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Abstract
My research aims to improve anomaly detection methods in multi-sensor data by extending current
re-sampling and explanation methods to work in a time-series setting. While there is a plethora of
literature surrounding XAI for tabular data, the same cannot be said for the multivariate time-series
settings. It is also known that selecting an optimal baseline for attribution methods such as integrated
gradients remains an open research question. Accordingly, I am interested to explore the role of
Case-Based Reasoning (CBR) in three ways: 1) to represent time series data from multiple sensors to
enable effective anomaly detection; 2) to create explanation experiences (explanation-baseline pair) that
can support the identification of suitable baselines to improve attribution discovery with integrated
gradients for multivariate time-series settings; and 3) to represent the disagreements between past
explanations in a case-base to better inform strategies for solving disagreement between explainers
in the future. A common theme across my research is the need to explore how inherent relationships
between sensors (causal or other ad-hoc inter-dependencies) can be captured and represented to improve
anomaly detection and the follow-on explanation phases.
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1. Introduction

The advent of the Internet of Things (IoT) has empowered connected technology with new
capabilities1 [6]. One application of IoT is for the smart-monitoring of sensors to detect and
predict failures. This is called anomaly detection and is an important problem across many
domains. Its purpose is to identify patterns in data that lie outwith the realms of expectation [1].
It has many applications, including in fraud detection [10], medical analysis [3], industrial
settings [17] and in sensor networks [8]. In the context of sensors, anomaly detection refers
to the problem of identifying faulty or damaged sensors. This can rely on univariate (one
sensor) or multivariate (many sensors) data. It is hypothesised that in real-world industrial
settings, multivariate data is advantageous for anomaly detection. This is because it allows
for the capturing of the hidden inter-dependencies between sensors which may improve the
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performance of anomaly detection systems. For example, a key multi-variate time-series dataset
that will be used for this project includes the smart-buildings dataset2. It contains features such
as zone_air_cooling_setpoint and zone_air_temperature_sensor that when evaluated on
their own may be difficult to identify an anomaly. However, when considered in relation to
one-another, the anomaly becomes more obvious (you would expect the two values not to be
wildly dissimilar).

CBR has been used successfully with time-series problems [9] where there is a need to repre-
sent one or more data streams to enable decision support. Existing representation techniques for
time-series data often make use of feature extraction (e.g.moving average) or feature transfor-
mation (e.g. DCT) methods. Common to these problems are the lack of human-annotated data
or limited access to instances or a serious class imbalance as is expected with anomaly detection.
By definition, anomalous instances are rare. Ergo, it is natural that the number of recorded
normal instances far outweighs that of the abnormal class (see Figure 1). This can cause bias and
be problematic for deep learning methods. Usually this leads to a pre-processing step to bring
balance to the data prior to the learning phase. This can involve up-sampling the negative class
at the cost of introducing artificial data into the set, or down-sampling the positive class at the
cost of discarding valuable data. Class imbalance in time-series settings is particularly difficult
due to the temporal connection between instances. The time dimension must be considered
when sampling to allow the learning of time-series models. ‘Negative Sampling’ [16] is one
method of up-sampling the anomalous class. It is based on the ‘Concentration Phenomenon’
and artificially inflates the feature space by applying a ±𝛿, to each of the features of samples in
the normal space. However, data points are shuffled through time as the application of the 𝛿
is a random process and the time-dimension is not carefully considered. I wish to extend this
method to work in the time-series setting. One approach I wish to take is to learn a sequence
embedding of the feature space on which I will perform the re-sampling on prior to decoding.
This way the temporal information is maintained and time-series methods may be applied.

Figure 1: The figure shows a typical time-series representation in anomaly detection. Areas shaded in
red are anomalies. This highlights the scarcity of abnormal instances compared to normal instances.

Before anomaly detection models can be deployed in production, we must learn to trust
them. However, with the black-box nature of many deep neural architectures, this can be
challenging. Confidence can be improved with Explainable AI (XAI). Through XAI, we can gain
better insights around the ‘decision-making process’ of a deep-learning model. When we know
why a decision is being made, we find it easier to trust that the decision was made on the correct
grounds. Many strategies for explaining time-series re-purpose existing XAI methods (such as
LIME [11] or SHAP [7]) that were originally used to explain models in other areas such as in

2The smart buildings dataset can be found here.
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computer vision or natural language processing [12] and there is a lack of methods specifically
designed for time-series. More so, they are often difficult to interpret and unsophisticated [14]. It
has also been found that some saliency-based methods, that were designed for tabular data, fail
when applied to sequence data [4, 2]. This can lead to anomalies being explained individually
at a particular time-stamp, rather than collectively over a segment of a time-series graph.
Increasingly, Case-based Reasoning (CBR) has seen application to facilitate XAI [15], giving rise
to XCBR. Delaney et al. present a counterfactual-based XCBR approach to explaining time-series
anomalies [2]. This works well for uni-variate data but interpretability suffers as the number of
features increases. Several surveys have been conducted on the state-of-the-art in time-series
explanation and there is a clear consensus that there is a need for more sophisticated methods
that are dedicated to time-series applications [12, 13, 2].

Integrated gradients [19] is a popular XAI technique that does not modify the original network
to provide explanations. It determines feature importance by evaluating the gradient between
the input and output along uniform steps through the feature space. For this, it requires a
baseline (often an all-zero embedding such as a black image). Alas, selection of a good baseline is
problematic due to the missingness problem [18]. “Missingness” is a concept that is well-defined
in game theory. It originally referred to the concept of determining how much value a group of
participants added to a game by evaluating the value of the game after gradually adding more
participants. This is the idea behind the baseline — to model the absence of the feature we are
trying to evaluate. The problem arises when the same data resides in both the baseline and the
sample because it becomes impossible to gradually introduce to determine its importance. In
other words, 𝑥𝑖 − 𝑥′𝑖 (the difference between baseline and output) will always be 0, meaning
it can never be deemed important (see Figure 2 for an example). Therefore, it is essential that
the baseline shares minimal information with the output image. There have been multiple
strategies used to try accomplish this but none are perfect and the topic remains an open
research area [18].

Figure 2: The original image (left) is of a giant panda and the baseline image (center) is a constant
black image. The attribution mask (right) shows the pixels deemed important by integrated gradients
by highlighting them. The figure demonstrates the missingness problem as the black features of the
panda are deemed unimportant despite being a prominent characteristic.

To further ensure trust, often an ensemble approach is taken to explain models, meaning that
explanations from multiple different explainers are used. This introduces the ‘Disagreement
Problem’ [5] where it is common for many different explainers to produce wildly different
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explanations for the same decision. Ironically, this can further the distrust in systems — exactly
the opposite of its purpose. There is a need for tackling this problem so that multiple explainers
can be made to agree on an explanation. I will explore if this problem can be tackled by learning
from past experiences, in a case-based manner. Through this, it is hoped that past experiences
in solving explanation disputes can be used to solve disagreements in the future for similar
problems. The case-base would consist of a model, its output and the different explanations as
the query; and the strategy used to solve the disagreement as the solution.

Lastly, I wish to take a similar approach to learn the relational information in the feature
space. Often, sensors in industrial domains do not work in solitude. There may be obvious,
physical inter-dependencies between sensors or they may be hidden. For example, as humidity
is proportionally affected by temperature, spikes in temperature readings not seen in humidity
readings may indicate a broken temperature sensor (or vice-versa). By learning an embedding of
the relational information I can capture these inter-dependencies when sampling in the encoded
space. Consequently, it is hoped this additional information will support the classification
ability of anomaly detection systems.

2. Research Plan

2.1. Research Objectives

The main aim of this project is to improve anomaly detection in industrial sensor data and
its explanations by extending current methods to work with time-series data. Through this I
will be examining how to represent sequence data (such as time-series) to enable re-sampling
methods needed to improve coverage for anomaly detection. This will involve experiments
with feature embeddings that capture temporal and relational information between sensors. I
will also explore explainer aggregation strategies to address the Disagreement Problem in the
time-series context. As such, the following research questions are defined:

• RQ1: How can sequence data (such as time-series) be represented to enable negative
sampling methods that capture the temporal and relational information between sensors
needed to improve anomaly detection?

• RQ2: Can local methods such as a case-based approach to selecting a baseline for Inte-
grated Gradients improve the quality of its explanations?

• RQ3: What explainer aggregation strategies can be used to address the explainer Dis-
agreement Problem in the context of time-series data for anomaly detection?

2.2. Approach / Methodology

I wish to conduct experiments with applying Negative Sampling on an embedding of the feature
space that captures the temporal information and inter-dependencies between sensors. This
may involve the use of auto-encoders or sequence-to-sequence auto-encoders to learn the
embedding. It is hoped that incorporating this data will improve the performance anomaly
classifiers.

Currently I propose to expand on Integrated Gradients for the time-series setting by deploying
a case-based approach to selecting baselines. To do this, a query (time-series window, image
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etc.) and baseline pair will be stored in a case base. Similar images contain similar information,
therefore, in theory, should react well to similar baselines. To use an image-based example,
horses are very similar animals to zebras, so it is hoped that a baseline that provides good
explanations for horses, can do so for zebras. For time-series, similar trends or sub-sequences
will use similar baselines. This should circumvent the ‘missingness problem’ but may require
an adaptation step to further ensure the missingness characteristic is upheld.

Finally, I will also explore the efficacy of case-based reasoning to solve the ‘Disagreement
Problem’ in ensemble explainers. The aim is to establish a case-base of ‘disagreements’ and
solutions (past strategies that were used to solve the disagreement).

3. Progress Summary

The research is still in its embryonic stages and we are still tweaking the research proposal.
We have identified some key papers which we are reviewing in depth to better understand the
problem and validate the need for our research. Accompanying this, some exploratory data
analysis is being conducted in parallel with the hopes to replicate the results in studies found in
the literature. At present, the main focus is evaluating negative sampling as a method to correct
class imbalance and determining its suitability for time-series data.
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