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A B S T R A C T   

The main of this article is to analyze magnetohydrodynamic bioconvective flow of Sutterby 
nanoliquid. Gyrotactic microorganism in presence of chemical reaction is addressed. Thermo
phoretic, magnetic field, random motion heat generation and radiation are discussed. Further
more, Dufour and Soret behaviors are taken into account. Thermal conduction augmentation 
performance is discussed by utilization Boungiorno’s model. Nonlinear PDE’s (partial differential 
equations) are changed to ordinary system through appropriate variables. To developed 
computational solutions, we used the ND-solve technique. Results for temperature, microor
ganism field, liquid flow, and concentration are exhibited through different emerging variables. 
The physical quantities like Nusselt number, microorganism density number and solutal transport 
rate for various sundry variables are presented. Summary of main results re highlighted in the 
conclusions. Velocity reduces against magnetic field, while reverse trend seen for buoyancy ratio 
variable. Thermal distribution has an enhancing trend for magnetic and radiation variables. An 
enhancement in concentration distribution is seen for Soret number.   

1. Introduction 

Bioconvection is due to the up swimming of microorganisms caused due to density gradient and becomes unstable or destabilized. 
In the fluidic environment microorganisms display extensive versatility in swimming directions. The happening of bioconvection gives 
a modern way of mixing and controlling mass transport in diverse fluid flow problems. Bioconvection is a new kind of convection 
which is essential in biologic polymerization mixtures, ecosystem, oil recovery system and hydrogen fuel. Aziz et al. [1] studied the 
bioconvection flow of hybrid nanoliquid within presence of motile microorganism due to stretched porous medium. Solutal and 
thermal transfer analysis for bioconvective slip flow of nanoliquid towards stretching/shrinking medium is explained by Uddin et al. 
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[2]. Thermal transport analysis in bioconvective flow of nanoliquid considering motile microorganism is illustrated by Kuznetsov [3]. 
Bioconvection stratified magnetohydrodynamic flow of Oldroyd-B nanoliquid with microorganism field considering heat source due 
stretched wall is executed by Waqas et al. [4]. Performance of activation energy in bioconvection magnetized Williamson material in 
presence of radiation influence is examined by Asjad et al. [5]. Alsaedi et al. [6] reported the heat and solutal transfer rate analysis in 
bioconvection MHD flow of nanoliquid containing motile microorganisms. Zhang et al. [7] elaborated the hydromagnetic bio
convective flow of Williamson nanoliquid containing microorganism saturated in Darcy-Forchheimer medium. Recently, various 
researchers and investigators works on multiple innovative concept regarding interlayer exchange coupling [8], entropy optimized 
reactive flow with Ohmic heating [9], bio-inspired magnetism-responsive hybrid micro-structures [10], velocity slip flow with ternay 
nanofluid [11], first hidden charm penta-quark [12], bio-convective Maxwell fluid flow [13] and modeling of nano-graphite film and 
vapor-liquid equilibrium for electrolyte solutions [14,15]. 

Recently, nanofluids have been proven to be very effective as base fluid due to their remarkable thermophysical properties (density, 
thermal conductivity, viscosity and specific heat) in heat transfer rate. Nanofluids are fluids which contain nanometer sized particle. 
The nanoparticles are very small size same as to de Brogile or coherent wavelength. Because of this nanoparticles action like energy 
materials. Nanofluids are the homogeneous mixture of nanometer sized particles (1-100 nm) in a conventional fluid. Recent engineers 
and scientists have received much attention about nanoliquid due to essential thermal properties. An improvement of the thermal 
efficiency of their exchangers is one of the various application of this material. Nanoliquids having applications likes vehicle cooling, 
nanowires, nanofibers, cancer therapy, engine cooling, fuel cells, inorganic lungs, domestic refrigerator, pharmaceutical processes, 
electronic cooling system and radiators etc. Choi and Eastman [16 and 17] were the first who introduced the concept of nanofluids. 
Choi investigated thermal conductivity of nanomaterials. Afterwards many researchers explored the mechanisms of nanofluid in 
different geometrical domains. Due to a wide variety of applications in science and technology nanofluids have attained much 
attention by researchers and scientists. Nanofluids are primarily used in heat transfer equipment, in solar collectors, polymerase chain 
reaction and many others. After that Buongiorno [18] gave the theoretical model and described the seven-slip characteristics for heat 
transportation in nanoliquid. Reddy and Makinde [19] investigated buoyancy forces, thermophoretic and random movement for 
hydrodynamic Jeffrey nanoliquid flow. Irreversibility and radiation analysis for chemically reactive MHD nanoliquid flow is inves
tigated by Khan et al. [20]. Variable viscosity impact in propylene glycol-based hybrid nanoliquid flow with heat generation is illu
minated by Khan et al. [21]. Wang et al. [22], Zhang et al. [23] and Xiang et al. [24] highlight thermal evolution of chemical structure, 
advanced energy materials and directional fluid spreading on micro-fluidic chip structure respectively. Rasool et al. [25,26] 
numerically explored MHD Al2O3–Cu/engine oil based flow and EMHD non-Darcian flow towards a Riga surface. Khan et al. [27] and 
Li et al. [28,29] examined reactive based fluid flow with different flow geometries. Further discussions in this direction are given as 
follows: numerical solution for multi-layer granular bed filter [30], radiative flow for four different types of nanoparticles with 
non-uniform heat source [31], micropolar nanofluid flow through lid driven cavity [32], fluid flow analysis in the presence of chemical 
reaction [33,34], non-Darcian nano fluid flow and bio-convective processes for cross nanofluid [35,37] and Arrhenius activation 
energy impact in fluid flow [36,38]. 

Objective of recent analysis is to explore the bioconvective hydromagnetic Sutterby nanoliquid flow. Motile microorganism along 
with thermophoretic and random movement are addressed. Heat generation, magnetohydrodynamic effect and radiation are scruti
nized in energy expression. Additionally, Soret and Dufour characteristics are taken into consideration. ND-solve technique is utilized 
to get numerical solutions for the given dimensionless expression. Outcomes of secondary variables on temperature, microorganism 
field, velocity and concentration are analyzed. Physical analysis of heat transfer rate, microorganism density number and solutal 

Fig. 1. Flow diagram.  
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transfer rate versus flow variables are examined. 

2. Formulation 

Consider three-dimensional bioconvective magnetized flow of Sutterby nanomaterial. Buongiorno’s model along with motile 
microorganism is addressed. Thermal radiation, magnetohydrodynamic effect and heat generation are taken into consideration. 
Furthermore, Soret and Dufour behaviors are taken into account. Magnetic field of strength (B0) is applied. Surface is stretched 
bidirectional having velocities uw(= ax), vw(= by) with a, b > 0. Fig. 1 presents flow diagram. 

The related expressions are given by [39–42]: 
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With [39–42]: 

u = Uw = ax, v = Vw = by,w = 0, − kf
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= hf (Tw − T), − DB
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. (7)  

Here (u, v,w) denotes the velocity components, n power law index, (x, y, z) Cartesian coordinates, β material constant, kT thermal 
diffusion ratio, Q0 heat source coefficient, b∗ chemo taxis constant, (ρcp)p effective heat capacity of nanoparticles, hm mass transfer rate, 
β∗ volume expansion coefficient, DT thermophoresis coefficient, Wc cell swimming speed, Tw wall temperature, C∞ ambient con
centration, Nw wall microorganism concentration, C concentration, σf electrical conductivity, γ∗ microorganism average volume, hf 

heat transfer rate, β0 magnetic field strength, hk microorganism transfer rate, Cs concentration susceptibility, ρf density, αf thermal 
diffusivity, g gravity, T temperature, N∞ ambient microorganism concentration, kf thermal conductivity, cp specific heat, kr reaction 
rate, T∞ ambient temperature, Tm mean fluid temperature, σ∗ Stefan-Boltzman constant, Dm swimming microorganism coefficient, ρm 
microorganism density, ρp nanoparticle density, (ρcp)f heat capacity of fluid, νf kinematic viscosity, Cw wall concentration, DB 

Brownian motion coefficient, N microorganism concentration, k∗ mean absorption coefficient and τ
(

=
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ratio of capacities. 

Considering [43]: 
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We have 
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Table 1 
Nusselt number results comparison with Lone et al. [44].  

Pr Lone et al. [44] Recent outcomes 

0.72 0.463144 0.4631135 
1.0 0.581976 0.5819757 
3.0 1.165245 1.1652449 
7.0 1.895403 1.8954046 
10.0 2.308003 2.3080025  

Fig. 2. f ′

(η) via M.  

Fig. 3. g′

(η) via M.  
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Fig. 4. f ′

(η) via λ.  

Fig. 5. f ′

(η) via Nr.  
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Fig. 6. f ′

(η) via α2.  

Fig. 7. θ(η) via Du.  
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with 

Fig. 8. θ(η) via M.  

Fig. 9. θ(η) via Nb.  
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Fig. 10. θ(η) via Nt.  

Fig. 11. θ(η) via Rd.  
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τDB(Cw − C∞)

νf

)
, the Brownian motion parameter and Ω

(
= N∞

(Nw − N∞)

)
the microorganism difference parameter. 

3. Quantities of interest 

3.1. Nusselt number 

Mathematically it is 

Nux =
xqw

kf (Tw − T∞)
, (15) 

qw heat flux satisfies 

qw = −

(

kf +
16σ∗T3

∞

3k∗

) (
∂T
∂z

)⃒
⃒
⃒
⃒

z=0
, (16) 

Dimensionless equation is 

NuxRe− 1/2
x = − (1+Rd) θ

′

(0). (17)  

Fig. 12. φ(η) via Sr.  

Fig. 13. φ(η) via Le.  
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3.2. Sherwood number 

It is expressed as 

Shx =
xjw|z=0

DB(Cw − C∞)
, (18)  

here jw mass flux is defined as 

jw = − DB

(
∂C
∂z

)

, (19) 

We get 

ShxRe− 1/2
x = − φ

′

(0). (20)  

3.3. Microorganisms density number 

It is given as 

Fig. 14. φ(η) via Nb.  

Fig. 15. φ(η) via Nt.  
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Snx =
xjn|z=0

Dm(Nw − N∞)
, (21)  

in which jn microorganism flux is 

jn = − Dm

(
∂N
∂z

)

. (22) 

One can found 

SnxRe− 1/2
x = − χ ′

(0). (23)  

In above equations Rex = ax2

νf 
represents the local Reynolds number. 

Fig. 16. χ(η) via Lb.  

Fig. 17. χ(η) via Pe.  
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4. Discussion 

This section is organized for discussions of liquid flow, microorganism field, temperature, physical quantities and concentration. 
Comparison analysis of recent investigations with previous published analysis of Lone et al. [44] is mentioned in Table 1. Clearly one 
can found that both results are in an excellent agreement. 

4.1. Velocity 

Figs. (2 and 3) illustrates the flow (f ′

(η), g′

(η)) variation for magnetic field. Higher magnetic field induces more disturbance in flow 
region and the velocities (f ′

(η), g′

(η)) declined. Variation of (λ) on velocity is disclosed in Fig. 4. Clearly the fluid flow (f ′

(η)) is noticed 
an increasing function of mixed convection variable. Fig. 5 elucidates the behavior of (f ′

(η)) against buoyancy ratio variable. An 
increment in velocity is seen for larger estimation of buoyancy ratio variable. Fig. 6 sketched to show velocity (g′

(η)) impact (α2). 
Higher approximation of (α2) corresponds to upsurges the velocity field. 

4.2. Temperature 

Feature of Dufour number on (θ(η)) is exhibited in Fig. 7. An increase in thermal distribution is detected via higher estimation of 
Dufour (Du) number. Fig. 8 depicts (θ(η)) against (M). With higher (M) the resistive forces induce more resistance the flow system. As a 
result, the temperature upsurges. Figs. (9 and 10) are displayed to examine thermal (θ(η)) distribution for random (Nb) and ther
mophoresis (Nt) variables. Clearly one can detected that thermal (θ(η)) field upsurges for both random (Nb) and thermophoresis (Nt) 

Table 2 
Results for thermal transport rate.  

Nt Nb Rd Nux 

0.1 0.2 1.2 0.589609 
0.3   0.584711 
0.5   0.578188 
0.7   0.56769 
0.8 0.2 1.2 0.565881  

0.3  0.574718  
0.4  0.574501  
0.5  0.57325 

0.1 0.2 0.3 0.332234   
0.6 0.420791   
0.9 0.506546   
1.2 0.589609  

Table 3 
Numerical outcomes for solutal transfer rate.  

Sr Nt Nb Shx 

0.1 0.1 0.2 0.167237 
0.2   0.165988 
0.3   0.164744 
0.4   0.163503 
0.1 0.02 0.2 0.172212  

0.4  0.170944  
0.06  0.169691  
0.08  0.168455 

0.1 0.3 0.1 0.169406  
0.6  0.170502  
0.6  0.171619  
1.2  0.172819  

Table 4 
Computational outcomes for microorganism density number.  

Lb Pe Snx 

0.6 0.1 0.0890018 
0.7  0.0898872 
0.8  0.0905972 
0.9  0.0911799 
0.7 0.01 0.0872824  

0.05 0.0884499  
0.09 0.0896017  
0.13 0.090738  
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diffusion variables. Fig. 11 depicts the magnification in (θ(η)) with increasing (Rd). Clearly higher radiation (Rd) results into creation 
of more heat inside system which cause increase in temperature. 

4.3. Concentration 

The action of (φ(η)) through (Sr) is depicted in Fig. 12. As anticipated the Concentration (φ(η)) distribution is boosted via larger 
Soret (Sr) number. Fig. 13 indicates (φ(η)) variation via (Le). Physically Lewis number has inverse relation with mass diffusivity. So far 
big Lewis number the liquid has small mass diffusivity, as a consequence (φ(η)) decreases. Concentration field behavior subject to 
random (Nb) and thermophoresis (Nt) variables are disposed in Figs. (14 and 15). An increase in concentration has been detected for 
higher values of (Nt), while reverse impact occurs for (Nb). 

4.4. Microorganism field 

Trend of (χ(η)) for higher bioconvection Lewis number is shown in Fig. 16. The microorganism (χ(η)) field is decayed for larger 
values of (Lb). The action of (χ(η)) through Peclet (Pe) number is shown in Fig. 17. Clearly a reduction occurs in microorganism (χ(η)) 
field for larger values of Peclet (Pe) number. 

4.5. Engineering quantities 

Here heat transfer rate (Nux) microorganism density number (Snx) and solutal transport rate (Shx) are discussed. 

4.5.1. Thermal transport rate 
Variation of influential variables (like Nt, Nb and Rd) on (Nux) is mentioned in Table 2. A reduction in heat transport (Nux) rate is 

witnessed for higher (Nt) and (Nb). The Nusselt (Nux) number is boosted with increasing radiation variable. 

4.5.2. Mass transport rate 
Impact of Soret (Sr) number, random (Nb) and thermophoretic (Nt) variable is highlighted in Table 3. Obviously (Shx) is improved 

versus random (Nb) variable. Solutal transport (Shx) rate decrement is detected for higher (Nt) and (Nb). 

4.5.3. Microorganisms density number 
Microorganism density (Snx) number variation against (Lb) and (Pe) is mentioned in Table 4. There is an increase in (Snx) occurs for 

Peclet number. Microorganism density number (Snx) enhancement is noticed for bioconvection Lewis number. 

5. Closing remarks 

The following main results are mentioned: 

Decreasing impact for velocities (f ′

(η), g′

(η)) occurs through magnetic field.  
• Increase in flow is detected for buoyancy ratio variable.  
• The velocity is boosted against mixed convection variable.  
• Increase in temperature is noticed for Dufour (Du) number and magnetic (M) field.  
• Thermal distribution improves via larger values of thermophoresis (Nt) and random (Nb) motion variables.  
• Radiation effect leads to upsurges thermal distribution and Nusselt number.  
• Decreasing in heat transport rate is detected for increasing values of (Nt) and (Nb).  
• Lewis number leads to reduce concentration.  
• Concentration for (Nt) and (Nb) has reverse impacts.  
• An increment in concentration occurs for Soret number.  
• Reverse trend in solutal transport rate is noticed for random (Nb) and thermophoresis (Nt) variables.  
• Soret number variation decays mass transport rate.  
• Peclet number leads to intensifies the microorganism density number, while opposite trend seen for microorganism field.  
• Microorganisms field decays for larger bioconvection Lewis number,  
• An increase in microorganism density number is detected for higher bioconvection (Lb) Lewis number. 
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