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a b s t r a c t

Counterfactual explanations highlight actionable knowledge which helps to understand how a machine
learning model outcome could be altered to a more favourable outcome. Understanding actionable
corrections in source code analysis can be critical to proactively mitigate security attacks that are
caused by known vulnerabilities. In this paper, we present the DisCERN explainer for discovering
counterfactuals for code vulnerability correction. Given a vulnerable code segment, DisCERN finds
counterfactual (i.e. non-vulnerable) code segments and recommends actionable corrections. DisCERN
uses feature attribution knowledge to identify potentially vulnerable code statements. Subsequently,
it applies a substitution-focused correction, suggesting suitable fixes by analysing the nearest-unlike
neighbour. Overall, DisCERN aims to identify vulnerabilities and correct them while preserving both
the code syntax and the original functionality of the code. A user study evaluated the utility of
counterfactuals for vulnerability detection and correction compared to more commonly used feature
attribution explainers. The study revealed that counterfactuals foster positive shifts in mental mod-
els, effectively guiding users towards making vulnerability corrections. Furthermore, counterfactuals
significantly reduced the cognitive load when detecting and correcting vulnerabilities in complex
code segments. Despite these benefits, the user study showed that feature attribution explanations
are still more widely accepted than counterfactuals, possibly due to the greater familiarity with the
former and the novelty of the latter. These findings encourage further research and development
into counterfactual explanations, as they demonstrate the potential for acceptability over time among
developers as a reliable resource for both coding and training.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Security attacks that exploit hidden software code flaws pose
serious risks that compromise system performance and services.
Therefore the ability to detect these vulnerabilities in a timely
manner as well as being able to detect potential flaws is a desir-
able feature that can help to avoid financial and societal conse-
quences. Application of AI for data-driven vulnerability detection
has increased significantly in recent years [1,2]. This is mainly due
to the availability of large amounts of open-source code needed
for training vulnerability detection models. Traditional classifiers
such as SVM and Naive Bayes [3], as well as neural architec-
tures for sequence modelling (e.g. LSTMs), have been successfully
used for code vulnerability classification [4]. Given the structured
textual nature of the data; these classifiers make use of text
representation methods from information retrieval [3] as well as
deep embedding techniques to represent software code [5].

∗ Corresponding author.
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Once vulnerabilities are detected or classified into flaw cate-
gories, the software needs to be fixed. Feature attribution meth-
ods enhance the transparency of AI model decisions by revealing
the underlying reasoning for classifying a code segment as vul-
nerable. It assigns a weight to each token of the code which
indicates howmuch it contributed to the AI model prediction (See
examples in Fig. 5). For example, authors of [1] used the feature
activation map of their convolutional neural model to highlight
parts of the code that contributed most to the AI model decision.
Similarly authors of [6] used LIME to highlight the contribution
of code tokens towards vulnerability. The methods introduced
in this paper address a gap in the current approaches by focus-
ing not only on identifying vulnerabilities but also on providing
corrections as a solution. Here we demonstrate how research in
counterfactual explanations can be conveniently adapted to gen-
erate code correction operators to guide the fixing of vulnerable
code segments that are detected by a classification model.

Counterfactual Explanations for AI have accrued benefits from
counterfactual thinking research from Psychology and GDPR
guidelines for AI [7]. Counterfactuals reason with the inputs,
the outputs, and the relationships between these to formulate

https://doi.org/10.1016/j.knosys.2023.110830
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a locally relevant explanation to convey how a better or more
desirable output (AI model decision) could have been achieved
by minimally changing the inputs. Questions concerning which
part of the input to modify and the appropriate methods for
implementing such changes to rectify code vulnerabilities are
addressed in this paper. Here the input is code segments and
the proposed change relates to the code correction operation. We
present the DisCERN [8] algorithm, to locate the specific area of
vulnerability in a code segment, and to generate statement-level
corrections using substitution operations. In contrast to previous
work where DisCERN was employed for identifying substitutions
using similarity calculations on tabular data, in this paper, sub-
stitutions are derived from code snippets deemed similar but
non-vulnerable. This is achieved by exploiting similarity-driven
pattern matching of pairs of code segments.

The utility of explanations in code vulnerability detection and
correction is best evaluated by the target users (i.e. developers).
Accordingly, a user study is performed to compare the effective-
ness of counterfactuals from DisCERN in comparison to feature
attribution explanations from LIME. The goal is to understand
how counterfactuals and feature attributions differ in the appli-
cation of code vulnerability detection and correction in terms of
shaping mental models, affecting cognitive load and explanation
goodness and acceptability.

This paper makes the following contributions:

• introduces the DisCERN Counterfactual Explainer as a tool
for code vulnerability correction leveraging knowledge from
feature attribution explainers and pattern matching to make
correction recommendations (Section 4);
• demonstrates the generalisability of DisCERN across multi-

ple programming languages in terms of validity and sparsity
metrics (Section 5); and
• establishes the effectiveness of counterfactuals compared to

feature attribution explanations for vulnerability detection
and correction in a user study (Section 6).

The rest of the paper is organised as follows. Section 2 dis-
cusses the related work on vulnerability detection as a Machine
Learning (ML) task and correction from the view of XAI. The intro-
duction of the NIST Datasets and detection of code vulnerabilities
using ML methods is presented in Section 3. Section 4 presents
the DisCERN algorithm which discovers counterfactuals for vul-
nerable code segments and thereby guides the user to correct
these vulnerabilities. The empirical evaluation and performance
metrics with quantitative and qualitative results are presented
in Section 5. Section 6 presents the user study that compares
the utility of counterfactual vs. feature attribution explanations.
Finally, we draw conclusions in Section 7.

2. Related work

2.1. Code vulnerability detection

The conventional approach to Code Vulnerability Detection
(CVD) involved software and security experts auditing a soft-
ware system for potential security defects, bugs and weaknesses
all of which are referred to as vulnerabilities [9]. Automation
of vulnerability detection of code is an active applied research
area where ML techniques are used for CVD [10,11]. Early ML
methods for CVD focused on optimising feature extraction tech-
niques while neural network-based methods were used to learn
semantic knowledge from unstructured code to detect vulnera-
bilities [11]. Most recently, recurrent networks [12], graph neural
networks [13] and transformer-based language models [14–16]
have been used for learning feature embeddings from code for

CVD. Many reviews in this research area provide comprehen-
sive overviews of ML techniques for CVD while emphasising the
scarcity of explainability approaches [10,17]. XAI can be har-
nessed to support CVD in multiple ways. For instance, it can
help explain how the model works, identify the key features or
variables that contribute to the detection process, and provide
insights into how to improve code and reduce vulnerabilities by
engaging humans in the loop. In this paper, we propose using the
DisCERN algorithm as a credible approach to address these issues.

2.2. Code vulnerability correction

The conventional approaches to providing users with cor-
rective feedback include rule-based [18,19] and template-based
approaches [20,21]. Authors of [18] proposed to pre-configure
corrections for specific vulnerabilities and reuse them as vul-
nerabilities are detected by their ensemble model in PHP code.
Similarly, authors of [19] use pre-configured vulnerability match-
ing rules and correction patterns for Java cryptography API code.
Alternatively, sequence-to-sequence models have been trained to
generate corrections [22]. However, they are limited to a single
programming language (C/C++) and a vulnerability group (Buffer-
overflow).

Our method is more closely related to work in [20,21] where
the methodology makes use of vulnerable and non-vulnerable
code pairs to find exemplar corrections. For each vulnerability in
the code pair, they calculate edit operations and cluster them to
find correction patterns. Discovered patterns are saved as tem-
plates to reuse on new vulnerable code segments. Their method
captures a wider variety of corrections by identifying multiple
correction patterns per vulnerability group. These methods share
the same challenge as DisCERN which is once a correction ex-
ample (in DisCERN) or a template(others) is found, how to adapt
it to match the target code. DisCERN addresses this by select-
ing the corrections from the nearest unlike neighbour, which
does not always guarantee perfect adaptation. Template-based
methods apply knowledge-intensive post-processing steps (such
as correcting variable names to match target code) that are not
generalisable to different languages and vulnerabilities.

The main difference between existing work and ours is that
DisCERN is generating the corrections to explain the prediction
of an AI model (explaining the decision). Conversely, previous
methods consider correction generation to be an independent
task and require a detection model that classifies the exact vul-
nerability group. The difference is that DisCERN corrections are
guided by the knowledge encapsulated in the AI model such
as what features/tokens contributed to the decision. DisCERN is
also not reliant on expert knowledge and heavily data-driven
making it agnostic to the detection-model and the programming-
language. It also simplifies the task of the detection AI model
from a multi-class classification (up to 100+ classes) problem to
a binary-classification problem as the explainer does not require
the exact vulnerability group.

2.3. Explainable AI in vulnerability detection

Research literature and regulatory guidelines emphasise the
necessity for explanations of ML model decisions, as ML methods
have increasingly become more opaque and difficult to inter-
pret [23,24]. This applies to code vulnerability detection and
specifically towards prevention and or mitigation. Feature at-
tribution explainers have been explored as a way to pinpoint
code lines or segments that may have contributed to a vulner-
able prediction by an ML algorithm. Authors of [25] describe
the design of a human-in-the-loop XAI system for vulnerability
mitigation, whereby model predictions are explained to forensic
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experts by way of feature attributions to enable them to make
necessary corrections. Authors of [26] explore the explanation
needs of target user groups of a code analyser to recognise two:
a global explanation where the common behaviours of the tool
are explained; and a local explanation where feature attribution
explains why a specific code snippet is predicted to be vulnerable.
Both explanations are targeted towards a knowledgeable audi-
ence of ML engineers. There are other works in similar areas such
as malware labelling in Android applications [27] and predicting
phishing URLs [28] that also make use of feature attribution
explanations. Authors of [6] used LIME to explain vulnerability
detection in C/C++ code when using the Bidirectional LSTM model
named VulDeePecker [12]. This paper addresses a key gap in
the literature by proposing the use of counterfactuals not only
for explaining detection but also for correcting vulnerabilities.
Accordingly, [6] is the most directly linked previous work we
compared against DisCERN in our user study.

2.4. Explainable AI techniques

Although there exists a broad range of explanation techniques
and types [29] our main emphasis is on factual and counterfactual
explanations. The factual explanation often answers the ‘‘what’’
or ‘‘why’’ questions by providing empirical evidence to support a
particular AI model outcome based on the input provided [30].
This evidence can take the form of feature attribution where
each input feature is assigned an attribution towards the outcome
or example-based explanations where nearest neighbours are
used to support the outcome. In contrast, counterfactuals answer
‘‘Why-not’’ or ‘‘How-to’’ questions by formulating a hypothetical
scenario that has a more desirable outcome [30]. In code vul-
nerability detection and correction, a factual explanation would
highlight where the vulnerabilities exist within the code, while
a counterfactual explanation would help to demonstrate how to
correct said vulnerabilities. In this study, we investigate the use
of the DisCERN algorithm for discovering counterfactual explana-
tions and evaluate its effectiveness through a user study. The user
study involves participants with varying levels of expertise in
code vulnerability detection and correction, allowing us to assess
the utility of the algorithm in a range of contexts.

3. Vulnerability detection with NIST SAR datasets

NIST Software Assurance Reference Dataset (SARD) Project
promotes the detection and correction of known security flaws
in programming code. The project maintains a publicly available
repository of datasets from different programming languages that
are labelled for flaws and possible corrections. The flaws are
standardised by the Common Weakness Enumeration (CWE) list
which consists of software and hardware weaknesses. In this
work, we consider three datasets in Java, C and C# programming
languages from the NIST test suite.1

3.1. Preprocessing and dataset creation

In each dataset, code files are grouped under their CWE code
and each file contains one or more functions (or methods in
Java and C#). One function is vulnerable and often the remaining
function is a proposed correction (i.e. non-vulnerable). We apply
the following pre-processing steps to prepare each dataset to
prepare for a binary-classification task:

1 https://samate.nist.gov/SARD/testsuite.php.

Table 1
Classification algorithms and performance.
Tokenizer Classifier Dataset

(t) (f ) Java C C#

Tf-idf

Naive Bayes 0.7206 0.7284 0.7783
kNN 0.9387 0.8457 0.9494
SVM 0.9574 0.8839 0.9723
Random Forest 0.9722 0.8734 0.9844

BoW Random Forest 0.9761 0.8790 0.9889
CodeBERT-base Tokeniser CodeBERT classifier 0.9469 0.9484 0.9880

1. Split functions in a file that are vulnerable and those non-
vulnerable into individual data instances. An instance (i.e.
function) was labelled vulnerable if it contains one or more
comments that start with either FLAW or POTENTIAL FLAW
and labelled as non-vulnerable if only contains comments
that start with FIX.

2. Apply the following entity obfuscation steps to each func-
tion with the aim to prevent target leakage:

(a) replace all comments with /*comment*/; and
(b) change all function signatures to

public void method() (or language appropriate alter-
native).

Fig. 1 presents two code segments from the Java dataset that
were similar, one labelled as vulnerable and the other as non-
vulnerable. We present a detailed analysis of the class distribution
of each dataset in Figs. 2, 3 and 4. The left figure (Figure a) of
each dataset shows that there are more non-vulnerable instances
compared to vulnerable instances. Figure b on the right provides
further analysis, examining the most frequent CWE codes (top
15) and the proportion of vulnerable and non-vulnerable instances
for each code. Notably, there are no non-vulnerable examples for
some CWE codes (example C# codes CWE313 and CWE94).

3.2. Vulnerability classification

Code data can be seen as a text that follows grammar rules
defined by the respective Compiler. The most common Machine
Learning (ML) pipeline for classification with text data is to use
a Tokenizer (t) to transform the text data into a vector repre-
sentation and then apply a classification algorithm (f ) to learn
from labelled data. In this work, we consider several standard
vector representations and classifier combinations to compare the
performance of commonly used black box models that detect
vulnerabilities in code segments. Given a dataset, we use 75/25
class stratified split to create 4 folds. For each fold, we train the
model with 75% of the data and test with the remaining 25%.
Table 1 presents the mean F1-score averaged across the four folds.

Overall we observe that BoW + Random Forest achieves the
best performance for Java and C# datasets while CodeBERT clas-
sifier performs best for the C dataset. It is noteworthy that the
contributions of this paper are model-agnostic, meaning that
DisCERN is applicable to any combination of t , including the most
recent encoders such as CodeBERT [31]. Accordingly, the focus of
the paper is not on identifying the best classification model, but
rather to identify a model that performs well for experimental
purposes. Accordingly, XAI evaluations in Section 5 used the BoW
+ Random Forest as the detection pipeline for all three datasets.
This allowed for fairness and consistency across experiments and
helped to observe the impact of classification performance on the
counterfactual generation.
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Fig. 1. Pre-processed code segments from the Java dataset.

Fig. 2. Java dataset statistics.

Fig. 3. C dataset statistics.

4. DisCERN counterfactuals for vulnerability detection and
correction

Code vulnerability detection decisions can be explained using
different types of explanations. As discussed in Section 2, it is

commonly explained using a factual explanation that uses fea-
ture attributions to explain the decision and it is often targeted
to knowledgeable users. Given a code segment that is labelled
vulnerable, a factual explanation will point to the part of the
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Fig. 4. C# dataset statistics.

Fig. 5. Examples of feature attribution and counterfactual explanations.

code segment which led the AI model to label it as vulnera-
ble. An example factual explanation is shown in Fig. 5(a) where
text highlights indicate vulnerable and non-vulnerable tokens in
a Blue to Orange heat map scale. For an expert, this type of
explanation should be sufficient as they have the knowledge to
correct the vulnerability. In contrast, a counterfactual explanation
in Fig. 5(b) will compare the given code segment with a similar
yet non-vulnerable code segment and make recommendations
on how to correct the vulnerability. Accordingly we argue that
counterfactual explanations are more informative for both expert
and non-expert users, and in support of this claim, we present
the DisCERN algorithm for generating counterfactual explanations
specifically for code vulnerability correction.

4.1. Problem definition

Consider a query code segment x, with m number of state-
ments where the ith statement is denoted by si. If the vulner-
ability detection pipeline used to predict the code vulnerability
consists of a Tokeniser, t , and a classification model, f , the deci-
sion predicted for x is y.

x = [s1, s2, . . . , sm]
y = f (t(x))

(1)

For a given query x, having prediction, y = vulnerable, there
are four steps to discovering non-vulnerable counterfactuals with
DisCERN:

1. find the Nearest Unlike Neighbour (NUN), x̂ from the train
dataset X ;

2. for each token z in x, find the attribution weights, using a
feature attribution explainer like LIME and order tokens by
weight to find the most vulnerable tokens;

3. given a vulnerable token, z, in x, find statements pairs for
correction, i.e. a list of statements in x and a list of candi-
date statements in x̂ as a potential vulnerability correction;

4. create an updated code segment, x′, by adapting the vul-
nerability correction and check x′ for decision change using
the vulnerability detection pipeline; and

5. repeat steps 3 and 4 until the detection pipeline predicts
non-vulnerable.

Once the adapted code segment achieves the desired deci-
sion (i.e. non-vulnerable), it is identified as the counterfactual of
the query. Next, we will explore each of these steps in detail.
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4.2. Finding the nearest unlike neighbour

Given a query x, the Nearest Unlike Neighbour (NUN), x̂, is
the nearest instance found in the train data with a different
outcome. In the context of counterfactual discovery, our query x
is vulnerable. Selecting the NUN as the starting point, we expect
(1) to minimise the actionable changes needed to flip the pre-
diction i.e. with as few changes as possible; and (2) to preserve
the original functionality of the code segment while correct-
ing vulnerabilities. As in Eq. (2), x̂ has n number of statements
and the prediction is ŷ. Importantly, x̂ and x can have different
number of statements (i.e. n ̸= m) and must have different
decisions (i.e. ŷ ̸= y).

x̂ = [ŝ1, ŝ2, . . . , ŝn]
ŷ = f (t(x̂)) | ŷ ̸= y

(2)

To find the NUN by similarity, it is necessary to use an encoder
(E) to transform code segments into a vector representation. This
work used CodeBERT [31] to encode code segments. CodeBERT
is based on the BERT [32] architecture and is state-of-the-art for
natural language code search and code generation. It supports
multiple programming languages making it most suited for this
task. More specifically, we use the pre-trained weights from
codebert-base shared in the Hugging Face repository2 which is
trained using bi-modal data (consisting of the code and its natural
language description as two modalities) from CodeSearchNet.

Given a code query, x, the encoder E generates a vector repre-
sentation, v, where the standard codebert-base encoding length, l,
is 768 (Eq. (3)). From the train data set X , we filter data instances
for which yi ̸= y and create the subset X ′. X ′ represents all the
non-vulnerable code segments that can be used to find a nearest-
unlike-neighbour for x. Each data instance in X ′ is encoded using
the encoder E to obtain the set of vectors V ′. We use cosine
similarity to find the NUN due to its robustness in comparing
high-dimensional data, and its output range of −1 to 1 allows
for a clear interpretation of similarity scores. We compute the
cosine similarity between the query x, and any other instance, xi
as in Eq. (3).

v = E(x) and v ∈ Rl

cosine(x, xi) =

∑l
j=1 vijvj√∑l

j=1 vij

√∑l
j=1 vj

(3)

Once the pair-wise similarity is computed (between x and each
xi in X ′), we select the train instance xi from the pair with the
highest similarity as the NUN of x. In the rest of this paper, this
function is referred to as nn which given, query, x, train subset,
X ′ and the similarity metric, returns the NUN, x̂.

4.3. Finding feature attribution weights

Building upon counterfactual reasoning, DisCERN uses feature
attribution to reveal the most important code tokens or seg-
ments that contribute to an outcome of vulnerable. By selectively
substituting only these segments, DisCERN can then identify the
minimum changes needed to reverse that decision. The feature
attribution explainers can provide the knowledge needed for
identifying the code segments that need to be substituted. Ac-
cordingly, without loss of generalisability, this section describes
the use of LIME explainer to find feature attributions of the query
to identify which parts of the code had contributed to it being
labelled as vulnerable.

2 https://huggingface.co/microsoft/codebert-base.

LIME is a model-agnostic feature attribution explainer that
creates an interpretable model around a data instance to es-
timate how each feature contributed to the black-box model
outcome [33]. LIME creates a set of perturbations within the
query neighbourhood and labels them using the black-box model.
This newly labelled dataset is used to create a linear interpretable
model (e.g. a linear regression model). The resulting surrogate
model is interpretable and only locally faithful to the black-box
model (i.e. correctly classifies the input instance, but not all data
instances outside its immediate neighbourhood). The new inter-
pretable model is used to explain the black-box model outcome
of the query. The explanation is formed by obtaining the linear
model coefficients that indicate how each feature contributed to
the outcome.

Our selection of LIME as the feature attribution explainer is
motivated by the evidence from the literature. Authors of [6]
proposed the use of LIME in the code vulnerability detection
domain. Their evaluation demonstrated that the attributions cor-
rectly identify tokens that cause vulnerabilities. When applying
LIME in the context of code segment data, the features are the
tokens identified by the Tokenizer, t , in the vulnerability detec-
tion pipeline. Accordingly, LIME can be used to understand the
outcome of f (t(x)), by assigning an attribution, w, to each token
which indicates how much the token contributes to the outcome.

LIME(x, t, f )→ {w(z) | w(z) ∈ R, z ∈ Z} (4)

If the vocabulary of code segments is Z , LIME assigns a weight
w for each token z ∈ Z (Eq. (4)). A positive weight (w ≥ 0)
indicates that the corresponding token contributes positively and
a negative weight (w < 0) contributes negatively towards the
outcome. We sort the weights using the partial order condition,
R, in Eq. (5) to obtain the sorted list of tokens ordered from
highest to lowest contribution towards the vulnerable outcome
as Z ′.

zi ⪯R zj ⇐⇒ R :: w(zi) ≥ w(zj) (5)

4.4. Substitution algorithm

Given a token, z, in the query code segment, the goal of the
substitution algorithm is to find a matching list of statements
in the query and respective matches in the NUN to adapt the
query such that it leads to a changed decision (i.e. vulnera-
ble to non-vulnerable). To the best of our knowledge, existing
feature attribution explainers identify the importance of tokens
instead of code statements or segments. Instead of modifying
the generic feature attribution explainers to operate at the state-
ment level, we use a post-processing step to find the matching
statements in the query that contains the token z, followed by a
Pattern Matching (pm) algorithm to find matching lists of state-
ments as presented in Algorithm 1. This allows for flexibility
and compatibility of DisCERN with various existing attribution
explainers.

We use a simple lookup function to identify all code state-
ments (S ′) in the (adapted) query x′, that contain the token
z (Line 1). The next steps (Lines 2–5) of finding the vulnerable
statements and their replacements from NUN are based on the
hypothesis that if a statement sj in S ′ is vulnerable, it must be
corrected in the NUN. Accordingly, for a statement, sj, in S ′, first,
we use a Pattern Matching algorithm to find a matching list of
statements s′

[i:j] from x′ and ŝ[v:w] from x̂. Here, the subscripts
indicate the start and end indices of the list of statements and sj is
found within s′

[i:k] (Line 3). A pattern-matching algorithm like the
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Algorithm 1 substitute

Require: x′ = [s′1, s
′

2, ..., s
′
m]: (adapted) query

Require: x̂ = [ŝ1, ŝ2, ..., ŝn]: NUN as a list of statements
Require: z: token in the query
1: S ′ ← [s ∈ x′ | z ∈ s] ▷ find the list of statements in x′ that

include z
2: for sj ∈ S ′ do
3: s′

[i:k], ŝ[v:w] ← pm(sj, [s′1, s
′

2, ..., s
′
m], [ŝ1, ŝ2, ..., ŝn])

4: cj = cosine(E(s′
[i:k]), E(ŝ[v:w])) ▷ calculate similarity

5: end for
6: (s′, ŝ)← arg max

(s′
[i:k],ŝ[v:w])

cj ▷ select maximum similarity pair

7: x′ ← replace(x′, s′, ŝ) ▷ replace s′ in x′ with ŝ′
8: return x′ ▷ return the newly adapted query

Gestalt Pattern Matching or Levenshtein Edit Distance can find
the changes required to transform one string to another where
the types of edits are replace, delete and insert. This paper used
the Gestalt Pattern Matching algorithm implemented by cdifflib
Python package.3 We consider consecutive lists of statements
rather than individual statements to preserve the grammatical
structure of the programming language as closely as possible.

Next, we calculate the similarity between the two lists of
statements using Cosine similarity (Line 4). Similar to Section 4.2
we use the codebert-base encoder to transform the list of state-
ments to a vector representation and calculate the cosine similar-
ity. Once we have all the (s′

[i:k], ŝ[v:w]) pairs, and their similarities,
cj, we select the pair, (s′, ŝ), that has the maximum similarity (Line
6). We assume a vulnerable code segment and its corrected coun-
terpart are different yet carry some similarities. Accordingly, by
selecting the pair with the highest similarity from the remaining,
we expect to discard those suggested by pm that are not vulner-
ability corrections. Note that pm only returns edit operations, not
exact matches, hence the similarity score between a pair is always
<1. Finally, in Line 7 we replace the list of statements s′ in x′ with
the list of statement ŝ to return the new adapted query.

4.5. DisCERN algorithm

Algorithm 2 DisCERN Algorithm

Require: x = [s1, s2, ..., sm]: query as a list of statements
Require: f (t(.)): vulnerability detection pipeline
Require: sim: similarity metric, default is cosine similarity
Require: X : train dataset
Require: y = f (t(x)): black-box prediction for the query
1: X ′ ← {xi ∈ X | yi ̸= y} ▷ filter the train dataset
2: x̂← nn(x, X ′, sim) ▷ find the NUN
3: {w(z)} ← LIME(x, t, f ) ▷ feature attributions
4: Z ′ ← R({w(z)}) ▷ tokens sorted by R
5: Initialise x′ = x and y′ = y
6: for z ∈ Z ′ do ▷ for each token in the sorted list
7: x′ ← substitute(x′, x̂, z) ▷ Algorithm 1
8: y′ = f (t(x′)) ▷ predict decision for the adapted query x′
9: if y′ ̸= y then ▷ check if the decision is changed

10: Break ▷ stop substitutions if decision is changed
11: end if
12: end for
13: return x′ ▷ return the adapted query as the counterfactual

3 https://github.com/mduggan/cdifflib.

DisCERN (Algorithm 2) brings together Sections 4.2 to 4.4 to
discover counterfactuals for vulnerable code. Given the query x,
and the train dataset X , in Lines 1 and 2 we find the NUN as
discussed in Section 4.2. Next, we find the LIME feature weights
for the query and sort it to obtain the list of tokens that indicate
which parts of the code contributed to the current decision (Line
3 and 4, Section 4.3). We iterate over the sorted list of tokens
where for each token we find corresponding statements and sub-
stitutions (from Algorithm 1) until the prediction is changed (Line
8). Here the prediction for the adapted query x′ is obtained using
the original classification pipeline f (t(.)). The iteration is termi-
nated when a prediction is changed and the algorithm returns the
adapted query x′ as the counterfactual for the query x. Compared
to DisCERN for tabular data [8] the key novelty is the substitution
algorithm that aims to preserve programme language syntax and
original functionality while correcting the vulnerabilities. How-
ever, the outcome of, the substitution algorithm is dependent on
the Nearest-Unlike-Neighbour and does not always guarantee to
find a counterfactual from the NUN. Accordingly, in the worst-
case scenario, DisCERN iterates through all tokens in Z ′ and may
fail to lead to a desirable decision change (of non-vulnerable) even
after all corrections are actioned on the query.

5. Evaluation

This section presents the evaluation of the counterfactual Dis-
CERN algorithm for vulnerable code correction. To the best of
our knowledge, there are no existing algorithms in the literature
for counterfactual discovery in the code vulnerability correction
domain to compare performance with other methods.

5.1. Performance metrics

DisCERN algorithm is evaluated using the three NIST datasets
(Section 3); in each dataset, we only use vulnerable test data
instances for the XAI evaluations. The following metrics are used
to measure the performance.

• Validity measures the percentage of data for which the
algorithm successfully finds a counterfactual [8,34,35]. At
this stage, the requirement for a counterfactual discovered
by an algorithm is to achieve a positive change of decision.4
Given the set of test instances that were predicted vulnerable
are Xv , and the subset for which the algorithm found a
counterfactual is X c

v , the validity is calculated as in Eq. (6).
A higher percentage of validity is desirable.

Validity =
|X c

v |

|Xv|
× 100 (6)

• Sparsity measures the mean number of statements that
were changed (i.e. cost) for a change in decision [8,34,35].
Given the cost for each test instance in X c

v is [r1, r2, . . . , rN ],
where N = |X c

v |, the sparsity is calculated as in Eq. (7). In
Algorithm 1, the number of statements changed for replace,
delete and insert operations are calculated as max(k− i, w−
v), k − i and w − v respectively. As such, the cost of a
test instance is determined by aggregating the number of
statement changes that correspond to the applied opera-
tions. In other domains, lower sparsity is preferred, how-
ever, in this domain, we hypothesise sparsity is not directly
correlated to the algorithm performance as a vulnerability

4 A more stringent metric would be to evaluate if the change conforms to
grammar rules of the Language Compiler, which we will explore in future work.
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Table 2
Validity and sparsity of DisCERN.
Dataset Validity (%) Sparsity Mean no of statements in the

Query NUN CF

Java 96.49 13.88 44.62 51.81 50.93
C 85.50 8.40 24.78 28.26 26.08
C# 97.55 13.16 27.67 33.96 33.44

correction could require adding more statements. This will
be discussed further with empirical results in Section 5.2.

Sparsity =
1
N

N∑
j=1

rj (7)

There are other metrics used in counterfactual evaluations
such as proximity (measures the difference between the origi-
nal and the substitution code segments) [8,34,35] and diversity
(measures the difference between multiple counterfactuals) [34]
which we did not find to be transferable to the code vulnerability
correction domain.

5.2. Results

Table 2 presents the performance evaluation results of Dis-
CERN using the three NIST datasets. In addition to performance
metrics, we also measure the mean number of statements in
a query, nearest-unlike-neighbour and counterfactual which we
found useful when discussing the performance of DisCERN.

We observe that the validity is consistently below 100% across
all datasets. The validity for the C dataset is significantly lower
which means the C dataset queries were not able to find coun-
terfactuals using DisCERN. This can be linked to a high (∼12.1%)
classification error seen in the vulnerability detection pipeline.
For example, the query can be misclassified as vulnerable or the
adapted query can be continuously misclassified as vulnerable. It
is further validated by the Java and C# datasets showing validity
consistent with their classification pipeline performance.

Sparsity measured the number of changes that were required
to get the decision changed from vulnerable to non-vulnerable.
Considering the mean number of statements in the query (column
4), Java and C datasets make less number of changes compared
to C#. It is noteworthy that these changes include deletion op-
erations, thus it is not an indication of the length of the coun-
terfactual. When generating counterfactuals for tabular data, a
common goal is to minimise sparsity. However, when discover-
ing counterfactuals for correcting code vulnerabilities we argue
that lower sparsity is not always desirable. In general, correcting
vulnerabilities can be costly; for example in Java, adding a try-
catch-finally block surrounding a vulnerable statement can add up
to 4–10 lines based on the formatting styles (Allman vs. K&R).

Further analysis of the number of statements between NUN
and the counterfactual shows the effectiveness of the DisCERN
algorithm. The mean number of statements in a CF is consistently
lower than that in the NUN indicating that DisCERN is in fact find-
ing meaningful corrections instead of completely converting the
query into its NUN. The consistently higher number of statements
in CF compared to the Query further indicates the increased cost
of correcting code vulnerabilities.

5.3. Qualitative analysis

While DisCERN aims to maintain syntactic integrity and pre-
serve the originally intended code functionality, sparsity, and
validity metrics do not specifically measure these aspects. As a re-
sult, we examined a selection of the generated counterfactuals to

determine whether the proposed code adaptations can effectively
address code vulnerabilities and to what extent they implement
reasonable modifications without compromising functionality.

Consider the two illustrative Java code examples in Figs. 6(a)
and 6(b) which were counterfactuals discovered by the DisCERN
algorithm. In each figure, the first two columns indicate the line
numbers of the query and the counterfactual; the third column
uses addition and subtraction signs to indicate adaptation op-
erations. In example 1, a replacement is proposed (i.e. replace
query lines 5–6 with NUN lines 5–12). With Example 2, the
counterfactual proposes an insertion (i.e. insert new lines 4–6)
and a replacement (i.e. replace query lines 6–7 with NUN lines
9–13). Both sets of adaptations have maintained the grammatical
structure of the Java language, however, Example 1 is better
at preserving functionality, because it ensures that the original
functionality of writing an empty line (originally line 6) even after
having introduced an if condition. In Example 2, DisCERN fails to
preserve the intended functionality in the original query line 7
(by failing to treat data as an array).

Both examples corroborate findings in Table 2 that code vul-
nerability correction can increase sparsity due to the insertion
of additional statements. Overall, both evaluations indicate that
DisCERN is a promising approach to discovering counterfactu-
als, however, to ensure comprehensive validity, further adapta-
tion heuristics are needed to verify counterfactuals maintain the
original functionality (e.g., apply unit testing if available).

6. User evaluation

The primary objective of this user study is to assess the ef-
fectiveness of feature attribution and counterfactual explainers
in addressing code vulnerabilities, specifically examining their
utility for both experienced and novice developers. While exist-
ing literature [6,25–27] highlights a focus on feature attribution
explanations for knowledgeable users in the XAI research, our
hypothesis posits that counterfactual explanations may prove
more informative for both skilled and trainee developers aiming
to correct code vulnerabilities. Table 3 presents the user study
protocol; enumeration indicates the order in which the questions
were presented; Green colour indicates content presented to the
participant (code segment or explanation) and the protocol is
grouped by different intents (Blue). The questionnaire was pre-
pared to capture users’ mental models before and after receiving
explanations, as well as to evaluate the quality and acceptability
of the explanations provided by the system for detecting and
correcting code vulnerabilities.

The questionnaire was repeated with three different code
snippets of different lengths (11, 33 and 21 lines of code) to
minimise bias. Snippets were selected from the Java dataset over
C and C# languages considering the wider usage and familiarity
within the target user group. All snippets contained a variant
of the CWE-191:Integer Underflow vulnerability. To prioritise
the evaluation of the explanation over participant proficiency in
detecting various types of vulnerabilities, only one type of vul-
nerability was included in the user study. Selected code snippets
are included in Figs. A.17–A.22.

The hypothesis was evaluated with independent groups of
participants recruited through Amazon Mechanical Turk. One
group received the questionnaire together with DisCERN counter-
factual explanations and the other with LIME feature attribution
explanations. From here on we will refer to the two groups as
DisCERN and LIME. The inclusion criteria for recruitment were
set as Employment Industry is Software and/or IT Services and
Job function is Information Technology to ensure the participants
have a working knowledge of programming languages. In 40
days, 95 and 103 submissions were received for DisCERN and

8



A. Wijekoon and N. Wiratunga Knowledge-Based Systems 278 (2023) 110830

Fig. 6. DisCERN counterfactual examples.

Table 3
User study protocol.
Present code snippet

A priori mental model for detecting code vulnerabilities

Q1. Do you think the code snippet contains code
vulnerabilities?

Yes, No, Maybe

A priori mental model for correcting code vulnerabilities

Q2. If you answered yes, which lines would you
change to correct code vulnerabilities?

Free text

Q3. If you listed any lines, why do you think these
lines contain code vulnerabilities?

Free text

Present explanation (annotated or modified code snippet)

A posterior mental model for correcting code vulnerabilities

Q4. After seeing the explanation, which lines would
you change to correct code vulnerabilities?

Free text

Q5. If you changed your answer from before viewing
the explanation, please mention why?

Free text

Measure goodness of the explanation for detection and correction

Q6. Did the explanation help you detect
vulnerabilities?

Yes, No

Q7. Did the explanation help you to identify the lines
you would change to correct code vulnerabilities?

Yes, No

Measure acceptability of the explanation

Q8. Did the explainer correctly annotate the parts of
the code that contain vulnerabilities?

Yes, No, Partially

LIME groups respectively from which 78 and 68 were accepted.
These submissions met the minimum requirements where they
attempted to answer at least one free-text question in addition
to all multiple choice questions (There were only 9 and 12
submissions for DisCERN and LIME groups where participants
answered all questions).

6.1. A priori mental model — detecting code vulnerabilities

Q1 measures the a priori mental model for understanding
how to detect code vulnerabilities. There are 438 responses (78 +
68 participants responded to 3 code snippets each) considered
in total. Fig. 7(a) plots the percentage of Yes, No and Maybe
responses from the two groups. The percentages between the

groups are comparable which suggests that the a priori knowl-
edge and understanding levels are similar. However, the LIME
group demonstrates higher accuracy and more confidence in their
decision choices evidenced by the lower percentage in Maybe
responses.

Fig. 7(b) plots the percentage of responses received for each
snippet. The DisCERN group identifies Snippet 2 as the most com-
plex, as evidenced by their higher percentage of Maybe responses.
Additionally, we observe that the high confidence of the LIME
group stems from the least complex Snippet 1. Both observations
imply that the responses are not arbitrary, lending credibility
to the utilisation of Q1 responses as an indicator of the group’s
a priori mental model.

6.2. A priori mental model — correcting code vulnerabilities

Q2 measures the a priori mental model for correcting code
vulnerabilities. Participants answered Q2 with line numbers or
code lines which they considered to be vulnerable. Few example
responses were 3,4,5, int data = method(); and 3rd line. After pre-
processing, Fig. 8 plots the number of responses for the three
snippets across the two groups against corresponding code lines.
Here the number of responses relates to the number of times a
specific line was identified as vulnerable. We then analyse these
against the actual vulnerable lines (the ground truths). The plots
use a two-way colour coding to distinguish between lines that
are correctly identified as vulnerable (in blue) and those that are
incorrectly identified as vulnerable (in red). Although we would
not anticipate participants who answered No (or to a lesser extent
Maybe) in Q1 to respond to Q2, we have still included their Q2
responses in the graphs if they chose to provide them.

We calculate response accuracy as a percentage of correct
responses compared to ground truth. DisCERN group demon-
strated 37.8%, 18.9%, 53.1% response accuracy while LIME group
achieves 35.0%, 16.7%, 38.3%. Overall accuracy for DisCERN and
LIME groups were 36.6% and 30.0%. Snippet 2 was the most
challenging for both groups indicated by the lowest accuracy, The
wide variety of responses suggests that the increased complexity
made participants uncertain and led to guessing. Overall, guessing
or random responses are expected from those who did not detect
vulnerability in Q1.

We observe that the code segment length has some correlation
to the number of errors. Accordingly, we further normalise the

9



A. Wijekoon and N. Wiratunga Knowledge-Based Systems 278 (2023) 110830

Fig. 7. Q1 analysis on a priori mental model — detecting code vulnerabilities.

Fig. 8. Q2 analysis on a priori mental model — correcting code vulnerabilities.

accuracy values by the ‘‘difficulty of predicting vulnerable code
lines in a code segment’’ using inspirations from document length
normalisation which alleviates the ‘‘term-frequency-bias’’. Given
the number of lines of code in the segment is α out of which
β number of lines are vulnerable, the difficulty is calculated as
1 − β/α. If all lines were vulnerable β = α then difficulty = 0
and vice versa. The weighted accuracy values are 20.4%, 17.8%
and 45.6% for DisCERN group (mean is 27.93%) and 18.9%, 15.7%
and 32.9% for the LIME group(mean is 22.5%). The difference
between the two groups is influenced by two factors: the number
of responses for Snippet 2 from the DisCERN group was signifi-
cantly lower than LIME group (37 vs. 54) which contributed to
the 2.1% difference, and for Snippet 3 DisCERN group responses
were significantly more accurate (45.6% over 32.9%) although the
number of responses was comparable (49 vs. 47). This analysis

aids in determining the groups’ initial mental models, which is
valuable for assessing the subsequent changes in their mental
models a posteriori. We recognise the marginally higher (approxi-
mately 5%) performance of the DisCERN cohort and will consider
this in our subsequent analysis when we focus on a posteriori
evaluations.

6.3. A posteriori mental model for correcting code vulnerabilities

Q4 measures the a posteriori mental model for addressing vul-
nerabilities after participants have been exposed to the explana-
tion. This implies that participants have been informed about the
snippet’s vulnerability and are presented with an explanation—
either a counterfactual from DisCERN or feature attribution from
LIME. The explanations were presented as code-diff for DisCERN
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Fig. 9. Q4 analysis on a posterior mental model — correcting code vulnerabilities.

and heat maps for LIME. To minimise the possibility of misin-
terpretations, we have provided supporting text alongside both
explanations, detailing how to interpret them effectively.

Following pre-processing of the participants’ responses, we
analysed any changes in knowledge among each user group after
exposure to the explanation for the three code snippets, as shown
in Fig. 9. Here, we anticipate that changes to their mental model
will be evident in at least two ways: (1) withdrawing their belief
for lines that were incorrectly identified as vulnerable in Q2,
and (2) recognising new lines that are necessary to address the
vulnerability having seen the explanation in Q4. For example, if
the change in response for a code line is denoted by −3, it means
that the number of responses for that line after participants saw
the explanation (Q4) decreased by three compared to before (Q2),
indicating a shift in their belief about the vulnerability of that line.
Here, the reductions observed with the Orange lines represent
a positive change that was achieved a posterori. Unlike LIME,
DisCERN not only identifies vulnerabilities but also provides hints
on how to correct them by displaying counterfactuals. As a result,
participants can access additional lines from the counterfactual
that were not available in Q2. This is seen in Fig. 9 for DisCERN,
where a relatively larger number of blue lines can be observed on
the x-axis, indicating a notable difference.

Overall Fig. 9 observations strongly indicate that participants
found counterfactuals more informative to correct vulnerabilities
compared to feature attributions. The DisCERN group exhibited
some errors, as misidentified lines on either side of the vul-
nerability boundary were observed. For instance, in Snippet 2,
lines 28 and 39 were considered worthy of change, despite not
being vulnerable. Similarly, in Snippet 3, lines 18 and 19 were
not recognised as vulnerable, representing another error. The
boundary cases observed with DisCERN and the errors observed
with the LIME group both suggest that some participants are
likely to either misinterpret or disagree with the explanations.

6.4. Goodness of explanations for vulnerability detection and correc-
tion

Q6 and Q7 aim to measure the overall goodness of the expla-
nation to detect and correct vulnerabilities. Both questions are
further analysed in relation to Q1 to examine the utility of the ex-
planations to different cohorts: knowledgeable participants who
responded Yes in Q1; and trainee participants who responded No
or Maybe in Q1.

Q6 results across the two groups are plotted in Fig. 10. The
positive response rate from DisCERN and LIME groups were 66.7%
and 62.7% respectively when asked about the utility of explana-
tions for vulnerability detection. This indicates a slight preference
towards counterfactual explanations. Furthermore, Fig. 10(b) in-
dicates that the counterfactual explanations were found to be
useful for more complex snippets (2 and 3) and feature attribu-
tions useful for the smallest snippet (1). This suggests that using
counterfactual explanations may result in a lower cognitive load
for detecting errors when compared to feature attributions.

Figs. 11(a) and 11(b) present an in-depth analysis of the Q6
responses with respect to Q1. Fig. 11(a) shows that participants
with prior knowledge of vulnerability detection found both types
of explanations useful. The improved positive response rates of
83.61% and 77.56% from their baselines for DisCERN and LIME in-
dicate that knowledgeable users found both types of explanations
helpful. However, counterfactuals have been significantly more
helpful than feature attributions, especially for complex code
snippets. Fig. 11(b) shows that trainee cohorts struggle with types
of explanations. It is indicated by the decreased positive response
rate from their baselines to 53.7% and 50.2% for DisCERN and
LIME groups. However, trainee cohorts found counterfactuals sig-
nificantly helpful for the most complex snippet whereas feature
attribution helped with the simplest snippet. These observations
further verify that counterfactuals reduced the cognitive burden
of vulnerability detection in complex code snippets.
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Fig. 10. Q6 analysis on the goodness of explanations — detecting code vulnerabilities.

Fig. 11. Q6 analysis on the goodness of explanations — detecting code vulnerabilities by knowledgeable and trainee cohorts.

Fig. 12. Q7 analysis on the goodness of Explanations — correcting code vulnerabilities.

Q7 measures the utility of the explanation to correct vulner-
abilities and we plot similar graphs to Q6. Fig. 12(a) shows that
the overall positive response rates from DisCERN and LIME groups
were 66.24% and 63.24% respectively. Similar to detection (Q6),
the responses for Q7 indicate a preference for the counterfactuals
for more complex snippets. In contrast to detection, counter-
factuals are found to be comparably helpful for the correction

of vulnerabilities in simpler snippets which evidence an overall
preference towards counterfactual explanations.

Fig. 13 presents the analysis of the Q7 response with respect to
cohorts identified in Q1. Similar to Q6, the positive response rate
for both explanations have improved from the knowledgeable
cohort and decreased from the trainee cohort. The preference
for counterfactuals over feature attributions by both cohorts for
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Fig. 13. Q7 analysis on the goodness of explanations — correcting code vulnerabilities by knowledgeable and trainee cohorts.

complex snippets remains significant for vulnerability correc-
tion. While trainee cohorts consistently find counterfactuals to be
more helpful, knowledgeable cohorts find feature attributions are
sufficient for correcting vulnerabilities in simple snippets.

We acknowledge that a significant number of trainee users
did not find either type of explanation helpful for both detection
and correction. This was clearly seen from responses to both
Q6 and Q7 having less than 50% positive responses for Snip-
pets 2,3 in the LIME group and Snippet 3 in DisCERN group.
However, the overall preference was for DisCERN counterfactuals.
This feedback is useful for future research to further improve
counterfactual explanations to assist trainee developers to learn
about vulnerability detection and correction.

6.5. Acceptability of the explanations

Q8 is aimed to measure the acceptability of the explanations.
Similar to Q6 and Q7 we plot overall responses and responses
by snippets in Fig. 14. In both groups, approximately 60% of the
participants agreed with the explanations provided. However,
the disagreement is significantly lower in the DisCERN group
where 3% more partially accepted the counterfactual explanation.
Fig. 14(b) shows that the acceptability of LIME is significantly
lower for Snippet 3 which has affected the overall acceptance.
Otherwise, agreement with feature attributions is similar to or
greater than that of counterfactuals which is inconsistent with the
previous observations on change in mental model and goodness.
LIME is a well-established explanation method in various do-
mains for several years, which may have influenced the observed
results, to further verify, we perform a more in-depth analysis.

The first analysis of acceptability is with respect to the cohorts
recognised in Q1. Fig. 15 plots the acceptability by knowledgeable
and trainee cohorts. The knowledgeable cohorts found counter-
factuals more agreeable than feature attributions, indicated by
the accumulated positive response rates of 81.47% and 75.60%.
The most significant difference is that the counterfactual ex-
planation for the most complex snippet is found to be more
agreeable which aligns with previous observations. We failed to
observe a majority of trainee cohorts agreeing with either expla-
nation, however, we observe partial agreement rates of 63.70%
and 62.20% respectively for DisCERN and LIME. These findings
reinforce the overall utility of counterfactuals over feature attri-
bution and also highlight the need to improve the counterfactuals
to build trust among trainee developers as an effective learning
tool.

The second analysis of acceptability is with respect to the
explanation goodness observed by Q6 and Q7. We recognise
two cohorts from Q6 and Q7, the ones who found explanations
helpful and others who did not for both vulnerability detection
and correction. Fig. 16(a) plots the Q8 responses for those who
found explanations helpful. Results show that the participants
who found feature attribution helpful overwhelmingly agreed
with the explanation (0% no responses). However, not all who
found counterfactuals useful agreed with it indicated by 2.11%
disagreeing and 13.34% only partially agreeing. Fig. 16(b) plots
the Q8 responses for those who found explanations not help-
ful. Those who found feature attribution not helpful for small
snippets completely disagreed with the explanation and those
who found counterfactuals not helpful for complex snippets, also
completely disagreed with the explanation. It is noteworthy that
both of these cohorts are the minority when determining good-
ness. Overall, 31.63% and 24.89% at least partially agreed with
counterfactuals and feature attributions respectively.

These observations conclude that the higher overall agreement
with feature attributions seen in Fig. 14(b) for Snippets 1 and 2 is
influenced by the cohorts who found counterfactuals helpful (Q6
and Q7) but did not fully agree with them. What is unknown and
needs to be established in the long term is if this acceptance of
feature attribution is influenced by familiarity with LIME explana-
tions. The need for this is supported by the results in Section 6.3
which clearly showed that counterfactuals influence a positive
mental model change compared to feature attributions.

6.6. Implications and limitations of the user study

Overall, counterfactual explanations encourage positive men-
tal model changes and were perceived as more helpful than
feature attributions for detecting and correcting code vulnerabil-
ities. However, feature attributions exhibit comparable or higher
acceptability, possibly due to their widespread use. These con-
clusions should be made with the limitations of the study in
mind. The key limitations of the above user study are three-fold:
(1) incompleteness of heuristics used to identify the knowledge-
able and trainee cohorts; (2) inclusion and exclusion criteria
of participants; and (3) representations and interpretation of
explanations.

The a priori mental model for detecting vulnerabilities was
based on Q1 which recognised two cohorts as knowledgeable and
trainee. However, we did not account for those who recognised
the vulnerabilities incorrectly by collating them with answers to
Q2. As seen in Section 6.2 only 36% and 30% of the two groups

13



A. Wijekoon and N. Wiratunga Knowledge-Based Systems 278 (2023) 110830

Fig. 14. Q8 analysis on the acceptability of explanations.

Fig. 15. Q8 analysis on the acceptability of explanations by knowledgeable and trainee cohorts.

Fig. 16. Q8 analysis on the acceptability of explanations by goodness cohorts.

identified the lines correctly and it includes all participants. We
found it challenging to filter participants by both Q1 and Q2
because many of those who answered Yes in Q1 were able to
partially identify vulnerable lines. A more strict filter would have
resulted in no knowledgeable participants. Accordingly, we relied
solely on Q1 to categorise participants into the two cohorts.

The recruitment of participants for the user study was limited
to Amazon Mechanical Turk (AMT), which placed constraints
on the inclusion criteria. Accordingly, the inclusion criteria for
selecting participants were constrained to those possible in the
AMT platform. Ideally, a more comprehensive study would in-
clude participants in various career stages with Java software
development skills.
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The explanations generated by LIME and DisCERN are signifi-
cantly different in their presentation. LIME highlights the original
query using a heat-map scale and DisCERN presents counter-
factual in a code-diff view. With LIME explanations where the
individual tokens are highlighted, it may mislead the partici-
pants. An example scenario is if two tokens in a statement were
highlighted as vulnerable and non-vulnerable, the participant can
consider the statement as vulnerable, non-vulnerable or have no
impact on the vulnerability detection. DisCERN code-diff view
has two columns with query line numbers and counterfactual
line numbers. A participant who is unfamiliar with code-diff may
mistakenly use the line numbers from the inappropriate column
when responding to the questionnaire.

All three limitations are well-founded, however, they do not
invalidate the findings, rather, they provide enhancing user stud-
ies in this particular domain and in Explainable AI in general.

The user study was conducted with three code segments, all
of which belonged to the same vulnerability code (CWE-191).
Our main reasoning was to prioritise the evaluation of the utility
of different types of explanation while keeping other variables
constant. Additionally, it allowed the user study not to be biased
by the proficiency of the participant in detecting various types
of vulnerabilities. However, there can be implications for this
approach if some vulnerabilities were better explained using
feature attributions over counterfactuals. This can be linked to
our observations in Section 6.4 where there was no significant
preference between feature attribution and counterfactual expla-
nations when the code segment was simple. The generalisability
of DisCERN to different vulnerability classes and languages (as
seen in Section 5) provides an opportunity to evaluate this in the
future.

7. Conclusion

The DisCERN algorithm finds counterfactual explanations for
correcting code vulnerabilities using pattern matching to find
corrections to a code segment from its nearest-unlike neighbour.
DisCERN was evaluated using three NIST datasets in different
programming languages and the results showed that it finds
counterfactuals in 85%–96% of the cases with 8∼14 statement
corrections needed. A qualitative analysis revealed that some of
the counterfactuals generated by DisCERN did not preserve the
original functionality of the code. This highlights the need for
comprehensive heuristics in the future to ensure plausible code
corrections. We conducted a user study to assess the utility of
counterfactual explanations compared to the more commonly
used feature attribution explanations for correcting vulnerabil-
ities. The user study showed that counterfactuals facilitated a
positive mental model change towards correcting vulnerabilities.
Counterfactuals were specifically preferred over feature attribu-
tions when dealing with complex code segments, indicating a
reduction in cognitive burden. However, despite being less help-
ful for vulnerability correction, feature attribution explanations
received higher acceptance than counterfactuals, possibly due to
the trust built around their familiarity. These findings provide ev-
idence for the utility of counterfactual explanations over feature
attribution explanations. Nonetheless, they also emphasise the
importance of conducting long-term evaluations to determine if
counterfactuals can establish trust with developers as a reliable
tool for vulnerability detection and correction.
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Fig. A.19. Snippet 2: LIME explanation.

Fig. A.20. Snippet 2: DisCERN explanation.
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Fig. A.21. Snippet 3: LIME explanation.

Fig. A.22. Snippet 3: DisCERN explanation.
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