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Thrombolytics or fibrinolytics are a group of pharmacological agents used to target 

and dissolve occlusive intravascular thrombi. Thrombi form a haemostatic plug at the 

site of injury to arrest bleeding and are essential for wound healing1. However, 

intravascular thrombi that aberrantly form in pathophysiological settings block blood 

vessels lead to disturbed blood flow, thereby promoting thromboembolic events. 

Degradation of a thrombus occurs when the circulating zymogen, plasminogen, is 

cleaved to an active serine protease, plasmin2,3. This process, termed fibrinolysis, is 

dependent on the presence of plasminogen activators; namely tissue plasminogen 

activator or urokinase (tPA or uPA, respectively) 2,4. The differences in the mechanism 

of action of tPA and uPA are also important, tPA requires fibrin as a co-factor to form 

a tertiary complex with plasmin5,6, however, uPA does not and can promote plasmin 

generation in solution or on the cell surface7-9. tPA is also more susceptible to 

plasminogen activator inhibitor 1 (PAI-1) inhibition, as demonstrated by their second 

order rate constants, which differ by an order of magnitude; 12.6 x 107 vs. 4.8 x 106 M-

1s-1 for tPA and uPA, respectively10. 

Current licensed thrombolytic therapies include direct plasminogen activators that 

convert plasminogen into plasmin. These encompass urokinase and recombinant 

forms of tPA; Alteplase, Reteplase and Tenecteplase. Alteplase, is a first generation 

thrombolytic that is identical to the native plasminogen activator tPA.  Tenecteplase is 

a bioengineered variant of tPA with enhanced fibrin specificity, reduced affinity for the 

endogenous inhibitor plasminogen activator inhibitor 1 (PAI-1) and a prolonged half-

life in vivo11. Tenecteplase has been shown to be efficient in treatment of acute 

myocardial infarction. The first licensed thrombolytic, streptokinase, is an indirect 

plasminogen activator that functions by forming a 1:1 high affinity complex with 

circulating plasminogen giving rise to a conformation change in the protein which 

provokes proteolytic activation of other plasminogen molecules12. These indirect 

plasminogen activators, streptokinase and staphylokinase, are of bacterial origin and 

have no direct enzymatic activity13. Staphylokinase is not currently licensed but has 

several advantages over streptokinase, as it shows a degree of fibrin specificity 

thereby limiting systemic degradation of fibrinogen.  The resulting complex is also 

resistant to inhibition by the principal inhibitor of plasmin, α2-antiplasmin (α2AP)14.    

Current thrombolytic agents are compromised by an unfavourable safety profile, 

arising from off target effects leading to haemorrhagic complications and tissue 
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damage15-17. These undesirable qualities are attributed to systemic activation of 

plasminogen promoting fibrinogenolysis.  Unrestrained proteolytic activity of plasmin, 

can result in degradation of proteins and molecules that function in tissue repair and 

wound healing, including fibronectin and vascular endothelial growth factor (VEGF) 18-

21. Currently, Alteplase is the only licensed therapy for acute ischaemic stroke and 

must be administered within a 3 – 4.5 h therapeutic window from onset of symptoms 

to limit neurological complications22-24. This is an extremely narrow time frame to 

permit hospital admission of the patients and associated computed tomography scan, 

to exclude haemorrhagic stroke, prior drug administration. There have been multiple 

clinical trials investigating alternative thrombolytic therapies as a treatment for acute 

ischaemic stroke, but these have been terminated early due to unacceptable rates of 

intracranial haemorrhage (reviewed by25). The lack of thrombolytic drugs available to 

treat stroke, and other thromboembolic complications, and current safety concerns 

highlight the necessity for a new class of thrombolytics with an enhanced safety profile 

and increased window of administration. A prototypical thrombolytic drug would 

demonstrate fibrin specificity (to localise the mechanism of action to the clot), 

resistance to inhibition, low incidence of haemorrhage, reasonable cost, 

straightforward administration and no antigenicity.   

An interesting article published in Circulation Research in February 2021, reports on 

a novel thrombolytic agent that functions independently of plasmin26. This family of 

proteins, termed high-temperature requirement A (HtrA) proteins, are vital for 

prokaryotic survival and are highly conserved in nature27-29.  Intriguingly, HtrA are 

serine protease enzymes akin to the enzymes of the coagulation and fibrinolytic 

pathways.  HtrA proteins are heat shock proteins that function in the degradation of 

misfolded proteins within bacteria in response to cellular stress conditions30-32. HtrA 

proteins are evolutionarily conserved with divergence into four genes in mammals28. 

Of note, HtrA1 has been shown to degrade misfolded tau protein aggregates in 

Alzheimers disease33. Thrombi are essentially a mass of highly damaged and 

aggregated proteins, with the scaffold protein, fibrin, reported as a misfolded protein34.  

Hassan et al26 hypothesised that the mammalian derived heat-shock, HtrA proteins, 

may function in degradation of thrombi. They applied a combination of in vitro and in 

vivo experiments to analyse the mechanism of action of HtrA proteins and compare 

the fibrinolytic profile to conventional thrombolytics, namely plasmin, streptokinase, 
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urokinase or tPA. HtrA1 and HtrA2/Omi were able to degrade fibrin in a plasmin-

independent manner. Cleavage occurred at distinct sites in the α, β and  chain of 

fibrin whilst no cleavage of native fibrinogen or fibronectin was observed.  In a mouse 

tail bleeding model HtrA proteins dissolved intravascular thrombi without targeting the 

wound healing process.  Analysis of clotting times showed a significant prolongation 

in the conventional arms, but not in the HtrA treatment group. In vivo models of 

thrombosis, including pulmonary emboli and FeCl3-induced thrombosis in the carotid 

artery, revealed that HtrA proteins were able to promote dissolution of thrombi and 

increase survival rates. These data indicate that HtrA proteins have the potential to 

drive thrombolysis while preserving the innate wound healing response. It was unclear 

from the report whether fibrin degradation products were cleared from the circulation 

in the same manner as those produced with conventional plasmin cleavage, or what 

the half-life of these of these proteases are in vivo.  

A notable finding of the study is that HtrA proteins were found to effectively dissolve 

platelet aggregates26, a characteristic that is not associated with conventional 

thrombolytic agents. The authors indicate that HtrA proteins did not target circulating 

platelets, but the evidence and experimental set up of these experiments was not 

clear. They did show that HtrA proteins degraded the integrin αIIbβ3 in aggregated 

platelet lysates. The integrin αIIbβ3 is the most abundant glycoprotein receptor on the 

platelet membrane35,36 and is essential for platelet activation and aggregation, by 

permitting fibrinogen to act as a molecular bridge between platelets37,38. It is unclear 

from the observations whether this attribute of HtrA proteins could negatively impact 

on their usefulness, as this action may interfere with primary haemostasis thereby 

promoting haemorrhagic complications.  Further work is required to fully unpick the 

mechanisms underpinning this group of novel plasmin independent thrombolytics and 

specifically to define the impact on platelets and clot initiation.  

There is a growing field of research to identify novel, safe and effective thrombolytics 

(Figure 1). Most recently, Huang et al have developed nanovesicles which mimic 

fibrinogen to allow targeted delivery of tPA to the site of injury39. The nanovesicle is 

coated with polyethylene glycol (PEG) conjugated to a cyclic RGD peptide which fuses 

with the platelet membrane upon binding to the liposomes of activated platelets39. tPA 

has a short circulation time, 2-6 min, as it is rapidly inactivated by PAI-1 or removed 

by the liver40,41. The development of nanovesicles to encapsulate and protect tPA in 
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the circulation and target the site of the thrombi overcomes the failings of native and 

recombinant tPA.  A recombinant microplasmin molecule (HtPlg) targeted to the 

platelet surface via an activation-specific αIIbβ3 single-chain antibody (SCE5) has also 

been described42.  Microplasmin is a truncated form of plasmin that lacks the kringle 

domains of full length plasminogen43 and is less susceptible to inhibition by the 

principal inhibitor of the serine protease, α2AP44. The resulting microplasmin fusion 

protein, SCE5-HtPlg, targets αIIbβ3 on the platelet surface and is activated locally by 

thrombin to release the active microplasmin42. Alternative thrombolytic delivery 

systems include microwheels (µwheels), whichuse superparamagnetic colloidal beads 

and magnetic fields to roll along surfaces at high velocity.  These µwheels can be 

loaded with therapeutic agents that are delivered to the site of thrombosis45. The 

µwheels platform is being developed to co-deliver tPA and plasminogen to overcome 

several limitations of current thrombolytic therapies, including plasminogen 

consumption45,46.   

Targeting of inhibitors of fibrinolysis has been considered as an alternative to 

thrombolytics to promote fibrin degradation by enhancing endogenous plasmin 

generation or activity.  Small molecules, peptides, monoclonal antibodies and antibody 

fragments have been used to modulate PAI-1 activity by interfering at different stages 

of the PAI-1/plasminogen activator interaction47-51.  Drugs targeting PAI-1 in the 

experimental phase have produced promising results52-54.  A potent neutralising 

diabody to PAI-1 and activated thrombin activatable fibrinolysis inhibitor (TAFIa) 

rapidly enhanced clot breakdown53.  Simultaneous inhibition of PAI-1 and TAFIa may 

improve current thrombolytic therapy; for example, co-administration with tPA may 

permit a lower dose and thus enhance its safety profile53,55. The therapeutic potential 

of α2AP inactivation, the physiological inhibitor of plasmin, has also been explored. 

Potent and specific inhibitors to human α2AP were found to rapidly degrade thrombi in 

vitro56-60 and several in vitro mouse models have found that inhibition of α2AP reduces 

ischaemic stroke injury61-63. These promising lines of attack provide alternatives to 

conventional thrombolytic treatment that unleash the proteolytic activity of plasmin 

systemically and are more likely to enhance the local endogenous activity of plasmin 

at the site of thrombosis.   

The interesting observations in the manuscript by Hassan et al26 provide intellectual 

nourishment regarding alternative approaches to thrombolysis.  If we remove plasmin 
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from the equation can we safely dissolve thrombi in the body while preserving normal 

haemostasis and wound healing?  Certainly, this would be a revolution in thrombolytics 

that could boost favourable safety profiles.  Mutations in the serine protease domain 

of HtrA1 have been reported in inherited cerebral small vessel disease, providing 

evidence of a physiological link between this family of serine proteases and 

cardiovascular diseases64-66.  It remains to be seen whether HtrA proteins would have 

substantial benefit over other novel approaches to deliver thrombolytic drugs to the 

site of thrombosis that promote thrombolysis via a traditional plasmin-mediated 

pathway or indeed over targeting the fibrinolytic arm to promote endogenous lysis. 

Nonetheless, it is evident we are in an exciting era of discoveries and novel 

technologies which will revolutionise thrombolytic therapy.   
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Figure 1 Novel thrombolytic agents under development  

Intravascular thrombi that occlude blood vessels disturb blood flow and lead to 

development of cardiovascular disease, such as ischaemic stroke, myocardial 

infarction, venous and arterial thrombosis. Thrombolytics are a class of drugs utilised 

to degrade intravascular thrombi. Conventional thrombolytics, such as tissue 

plasminogen activator inhibitor (tPA), urokinase and streptokinase, activate 

plasminogen into an active serine protease, named plasmin. Plasmin is the principal 

enzyme that degrades fibrin, the main constituent of a thrombus, into fibrin degradation 

products. Conventional therapeutic use of thrombolytics is limited due to their 

unfavourable safety profile leading to bleeding complications and additional off target 

effects. Novel thrombolytics that are highly effective and safe are under development 

in several laboratories. A novel delivery mechanism is the use of microwheels 

(µwheels), which use superparamagnetic colloidal beads and magnetic fields to roll 

along surfaces at high velocity. The µwheels co-deliver tPA and plasminogen to the 

site of the thrombus therefore targeting delivery and promoting dissolution. 

Nanovesicles composed of a polyethylene glycol (PEG) and cyclic RGD peptide that 

mimic fibrinogen binding to the platelet membrane are being developed to deliver tPA 
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to the thrombus at the site of injury. The utilisation of a microplasmin molecule that is 

fused to an αIIbβ3 antibody target the activated platelet membrane, promoting 

localised clot dissolution and interaction with the membrane prevents premature 

degradation by α2-antiplasmin. High-temperature requirement A (HtrA) proteins play 

an important role in the degradation of misfolded proteins in bacteria. Mammalian 

derived HtrA protein function have been investigated as an alternative thrombolytic 

therapy on the premise that fibrin is a misfolded protein.  HtrA act independently of 

plasmin, lowering the risk of adverse bleeding function and have potential in directed 

therapy against aberrant blood clots. Diagram created using Biorender. 
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