging task. Hence, integrating 
an adaptive parameter selection strategy for CDTW 
techniques warrants future research. 
 Among the different techniques, COW compares more 
favorably to the manually shifted log than others. However, 
there are several issues with the current implementation of 
COW. Firstly, COW works well when the survey and the 
reference logs are of equal length. The reason for this is that 
COW assumes that the ends of the logs are already matched 
and fixed. This situation will not always be true, especially 
when the logs are of different lengths. Solving this limitation 
of COW will bring an overarching improvement to COW 
and the automated well-log alignment process.
 Moreover, COW relies on two essential parameters—
segment length and slack. As with any parametric algorithm, 
selecting correct parameters can be challenging; therefore, 
an automated technique for choosing the right segment 
length and slack variable will hugely improve the COW’s 
performance. Furthermore, the current implementation of 
COW uses the same slack and equal segment length except 
for the last segment, which can be of a different length. Since 
logs are not equally dense or sparse throughout, varying 
segment lengths and slacks could be considered for COW. 
Our future research will consider heuristics for choosing 
optimal parameters for the different regions of the log.
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Fig. 11—Windowed correlation profile between the reference and the other logs, including a COW output log. Please note the window scale allows 
correlations to be computed in segments. For example, with a window scale of 1, the entire data set is used at once; with a window scale = 2, the 
correlations are computed in two segments and so on.

(a) Windowed correlation between the reference and the survey logs.
Global correlation = 0.4826.

(b) Windowed correlation between the reference and the manually
shifted log. Global correlation = 0.5828.

(c) Windowed correlation between the reference log and a COW output
log. Global correlation = 0.6307.

(d) Zoomed-in section of the logs.
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 Finally, the COW’s outputs in this research have 
closely compared to a manually shifted log better than other 
techniques. However, we have not been able to confirm 
the extent to which COW performs in comparison to the 
manually shifted logs. Although the COW’s outputs yielded 
higher correlations with the reference log than the manually 
shifted log, it cannot be guaranteed that it outperforms the 
manually shifted log. The preceding statement is the case 
because Section \ref{overfitting} reveals that DTW and 
CDTW show good correlations to the reference log due to 
overfitting. Future research will seek to quantify how well 
COW performs in comparison to an analyst using a blind 
evaluation of COW outputs and manually shifted logs.

CONCLUSIONS

 This paper provides an empirical review of automated 
well-log pattern alignment techniques. The paper focuses 
primarily on DTW, CDTW, and COW because of their ease of 
implementation, sample efficiency, and ease of deployment 
in everyday petrophysical software. The methods have been 
experimented on gamma ray—a reference log, a survey 
log, and a manually shifted log as the ground truth. For 
each method, a combination of filtering and normalization 
techniques are applied to the logs. The results show that 
COW compares more closely to the manually shifted logs 
than the other techniques. Furthermore, COW performance 
largely improves with filtering, while DTW and CDTW 
perform better with normalization. DTW and CDTW have 
not shown a good result because they use pointwise distance 
metrics, which overstretches both the survey log and the 
reference log. Although COW performs relatively better than 
the other techniques, it still requires several improvements 
to enable it to cope with logs of different lengths as well as 
choose the right parameters.
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